变压器的工作原理与制作

合集下载

简述变压器的工作原理

简述变压器的工作原理

简述变压器的工作原理变压器是一种常见的电力设备,它在电力系统中起着至关重要的作用。

它主要通过电磁感应原理来实现电压的变换。

变压器主要由铁芯和绕组组成,其中铁芯起着传导磁场、增加感应电动势的作用,绕组则是用来传输电能的。

接下来,我将简要介绍一下变压器的工作原理。

首先,当变压器的初级绕组通以交流电流时,它会在铁芯中产生交变磁通。

这个交变磁通会穿过次级绕组,从而在次级绕组中感应出交变电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁通的变化率成正比,因此当初级绕组中的电流发生变化时,次级绕组中就会感应出相应的电动势,从而实现电压的变换。

其次,根据能量守恒定律,变压器中的功率输入等于输出,即功率守恒。

根据功率的定义,功率等于电压乘以电流,因此当变压器的电压发生变化时,电流也会相应地发生变化,以保持功率的平衡。

这也是变压器能够实现电压变换的基本原理。

另外,变压器的工作原理还涉及到磁通的闭合和传导。

铁芯的存在可以有效地传导磁场,从而增加磁通的传导效率。

此外,变压器的铁芯通常采用硅钢片制成,这是因为硅钢片具有较高的导磁性能和低的磁滞损耗,能够有效地减小铁芯的磁滞损耗和涡流损耗,提高变压器的工作效率。

最后,需要指出的是,变压器的工作原理也与匝数的比值有关。

根据变压器的匝数比公式,变压器的变比与初级匝数与次级匝数的比值成正比。

因此,通过合理设计变压器的绕组匝数,可以实现不同电压等级之间的变换,满足不同电气设备的需求。

综上所述,变压器的工作原理是基于电磁感应原理,通过磁场的感应和电动势的变化来实现电压的变换。

同时,变压器的工作原理还涉及到能量守恒、磁通的传导和匝数比等因素。

通过合理设计和制造,变压器能够实现不同电压等级之间的变换,并在电力系统中发挥着重要的作用。

变压器的工作原理

变压器的工作原理

控制变压器
(一)铁芯 铁心既作为变压器的磁路;又作为变压器的机械骨架。 为了提高导磁性能、减少交变磁通在铁心中引起的损耗, 变压器的铁心都采用厚度为0.35-0.5mm的电工钢片叠装而 成。电工钢片的两面涂有绝缘层,起绝缘作用。大容量变 压器多采用高磁导率、低损耗的冷轧电工钢片。电力变压 器的铁心一般都采用心式结构,其铁心可分为铁心柱(有绕 组的部分)和铁轭(联接两个铁心柱的部分)两部分。绕组套 装在铁心柱上,铁轭使铁心柱之间的磁路闭合。在铁心柱 与铁轭组合成整个铁心时,多采用交叠式装配,使各层的 接缝不在同一地点,这样能减少励磁电流,但缺点是装配 复杂,费工费时。在一般变压器中,铁心柱截面采用外接 圆的阶梯形。只有当变压器容量很小时才采用方形。交流 磁通在铁心中会引起涡流损耗和磁滞损耗,使铁心发热。 在大容量变压器的铁心中,往往设置油道。铁心浸在变压 器油中,当油从油道中流过时,可将铁心中的热量带走。
此外还有其他的分类方法。例如,按冷却方式来 区分,则有干式变压器和油浸式变压器,油浸式 变压器还可进一步分为油浸自冷、油浸风冷、油 浸水冷、强迫油循环风冷或水冷等型式。虽然变 压器的种类很多,但各种变压器运行时的基本物 理过程及分析变压器运行性能的基本方法,大体 上都是一样的。
二、变压器的结构简介: 变压器的基本结构部件是铁心和绕组,由它 们组成变压器的器身。为了改善散热条件, 大、中容量变压器的器身浸入盛满变压器油 的封闭油箱中,各绕组与外电路的连接则经 绝缘套管引出。为了使变压器安全可靠地运 行,还设有储油柜、气体继电器和安全气道 等附件。
电力变压器的结构及工作原理 一、变压器的分类 由于变压器的应用范围十分广泛,因此它的 种类很多,主要有以下几种。 (一)按用途分类 1、电力变压器:用来传输和分配电能,是所有 变压器中用途最广、生产量最大的一种变压器。 电力系统远距离输送一定的电功率,电压越低则 电流越大,消耗在输电线路上的电阻损耗越大; 若要减小输电线电阻以输送大电流,就要用大截 面的输电线而消耗较多的导体材料。

变压器的基本工作原理与结构

变压器的基本工作原理与结构

变压器的基本工作原理与结构变压器是电力系统中常用的电气设备,用于变换交流电的电压大小。

它通过共同的磁环(也称为铁心)和两个或更多的线圈(也称为绕组)之间的电磁耦合而工作。

变压器的基本工作原理是根据法拉第电磁感应定律,即磁通量的变化引起了线圈中的电压。

变压器的结构主要由铁心和绕组组成。

铁心是由高导磁系数的材料制成,如硅钢片。

它通常采用“E”型或“I”型结构,这是由上部和下部相等的臂带组成的。

绕组由导电材料(如铜线)绕制而成,根据其位置和功能可以分为两种类型,即主绕组和副绕组。

主绕组通常位于铁心的中心或一侧,用于输入电源。

副绕组位于主绕组旁边,用于输出电源。

当变压器接通交流电源时,主绕组中的交流电产生磁场,这个磁场会传导到铁心中,再传导到副绕组中。

由于磁场的变化,副绕组中将产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小取决于磁感应强度的变化率。

