matlab 插值与拟合
(完整版)Matlab学习系列13.数据插值与拟合
13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。
插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。
1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。
2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。
插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。
区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。
【拟合】要求得到一个具体的近似函数的表达式。
因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。
当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。
一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。
注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。
例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。
matlab插值与拟合
matlab插值与拟合
在MATLAB中,插值和拟合都是通过函数来实现的。
插值是通过创建新的数据点来填充在已知数据点之间的空白。
MATLAB提供了几种不同的插值方法,例如分段线性插值、三次样条插值、立方插值等。
具体使用哪种插值方法取决于数据的特性和所需的精度。
插值函数的一般形式是`interp1(x, y, xi, 'method')`,其中`x`和`y`是已知的数据点,`xi`是待插值点的横坐标向量,`method`是插值方法,例如最近邻点插值、线性插值、三次样条插值、立方插值等。
拟合是通过调整一个数学模型来使得该模型尽可能地接近给定的数据点。
在MATLAB中,可以使用`polyfit`函数进行多项式拟合。
该函数的一般形式是`p = polyfit(x, y, n)`,其中`x`和`y`是已知的数据点,`n`是多项式的阶数。
该函数返回一个向量`p`,表示多项式的系数。
可以使用`polyval`函数来评估这个多项式模型在给定数据点上的值。
需要注意的是,插值和拟合都是数学上的近似方法,它们只能尽可能地逼近真实的情况,而不能完全准确地描述数据的变化。
因此,选择合适的插值和拟合方法是非常重要的。
matlab中插值与拟合
计算可视化
1 插值与数据拟合 1.1 一维数据的插值问题 1.1.1 一维插值问题的求解
例1-1:已知的数据点来自函数25f ()(35)sin x x x x e x -=-+,根据生成的数据进行插值处理,得出较平滑的曲线直接生成数据。
例1-2:编写一段程序,允许利用插值方法手工绘制一条光滑的曲线。
1.1.2 Lagrange插值算法及应用
例1-3:对2()1/(125),11f x x x =+-≤≤进行Lagrange 插值。
1.2 已知样本点的定积分计算
例1-4:利用样条插值算法求解3/2
cos(15)x dx π⎰。
例1-5:已知其中的150个数据点,用quadspln()计算出该定积分的值
2
()x
t erf x e dt -=
⎰。
1.3 二维网格数据的插值问题
例1-6:由2
22(,)(2)x
y xy
z f x y x x e ---==-可计算出一些较稀疏的网格数据,对整
1.4 二维一般分布数据的插值问题1.5 高维插值问题。
在Matlab中如何进行数据插值与拟合
在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
Matlab中的曲线拟合与插值技巧
Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。
在Matlab 中,有许多工具和函数可用于处理这些技术。
本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。
一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。
在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。
1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。
它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。
例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。
可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。
polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。
2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。
与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。
