常微分方程阶段2复习题

合集下载

常微分方程习题二

常微分方程习题二

x c1x1 (t ) c2 x2 (t ) cn xn (t ) (4.5)
其中 c1 , c2 ,, cn 是任意常数,且通解(4.5)包括 方程(4.2)的所有解。
定理7
设x1 (t ), x2 (t ),, xn (t ) 为方程(4.2)
的基本解组,而x(t ) 为方程(4.1)的某一解,则 方程(4.1)的通解可表为
记 lim n ( x) ( x), x [ x0 , x0 h].
n
(3.5)定义于 [ x0 , x0 h]上连续解 . 命题4 ( x)是积分方程
(3.5)定义于[ x0 , x0 h]上的 命题5 设 ( x)是积分方程 一个连续解 , 则 ( x) ( x), x [ x0 , x0 h].
5.解对初值和参数的连续性定理
设f ( x, y, )在区域G 连续, 且在G内一致地关于 y满足 局部Lipschitz条件, 则方程(3.1) 的解y ( x, x0 , y0 , ) 作为x, x0 , y0 , 的函数在它们存在范围 内是连续的 .
6.解对初值可微性定理
有复值解x U (t ) iV (t ), 其中ai (t )(i 1,2, n),
u (t ), v(t ) 都是实值函数,则U(t)和V(t)分别是方程
d nx d n 1 x dx a1 (t ) n 1 an 1 (t ) an (t ) x u (t ) n dt dt dt d x d x dx a1 (t ) n 1 an 1 (t ) an (t ) x v(t ) 和 n dt dt dt
z (t ) 的实部 (t ) 和虚部 (t ) 以及共轭复数 z(t )

[考研类试卷]考研数学二(常微分方程)模拟试卷2.doc

[考研类试卷]考研数学二(常微分方程)模拟试卷2.doc

[考研类试卷]考研数学二(常微分方程)模拟试卷2一、解答题解答应写出文字说明、证明过程或演算步骤。

0 设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0).1 试求曲线L的方程;2 求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.2 设位于第一象限的曲线y=f(x)过点,其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.3 求曲线y=f(x)的方程;4 已知曲线y=sinx在上的弧长为l,试用l表示曲线y=f(x)的弧长s.5 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线Y=x相切于原点.记a为曲线f在点(x,y,)处切线的倾角,若da/dx=dy/dx,求y(x)的表达式.6 设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1,求此曲线y=y(x)的方程.7 设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式.8 一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数k>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的7/8,问雪堆全部融化需要多少小时?9 某飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的阻力与飞机的速度成正比(比例系数k=6.0×106).问从着陆点算起,飞机滑行的最大距离是多少? 注:kg 表示千克,km/h表示千米/小时.10 从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度ν之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为κ(κ>0).试建立y与ν所满足的微分方程,并求出函数关系式y=f(ν).11 某湖泊的水量为V1,每年排入湖泊内含污染物A的污水量为V/6,流入湖泊内不含A的水量为V/6,流出湖泊的水量为V/3.已知1999年底湖中A的含量为5m0,超过国家规定指标.为了治理污染,从2000年初起,限定排人湖泊中含A 污水的浓度不超过m0/V.问至多需经过多少年,湖泊中污染物A的含量降至m0以内?(注:设湖水中A的浓度是均匀的.)11 有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕,,轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体).(注:m表示长度单位米,min表示时间单位分.)12 根据t时刻液面的面积,写出t与φ(y)之间的关系式;13 求曲线x=φ(y)的方程.。

河北专接本数学(常微分方程)模拟试卷2(题后含答案及解析)

河北专接本数学(常微分方程)模拟试卷2(题后含答案及解析)

河北专接本数学(常微分方程)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.方程y”+4y’=x2-1的待定特解形式可设为[ ].A.y=x(ax2+b)B.y=x(ax2+bx+c)C.y=ax2+bx+cD.y=ax2+b正确答案:B 涉及知识点:常微分方程2.微分方程x ln x.y”=y’的通解是[ ].A.y=C1xln x+C1B.y=C1x(ln x—1)+C2C.y=xln xD.y=C1x(ln x—1)+2正确答案:B 涉及知识点:常微分方程3.函数y=3e2x是微分方程y”-4y=0的[ ].A.通解B.特解C.是解,但既非通解也非特解D.不是解正确答案:B 涉及知识点:常微分方程4.方程y”+y=cosx的待定特解形式可设为[ ].A.y=axcosxB.y=acosxC.y=a cosx+b sin xD.y=x(a cos x+bsin x)正确答案:D 涉及知识点:常微分方程5.若某二阶常系数齐次微分方程的通解为y=C1e-2x+C2ex,则该微分方程为[ ].A.y”+y’=0B.y”+2y’=0C.y”+y’-2y=0D.y”-y’-2y=0正确答案:C 涉及知识点:常微分方程填空题6.已知二阶常系数齐次微分方程的通解为y=C1ex+C2e-x,则原方程为_______.正确答案:y”-y=0 涉及知识点:常微分方程7.以y=e3x,y=xe2x为特解的二阶常系数齐次微分方程为_______.正确答案:y”-4y’+4y=0 涉及知识点:常微分方程8.已知微分方程y”+y=x的一个解为y1=x,微分方程y”+y=ex的一个解为,则微分方程y”+y=x+ex的通解为_______.正确答案:y=C1cosx+C2sinx++x。

涉及知识点:常微分方程9.微分方程xy’-yln y=0的通解为_______.正确答案:y=eCx 涉及知识点:常微分方程10.微分方程y”=2y’的通解为_______.正确答案:y=C1+C2e2x 涉及知识点:常微分方程11.微分方程y’=e2x-y满足初始条件的特解为_______。

《常微分方程》练习题二

《常微分方程》练习题二

常微分方程 练习题二一、填空题1.方程y y xy ln d d =所有常数解是( y=1 ). 2.方程y x x y cos cos d d +=满足解的存在惟一性定理条件的区域是( 全平面 ).3.n 阶线性齐次微分方程的所有解构成一个( n )维线性空间.4.方组0y y ''+=的基本解组是( y 1=cos x, y 2=sin x ).5.若函数组)()(21x x ϕϕ,在区间),(b a 上线性相关,则它们的朗斯基行列式)(x W 在区间),(b a 上( 恒等于零 ). 6.方程d cos d x y y xe x+=的任一解的最大存在区间必定是 (,)-∞+∞ . 7.方程sin cos dy x y dx =⋅满足解的存在惟一性定理条件的区域是 xoy 平面 .8.n 阶线性齐次微分方程的所有解构成一个 n 维线性空间.9.方程2sin dy x y dx=的所有常数解是 ,0,1,2,y k k π==±± . 10.方程20y y y '''++=的基本解组是 y=ex - y=xe x - .一、 单项选择题 1.方程t t x x xcos 2=++ 的任一解的最大存在区间都是( B ). (A )),0(∞+ (B )),(∞+-∞ (C ))0,(-∞ (D ))2,1(2. 李普希兹条件是保证一阶微分方程初值问题解惟一的( A )条件.(A )充分 (B )必要 (C )充分必要 (D )必要非充分3.方程2d d y xy =过点)1,3(-的解的存在区间是( C ). (A )),0(∞+ (B ))3,(-∞ (C )),2(∞+ (D )),2[∞+4.方程03=+x x的任一非零解在),,(x x t 空间中( A ). (A )不能与t 轴相交 (B )可以与t 轴相交(C )可以与t 轴横解相交 (D )可以与t 轴相切5.用待定系数法求方程x y y sin 2=+''的非齐次特解1y 时,应将特解1y 设为( D ).(A )x A y sin 1= (B )x B x A y cos sin 1+=(C )x B y cos 1= (D ))cos sin (1x B x A x y +=6.李普希兹条件是保证一阶微分方程初值问题解唯一的( B )条件.(A )必要 (B )充分 (C )充分必要 (D )必要非充分7. 方程0x x +=的任一非零解在tox 平面上( A )与t 轴横截相交.(A )可以 (B )不可以 (C )只能在0t =处可以 (D )只能在2t π=处可以8. 方程1y '=( D )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D ) 无9.方程y '=(0,0)解sin y x =,这个解的存在区间是( C ).(A )(0,)+∞ (B )(,0)-∞ (C )[,]22ππ-(D )(,)-∞+∞ 10.线性齐次微分方程组的解组12(),(),,()n Y x Y x Y x 在区间I 上线性相关的( B )条件是在区间I 上它们的朗斯基行列式()0W x =.(A )充分 (B )充分必要 (C )充分非必要 (D )必要三、简答题1. 用分离变量法求解方程()()dy f x y dxϕ=的步骤和原理是什么? 化成积分方程求解且二者等价1. 该方程在全平面上满足解的存在唯一及延展定理条件,因此该方程任一解可以延展到平面的无穷远处,为什么该方程的所有解不能都在(,)-∞+∞上存在,这与解的延展定理矛盾吗?为什么?不矛盾,因为平面的无穷远有任意的方向。