变压器中,磁感应强度的变化与线圈的匝数比例成正比。

因此,当主绕组的匝数比副绕组的匝数大时,输出电压将小于输入电压,从而实现升压的效果。

反之,则实现降压的效果。

变压器的工作原理可以用以下公式表示:V1/N1=V2/N2其中V1和N1分别为输入电压和主绕组的匝数,V2和N2分别为输出电压和副绕组的匝数。

通过调整主绕组和副绕组的匝数比例,可以实现不同的电压变换。

此外,变压器还有一些其他的重要组件,如冷却系统和绝缘材料。

冷却系统用于控制变压器的温度,以确保其正常运行。

绝缘材料用于绝缘绕组和铁心,以防止电流泄漏和绕组之间的短路。

总之,变压器是一种通过电磁耦合将交流电压变换为不同大小的电器设备。

它的工作原理基于法拉第电磁感应定律,通过调整主绕组和副绕组的匝数比例来实现电压的变换。

变压器的结构主要由铁心和绕组组成,还包括冷却系统和绝缘材料。

变压器基本知识介绍

变压器基本知识介绍
2、绕线方式 根据变压器要求不同,绕线的方式大致可分为以下几种:
2.1 一层密绕:布线只占一层,紧密的线与线间没有空隙,整 齐不可交叉堆积(如图6.1)
高频变压器制作方法
2.2 均等绕:在绕线范围内以相等的间隔进行绕线;间隔误差在20% 以内算合格(如图6.2)
2.3 多层密绕:在一个绕组一层无法绕完,必须绕至第二层或二层以 上
低频类变压器制作方法介绍
三、 配线
低频有针脚式和引脚式两种,其配线方法也不 相同(详情参见作业指导书)
低频类变压器制作方法介绍
四、 焊 锡
1. 操作步骤 1.1 将Pin 脚沾适量助焊剂。 1.2 焊锡:将脚插入锡槽,深度如下图所示。 1.3 焊锡后不得有漏焊、虚焊现象且焊锡光亮 2. 注意事项 2.1 焊锡时部间约为2-3秒,如果线包接有保险丝,不可焊得太久 2.2 焊温(作业指导书要求) 2.3 锡温需每隔两个小时测试并记录
变压器材料介绍
三、胶带(Tape)
2.高压测试:在测试条件AC4.0KV,50Hz 1mA 1min 下,将3圈胶 带均匀缠绕在导电圆棒上,使胶带与圆棒紧密接触,高压表 笔一支接圆棒,另一支接触胶带表面,胶带不击穿。
变压器材料介绍
四、漆包线(WIRE)
1.漆包线是一条铜线(或导体)经由处理将凡立水被覆在铜线 表面,由于凡立水有绝缘功能,此时铜线经由缠绕变成线圈, 即可用于电磁感应的各种应用 2.我们常用的漆包线:直焊性聚氨酯漆包线(QA)、聚酯漆包 线(QZ)、聚胺基甲酸脂漆(UEW)、聚脂瓷漆包线(PEW)等 3.漆包线耐热等级分为:A级(105°C)、E级(120°C)、B 级(130°C)、F级(155°C)、H级(180°C) 4.漆包线常识:2UEW 耐温120°C,可以直接焊锡;而PEW 耐 温155°C,180°C,焊锡时须脱漆皮

第2章 变压器的工作原理和运行分析

第2章 变压器的工作原理和运行分析

SN SN ,I 2 N 3U 1 N 3U 2 N
注意!对于三相系统,额定值都是指线间值。
第二节 变压器空载运行
空载:一次侧绕组接到电源,二次侧绕组开路。 一、电磁现象
u1
Φm
i0
Φ 1σ
e1 e1σ
N1
N2
e2
u20
i



二、参考方向的规定
e
i i

e

e
三、变压原理、电压变比
对于变压器的原边回路,根据电路理论有:
u1 i0 r1 e1 e1
空载时 i0r1 和 e1σ 都很小,如略去不 计,则 u1 = - e1 。设外加电压 u1 按 正弦规律变化,则 e1 、Φ 和e2 也都 按正弦规律变化。 设主磁通 m sin t ,则:
u1
Φm
u1
Φm
e1
e2
ωt 0 180° 360°
现在的问题是,要产生上述大小的主磁通 Φm ,需 要多大(什么样)的激磁电流 Im ?
励磁电流的大小和波形受磁路饱和、磁滞及涡 流的影响。
1、磁路饱和对励磁电流的影响
mm mm
i0 tt
00
i0i0 tt
00
i0 i0
tt
tt
磁路不饱和时,i0 ∝φ,其波形为正弦波。
磁路饱和时,i0与φ 不成线性关系,φ越大,磁路 越饱和,i0/φ比值越大,励磁电流的波形为尖顶波。
六、漏抗 漏电势的电路模型与励磁特性的电路模型类似, 只是漏磁通所经路径主要为空气,磁阻大,磁通量 小,磁路不饱和,因此可以忽略漏磁路的铁耗,即 漏电势的电路模型中的等效电阻为零,即漏电势