例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。
MATLAB 插值与拟合
ZI = interp2(X,Y,Z,XI,YI,method) %用指定的算法method计算二维插值:
这里method与前面的一维插值方法相同。
’linear’:双线性插值算法(缺省算法); ’nearest’:最临近插值; ’spline’:三次样条插值; ’cubic’ or ‘pchip’:立方插值。
则有:y a0 a1t
即:将指数规律的方程转换 成一次多项式方程
算出 a0=2.9943,a1=-0.2347. 故k=0.2347, 由ln(d / v) a0 v 15.02
%先观察数据的大致规律 t=[0.250.5 1 1.5 2 3 4 6 c=[19.21 18.15 15.36 14.10 12.89 9.32 7.45 3.01]; subplot(2,1,1),plot(t,c,'+'),xlabel('t'),ylabel('c') %不是简单的线性关系,则考虑是否为指数关系 pause y=log(c); subplot(2,1,2),plot(t,y,'+'),xlabel('t'),ylabel('logc') y=log(c); %对元数据求对数; a=polyfit(t,y,1); a1=a(1),a2=a(2) %得到两个参数a1和a2 d=300; k=-a1,v=d*exp(-a2);
问题7 给药问题
在快速静脉注射下,研究血药浓度的变化规律
观测的数据如下:t=0时注入300mg
T(h) 0.25 0.5 1 1.5 2 3 4 6 8
C(μg/ml) 19.21 18.15 15.36 14.10 12.89 9.32 7.45 5.24 3.01
插值与拟合(matlab用法)
f(x)=a1r1(x)+a2r2(x)+ …+amrm(x)
(1)
其中 a1,a2, …am 为待定系数。
第二步: 确定a1,a2, …am 的准则(最小二乘准则):
使n个点(xi,yi) 与曲线 y = f(x) 的距离i 的平方和最小 。
n
n
记 J (a1, a2 ,am )
2 i
[ f (xi ) yi ]2
i 1
i 1
nm
[ ak rk (xi ) yi ]2
(2)
i1 k 1
问题归结为,求 a1,a2, …am 使 J(a1,a2, …am) 最小。
函数选择
1. 通过机理分析建立数学模型来确定 f(x); 2. 将数据 (xi,yi) i=1, …n 作图,通过直观判
断确定 f(x)。
多项式拟合的Matlab解决
所有的插值方法 都要求x是单调的, 并且xi不能够超过 x的范围。
二维插值
构造一个二元函数通过所有已知节点,再利用该函数求出插 值点的函数值。 m×n个节点,顺序排列且各不相同
n个节点,无序排列且各不相同
二维插值的Matlab解决
z = interp2(x0, y0, z0, x, y, 'method')
一维插值的Matlab解决
yi = interp1(x, y, xi, 'method')
◦ x, y:节点
◦ xi:插值点
◦ method
nearest:最邻近插值 linear: 双线性插值; spline: 三次样条插值; cubic或pchip : 立方插值。 缺省时: 双线性插值。
◦ x0:迭代初值 ◦ xdata,ydata:已知数据点 lsqcurvefit用以求含参量x(向量) 的向量值函数 F(x,xdata)=(F(x,xdata1),…,F(x,xdataN))T 中的参变量x(向量),使得
插值与拟合的MATLAB实现
插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。
插值是通过已知数据点之间的数值来估计未知位置的数值。
而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。
插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。
interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。
2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。
lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。
3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。
spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。
拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。
polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。
函数返回一个多项式的系数向量p,从高次到低次排列。
通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。
2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。
fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。
Matlab 曲面插值和拟合
Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。
在matlab中都有特定的函数来完成这些功能。
这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。
插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。
对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。
拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。
对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。
具体使用方法可以看后面的例子。
对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。
原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。
MATLAB中的数据插值与拟合方法介绍
MATLAB中的数据插值与拟合方法介绍概述数据处理是科学研究和工程实践中的重要环节之一。
对于实验或观测数据,我们常常需要通过插值和拟合方法来获取更加精确和连续的函数或曲线。
在MATLAB中,有多种方法和函数可以用于实现数据插值和拟合,本文将介绍其中的一些常用方法。
一、数据插值数据插值是指利用有限个数据点,通过某种方法构建一个连续的函数,以实现在这些点之间任意位置的数值估计。
在MATLAB中,常用的数据插值方法有线性插值、多项式插值、三次样条插值等。
1. 线性插值线性插值是最简单的插值方法之一,假设我们有两个数据点 (x1, y1) 和 (x2, y2),要在这两个点之间插值一个新的点 (x, y),线性插值即为连接 (x1, y1) 和 (x2, y2) 这两个点的直线上的点(x, y)。
在MATLAB中,可以通过interp1函数进行线性插值。
2. 多项式插值多项式插值是使用一个低次数的多项式函数来拟合数据的方法。
在MATLAB 中,可以通过polyfit函数进行多项式拟合,然后利用polyval函数来进行插值。
具体的插值效果与所选用的多项式阶数有关。
3. 三次样条插值三次样条插值算法利用相邻数据点之间的三次多项式来拟合数据,从而构成一条光滑的曲线。
在MATLAB中,可以通过spline函数进行三次样条插值。
二、数据拟合除了插值方法外,数据拟合也是处理实验或观测数据的常见方法之一。
数据拟合是指通过选择一个特定的数学模型,使该模型与给定的数据点集最好地拟合。
在MATLAB中,常用的数据拟合方法有多项式拟合、指数拟合、非线性最小二乘拟合等。
1. 多项式拟合在MATLAB中,可以使用polyfit函数进行多项式拟合。
该函数通过最小二乘法来拟合给定数据点集,并得到一个多项式函数。
根据所选用的多项式阶数,拟合效果也会有所不同。
2. 指数拟合指数拟合常用于具有指数关系的数据。
在MATLAB中,可以通过拟合幂函数的对数来实现指数拟合。
matlab学习——05插值和拟合(一维二维插值,拟合)
matlab学习——05插值和拟合(⼀维⼆维插值,拟合)05插值和拟合1.⼀维插值(1) 机床加⼯零件,试⽤分段线性和三次样条两种插值⽅法计算。
并求x=0处的曲线斜率和13<=x<=15范围内y的最⼩值。
x0=[0 3 5 7 9 11 12 13 14 15];y0=[0 1.2 1.7 2 2.1 2.0 1.8 1.2 1.0 1.6];x=0:0.1:15;% interp1现有插值函数,要求x0单调,'method'有% nearest 最近项插值 linear 线性插值% spline ⽴⽅样条插值 cubic ⽴⽅插值y1=interp1(x0,y0,x);y2=interp1(x0,y0,x,'spline');pp1=csape(x0,y0);y3=fnval(pp1,x);pp2=csape(x0,y0,'second');y4=fnval(pp2,x);[x',y1',y2',y3',y4']subplot(1,4,1)plot(x0,y0,'+',x,y1)title('Piecewise linear 分段线性')subplot(1,4,2)plot(x0,y0,'+',x,y2)title('spline1')subplot(1,4,3)plot(x0,y0,'+',x,y3)title('spline2')subplot(1,4,4)plot(x0,y0,'+',x,y4)title('second')dx=diff(x);dy=diff(y3);dy_dx=dy./dx;dy_dx0=dy_dx(1);ytemp=y3(131:151);ymin=min(ytemp);index=find(y3==ymin);xmin=x(index);[xmin,ymin](2) 已知速度的四个观测值,⽤三次样条求位移S=0.15到0.18上的vd(t)积分t 0.15 0.16 0.17 0.18vt 3.5 1.5 2.5 2.8format compact;% 已知速度的四个观测值,⽤三次样条求位移S=0.15到0.18上的vd(t)积分% t 0.15 0.16 0.17 0.18% vt 3.5 1.5 2.5 2.8clc,clearx0=0.15:0.01:0.18;y0=[3.5 1.5 2.5 2.8];% csape 三次样条插值,返回要求插值的的函数值pp=csape(x0,y0) % 