常微分方程试题库试卷库2

常微分方程试题库试卷库2

常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。

有只含y 的积分因子的充要条件是。

2、称为黎卡提方程,它有积分因子。

3、称为伯努利方程,它有积分因子。

4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是。

5、形如的方程称为欧拉方程。

6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是。

7、当方程的特征根为两个共轭虚根是,则当其实部为时,零解是稳定的,对应的奇点称为。

二、计算题(60%)1、3()0ydx x y dy -+= 2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求4、32()480dy dy xy y dx dx -+= 5、求方程2dy x y dx=+经过(0,0)的第三次近似解6.求1,5dx dyx y x ydt dt=--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n阶齐线性方程一定存在n个线性无关解。

常微分方程期终试卷(2)一、填空题 30%1、 形如的方程,称为变量分离方程,这里.)().(y x f ϕ分别为的连续函数。

2、 形如的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数,可化为线性方程。

是常数。

引入变量变换-------≠1.03、 如果存在常数使得不等式,0 L 对于所有称为利普希兹常数。

都成立,(L R y x y x ∈),(),,21函数),(y x f 称为在R 上关于y 满足利普希兹条件。

4、 形如的方程,称为欧拉方程,这里是常数。

,,21a a5、 设是的基解矩阵,是)()(t Ax x t ϕφ=')()(t f x t A x +='的某一解,则它的任一解可表为)(t γ。

常微分方程阶段复习题2

常微分方程阶段复习题2

《常微分方程》试题一.填空题1.若)(t x i (i=1,2,┄,n )是n 阶线性齐次方程的一个基本解组,x(t)为非齐性齐次方程方程的一个特解,则非齐线形方程的所有解可表为2.若ϕ(t )和ψ(t )都是x ˊ= A(t) x 的 基解矩阵,则ϕ(t )与ψ(t )具有关系:3.若ϕ(t )是常系数线性方程组x Ax '=的 基解矩阵,则该方程满足初始条件0()t ψη=的解()t ψ=_____________________4.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件5.n 阶线性齐次微分方程的所有解构成一个 维线性空间.6. 向量函数组Y 1(x ), Y 2(x ),…,Y n (x )线性相关的 条件是它们的朗斯期行列式W (x )=0.7.若X 1(t), X 2(t) , X n (t)为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是8.若)()(t t ψφ和都是'X =A(t)X 的基解矩阵,则 )()(t t ψφ和具有关系:二.单选题1.容易验证:y wx y wx w 120==>cos ,sin ()是二阶微分方程''+=y w y 20的解,试指出下列哪个函数是方程的通解。

(式中C C 12,为任意常数)( )(A )y C wx C wx =+12cos sin (B )y C wx wx =+12cos sin(C )y C wx C wx =+112cos sin (D )y C wx C wx =+122cos sin2.微分方程1x y y e ''-=+的一个特解应有形式 ( )(A )b ae x +; (B )bx axe x +; (C )bx ae x +; (D ) b axe x +3.微分方程'''+'=y y x sin 的一个特解应具有形式 ( )(A )A x sin (B )A x cos(C )Asix B x +cos (D )x A x B x (sin cos )+4.微分方程''+=y y x x cos2的一个特解应具有形式( ) (A )()cos ()sin Ax B x Cx D x +++22 (B )()cos Ax Bx x 22+(C )A x B x cos sin 22+ (D )()cos Ax B x +25.微分方程012'''=++y y 的通解是( )(A )x e x C C y -+=)(21; (B )x x e C e C y -+=21;(C )x e C C y x 21221-+=-; (C )x x C x C y 21sin cos 21-+=。

二阶常系数微分方程部分(201308)习题及解答

二阶常系数微分方程部分(201308)习题及解答

二阶常系数微分方程部分习题1. 设方程xy ay by ce '''++=的一个特解为:2(1)x x y e x e =++,试确定常数,,a b c ,并求该微分方程的通解.2. 设微分方程322e xy y y ¢¢¢-+=的积分曲线与另一曲线x y ìïïïíï=ïïî在1x =处有相同切线,求此积分曲线方程.3.求方程2cos 2sin y y y x x x ¢¢¢-+=+的通解.4.求解微分方程x y x y x y x e cos 2sin 3cos ¢¢¢-+=。

5.求微分方程34(107)34sin x y y y x e x -'''--=-+的通解。

6.求微分方程(4)22210y y y y ''''''-+-+=的通解。

7. 设函数()y y x =在(,)-¥+¥内具有二阶导数,且0,()y x x y ¢¹=是()y y x =的反函数。

(1) 试将()x x y =所满足的微分方程232(sin )()0d x dxy x dy dy++=变换为()y y x =满足的微分方程; (2) 求变换后的微分方程满足初始条件3(0)0,(0)2y y ¢==的解。

8.已知21x x y xe e =+,2x x y xe e -=+,23x xx y xe e e -=+-是二阶线性非齐次方程的三个解,求此微分方程。

10.设u f =在第一象限内有二阶连续的偏导数,且22220u ux y∂∂+=∂∂,1()lim21x f x x →=-, 试求()f x 的表达式。

常微分方程阶段(2)复习题

常微分方程阶段(2)复习题

《常微分方程》第二阶段试题一. 单选题1. 函数 )cos(C x y +=(其中C 为任意常数)所满足的微分方程是( ) )sin()(C x y A +-='; 1)(22=+'y y B ;)sin()(C x y C +='; 22)(22=+'y y D 。

2.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式为零 (C )12()=()x C x ϕϕ(常数) (D )线性相关 3.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=不是基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式不为零 (C )12()()x C x ϕϕ≠(常数) ( )线性相关 4.线性齐次微分方程组()dx A t x dt=的一个基本解组的个数不能多于( ) (A ) -1n (B ) n (C )+1n (D )+2n 5.n 阶线性齐次微分方程线性无关解的个数不能多于( )个.(A ) n (B )-1n (C )+1n (D )+2n6. 设常系数线性齐次方程特征方程根i r r ±=-=4,32,1,1,则此方程通解为( ) (A )x C x C e x C C y x sin cos )(4321+++=-; (B )x C x C e C y x sin cos 321++=-;(C )x x C x C e C y x sin cos 321++=-; (D )x C x x C e C y x sin cos )(321+++=-7.方程xxe y y 2'2"=-的特解具有形式( )。