变压器的基本结构与工作原理

变压器的基本结构与工作原理

变压器的基本结构与工作原理变压器,这个名字一听就有点高大上,但其实它的工作原理就像我们日常生活中的很多事情,简单而又神奇。

你想啊,就像你把一杯热水倒入另一杯冷水,温度就会慢慢平衡一样,变压器也在电流的世界里做着类似的事情。

那今天就来聊聊这个小家伙的基本结构和它是怎么工作的吧!1. 变压器的基本结构1.1 铁心首先,变压器的核心部分就是铁心。

这玩意儿可不简单,想象一下,它就像是变压器的脊梁骨,得承受一切。

一般来说,铁心是由很多层薄铁片叠成的,目的是为了减少能量的损耗。

你知道的,越薄越轻,热量就不容易散发,节省电力也省心。

它的工作方式就像一个优雅的舞者,轻轻地在电流中舞动,把能量传递得流畅无比。

1.2 绕组接下来,绕组就是变压器的“心脏”了。

它们一般分为高压绕组和低压绕组,就像是两个兄弟,一个负责“高大上”,一个负责“接地气”。

电流在高压绕组里走得飞快,像个风一样呼啸而过;而在低压绕组里,它则慢慢变得温和,适合我们日常使用。

这个过程就像一个调皮的小孩子,时而奔放,时而安静,总是给我们带来惊喜。

2. 变压器的工作原理2.1 电磁感应好了,讲到这里,很多人可能会问,这变压器到底是怎么工作的呢?其实,变压器的工作原理主要是依靠电磁感应。

简单来说,就是一个线圈里有电流流动时,周围就会产生磁场。

这个磁场就像是魔法一样,能影响到另一个线圈。

你想啊,如果你在火锅店里,锅里煮的火锅冒着热气,旁边的食材也会被吸引过来一样。

电流通过高压绕组产生的磁场,就能让低压绕组里的电流悄悄跑出来。

2.2 电压转换当我们把电流传递给低压绕组的时候,电压就会发生变化。

就像我们常说的“换个地方看看”,有时候会让事情变得更好。

在变压器中,电压的高低取决于绕组的圈数比。

如果高压绕组的圈数多,那么电压就高;反之,如果低压绕组的圈数少,电压就低。

这个过程就像打麻将,手里的牌决定了你能出的招数,变压器的“牌”也是这样定的。

3. 变压器的应用3.1 生活中的变压器变压器的应用可谓无处不在。

变压器的结构和工作原理

变压器的结构和工作原理

变压器的结构变压器是一种静止的电气设备,它利用电磁感应原理,把一种电压等级的交流电能转换成另一种电压等级的交流电能。

变压器是电力系统中实现电能的经济传输、灵活分配和合理使用的重要设备,在国民经济和其他部门也获得了广泛应用。

一般常用变压器的分类可归纳如下:按相数分:(1)单相变压器:用于单相负荷和三相变压器组。

(2)三相变压器:用于三相系统的升、降电压。

按冷却方式分:(1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。

(2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。

按用途分:(1)电力变压器:用于输配电系统的升、降电压。

(2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。

(3)试验变压器:能产生高压,对电气设备进行高压试验。

(4)特种变压器:如电炉变压器、整流变压器、调整变压器等。

按绕组形式分:(1)双绕组变压器:用于连接电力系统中的两个电压等级。

(2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。

(3)自耦变电器:用于连接不同电压的电力系统。

也可做为普通的升压或降后变压器用。

按铁芯形式分:(1)芯式变压器:用于高压的电力变压器。

(2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。

(3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。

在电力系统中,用到最多的是油浸式变压器,其最基本的结构式铁芯、绕组、绝缘材料、邮箱等组成,为了使变压器安全可靠地运行,还需要冷却装置、保护装置。

一、铁芯铁芯是组成变压器基本的组成部件之一,是变压器导磁的主磁路,又是器身的主骨架,它由铁柱、铁轭和夹紧装置组成。

常用的变压器铁芯一般都是用硅钢片制做的。

硅钢是一种合硅(硅也称矽)的钢,其含硅量在0.8~4.8%。

开关电源变压器与设计变压器原理设计及感量计算变压器的基本工作原理和结构

开关电源变压器与设计变压器原理设计及感量计算变压器的基本工作原理和结构

I 2
I2 k
E2 kE2 E1 U2 kU2
r 2 k 2 r 2
x 2 k 2 x 2
Z
L
k 2Z
L
第三章 变压器
折算后的方程式为
U 1 E 1 I 1 R 1 j I 1 X 1 E 1 I 1 Z 1 U 2 E 2 I 2 R 2 j I 2 X 2 E 2 I 2 Z 2 I1I2 I0
线性关系。
当磁通按正弦规律
变化时,空载电流呈尖 顶波形。
t
3 21
i0
1
当空载电流按正弦规律变
2
化时,主磁通呈尖顶波形。
3
i0
实际空载电流为非正弦波,但为了分析、计算和测量的方便,在 相量图和计算式中常用正弦的电流代替实际的空载电流。
第三章 变压器
二、空载损耗
即 耗 变PF空 压 e和载 器 绕损 空 组耗 载 铜 I02R近 时 1损 。 耗 电 由 。似 一 耗 源 于 I0为 次 和 吸 R1铁 侧 均 收损 从 很 少 ,小 所 量 P0,供 以 有 P0 给 功 PF, e铁 功
一次侧的电动势平衡方程为
U 1 ( R m E j1 X m I)0Z I01( R 1jX 1)I0
空载时等效电路为
第三章 变压器
Rm,Xm,Zm励磁电阻、励磁电抗、励磁阻抗。由于磁路具有饱 和特性,所以ZmRm不j是Xm常数,随磁路饱和程度增大而减小。
由于 Rm R 1,Xm ,所 X 以1有时忽略漏阻抗,空载等效电路只是一个 元件的电Z 路m 。在 一定的情U况1 下, 大小取决于I 0 的大小。从Z运m 行角度讲,希望 越小越好,所I 以0 变压器常采用高导磁材料,增 大 ,减小 ,提高Z 运m 行效率I和0 功率因数。