默认的边界条件,Lagrange边界条件format long gxishu = pp.coefs % 显⽰每个区间上三次多项式的系数s=quadl(@(t)ppval(pp,t),0.15,0.18) % 求积分format % 恢复短⼩数的显⽰格式% 画图t=0.15:0.001:0.18;y=fnval(pp,t);plot(x0,y0,'+',t,y)pp =包含以下字段的 struct:form: 'pp'breaks: [0.1500 0.1600 0.1700 0.1800]coefs: [3×4 double]pieces: 3order: 4dim: 1xishu =1 ⾄2 列-616666.666666667 33500-616666.666666667 15000-616666.666666668 -3499.999999999993 ⾄4 列-473.333333333334 3.511.6666666666671 1.5126.666666666667 2.5s =0.0686252.⼆维插值(1) 丘陵测量⾼度。
Matlab中的插值与拟合方法介绍
Matlab中的插值与拟合方法介绍在数据分析与处理的过程中,插值与拟合是非常重要的工具。
Matlab作为一种常用的数据处理与分析工具,提供了许多插值与拟合函数,方便用户进行数据处理和分析。
本文将介绍Matlab中的插值和拟合方法,并提供相应的示例和应用场景。
一、插值方法1. 线性插值线性插值是最简单的插值方法之一,通过连接已知数据点的直线进行插值。
在Matlab中,可以使用interp1函数进行一维线性插值。
下面以一个简单的例子来说明线性插值的应用:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi)```在这个例子中,已知一组数据点(x, y),要求在x=2.5处的插值结果。
通过interp1函数,可以得到插值结果yi=5。
线性插值适用于数据点较少且近邻点的变化趋势比较明显的情况。
2. 三次样条插值三次样条插值是一种更精确的插值方法,它利用多个小区间的三次多项式进行插值。
在Matlab中,可以使用interp1函数的'spline'选项进行三次样条插值。
以下是一个示例:```x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];xi = 2.5;yi = interp1(x, y, xi, 'spline')```通过设置'spline'选项,可以得到插值结果yi=5.125。
三次样条插值适用于数据点较多且变化较为复杂的情况。
3. 二维插值除了一维插值,Matlab还提供了二维插值函数interp2,用于处理二维数据的插值问题。
以下是一个简单的二维插值示例:```x = 1:4;y = 1:4;[X, Y] = meshgrid(x, y);Z = X.^2 + Y.^2;xi = 2.5;yi = 2.5;zi = interp2(X, Y, Z, xi, yi)```在这个例子中,首先生成一个二维数据矩阵Z,然后利用interp2函数在给定的坐标(xi, yi)处进行插值,得到插值结果zi=12.25。
MATLAB拟合和插值
MATLAB拟合和插值定义插值和拟合:曲线拟合是指您拥有散点数据集并找到最适合数据⼀般形状的线(或曲线)。
插值是指您有两个数据点并想知道两者之间的值是什么。
中间的⼀半是他们的平均值,但如果你只想知道两者之间的四分之⼀,你必须插值。
拟合我们着⼿写⼀个线性⽅程图的拟合:y=3x^3+2x^2+x+2⾸先我们⽣成⼀组数据来分析:x=-5:0.5:5;e=50*rand(1,length(x))-25;%制造[-25,25]的随机数作为误差y=3*x.^3+2*x.^2+x+2+e;%得到y值plot(x,y,'.')x =Columns 1 through 6-5.0000 -4.5000 -4.0000 -3.5000 -3.0000 -2.5000Columns 7 through 12-2.0000 -1.5000 -1.0000 -0.5000 0 0.5000Columns 13 through 181.0000 1.50002.0000 2.50003.0000 3.5000Columns 19 through 214.0000 4.50005.0000y =Columns 1 through 6-350.0110 -248.6360 -169.3421 -89.5653 -88.2298 -57.7238Columns 7 through 12-32.5505 2.3308 11.5861 9.0123 -0.4538 5.7254Columns 13 through 18-2.1840 30.3596 20.4478 73.2138 88.1756 152.0492Columns 19 through 21236.2809 334.3864 411.0563这时候x,y作为已知数据存在,要求我们拟合x,y的散点图,这时候会⽤到这个函数。
语法p = polyfit(x,y,n)[p,S] = polyfit(x,y,n)[p,S,mu] = polyfit(x,y,n)说明p = polyfit(x,y,n) 返回阶数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最⼩⼆乘⽅式中)。
MATLAB中的插值与拟合方法详解
MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。