(A ) x Axe y 2*=; (B ) x e B Ax y 2)(*+=;(C ) x e B Ax x y 2)(*+= ; (D )x e B Ax x y 22)(*+=。

常微分方程第2章习题答案

常微分方程第2章习题答案

习题2-41.求解下列微分方程:(1)yx xy y --='22;解:令ux y =,则原方程化为uu u dx du x --=+212,即x dxdu u u =--122,积分得:c x u u u +=--+-ln 1ln 2111ln2 还原变量并化简得:3)()(y x c x y +=-(2)4252--+-='y x x y y ;解:由⎩⎨⎧=--=+-042052y x x y 得 ⎩⎨⎧-==21y x令2,1+=-=y v x u , 则有vu u v du dv --=22,由第一题的结果知此方程解为3)()(v u c u v +=-, 还原变量并化简得:.)1(33++=+-y x c x y(3)14212-+++='y x y x y ;解:令y x v 2+=, 则1212121-++=+=v v dx dy dx dv , 即1214-+=v v dx dv ,此方程为变量分离方程, 分离变量并积分得:c x v v +=+-14ln 8321,还原变量并化简得:c y x x y =++--184ln 348. (4)xy y x y -='33.解:①当0≠y 时,方程两边同时乘以32--y ,则233222--+-='-xy x y y , 令2-=y z , 则322x xz dxdz-=, 此方程为一阶线性方程,由公式得:122++=x ce z x还原变量得:122)1(2-++=x ce y x . ②0=y 也是方程的解.2. 利用适当的变换,求解下列方程: (1))cos(y x y -=';解:令y x u -=,则u dx dy dx du cos 11-=-=, ①当1cos ≠u 时,有dx udu =-cos 1, 即 dx u du=2sin 22,两边积分得:c x uctg +=221还原变量化简得:2sin 2sin 22cos yx c y x x y x -+-=-. ②当1cos =u 时,即πk x y 2+=)(Z k ∈也是方程的解. (2)0)()3(22=+++dv uv u du v uv ; 解:方程两边同时乘以u 则原方程化为:0)()3(2322=+++dv v u u du uv v u ,即 0)()3(2232=+++vdv u du uv dv u vdu u 此方程为全微分方程,则原方程的解为:c v u v u =+22321. (3))2(2)3(222yx y x dx dy y x -=++;解:原方程即为324222222++-=y x x y xdx ydy ,令u y v x ==22,,则324++-=v u vu dv du ,由⎩⎨⎧=++=-03024v u v u 得⎩⎨⎧-=-=21v u , 令⎩⎨⎧+=+=21v n u m ,则有n m n m dn dm +-=24令z n m=,则zn m =, 124+-=+=z z z n dn dz dn dm , 则有1)2)(1(+--=z z z n dn dz ,此方程为变量分离方程, 分离变量并积分得:n c zz ln 2)1(ln32+=--,还原变量并化简得:322222)32()1(-+-=+-y x c y x .(4)yy y x xxy x dx dy 8237323223-+-+=. 解:原方程即为823732222222-+-+=y x y x xdx ydy ,令22,x v y u ==,则823732-+-+=u v u v dv du ,由⎩⎨⎧=++=-+08230732u v u v ⎩⎨⎧==⇒21v u , 令⎩⎨⎧-=-=21v n u m , 则m n m n dn dm 2332++=,令z n m=,可将方程化为变量分离形方程, n dn dz zz =-+)2223(2,两边积分得:c n z z z +=---+ln 1ln 2111ln 432, 还原变量并化简得:)3()1(22522-+=--y x c y x .3. 求解下列微分方程: (1).2241xy y --='; 解:令xy z =, 则原方程可化为:)41(12-+-=z z x dx dz , ①当21≠z 时,即21≠xy 时方程为x dxdz z =--2)21(1 ,此方程为变量分离方程, 两边积分得:c x z +=-ln 211还原变量并化简得:cxx x x y ++=ln 121; ②当21=z 时,xy 21=是方程的特解. (2).1222++='xy y x y x ; 解:原方程即为:221x x y y y ++=', 令xy z =,则2)1(1+=z xdx dz ,此方程为变量分离方程, 分离变量积分得:c x z +=+-ln 11, 还原变量并化简得:cxx x x y +--=ln 11. 4. 试把二阶微分方程0)()(=+'+''y x q y x p y 化为一个黎卡提方程. 解:令⎰=udxe y , 则⎰='udxue y ,+⎰=''udxe u y 2⎰'udxe u ,代入原方程可得:=+'+''y x q y x p y )()(+⎰udxe u 2⎰'udxe u +)()(x q ue x p udx+⎰⎰udxe =0,即有:0)()(2=++'+x q u x p u u ,此方程为一个黎卡提方程.5. 求一曲线,使得过这一曲线上任一点的切线与该点向径的夹角等于45.解:设此曲线为)(x y y =,由题意得:1451==+-tg xy dx dy x y dx dy ,化简得:y x y x dx dy -+=, 此方程为齐次方程,解之得:c y x x y arctg =+-)ln(2122.6. 探照灯的反光镜(旋转面)应具有何种形状,才能使点光源发射的光束反射成平行线束?解:取点光源所在处为坐标原点,而x 轴平行于光的反射方向,建立三维坐标系.设所求曲面由曲线⎩⎨⎧==0)(z x f y 绕x 轴旋转而成,则求反射镜面问题归结为求 xy 平面上的曲线y=f(x)的问题.由题意及光的反射定律,可得到函数)(x f y =所应满足的微分方程式:22yx x ydx dy ++=,此方程为齐次方程, 解之得:)2(2x c c y +=,(其中c 为任意正常数).)2(2x c c y +=就是所求的平面曲线,它是抛物线,因此反射镜面的形状为旋转抛物面)2(22x c c z y +=+.习题2-51.求解下列微分方程:(1).0)()23(2232=++++dy y x dx y xy y x ;解:方程两边同乘xe33, 则)33()369(233323323=++++dy y e dx y e dy x e xydx e ydx x e x x x x x ,此方程为全微分方程,即 c y e y x e x x =+33233. (2).0)2(2=-+-dy e xy ydx y ;解:方程两边同乘y e y 21, 则 0)12(22=-+dy yxe dx e y y即01)2(22=-+dy ydy xe dx e yy 此方程为全微分方程,即有 c y xe y =-ln 2 .(3).0)3()63(2=+++dy xyy x dx y x ;解:方程两边同乘 xy , 则0)3()63(232=+++dy y x dx x y x即 0)36()3(232=+++dy y xdx dy x ydx x 此方程为全微分方程,即有c x y y x =++2333 .(4).22()0ydx x y x dy -++=; 解:方程两边同乘221y x +, 则 022=-+-dy yx xdyydx , 此方程为全微分方程,即 c y yxarctg=- (5).0)1(2223=-+dy y x dx xy ;解:方程两边同乘21y , 则0)1(222=-+dy y x xydx , 此方程为全微分方程,即c y x y=+21. (6).0)1(=-+xd y dx xy y ;解:方程两边同乘21y , 则0)1(2=-+dy y xdx y xdx , 此方程为全微分方程,即c x y x =+221. (7)0)(2223=-+dy xy x dx y ;解:方程两边同乘y x 21, 则 02)2(22=+-dy y dy x y dx x y , 此方程为全微分方程,即 c y xy =+-ln 22(8).0)c o s2(=++dy y y ctgy e dx e xx解:方程两边同乘y sin , 则02sin )cos sin (=++ydy yc ydy e ydx e x x ,此方程为全微分方程,即 11cos cos 2sin 224xe y y y y c -+=. 2. 证明方程(5.1)有形如)),((y x φμμ=的积分因子的充要条件是)),((y x f yP P x Q Q xQy P φ=∂∂-∂∂∂∂-∂∂,并写出这个积分因子。