变压器的基本工作原理与结构

变压器的基本工作原理与结构

变压器的基本工作原理与结构变压器是一种电磁装置,主要用于改变电压的大小,实现电能的传输和分配。

变压器的基本工作原理是利用电磁感应原理。

变压器的结构主要由两部分组成,即主线圈和副线圈。

主线圈通常被称为高压线圈,而副线圈通常被称为低压线圈。

两个线圈之间通过铁芯连接。

变压器的工作原理可以通过法拉第电磁感应定律解释。

当主线圈中通入交流电时,由于在线圈中形成了一个交变的磁场,这个交变磁场会通过铁芯传导到副线圈中,使得副线圈中的导体中也产生交变电流。

这个交变电流通过副线圈的导线,形成了一个交变的电场,进而使得副线圈的两端产生了不同大小的电压。

基于电磁感应原理,根据变压器的线圈匝数比例,可以实现电压的变换。

根据理论计算,副线圈电压与主线圈电压的比值等于副线圈匝数与主线圈匝数的比值。

这就是变压器的基本公式:U2/U1=N2/N1,其中U1、U2分别为主线圈和副线圈的电压,N1、N2分别为主线圈和副线圈的匝数。

另外,为了提高变压器的效率和性能,变压器还会采用铁芯结构。

铁芯可以有效地导磁,并减少能量的损失。

铁芯通常由硅钢片组成,这种材料具有良好的导磁性能和较低的铁损耗。

变压器还包括一些辅助设备和保护装置,例如冷却装置、温度探头、过流保护、过压保护等。

这些设备和装置可以确保变压器的正常运行,并防止过载和损坏。

总的来说,变压器是一种能够改变电压的电磁装置。

它的工作原理是利用电磁感应现象,通过主副线圈之间的电磁感应实现电压的变换。

变压器的结构主要由主线圈、副线圈和铁芯组成。

通过合理设计和选择不同匝数的线圈,可以实现不同变比的变压器,满足电网和电气设备对不同电压级别的需求。

变压器工作原理和参数设计

变压器工作原理和参数设计

变压器工作原理和参数设计
变压器是一种用来变换交流电压的电器设备,主要由铁心和线圈组成。

工作原理:
变压器的工作原理基于法拉第电磁感应定律,即当一根绕组中通过交流电流时,会产生一个与电流变化有关的磁场。

当变压器的一侧线圈通过交流电流时,就会在铁心中产生一个交变磁场,从而在另一侧的线圈中诱导出电动势,进而产生交流电压。

参数设计:
1. 变压器的额定功率:根据使用场景中所需要的功率大小,来确定变压器的额定功率。

额定功率应根据所需负载功率、工作电压、电流等参数来计算。

2. 变压器的额定电压:根据需要的输入输出电压以及变压器的变压比来确定。

如果需要降低电压,则输入电压应大于输出电压乘以变压比;如果需要升高电压,则输入电压应小于输出电压乘以变压比。

3. 变压器的变压比:变压器的变压比是指输入电压与输出电压的比值。

变压比的选择应根据实际需要的电压变换情况来确定。

4. 变压器的效率:变压器的效率是指输入功率和输出功率之间的比值。

为了减小能量损耗,变压器的设计应考虑降低功率损耗,提高变压器的效率。

5. 变压器的绕组和铁心:根据所需电流大小和变压器的额定功率,设计合适的线圈截面积和匝数。

铁心的设计则应考虑磁通密度、饱和磁场和磁导率等因素。

以上是变压器的工作原理和参数设计,根据具体使用要求和特定场景,可以进行进一步的优化和调整。

变压器工作原理及详细介绍

变压器工作原理及详细介绍

变压器工作原理及详细介绍要知道变压器的工作原理,首先要知道它的功能,其实也不外乎就是电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁芯形状一般有E型和C型铁芯。

它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。

电源变压器应用非常广泛。

变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗用变压器、防雷变要知道变压器的工作原理,首先要知道它的功能,其实也不外乎就是电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁芯形状一般有E型和C型铁芯。

它原理简单但根据不同的使用场合(不同的用途)变压器的绕制工艺会有所不同的要求。

电源变压器应用非常广泛。

变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗用变压器、防雷变压器、箱式变压器、箱式变电器。

变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。

当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。

一般指连接交流电源的线圈称之为「一次线圈」(Primary coil);而跨于此线圈的电压称之为「一次电压.」。

在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈问的「匝数比」所决定的。

因此,变压器区分为升压与降压变压器两种。

大部份的变压器均有固定的铁芯,其上绕有一次与二次的线圈。

基于铁材的高导磁性,大部份磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。

在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。

因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。

第2章变压器

第2章变压器
大连理工大学电气工程系
2.1 变压器的工作原理
1. 电压变换 一次侧电路 E1 =-j4.44 N1f Φm
+ i1
U1 = -E1 + (R1 + jX1) I1 = -E1 + Z1I1
※ R1 :一次绕组电阻。
u1