这种问题的解决方法通常可以分为两种:插值和拟合。
插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。
插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。
拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。
MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。
接下来我们将详细介绍MATLAB中常用的插值和拟合方法。
篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。
1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。
在MATLAB中,可以使用interp1函数来进行线性插值的计算。
该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。
2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。
MATLAB中的polyfit函数可以用来进行多项式的拟合计算。
这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。
3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。
样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。
篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。
1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。
在MATLAB中,可以使用polyfit函数来进行线性拟合计算。
Matlab数学建模学习笔记——插值与拟合
Matlab数学建模学习笔记——插值与拟合⽬录插值与拟合插值和拟合的区别图⽚取⾃知乎⽤户yang元祐的回答插值:函数⼀定经过原始数据点。
假设f(x)在某区间[a,b]上⼀系列点上的值y_i=f(x_i),i=0,1,\dots,n。
插值就是⽤较简单、满⾜⼀定条件的函数\varphi(x)去代替f(x)。
插值函数满⾜条件\varphi(x_i)=y_i,i=0,1,\dots,n拟合:⽤⼀个函数去近似原函数,不要求过已知数据点,只要求在某种意义下它在这些点上的总偏差最⼩。
插值⽅法分段线段插值分线段插值就是将每两个相邻的节点⽤直线连起来,如此形成的⼀条折线就是就是分段线性插值函数,记作I_n(x),它满⾜I_n(x_i)=y_i,且I_n(x)在每个⼩区间[x_i,x_{i+1}]上是线性函数(i=0,1\dots,n-1)。
I_n(x)可以表⽰为I_n(x)=\sum_{i=0}^n y_il_i(x),其中l_i(x)= \begin{cases} \frac{x-x_{i-1}}{x_i-x_{i-1}},&x\in [x_{i-1},x_i],i \neq 0,\\ \frac{x-x_{i+1}}{x_i-x_{i+1}},&x\in [x_i,x_{i+1}],i \neq n,\\ 0,&其他 \end{cases}I_n(x)有良好的收敛性,即对x\in [a,b],有\lim _{n \rightarrow \infin}I_n(x)=f(x)⽤I_n(x)计算x点的插值的时候,只⽤到x左右的两个点,计算量与节点个数n⽆关。
但是n越⼤,分段越多,插值误差越⼩。
拉格朗⽇插值多项式朗格朗⽇(Lagrange)插值的基函数为\begin{aligned} l_i(x)&=\frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)}\\ &= \prod_{j=0\\j\neq i}^{n} \frac{x-x_j}{x_i -x_j},i=0,1,\cdots,n。
matlab 插值拟合
matlab 插值拟合摘要:一、插值与拟合的基本概念二、MATLAB 中的插值函数1.线性插值2.最邻近插值3.三次样条插值4.多项式插值三、MATLAB 中的拟合函数四、MATLAB 插值与拟合的应用实例五、总结正文:一、插值与拟合的基本概念插值是一种通过已知的数据点来预测未知数据点的方法。
它是基于已知数据点的函数值,通过一定的算法来预测未知数据点上的函数值。
拟合则是一种更广义的概念,它不仅包括插值,还包括了通过已知数据点来确定函数的形式,如多项式、指数、对数等。
在实际应用中,拟合常常用来解决数据点的预测和预测模型的选择问题。
二、MATLAB 中的插值函数MATLAB 提供了多种插值函数,包括线性插值、最邻近插值、三次样条插值和多项式插值等。
下面我们逐一介绍这些函数。
1.线性插值线性插值是最简单的插值方法,它通过计算已知数据点之间的直线来预测未知数据点上的函数值。
在MATLAB 中,线性插值的函数是`yinterp1`,其用法如下:```matlabyinterp1(x0,y0,xq,method,extrapolation)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为线性插值("linear"),`extrapolation`指定是否进行外推,默认为关闭("off")。