[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc

[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc

[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4.doc[考研类试卷]考研数学二(常微分方程)历年真题试卷汇编4一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (02年)设y=y(x)是二阶常系数微分方程y"+py'+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时.函数的极限.(A)不存在(B)等于1(C)等于2(D)等于32 (03年)已知是微分方程的表达式为3 (04年)微分方程y"+y=x2+1+sinx的特解形式可设为(A)y*=ax2+bx+c+x(Asinx+Bcosx).(B)y*=x(ax2+bx+c+Asinx+Bcosx).(C)y*=(ax2+bx+c+Asinx.(D)y*=ax2+bx+c+Acosx.4 (06年)函数y=C1e x+C2e-2x+xe x满足的一个微分方程是(A)y"一y’一2y=3xe x.(B)y"-y’一2y=3e x.(C)y”+y’一2y=3xe x.(D)y"+y'-2y=3e x.5 (08年)在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是(A)y"'+y"-4y’-4y=0.(B)y"'+y"+4y’+4y=0.(C)y"'一y”一4y’+4y=0.(D)y"'-y"+4y’一4y=0.6 (10年)设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1一μy2是该方程对应的齐次方程的解,则7 (11年)微分方程y"一λ2y=eλx+e-λx(λ>0)的特解形式为(A)a(eλx+e-λx).(B)ax(eλx+e-λx).(C)x(aeλx+be-λx).(D)x2(aeλx+be-λx).8 (17年)微分方程y”一4y’+8y=r2x(1+cos2x)的特解可设为y’=(A)Ae2x+e2x(Bcos2x+Csin2x).(B)Axe2x+e2x(Bcos2x+Csin2x).(C)Ae2x+xe2x(Bcos2x+Csin2x).(D)Axe2x+xe2x(Bcos2x+Csin2x).二、填空题9 (04年)微分方程(y+x3)dx一2xdy=0满足y|x=1=的特解为_______.10 (05年)微分方程xy’+2y=3xlnx满足y(1)=的解为______.11 (06年)微分方程的通解是_______.12 (07年)二阶常系数非齐次线性微分方程y"一4y’+3y=2e2x 的通解为y=________.13 (08年)微分方程(y+x2e-x)dx—xdy=0的通解是y=______.14 (10年)3阶常系数线性齐次微分方程y"'一2y"+y’一2y=0的通解为y=_______.15 (11年)微分方程y’+y=e-x cosx满足条件y(0)=0的解为y=________.16 (12年)微分方程ydx+(x一3y2)dy=0满足条件y|x=1=1的解为y=______.17 (13年)已知y1=e3x一xe3x,y2=e x一xe2x,y3=一xe2x 是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y'|x=0=1的解为y=______.18 (15年)设函数y=y(x)是微分方程y"+y'-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.19 (16年)以y=x2一e x和y=x2为特解的一阶非齐次线性微分方程为__________.三、解答题解答应写出文字说明、证明过程或演算步骤。

常微分方程练习题及答案(复习题)

常微分方程练习题及答案(复习题)

常微分方程练习试卷一、填空题。

1. 方程x 3 d 2 x1 0 是阶 (线性、非线性)微分方程 .dt 22.x dyf ( xy) 经变换 _______ ,可以化为变量分离方程.方程y dx3. 微分方程d 3 y y 2 x0 满足条件 y(0) 1, y (0)2 的解有个 .dx 34. 设常系数方程5. 朗斯基行列式yyy ex的一个特解y * (x) e 2 x e x xe x ,则此方程的系数, , .W (t )是函数组x 1(t ), x 2 (t ), , x n (t ) 在 a x b 上线性相关的条件 .6. 方程xydx (2x 2 3y 220)dy 0 的只与 y 有关的积分因子为.7. 已知XA(t) X 的基解矩阵为(t ) 的,则 A(t).8. 方程组x '2 0 x 的基解矩阵为.0 59. 可用变换 将伯努利方程 化为线性方程 .10 . 是满足方程y 2 y 5 y y 1 和初始条件的唯一解 .11. 方程 的待定特解可取 的形式 :12. 三阶常系数齐线性方程y 2 y y 0的特征根是二、 计算题1. 求平面上过原点的曲线方程 , 该曲线上任一点处的切线与切点和点 (1,0) 的连线相互垂直 .dy x y 12.求解方程xy.dx33. 求解方程xd 2x( dx )20 。

dt 2dt4 .用比较系数法解方程 ..5 .求方程yy sin x 的通解 . 6 .验证微分方程(cos xsin xxy 2 )dx y(1 x 2 )dy 0 是恰当方程,并求出它的通解 .A 311dX(t) ,求dX7.设24,,试求方程组 A X 的一个基解基解矩阵 A X 满足初始条件 x(0)的解 .1dt dt8. 求方程dy 2x13y2通过点 (1,0) 的第二次近似解.dx9.求( dy )34xy dy8 y20的通解dx dxA 21试求方程组 xAx 的解(t ), (0) 1 ,10. 若14并求 expAt2三、证明题1.若2.设(t ), (t ) 是 X A(t )X 的基解矩阵,求证:存在一个非奇异的常数矩阵 C ,使得(t)(t )C .(x) (x0 , x) 是积分方程x2 y( ) ] d ,y( x) y0[x0 , x [ , ]x0的皮卡逐步逼近函数序列{n ( x)}在[ ,] 上一致收敛所得的解,而(x) 是这积分方程在 [ , ] 上的连续解,试用逐步逼近法证明:在[ , ] 上( x)( x) .3.设都是区间上的连续函数,且是二阶线性方程的一个基本解组.试证明:(i)和都只能有简单零点(即函数值与导函数值不能在一点同时为零);(ii)和没有共同的零点;(iii)和没有共同的零点.4. 试证:如果(t ) 是dXAX 满足初始条件(t0)的解,那么 (t ) exp A(t t0 ) dt.答案一 . 填空题。

考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析)

考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析)