- e1 +
i2 + + e2 ZL u2 - -
图形符号表示的电路图
X1 :一次绕组漏电抗。 Z1 :一次绕组漏阻抗。 忽略 Z1 ,则 U1≈-E1
大连理工大学电气工程系
第 2 章 变压器
2.3 变压器的运行分析
一、等效电路
将匝数为N2的实际二次绕组用匝数为N1的等 效二次绕组来代替。代替时保持磁通势和功率不 变。
二次绕组的折算公式:
1. 折算后的二次绕组电流 磁通势不变: N1I2' = N2I2 N2 I2 I2' = N I2 = k 1
大连理工大学电气工程系
2.3 变压器的运行分析
2. 折算后的二次绕组电压和电动势 输出视在功率不变: U2'I2' = U2 I2 I2 U2' = U2 = kU2 I2' 匝数相同: E2'= E1 = kE2
大连理工大学电气工程系
2.3 变压器的运行分析
3. 折算后的二次绕组漏阻抗和负载阻抗 有功功率不变
大连理工大学电气工程系
2.2 变压器的基本结构
(2) 低压绕组额定线电流 SN I2NL = I2N = 3 U1N 500〓103 = A 26.24 A 3 1.732〓11〓10 因低压绕组为△形联结,额定相电流为 I2NL 26.24 = A 15.15 A I2NP = 3 1.732