2.最邻近插值最邻近插值是一种基于距离的插值方法,它通过找到距离未知数据点最近的已知数据点来预测未知数据点上的函数值。
在MATLAB 中,最邻近插值的函数是`yinterp2`,其用法如下:```matlabyinterp2(x0,y0,xq,method)```其中,`x0`和`y0`分别是已知数据点的横纵坐标,`xq`是要预测的数据点的横坐标,`method`指定插值的方法,默认为最邻近插值("nearest")。
matlab拟合函数并插值
matlab拟合函数并插值在MATLAB中进行拟合函数并插值可以通过以下步骤实现:1. 准备数据:首先,您需要准备要进行拟合和插值的数据。
这可以是一组x和y值,其中x是输入数据,y是对应的目标输出数据。
2. 拟合函数:使用MATLAB中的拟合函数来对数据进行拟合。
例如,您可以使用`fit`函数来拟合一组数据。
以下是一个简单的例子:```matlabx = [1, 2, 3, 4, 5]; % 输入数据y = [2, 3, 5, 7, 11]; % 输出数据fitresult = fit(x', y', 'poly1'); % 拟合一个一次多项式函数```在这个例子中,我们使用了`fit`函数来拟合一组输入数据`x`和输出数据`y`,并指定了要拟合的函数类型为一次多项式。
`fit`函数将返回拟合的结果,其中包含了拟合的函数表达式和拟合参数等信息。
3. 进行插值:一旦您完成了拟合,您可以使用插值方法来预测新的输入数据对应的输出值。
在MATLAB中,插值可以通过使用`interp1`函数来实现。
以下是一个简单的例子:```matlabxnew = [1.5, 2.5, 3.5, 4.5]; % 新的输入数据ynew = interp1(fitresult, xnew); % 使用拟合结果进行插值```在这个例子中,我们使用了`interp1`函数来对新的输入数据进行插值,并使用了之前拟合的结果作为插值函数的参数。
`interp1`函数将返回对应于新的输入数据`xnew`的插值结果`ynew`。
在MATLAB中进行拟合函数并插值需要准备数据、使用拟合函数进行拟合、使用插值函数进行插值。
这些步骤可以帮助您在MATLAB中实现拟合和插值的功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
插值与拟合
实验内容:1. 三种插值方法 2.用 Matlab 计算插值 3.拟合的基本原理 4.用 Matlab 拟合曲线 实验目的: 掌握插值与拟合方法
一、
概念的引入
1. 插值与拟合在现实生活中的应用 机械制造:汽车外观设计 采样数据的重新建构:电脑游戏中场景的显示,地质勘探,医学领域(CT)
二、 插值理论
设函数 y=f(x)在区间[a,b]上连续,在[a,b]上有互异点 x0,x1,…,xn 处取值 y0,y1,…,yn 。如果函数φ(x)在点 xi 上满足φ(xi)=yi (i=0,1,2,…,n),则称φ(x)是函数 y=f(x)的插值函数,x0,x1,…,xn 是插值节点。若此时φ(x)是代数多项式 P(x),则称 P(x) 为插值多项式。显然 f(x)≈φ(x),x∈[a,b]
y ( x) hi[( xi x)(2aiyi yi ' ) yi ]
i 1
n
其中: hi
(
j 1ai xi xj i 1 xi xj i j
2) Matlab 实现 Hermite.m function y=hermite(x0,y0,y1,x) n=length(x0);m=length(x);
3. 分段插值------子区间内,避免函数在某些区间失真 1) 线性插值 已知 n+1 个不同节点 x0,x1,…,xn ,构造分段一次线性多项式 P(x),使之满足 P(x)在[a,b]上连续 P(xk)=yk P(x)在[xi,xi+1]上是线性函数,P(x)=
y l ( x)
2) Matlab 实现函数
Lagrange.m
function y=lagrange(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0;
for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 3) 例题的 Matlab 实现 x=[1 2 3 4]; y=[0 –5 –6 3]; lagrange(x,y,2.5)
很显然,当 n=1、插值节点只有两个 xk,xk+1 时 P1(x)=yklk(x)+yk+1lk+1(x) 其中基函数 lk(x)= 2. 牛顿插值 构造 n 次多项式 Nn(x)=f(x0)+f(x0,x1)(x-x0)+f(x0,x1,x2)(x-x0)(x-x1)+… +f(x0,x1,x2,…,xn)(x-x0)(x-x1)…(x-xn) 称为牛顿插值多项式,其中
此时 i ( x ) = ui ( x ) + vi ( x ) ,其中 hi xi 1 xi
4.
三次样条插值------二阶可导 对于给定 n+1 个不同节点 x0,x1,…,xn 及函数值 y0,y1,…,yn,其中 a=x0<x1<…<xn=b。构
造三次样条插值函数 S(x)。S(x)称为三次样条函数时需满足: S(x)在[a,b]上二阶导数连续 S(xk)=yk (k=0,1,…,n) 每个子区间[xk,xk+1]上 S(x)是三次多项式(k=0,1,…,n)
显然 lk (x)满足 lk (xi)=
1(i k ) 0(i k ) f ( n 1) ( ) n 1(x) (n 1)!