考研数学二(常微分方程)历年真题试卷汇编2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2004年)微分方程y〞+y=χ2+1+sinχ的特解形式可设为【】A.y*=aχ2+bχ+c+χ(Asinχ+Bcosχ).B.y*=χ(aχ2+bχ+c+Asinχ+Bcosχ).C.y*=aχ2+bχ+c+Asinχ.D.y*=aχ2+bχ+c+Acosχ.正确答案:A解析:方程y〞+y=0的特征方程为ρ2+1=0,其特征根为ρ=±i,因此方程y〞+y=χ2+1+sinχy*=aχ+bχ+C+χ(Asinχ+Bcosχ) 故应选A.知识模块:常微分方程2.(2006年)函数y=C1eχ+C2e-2χ+χeχ满足的一个微分方程是【】A.y〞-y′-2y=3χeχ.B.y〞-y′-2y=3eχ.C.y〞+y′-2y=3χeχ.D.y〞+y′-2y=3eχ.正确答案:D解析:由y=C1eχ+C2e-2χ+χeχ知,齐次方程的两个特征根分别为1和-2,所以只有C和D项可能是正确的选项,将y=χeχ代入D项中方程知其满足该方程,则应选D.知识模块:常微分方程3.(2008年)在下列微分方程中,以y=C1eχ+C2cos2χ+C3sin2χ(C1,C2,C3为任意常数)为通解的是【】A.+y〞-4y′-4y=0.B.+y〞+4y′+4y=0.C.-y〞-4y′+4y=0.D.-y〞+4y′-4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i 则其特征方程为(ρ-1)(ρ2+4)=0,故所求方程应为y″′-y〞+4y′-4y=0 故应选D.知识模块:常微分方程4.(2010年)设y1,y2是一阶线性非齐次微分方程y′+p(χ)y=q(χ)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则【】A.B.C.D.正确答案:A解析:由于λy1+μy2为方程y′+p(χ)y=q(χ)的解,则(λy1+μy2)′+p(χ)(λy1+μy2)=g(χ) 即λ(y′1+p(χ)y1)+μ(y′2+p(χ)y2)=q(χ) λq(χ)+μ(χ)=q(χ) λ+μ=1 (1) 由于λy1-μy2为方程y′+p(χ)y=0的解,则(λy1-μy2)′+p(χ)(λy1-μy2)=0 λ(y′1+p(χ)y1)-μ(y′2+p(χ)y2)=0 λq(χ)-μq(χ)=0 λ-μ=0 (2) 由(1)式和(2)式解得λ=μ=知识模块:常微分方程5.(2011年)微分方程y〞-λ2y=eλχ+e-λχ(λ>0)的特解形式为【】A.aχ(eλχ+e-λχ).B.aχ(eλχ+e-λχ).C.χ′〞(aeλχ+be-λχ).D.χ2(aeλχ+be-λχ).正确答案:C解析:方程y〞-λ2y=0的特征方程为r2-λ2=1 r1=λ,r2=-λ方程y〞-λ2y=eλχ的特解形式为aχeλχ方程y〞-λ2y=e-λχ的特解形式为bχe-λe 则原方程的特解形式为y=χ(aχeλχ+bχe-λχ) 故应选C.知识模块:常微分方程填空题6.(2006年)微分方程y′=的通解是_______.正确答案:y=Cχe-χ.解析:则ln|y|=ln|χ|-χ=ln|χ|+lne-χ=ln(|χ|e-χ) y=Cχe-χ.知识模块:常微分方程7.(2007年)二阶常系数非齐次线性微分方程y〞-4y′+3y=2e2χ的通解为y=_______.正确答案:y=C1eχ+C2e3χ-2e2χ.解析:齐次方程特征方程为ρ2-4ρ+3=0 解得ρ1=1,ρ2=3,则齐次方程通解为y=C1eχ+C2e3χ设非齐方程特解为=Ae2χ,代入原方程得A=-2,则原方程通解为y=C1eχ+C2e3χ-2e2χ知识模块:常微分方程8.(2008年)微分方程(y+χ2e-χ)dχ-χdy=0的通解是y=_______.正确答案:y=χ(C-e-χ).解析:方程(y+χ2e-χ)dχ-χdy=0可改写为知识模块:常微分方程9.(2010年)3阶常系数线性齐次微分方程-2y〞+y′-2y=0的通解为y =________.正确答案:y=C1e2χ+C2cosχ+C1sinχ.解析:方程y″′=2y〞+y′-2y=0的特征方程为r3-2r2+r-2=0 即r2(r-2)+(r-2)=0 (r-2)(r2+1)=0 r1=2,r2,3=±l′则原方程通解为y=C1e2χ+C2cosχ+C1sinχ.知识模块:常微分方程10.(2011年)微分方程y′+y=e-χcosχ满足条件y(0)=0的解为y=_______.正确答案:e-χsinχ.解析:由一阶线性方程的通解公式得y==e-χ[∫cosχdχ+c]=e-χ[sinχ+C] 由y(0)=0知,C=0,则y=e-χsinχ知识模块:常微分方程11.(2012年)微分方程ydχ+(χ-3y2)dy=0满足条件y|χ=1=1的解为y=_______.正确答案:解析:由ydχ+(χ-3y2)dy=0 得这是一阶线性微分方程,由通解公式得又因为y=1时,χ=1,解得C=0,故χ=y2.y=知识模块:常微分方程12.(2013年)已知y1=e3χ-χe2χ,y2=eχ-χe2χ,y3=-χe2χ是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|χ=0=0,y′|χ=0=1的解为y=_______.正确答案:C1eχ+C2e3χ-χe2χ.解析:由题设知y1-y3=e3χ,y2-y3=eχ为齐次方程两个线性无关的特解,则非齐次方程的通解为y=C1eχ+C2e3χ-χe2χ.知识模块:常微分方程13.(2015年)设函数y=y(χ)是微分方程y〞+y′-2y=0的解,且在χ=0处y(χ)取得极值3,则y(χ)=_______.正确答案:2eχ+e-2χ.解析:原方程的特征方程为λ2+λ-2=0 特征根为λ1=1,λ2=2 原方程的通解为y=C1eχ+C2e-2χ由y(0)=3,y′(0)=0得则C1=2,C2=1,y=2eχ+e-2χ.知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。

常微分方程试题库试卷库2

常微分方程试题库试卷库2

常微分方程期终考试试卷(1)一、 填空题(30%)1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。

有只含y 的积分因子的充要条件是______________。

2、_____________称为黎卡提方程,它有积分因子______________。

3、__________________称为伯努利方程,它有积分因子_________。

4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________。

5、形如___________________的方程称为欧拉方程。

6、若()t φ和()t ψ都是'()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是_____________________________。

7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。

二、计算题(60%)1、3()0ydx x y dy -+=2、sin cos2x x t t ''+=-3、若2114A ⎡⎤=⎢⎥-⎣⎦试求方程组x Ax '=的解12(),(0)t ηϕϕηη⎡⎤==⎢⎥⎣⎦并求exp At4、32()480dy dyxy y dx dx-+=5、求方程2dyx y dx =+经过(0,0)的第三次近似解6.求1,5dx dyx y x y dt dt =--+=--的奇点,并判断奇点的类型及稳定性.三、证明题(10%)1、n 阶齐线性方程一定存在n 个线性无关解。

常微分方程期终试卷(2)一、填空题 30%1、 形如____________的方程,称为变量分离方程,这里.)().(y x f ϕ分别为x .y的连续函数。

2、 形如_____________的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数.n ,可化为线性方程。

常微分方程2.2习题参考解答

常微分方程2.2习题参考解答

习题2.2求下列方程的解1.dxdy =x y sin +解:y=e ⎰dx (⎰x sin e ⎰-dx c dx +)=e x [-21e x -(x x cos sin +)+c]=c e x -21(x x cos sin +)是原方程的解。

2.dt dx +3x=e t2解:原方程可化为:dt dx =-3x+e t 2所以:x=e ⎰-dt 3(⎰e t 2e -⎰-dt 3c dt +)=e t 3-(51e t 5+c)=c e t 3-+51e t 2是原方程的解。

3.dt ds =-s t cos +21t 2sin 解:s=e ⎰-tdt cos (t 2sin 21⎰e dt dt ⎰3c +)=e t sin -(⎰+c dt te t t sin cos sin )=e t sin -(c e te t t +-sin sin sin )=1sin sin -+-t ce t 是原方程的解。

4.dx dy nx x e y n x =-,n 为常数.解:原方程可化为:dx dy nx x e y nx +=)(c dx e x e e y dx x n n x x n +⎰⎰=⎰-)(c e x x n +=是原方程的解.5.dx dy +1212--y x x =0解:原方程可化为:dx dy =-1212+-y x x ⎰=-dx x x e y 212(c dx e x x+⎰-221))21(ln 2+=x e )(1ln 2⎰+--c dx ex x =)1(12x ce x +是原方程的解.6.dx dy 234xy x x +=解:dx dy 234xy x x +==23y x +x y 令x y u =则uxy =dx dy =u dx du x +因此:dx du x u +=2u x 21udx du =dxdu u =2c x u +=331c x x u +=-33(*)将x y u =带入(*)中得:3433cx x y =-是原方程的解.3332()21()227.(1)12(1)12(),()(1)1(1)(())1(1)dx P x dx x P x dx dy y x dx x dy y x dx x P x Q x x x e e x e Q x dx c x +--=++=+++==++⎰⎰==+⎰⎰++⎰⎰P(x)dx 232解:方程的通解为: y=e =(x+1)(*(x+1)dx+c) =(x+1)((x+23221(1)()211,()(())dy y x c dy y dx x y dx x y dy y yQ y y ye yQ y dy c -+++==+=⎰⎰==⎰⎰+⎰⎰2243P(y)dy P(y)dy P(y)dy 1)dx+c)=(x+1) 即:2y=c(x+1)+(x+1)为方程的通解。