变压器的构造与工作原理

变压器的构造与工作原理

变压器的构造与工作原理变压器是一种利用电磁感应原理来变换交流电压和电流的电器设备。

它主要由铁心、线圈和外壳等构成。

下面将详细介绍变压器的构造和工作原理。

1.构造:(1)铁心:变压器的铁心通常采用高导磁性能的软磁材料,如硅钢片。

它将空气磁场集中,提高磁路的磁通密度,以增加变压器的效率。

(2)线圈:变压器的线圈包括两个部分,主线圈和副线圈。

主线圈通常连接到电源上,用于输入电能;副线圈通常连接到负载上,用于输出电能。

线圈由导电材料制成,通常是绝缘铜线。

(3)外壳:外壳是变压器的外部保护部分,通常由金属材料制成,具有防护、散热等功能。

2.工作原理:(1)变压器基本原理:变压器利用电磁感应原理工作。

当主线圈通电时,由于通过主线圈的电流在铁心中产生磁场,磁场会产生磁通(磁力线)。

(2)磁感应原理:根据法拉第电磁感应定律,在变压器中,当交流电通过主线圈时,它会产生变化的磁场。

而这个变化的磁场会先通过铁心再通过副线圈,从而在副线圈中产生感应电动势。

(3)变压器的运算原理:变压器转换电压的原理是基于励磁电流和互感。

即主线圈中的电流产生一个磁通,而这个磁通又能感应副线圈中的电动势,从而产生输出电压和电流。

(4)变比:根据变压器的运算原理,变压器的变比是主线圈和副线圈的匝数之比。

当主线圈的匝数大于副线圈时,变压器为升压变压器;反之,为降压变压器。

变压器的变比决定了输入电压和输出电压之间的关系。

变压器的工作过程:首先,交流电源的电流流过主线圈,产生电流的磁场。

磁场穿过铁心,再穿过副线圈,从而在副线圈中产生感应电动势。

副线圈中的感应电动势会导致电流的流动,从而产生输出电压和电流。

根据变压器的变比,输出电压可以是输入电压的升压或降压。

总结:变压器通过改变交流电的电压和电流来实现电能的传输和分配。

它的构造包括铁心、线圈和外壳等部分,而工作原理是基于电磁感应原理实现的。

变压器的工作过程是通过主线圈产生磁场,进而在副线圈中产生感应电动势,实现电能的输入和输出。

变压器的工作原理

变压器的工作原理

变压器的工作原理一、引言变压器是电力系统中常见的电力设备,它起着改变电压和电流的作用。

本文将详细介绍变压器的工作原理,包括基本原理、结构和工作过程等方面的内容。

二、基本原理变压器的工作原理基于电磁感应现象。

根据法拉第电磁感应定律,当一个导体中的磁通量发生变化时,会在导体中产生感应电动势。

变压器利用这一原理来实现电压和电流的变换。

三、结构1. 主要部件变压器主要由两个线圈和一个铁芯组成。

其中,一个线圈称为初级线圈,通常与输入电源相连;另一个线圈称为次级线圈,通常与负载相连。

铁芯则用于提高磁耦合效率。

2. 线圈初级线圈和次级线圈分别由导电材料绕制而成。

它们之间通过铁芯相互绝缘。

初级线圈中的匝数通常较少,而次级线圈中的匝数较多,这样可以实现电压的升降。

3. 铁芯铁芯通常由硅钢片叠压而成,以减少磁通损耗。

铁芯的存在增加了磁通的传导效率,从而提高了变压器的效率。

四、工作过程1. 理想变压器理想变压器是指在没有损耗和漏磁的情况下工作的变压器。

在理想变压器中,输入功率等于输出功率。

2. 工作原理当交流电源接通时,通过初级线圈中的电流会在铁芯中产生磁场。

这个磁场会穿过次级线圈,并在次级线圈中产生感应电动势。

根据法拉第电磁感应定律,感应电动势的大小与磁通量的变化率成正比。

因此,次级线圈中的感应电动势会引起电流的流动,从而将能量传输给负载。

3. 变压器的变压比变压器的变压比是指初级线圈匝数与次级线圈匝数的比值。

根据变压器的工作原理,变压比决定了输入电压和输出电压之间的关系。

变压器的变压比可以通过改变线圈的匝数来调整。

五、应用领域变压器在电力系统中有广泛的应用,主要包括以下几个方面:1. 电力输配变压器用于将发电厂产生的高电压电能升压后输送到远距离的用户。

同时,变压器也用于将输送过程中的电能降压供应给用户。

2. 电子设备变压器在电子设备中起着关键的作用,例如电视机、电脑、手机等。

它们通常需要不同的电压来满足不同的电路要求,变压器可以将电源电压转换为适合设备使用的电压。

变压器的工作原理简述

变压器的工作原理简述

变压器的工作原理简述变压器是一种通过电磁感应原理来实现变换交流电压的电气设备。

它主要由铁心和绕组构成,其中铁心起到增强磁通的作用,绕组则通过电流产生磁场,进而实现电流和电压的变换。

变压器的工作原理可以简述如下:当交流电源连接到主绕组上时,通过主绕组产生的交流磁场使铁心中产生交变磁通。

而交变磁通又会影响相邻的副绕组,导致副绕组中产生感应电动势,从而在副绕组两端产生交变电压。

根据电磁感应定律可以得知,感应电动势的大小与磁通变化率成正比。

因此,主副绕组的匝数比例决定了输出电压与输入电压的比例关系。

根据不同的绕组连接方式,变压器可以分为两种基本类型:升压变压器和降压变压器。

升压变压器是指副绕组的匝数多于主绕组,从而实现输出电压大于输入电压的变压作用。

降压变压器则相反,副绕组的匝数少于主绕组,使输出电压小于输入电压。

除了改变电压之外,变压器还具有以下几个特点:1. 电能传输效率高:变压器的工作原理是通过电磁感应来实现电压变换,没有机械传动,因此传输效率很高,损耗较小。

2. 输出电压稳定:变压器的磁路部分通过铁心来实现,铁心的磁导率高,能够保证输出电压的稳定性。

3. 可实现多路输出:变压器可以根据需要设计多个副绕组,从而实现多路输出电压。

这在工业生产和电力传输中非常常见。

4. 维护成本较低:变压器内部没有触摸式部件,因此维护成本相对较低。

变压器的工作原理经过多年的发展和改进,目前已经广泛应用于电力系统、电子设备、电动机控制、电力输配电等方面。

在实际应用中,变压器不仅可以实现简单的电压变换,还能够提供隔离、稳压和隔噪功能,极大地促进了电力传输和能源利用的效率。

同时,变压器也有一些常见的应用场景,包括变电站、工业生产线、低压配电系统等。

参考内容:1. 《电气技术手册》,中国电力出版社,2003年2. 《变压器手册》,清华大学出版社,2009年3. 《电力系统继电保护》,机械工业出版社,2006年4. 《电力系统与自动化设备》,电子工业出版社,2012年5. 《变压器原理与应用》,机械工业出版社,2015年。

变压器的构成与工作原理

变压器的构成与工作原理

变压器的定义、作用、工作原理、基本构成1、变压器定义、作用在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。

例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必须通过降压变成适用的电压等级,供给动力设备及日常用电设备使用。