此时 Pn(x)≈f(x),误差 Rn(x)=f(x)-Pn(x)=
其中 ∈(a,b)且依赖于 x, n 1(x) =(x-x0)(x-x1)…(x-xn)
i i i 0
n
2) 两点带导数插值---避免尖点、一阶连续
区间[a,b]上两个互异节点 xi,xi+1,已知实数 y i,y i+1,m i,m i+1,为了构造次数不大于 3 的 多项式 i ( x ) 满足条件
i ( xi ) yi ' i ( xi ) mi
i ( xi 1) yi 1 ' i ( xi 1) mi 1 vi ( xi ) 0 vi ( xi ) 0 vi ( xi 1) yi 1 ' vi ( xi 1) mi 1
N3(x)=f(x0)+f(x0,x1)(x-x0)+f(x0,x1,x2)(x-x0)(x-x1)+f(x0,x1,x2,x3)(x-x0)(x-x1)(x-x2) =0+(-5)(x-1)+2*(x-1)(x-2)+1*(x-1)(x-2)(x-3) =x3-4x2+3
三、 Matlab 在插值中的应用
5. 例题 已知函数 y=f(x)的观测值 X Y 1 0 2 -5 3 -6 4 3
求三次插值多项式φ(x)及φ(2.5). 解: (1)拉格朗日插值
l 0( x ) l1( x) l 2( x )
( x 2)( x 3)( x 4) ( x 2)( x 3)( x 4) (1 2)(1 3)(1 4) 6 ( x 1)( x 3)( x 4) ( x 1)( x 3)( x 4) (2 1)(2 3)(2 4) 2 ( x 1)( x 2)( x 4) ( x 1)( x 2)( x 4) (3 1)(3 2)(3 4) 2
3
+ (-6)
( x 1)( x 2)( x 4) ( x 1)( x 2)( x 3) +3 2 6
2
=x -4x +3 φ(x)≈P3(x)= x -4x +3 φ(2.5)=2.5 -4*2.5 +3=-6.375
3
(2)牛顿插值 xi 1 2 3 4 f(xi) 0 –5 –6 3 -5 -1 9 2 5 1 一阶差商 二阶差商 三阶差商
2. Runge 现象及分段线性插值 1)Runge 现象 Runge 在本世纪初发现:在[-1,1]上用 n+1 个等距结点作插值多项式 Pn(x),使其在个结 点的值与函数 y(x)=1/(1+25x2)在结点的值相等。但在 n→∞时,插值多项式 Pn(x)在区间中 部趋于 y(x)。但对于 0.726≤∣x∣≤1 的 x,Pn(x)严重发散。 通过下面的例子,以图形的方式体会 Runge 现象( f(x)=1/(1+x ) ) x=[-5:1:5]; y=1./(1+x.^2); x0=[-5:0.1:5]; y0=lagrange(x,y,x0); y1=1./(1+x0.^2); %绘制图形 plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
ui ( xi ) yi ui ' ( xi ) mi 引入 ui ( x ) , vi ( x ) 使之满足 ui ( xi 1) 0 ' ui ( xi 1) 0
2 x xi 1 2 ui ( x) [ yi (mi yi )( x xi )]( ) hi hi 可以求出 vi ( x) [ yi 1 (mi 1 2 yi 1)( x xi 1)]( x xi ) 2 hi hi
for k=1:m yy=0.0; for i=1:n h=1.0; a=0.0; for j=1:n if j~=i h=h*((x(k)-x0(j))/(x0(i)-x0(j)))^2; a=1/(x0(i)-x0(j))+a; end end yy=yy+h*((x0(i)-x(k))*(2*a*y0(i)-y1(i))+y0(i)); end y(k)=yy; end 3) 例题 如下数据表,构造 Hermite 多项式,并求出 Sin0.34 的近似值 x Sin(x) Cos(x) x0=[0.3 0.32 0.35]; y0=[0.29552 0.31457 0.34290]; y1=[0.95534 0.94924 0.93937]; x=[0.3:0.005:0.35]; y=hermite(x0,y0,y1,x); plot(x,y) y=hermite(x0,y0,y1,0.34); y sin(0.34) y2=sin(x); hold on plot(x,y2,'--r') 4. 三次样条插值 y3=interp1(x,y,x0,'*spline'); y3=spline(x,y,x0); plot(x0,y3,'-g') 0.30 0.29552 0.95534 0.32 0.31457 0.94924 0.35 0.34290 0.93937
-0.5 -5 -4 -3 -2 -1 0 1 2 3 4 5 0 1 2
2
1.5
0.5
2)Matlab 实现分段插值------一维插值 interp1 yi=interp1(x,y,xi) yi=interp1(y,xi) yi=interp1(x,y,xi,’method’) linear spline cubic 线性插值 三次样条插值 三次插值 对(x,y)进行插值,计算插值点 xi 的函数值 默认 x=1:n,n 是向量 y 的元素个数 指定特定算法插值,method 可以是如下字符串
x xk 1 xk xk 1
lk+1(x)=
x xk xk 1 xk
f ( x 0, x1) f ( x 0, x1, x 2)
f ( x 0) f ( x1) x 0 x1 f ( x 0, x1) f ( x1, x 2) x0 x2 f ( x 0, x1,..., xn 1) f ( x1, x 2,..., xn ) x 0 xn