(完整版)常微分方程复习资料

(完整版)常微分方程复习资料

常微分方程复习资料一、 填空题1.一阶微分方程的通解的图像是 维空间上的一族曲线. 2.方程02=+'-''y y y 的基本解组是 . 3.一个不可延展解的存在在区间一定是 区间.4.方程21d d y x y-=的常数解是 .5.方程22d d y x xy+=满足解的存在唯一性定理条件的区域是 .6.若)(x y ϕ=在),(∞+-∞上连续,则方程y x xy)(d d ϕ=的任一非零解与x 轴相交. 7.在方程0)()(=+'+''y x q y x p y 中,如果)(x p ,)(x q 在),(∞+-∞上连续,那么它的任一非零解在xoy 平面上 与x 轴相切.8.向量函数组)(,),(),(21x x x n Y Y Y Λ在其定义区间I 上线性相关的 条件是它们的朗斯基行列式0)(=x W ,I x ∈.9.方程0d )1(1)d (22=-+-y x y x y x 所有常数解是 . 10.方程04=+''y y 的基本解组是 .11.方程1d d +=y xy满足解的存在唯一性定理条件的区域是 .12.若)(),(21x y x y ϕϕ==是二阶线性齐次微分方程的基本解组,则它们 共同零点. 二、单项选择题1.方程y x xy+=-31d d 满足初值问题解存在且唯一定理条件的区域是( ). (A )上半平面 (B )xoy 平面 (C )下半平面 (D )除y 轴外的全平面 2.)(y f 连续可微是保证方程)(d d y f xy=解存在且唯一的( )条件. (A )必要 (B )充分 (C )充分必要 (D )必要非充分 3.二阶线性非齐次微分方程的所有解( ).(A )构成一个2维线性空间(B )构成一个3维线性空间(C )不能构成一个线性空间(D )构成一个无限维线性4.方程323d d y xy=过点(0, 0)有( ).(A) 无数个解 (B) 只有一个解 (C) 只有两个解 (D) 只有三个解 5.n 阶线性齐次方程的所有解构成一个( )线性空间.(A )n 维 (B )1+n 维 (C )1-n 维 (D )2+n 维 6. 方程2d d +-=y x xy( )奇解. (A )有三个 (B )无 (C )有一个 (D ) 有两个7.若)(1x y ϕ=,)(2x y ϕ=是一阶线性非齐次微分方程的两个不同特解,则该方程的通解可用这两个解表示为( ).(A ))()(21x x ϕϕ- (B ))()(21x x ϕϕ+ (C ))())()((121x x x C ϕϕϕ+- (D ))()(21x x C ϕϕ+8.),(y x f y '连续是方程),(d d y x f xy=初值解唯一的( )条件. (A )必要 (B )必要非充分 (C )充分必要 (D )充分9.方程y xy=d d 的奇解是( ). (A )x y = (B )1=y (C )1-=y (D )0=y10. 方程21d d y x y -=过点)1,2(π共有( )个解.(A )一 (B )无数 (C )两 (D )三11.n 阶线性齐次微分方程基本解组中解的个数恰好是( )个. (A )n (B )n -1 (C )n +1 (D )n +2 12.一阶线性非齐次微分方程组的任两个非零解之差( ).(A )不是其对应齐次微分方程组的解 (B )是非齐次微分方程组的解 (C )是其对应齐次微分方程组的解 (D )是非齐次微分方程组的通解13.如果),(y x f ,y y x f ∂∂),(都在xoy 平面上连续,那么方程),(d d y x f xy=的任一解的存在区间( ). (A )必为),(∞+-∞ (B )必为),0(∞+ (C )必为)0,(-∞ (D )将因解而定 三、计算题求下列方程的通解或通积分:1.y y xyln d d = 2. x y x y x y +-=2)(1d d 3. 5d d xy y xy += 4.0)d (d 222=-+y y x x xy5.3)(2y y x y '+'= 6. 21d d xxy x y += 7. x y x y 2e 3d d =+ 8. 0)d (d )(3223=+++y y y x x xy x9.0e =-'+'x y y 10.0)(2='+''y y y11. x y x y x y tan d d += 12. 1d d +=x y x y13. 0d d )e (2=+-y x x y x y14.1)ln (='-'y x y15.022=+'+''x y y y 16.求方程255x y y -='-''的通解.17.求下列方程组的通解.⎪⎪⎩⎪⎪⎨⎧-=+=xty ty t x d d sin 1d d 18.求方程x y y e 21=-''的通解.19.求下列方程组的通解⎪⎪⎩⎪⎪⎨⎧+=--=y x ty y x tx43d d 2d d .五、证明题1.设)(x f 在),0[∞+上连续,且0)(lim =+∞→x f x ,求证:方程)(d d x f y xy=+的一切解)(x y ,均有0)(lim =+∞→x y x .2.在方程0)()(=+'+''y x q y x p y 中,)(),(x q x p 在),(∞+-∞上连续,求证:若)(x p 恒不为零,则该方程的任一基本解组的朗斯基行列式)(x W 是),(∞+-∞上的严格单调函数.3.设),(y x f 在整个xoy 平面上连续可微,且0),(0≡y x f .求证:方程),(d d y x f xy= 的非常数解)(x y y =,当0x x →时,有0)(y x y →,那么0x 必为∞-或∞+. 4.设)(1x y ϕ=和)(2x y ϕ=是方程0)(=+''y x q y 的任意两个解,求证:它们的朗斯基行列式C x W ≡)(,其中C 为常数.5.在方程)()(d d y y f xyϕ=中,已知)(y f ,)(x ϕ'在),(∞+-∞上连续,且0)1(=±ϕ.求证:对任意0x 和10<y ,满足初值条件00)(y x y =的解)(x y 的存在区间必为),(∞+-∞.6.在方程0)()(=+'+''y x q y x p y 中,已知)(x p ,)(x q 在),(∞+-∞上连续.求证:该方程的任一非零解在xoy 平面上不能与x 轴相切.参考答案一、填空题1.2 2.xx x e ,e 3.开 4.1±=y 5.xoy 平面 6.不能 7.不能 8.必要 9.1,1±=±=x y10.x x 2cos ,2sin 11.}0),{(2>∈=y R y x D ,(或不含x 轴的上半平面) 12.没有二、单项选择题1.D2.B3.C4.A5.A6.A7.C8.D9.D 10.B 11.A 12.C 13.D三、计算题1.解 当0≠y ,1≠y 时,分离变量取不定积分,得C x yy y+=⎰⎰d ln d 通积分为xC y e ln = 2.解 令xu y =,则xuxu x y d d d d +=,代入原方程,得 21d d u x ux-= 分离变量,取不定积分,得C xxu u ln d 1d 2+=-⎰⎰(0≠C ) 通积分为: Cx xyln arcsin = 3.解方程两端同乘以5-y ,得x y xyy +=--45d d 令 z y=-4,则xzx y y d d d d 45=--,代入上式,得x z xz=--d d 41 通解为41e 4+-=-x C z x原方程通解为 41e 44+-=--x C y x 4.解 因为xNx y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为C y y x xy yx=-⎰⎰20d d 2即 C y y x =-3231 5.解 原方程是克莱洛方程,通解为 32C Cx y += 6.解 当0≠y 时,分离变量得x x x y y d 1d 2+= 等式两端积分得 C x y ln )1ln(21ln 2++= 即通解为21x C y += 7.解 齐次方程的通解为xC y 3e -= 令非齐次方程的特解为 x x C y 3e)(-=代入原方程,确定出 C x C x+=5e 51)( 原方程的通解为xC y 3e-=+x2e51 8.解 由于xNxy y M ∂∂==∂∂2,所以原方程是全微分方程. 取)0,0(),(00=y x ,原方程的通积分为103023d d )(C y y x xy x yx =++⎰⎰即 C y y x x =++42242 9.解 令t y =',则原方程的参数形式为⎩⎨⎧='+=ty t x te由基本关系式t t x y y td )e 1(d d +='= 积分有C t t y t +-+=)1(e 212得原方程参数形式通解⎪⎩⎪⎨⎧+-+=+=Ct t y t x tt)1(e 21e 2 10.解 原方程为恰当导数方程,可改写为 0)(=''y y 即1C y y =' 分离变量得x C y y d d 1= 积分得通积分21221C x C y +=11.解 令u x y =,则xux u x y d d d d +=,代入原方程,得 u u xuxu tan d d +=+,u x u x tan d d = 当0tan ≠u 时,分离变量,再积分,得C xxu u ln d tan d +=⎰⎰C x u ln ln sin ln +=即通积分为: Cx xy =sin12.解 齐次方程的通解为Cx y = 令非齐次方程的特解为 x x C y )(=代入原方程,确定出 C x x C +=ln )( 原方程的通解为Cx y =+x x ln 13.解 积分因子为 21)(x x =μ 原方程的通积分为1012d d )(e C y x xy y x x =+-⎰⎰即 1e ,e C C C xyx+==+) 14.解 令p y =',则原方程的参数形式为⎪⎩⎪⎨⎧='+=p y p p x ln 1由基本关系式y xy'=d d ,有 p p pp x y y )d 11(d d 2+-⋅='=p p)d 11(-=积分得 C p p y +-=ln得原方程参数形式通解为⎪⎩⎪⎨⎧+-=+=C p p y p p x ln ln 1 15.解 原方程可化为0)(2='+'x y y于是 12d d C x xyy=+ 积分得通积分为23123121C x x C y +-= (6分) 16.解 对应齐次方程的特征方程为052=-λλ,特征根为01=λ,52=λ,齐次方程的通解为 xC C y 521e += 因为0=α是特征根。