变压器首要构成构件是初级线圈、次级线圈和铁芯(磁芯),此外还有一些辅助部件。

线圈有两个或两个以上的绕组,其间接电源的绕组叫初级线圈,别的的绕组叫次级线圈。

它可以转换交流电压、电流和阻抗。

铁芯心的作用是加强两个线圈间的磁耦合。

为了削减铁内涡流和磁滞损耗,铁心由涂漆的硅钢片叠压而成;两个线圈之间没有电的联络,线圈由绝缘铜线(或铝线)绕成。

1.铁芯。

铁芯是变压器电磁感应的通路,由硅钢片组成,为了降低铁心中的发热损耗,铁心由厚度为0.23—0.5mm的硅钢片叠装而成。

采用硅钢片叠装可以减少涡流。

变压器的一、二次绕组都绕在铁芯上。

2.绕组。

绕组是变压器的电路部分,分高、低压绕组,即一、二次绕组。

绕组由绝缘的铜线或铝线绕成的多层线圈构成,套装在铁芯上。

3.油箱。

它是变压器的外壳,内装铁芯、绕组和变压器油,起一定的散热作用。

4.储油柜。

当变压器油的体积随温度的变化而膨胀或缩小时,储油柜起着储油和补油的作用,以保证油箱内充满油。

储油柜还能减少油与空气的接触面,防止油被过快氧化和受潮。

5.吸湿器。

储油柜内的油通过吸湿器与空气相通。

6.散热器。

它用来降低变压器的温度。

为提高变压器油冷却效果,可采用风冷、强(迫)油(循环)风冷和强油水冷等措施。

7.安全气道。

当变压器内部有故障、油温升高、油剧烈分解产生大量气体使油箱内压力剧增时,会将安全气道的玻璃冲碎,从而避免油箱爆炸或变形。

8.高、低压绝缘套管(瓷套管)。

它是将变压器高、低压引线引至油箱外部的绝缘装置,也起固定引线的作用。

9.分接开关。

变压器基本工作原理

变压器基本工作原理

第1章 变压器的基本知识和结构变压器的基本原理和分类一、变压器的基本工作原理变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能;当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组;原、副绕组的感应分别表示为则 k N N e e u u ==≈212121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比; 改变变压器的变比,就能改变输出电压;但应注意,变压器不能改变电能的频率;二、电力变压器的分类变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类; 按用途分类:升压变压器、降压变压器;按相数分类:单相变压器和三相变压器;按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器;按铁心结构分类:心式变压器和壳式变压器;按调压方式分类:无载无励磁调压变压器、有载调压变压器;按冷却介质和冷却方式分类:油浸式变压器和干式变压器等;按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器;三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部;电力变压器的结构一、铁心1.铁心的材料采用高磁导率的铁磁材料—~厚的硅钢片叠成;为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗;变压器用的硅钢片其含硅量比较高;硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘;2.铁心形式铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构;二、绕组1.绕组的材料铜或铝导线包绕绝缘纸以后绕制而成;2.形式圆筒式、螺旋式、连续式、纠结式等结构;为了便于绝缘,低压绕组靠近铁心柱,高压绕组套在低压绕组外面,两个绕组之间留有油道;变压器绕组外形如图所示;三、油箱及其他附件1.油箱变压器油的作用:加强变压器内部绝缘强度和散热作用;要求:用质量好的钢板焊接而成,能承受一定压力,某些部位必须具有防磁化性能;形式:大型变压器油箱均采用了钟罩式结构;小型变压器采用吊器身式;2.储油柜作用:减少油与外界空气的接触面积,减小变压器受潮和氧化的概率;在大型电力变压器的储油柜内还安放一个特殊的空气胶囊,它通过呼吸器与外界相通,空气胶囊阻止了储油柜中变压器油与外界空气接触;;3.呼吸器作用:内装硅胶的干燥器,与油枕连通,为了使潮气不能进入油枕使油劣化;硅胶对空气中水份具有很强的吸附作用,干燥状态状态为兰色,吸潮饱和后变为粉红色;吸潮的硅胶可以再生;4.冷却器作用:加强散热;装配在变压器油箱壁上,对于强迫油循环风冷变压器,电动泵从油箱顶部抽出热油送入散热器管簇中,这些管簇的外表受到来自风扇的冷空气吹拂,使热量散失到空气中去,经过冷却后的油从变压器油箱底部重新回到变压器油箱内;5.绝缘套管作用:使绕组引出线与油箱绝缘;绝缘套管一般是陶瓷的,其结构取决于电压等级;1kV以下采用实心磁套管,10~35kV采用空心充气或充油式套管,110kV及以上采用电容式套管;为了增大外表面放电距离,套管外形做成多级伞形裙边;电压等级越高,级数越多;6.分接开关作用:用改变绕组匝数的方法来调压;一般从变压器的高压绕组引出若干抽头,称为分接头,用以切换分接头的装置叫分接开关;分接开关分为无载调压和有载调压两种,前者必须在变压器停电的情况下切换;后者可以在变压器带负载情况下进行切换;分接开关安装在油箱内,其控制箱在油箱外,有载调压分接开关内的变压器油是完全独立的,它也有配套的油箱、瓦斯继电器、呼吸器;7.压力释放阀作用:为防止变压器内部发生严重故障而产生大量气体,引起变压器发生爆炸;8.气体继电器瓦斯继电器作用:变压器的一种保护装置,安装在油箱与储油柜的连接管道中,当变压器内部发生故障时如绝缘击穿、匝间短路、铁芯事故、油箱漏油使油面下降较多等产生的气体和油流,迫使气体继电器动作;轻者发出信号,以便运行人员及时处理;重者使断路器跳闸,以保护变压器;变压器的名牌数据一、型号型号表示一台变压器的结构、额定容量、电压等级、冷却方式等内容; 例如:SL-500/10:表示三相油浸自冷双线圈铝线,额定容量为500kVA,高压侧额定电压为10kV级的电力变压器;二、额定值额定运行情况:制造厂根据国家标准和设计、试验数据规定变压器的正常运行状态;表示额定运行情况下各物理量的数值称为额定值;额定值通常标注在变压器的铭牌上;变压器的额定值主要有:额定容量S N :铭牌规定在额定使用条件下所输出的视在功率;原边额定电压U 1N :正常运行时规定加在一次侧的端电压,对于三相变压器,额定电压为线电压; 副边额定电压U 2N :一次侧加额定电压,二次侧空载时的端电压;原边额定电流I 1N :变压器额定容量下原边绕组允许长期通过的电流,对于三相变压器,I 1N 为原边额定线电流;副边额定电流I 2N :变压器额定容量下原边绕组允许长期通过的电流,对于三相变压器,I 2N 为副边额定线电流;单相变压器额定值的关系式: N N N N N I U I U S 2211== 三相变压器额定值的关系式:NN N N N I U I U S 221133==额定频率f N :我国工频:50Hz ;还有额定效率、温升等额定值; 变压器的空载运行变压器空载运行是指变压器原边绕组接额定电压、额定频率的交流电源,副边绕组开路时的运行状态;变压器空载运行图一、 空载时各物理量产生的因果关系二、电势与磁通的大小和相位关系设主磁通按正弦规律变化,根据电磁感应定律可推导出原绕组感应电势同理可得所以,变压器原、副绕组的感应电势大小与磁通成正比,与各自的匝数成正比,感应电势在相位上滞后磁通90°;三、原边漏电抗和激磁电抗1.