常微分方程习题2.doc

常微分方程习题2.doc

常微分方程习题2・11.— = 2xy,并求满足初始条件:x=O,y=l的特解.dx解:对原式进行变量分离得丄dy = 2衣仕,两边同时积分得:111卜|=兀2 +(?,即『=(?幺兀把x = 0, y = 1代入得c = 1,故它的特解为y =幺“。

22.y dx + (兀+ l)dy = 0,并求满足初始条件:x=0,y=l的特解.解:对原式进行变量分离得:dx =当y北0时,两边同时积分得;ln|x + l| = —+ c,即丁 = \x + 1 y y c + ln|x +1|r当y = 0时显然也是原方程的解。

当兀=0』=1时,代入式子得c = l,故特解是1歹 1 + ln|l + x|23 4 = Idx兀》+兀、解:原式可化为:2 2空=•丄显然工0,故分离变量得~^dy = —^dxdx y x+x y i+y~ x + x两边积分得*lnl+)/ =ln|x|-|ln|l + %2|+ ln|c|(c 0),即(1+才)(1 + %2) = c/ 故原方程的解为(1 +)/)(1+ +)= d4:(1 + x)ydx + (1- y)xdy = 0解:由y = 0或兀=0是方程的解,当xy ^0时,变量分离^-^-dx = -― dy = 0两边积分In卜| + 兀 + In卜| 一y = c,BPln|xy| + x - y = c.故原方程的解为ln|兀y| = x-y = c;y = 0;x = 0.解:^ — = u, y = ux, — = u + x —,则原方程化为:x dx dx du 二 sgn x^^-dx 兀 / 2 2、du_Jx(1~U\分离变量得 dx x /i2 两边积分得:arcsinu = sgnx • ln|x| + c 代回原来变量,得arcsin — = sgn x • ln|x| + c另外,y=x 也是方程的解。

7: tgydx - ctgxdy = 0 解:变量分离,得:ctgydy = tgxdx 两边积分得:ln|sin y\ = - ln|cos x| + c.dx y解:变量分离,得-=-扎% + c y 3e9: x(ln x - In y)dy 一 ydx = 0解:方程可变为:-\n — 9dy-—dx = 0x x令u =—,贝U 有丄必 = dlnux x 1 + In w代回原变量得:cy = 1 +In —ox10:红厂dx解:变量分离$ dy = d dx5: (y + x)dy + (y - x)dx = 0解:史,令“ 坯空斗+二空 dx y + x x dx dx 贝I 拉+ x —= U +\变量分离,得:_弘?+1 du = — dxdx w +1 眈 +1 x两边积分得:arctgu + *ln(l + /) = —ln|T + c 。

新编文档-常微分方程二阶线性微分方程习题课-精品文档

新编文档-常微分方程二阶线性微分方程习题课-精品文档

将 y,y,y 代入方程,
A 1 , y1xe3x
4
4
原方程通解: yYy
C 1e3xC 2ex
1 4
xe3
x
12
二阶线性微分方程
例9 求方 y3y 程 2yxe2x的通 . 解
解 f(x)xe2x,2
(1) 求对应齐次方程的通解
特征方程 2320
特征根 11 , 22
对应齐次方程通解 YC 1exC 2e2x
(2) 求特征根,1,2
(3) 根据特征根的不同情况,得到相应的通解。
特征根的情况
通解的表达式
实根 12
y C 1 e 1 x C 2 e 2 x
实根 12
复根 1, 2i
y (C 1 C 2 x )e1 x
y e x ( C 1 co x C s 2 six ) n
3
二阶线性微分方程
例2 求方 y4y程 4y0的.通解
解 特征方程 2440
特征根 2(二重根)
通解: y(C 1C 2方 y2y程 5y0的.通解
解 特征方程 2250
特征根 1,212i,
通解: y e x ( C 1 c2 o x C s 2 s2 ix ) n
5
二阶线性微分方程
例4
解初值问题
16y24y9y0, yx04, yx02.
的解, 求此方程的通解.
非齐次线性方程的两个特解之差
是对应 齐次方程的特解.

y2y1x2,y3y2ex,
x e
2 x
常数
x2,ex 线性无关.
齐次线性方程的通解:YC1x2C2ex,
非齐次方程的通解: yYy.
2
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《常微分方程》第二阶段试题一. 单选题1. 函数 )cos(C x y +=(其中C 为任意常数)所满足的微分方程是( ) )sin()(C x y A +-='; 1)(22=+'y y B ;)sin()(C x y C +='; 22)(22=+'y y D 。

2.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式为零 (C )12()=()x C x ϕϕ(常数) (D )线性相关 3.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=不是基本解组的充要条件是( )(A )线性无关 (B )朗斯基行列式不为零 (C )12()()x C x ϕϕ≠(常数) ( )线性相关 4.线性齐次微分方程组()dx A t x dt=的一个基本解组的个数不能多于( ) (A ) -1n (B ) n (C )+1n (D )+2n5.n 阶线性齐次微分方程线性无关解的个数不能多于( )个.(A ) n (B )-1n (C )+1n (D )+2n6. 设常系数线性齐次方程特征方程根i r r ±=-=4,32,1,1,则此方程通解为( )(A )x C x C e x C C y x sin cos )(4321+++=-; (B )x C x C e C y x sin cos 321++=-;(C )x x C x C e C y x sin cos 321++=-; (D )x C x x C e C y x sin cos )(321+++=-7.方程x xe y y 2'2"=-的特解具有形式( )。

(A ) x Axe y 2*=; (B ) x e B Ax y 2)(*+=;(C ) x e B Ax x y 2)(*+= ; (D )x e B Ax x y 22)(*+=。

8.微分方程x x y y 2sin =+''的一个特解应具有形式( )(A )()cos ()sin Ax B x Cx D x +++22 (B )()cos Ax Bx x 22+(C )x B x A 2sin 2cos + (D )()cos Ax B x +29.微分方程210y y '''++=的通解是( )(A )x e x C C y -+=)(21; (B )x x e C e C y -+=21;(C )x e C C y x 21221-+=-; (C )x x C x C y 21sin cos 21-+=。

10.容易验证:y wx y wx w 120==>cos ,sin ()是二阶微分方程''+=y w y 20的解,试指出下列哪个函数是方程的通解。

(式中C C 12,为任意常数)( )(A )y C wx C wx =+12cos sin (B )y C wx wx =+12cos sin(C )y C wx C wx =+112cos sin (D )y C wx C wx =+122cos sin11.微分方程1x y y e ''-=+的一个特解应有形式 ( )(A )b ae x +; (B )bx axe x +; (C )bx ae x +; (D ) b axe x +12.微分方程'''+'=y y x sin 的一个特解应具有形式 ( )(A )A x sin (B )A x cos(C )Asix B x +cos (D )x A x B x (sin cos )+13.微分方程''+=y y x x cos2的一个特解应具有形式( )(A )()cos ()sin Ax B x Cx D x +++22 (B )()cos Ax Bx x 22+(C )A x B x cos sin 22+ (D )()cos Ax B x +214.微分方程012'''=++y y 的通解是( )(A )x e x C C y -+=)(21; (B )x x e C e C y -+=21;(C )x e C C y x 21221-+=-; (C )x x C x C y 21sin cos 21-+=。

15.设线性无关的函数321,,y y y 都是二阶非齐次线性方程()()y p x y q x y '''++=)(x f 的解,21,C C 是任意常数,则该非齐次方程的通解是( )(A )32211y y C y C ++; (B )1122123()C y C y C C y +-+;(C )3212211)1(y C C y C y C ---+; (D )3212211)1(y C C y C y C --++16.方程0='+'''y y 的通解是( ).(A) 1sin C x y +=; (B) 1cos sin C x x y +-=;(C) 1cos sin C x x y ++=; (D) 321cos sin C x C x C y +-=.17.求方程 x xe y y y 396-=+'+''的特解时,应令( )x e b ax y A 3)()(-*+=; x e b ax x y B 32)()(-*+=;x axe y C 3)(-*=; x e b ax x y D 3)()(-*+=。

18.函数)(1x ϕ,)(2x ϕ在区间[a,b ]上的朗斯基行列式恒为零,是它们在[a, b ]上线性相关的( ).(A)充分条件; (B)必要条件;(C)充分必要条件; (D)充分非必要条件.19.设函数)(1x ϕ,)(2x ϕ方程()()0x p t x q t '''++=在区间[a,b ]上的两个解,则其朗斯基行列式不为零,是它们在[a, b ]上线性无关的( ).(A)充分条件; (B)必要条件;(C)充分必要条件; (D)充分非必要条件.20.设函数)(1x ϕ,)(2x ϕ方程()()0x p t x q t '''++=在区间[a,b ]上的两个解,则其朗斯基行列式区间[a,b ]上某一点不为零,是它们在[a, b ]上线性无关的( ).(A)充分条件; (B)必要条件;(C)充分必要条件; (D)充分非必要条件.21.函数)(1x ϕ,)(2x ϕ在区间[a,b ]上的朗斯基行列式在[a, b ]上某一点处不为零,是它们在[a, b ]上线性无关的( )(A)充分条件; (B)必要条件;(C)充分必要条件; (D)充分非必要条件.22.n 阶线性非齐次微分方程的所有解是否构成一个线性空间?( )(A)是; (B)不是;(C)也许是; (D)也许不是.23.两个不同的线性齐次微分方程组是否可以有相同的基本解组?( )(A)不可以 (B)可以(C)也许不可以 (D)也许可以24.若)(x Φ是线性齐次方程组Y A Y )(d d x x=的一个基解矩阵,T 为非奇异n ×n 常数矩阵,那么)(x ΦT 是否还是此方程的基解矩阵.( )(A)是 (B)不是(C)也许是 (D)也许不是25.方程组x t A x )(='( )(A)n 个线性无关的解)(),(),(21t x t x t x n 称之为方程组的一个基本解组(B)n 个解)(),(),(21t x t x t x n 称之为方程组的一个基本解组(C)n 个线性无关的解)(),(),(21t x t x t x n 称之为方程组的一个基解矩阵(D)n 个线性相关的解)(),(),(21t x t x t x n 称之为方程组的一个基本解组26.若()t Φ和)(t ψ都是x t A x )(='的基解矩阵,则( )(A ))(t ψ=()+t Φc 其中c 为非奇异常数矩阵 (B ))(t ψ=()+t Φc 其中c 常数矩阵(C ))(t ψ=()t Φc 其中c 为非奇异常数矩阵 (D ))(t ψ=()t Φc 其中c 为常数矩阵27.若()t Φ是x t A x )(='的基解矩阵,则x t A x )(=')(t f =满足η=)(0t x 的解( )(A )01()()()tt t s f s ds η-Φ+Φ⎰ (B )010()()()()()tt t t t t f s ds η-ΦΦ+ΦΦ⎰ (C )01()()()()t t t t s f s ds η-Φ+ΦΦ⎰ (D )0110()()()()()tt t t t s f s ds η--ΦΦ+ΦΦ⎰ 28.方程组()x A t x '=的( )称之为()x A t x '=的一个基本解组。

(A )n 个线性无关解 (B )n 个不同解(C ) n 个解 (D )n 个线性相关解29.n 阶齐线性微分方程的( )称方程的一个基本解组。

(A ) n 个线性相关解 (B )n 个不同解(C ) n 个解 (D )n 个线性无关解30.A 、B 为n n ⨯的常数矩阵,则下列式子错误的是 ( )(A )0!kA k A e k ∞==∑ (B )1() A A e e --=(C ) A B A B e e e += (D )11() T T AT A e T e T --=为非奇异矩阵二. 填空题1. 以x e y x 2cos 43=为特解的二阶常系数线性齐次微分方程为 。

2.若12(),(),()n X t X t X t 为n 阶齐线性微分方程的n 个解,则它们线性无关的充要条件是__________________________。

3.形如___________________的方程称为欧拉方程。

4.若()t Φ和()t ψ都是()x A t x '=的基解矩阵,则()t Φ和()t ψ具有的关系是__________5.以x x xey e y 2221,== 为特解的二阶常系数线性齐次微分方程为 。

6.(4)20x x x '''''-+=的通解是7.若()t Φ和()t ψ都是'()x A t x =的基解矩阵,则()t Φ和()t ψ具有的关系是____________8.若()t Φ是x t A x )(='的基解矩阵,则x t A x )(='满足η=)(0t x 的解9.设是的基解矩阵,是)()(t Ax x t ϕφ=')()(t f x t A x +='的某一解,则它的任一解可表为)(t γ---------------------。

相关文档
最新文档