原边漏电抗2.激磁电抗四、原副边回路方程和等效电路1.电动势平衡方程变压器空载运行时,各物理量的正方向通常按上图标定,根据基尔霍夫电压定律,原边回路方程为对于电力变压器,空载时原绕组的漏阻抗压降I0Z1很小,其数值不超过U1的%,将I0Z1忽略,则有副边回路方程2.空载时的等效电路Z1<<Z m、r m<<x m ;空载时电路功率因数都很小,空载电流I0主要是无功性质,由于铁磁材料的磁饱和性,引起空载电流I0的波形是尖顶波;希望空载电流越小越好,因此变压器采用高导磁率的铁磁材料,以增大Z m减少I0 ;变压器空载时既吸收无功功率,也吸收有功功率,无功功率主要用于建立主磁通,有功功率主要用于铁耗;变压器负载运行变压器负载运行是指变压器原边绕组接额定电压、额定频率的交流电源,副边绕组接负载时的运行状态;变压器负载运行图一、负载时电磁关系1.磁动势平衡关系从空载到负载,由于变压器所接的电源电压U1不变,且U1≈E1 ,所以主磁通不变,负载时的磁动势等于与空载时的磁动势相等;即磁动势平衡关系这表明,变压器原、副边电流与其匝数成正比,当负载电流I2增大时,原边电流I1将随着增大,即输出功利增大时,输入功率随之增大;所以变压器是一个能量传递装置,它在变压的同时也在改变电流的大小;2.原、副边回路方程式按上图所规定的正方向,根据基尔霍夫电压定律,可写出原、副边回路方程式二、折算折算的目的:由于原、副边回路只有磁路的耦合,没有电路的直接联系,为了得到变压器的等效电路,需对变压器进行绕组折算;折算:就是把副边绕组匝数看成与原边绕组匝数相等时,对副边回路各参数进行的调整;折算原则是折算前后副边磁动势不变、副边各部分功率不变,以保持变压器内部电磁关系不变;副边各物理量的折算方法:折算后的基本方程式为三、负载时的等效电路形等效电路根据折算后的基本方程式可以构成变压器的T形等效电路2.较准确等效电路由于Z m>>Z1,可把“T”形等效电路中的激磁支路移到电源端,便得变压器的较准确等效电路,较准确等效电路的误差很小;3.简化等效电路在电力变压器中,I0<<I N ,因此,在工程计算中可忽略I0,即去掉激磁支路,将原、副边的漏阻抗合并,而得到变压器的简化等效电路 ;对于简化等效电路,可写出变压器的方程组简化等效电路所对应的相量图在工程上,简化等效电路及其方程式、相量图给变压器的分析和计算带来很大的便利,得到广泛应用;变压器参数的测定一、空载试验1.变压器的空载试验目的:求出变比k、空载损耗p k和激磁阻抗Z m;2.空载试验的接线通常在低压侧加电压,将高压侧开路3.空载试验的过程电源电压由零逐渐升至,测取其对应的U1、I0、p0;变压器原边加不同的电压,建立的磁通不同,磁路的饱和程度不同,激磁阻抗不同,由于变压器正常运行时原边加额定电压,所以,应取额定电压下的数据来计算激磁阻抗;由变压器空载时等效电路可知,因Z1<<Z m、r1<<r m,所以式中 p0—空载损耗,可作为额定电压时的铁耗;若要得到以高压侧为原边的激磁参数,可将所测得的激磁参数乘以k2,k等于变压器高压侧一相的电压除以低压侧一相的电压;对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相的数据,就可直接代入上式计算;二、短路试验1.短路试验的目的:可测出短路阻抗Z k和变压器的铜耗p k;2.短路试验的接线:通常在高压侧加电压,将低压侧短路3.短路试验的过程电源电压由零逐渐升高,使短路电流由零逐渐升高至,测取其对应的U k、I k、p k;注意:由于变压器短路阻抗很小,如果在额定电压下短路,则短路电流可达~20I1N,将损坏变压器,所以做短路试验时,外施电压必须很低,通常为~U1N,以限制短路电流;取额定电流点计算,因所加电压低,铁心中的磁通很小,铁耗和励磁电流可以忽略,使用简化等效电路进行分析p kN:短路损耗,指短路电流为额定电流时变压器的损耗,p kN可作为额定电流时的铜耗;一般认为:r1=r2′=;x1=x2′=将室温下测得的短路电阻换算到标准工作温度75℃时的值,而漏电抗与温度无关;短路试验在任何一方做均可,高压侧参数是低压侧的k2倍,k等于变压器高压侧一相的电压除以低压侧一相的电压;对于三相变压器,试验中测定的数据是线电压、线电流和三相总功率,只要换算成一相的数据,就可直接按单相变压器计算;三、短路电压短路电压:在短路试验中,当短路电流为额定电流时,原边所加的电压与额定电压之比的百分值,即短路电压是变压器一个很重要的参数,其大小反映了变压器在额定负载时漏阻抗压降的大小;从运行角度来看,希望U k小一些,使变压器输出电压随负载变化波动小一些;但U k太小,变压器由于某种原因短路时短路电流太大,可能损坏变压器;一般中、小型电力变压器的U k=4%~%,大型电力变压器的U k=%~%;四、标么值标么值:实际值与该物理量某一选定的同单位的基值之比通常取各物理量对应的额定值作为基值;取一、二次侧额定电压U1N、U2N作为一、二次侧电压的基值;取一、二次侧额定电流I1N、I2N作为一、二次侧电流的基值;一、二次侧阻抗的基值分别为U1N/I1N、U2N/I2N;在各物理量原来的符号上加上一上标“”来表示该物理量的标么值;例如,U1=U1/U1N;一、外特性和电压变化率1.外特性外特性:指原边加额定电压,负载功率因数一定时,副边电压U2随负载电流变化的关系,即U2=fI2;变压器在纯电阻和感性负载时,副边电压U2随负载增加而降低,容性负载时,副边电压随负载增加而可能升高;2.电压变化率用变压器的简化相量图可推导出电压变化率的参数表达式电压变化率的大小与负载的大小成正比;在一定的负载系数下,短路阻抗的标么值越大,电压变化率也越大;当负载为感性时,△U为正值,说明副边电压比空载电压低;当负载为容性时△U有可能为负值;当△U为负值时,说明副边电压比空载电压高; 为了保证变压器的副边波动在±5%范围内,通常采用改变高压绕组匝数的办法来调节副边电压;二、变压器的损耗和效率1.变压器的损耗变压器的损耗包括铁耗和铜耗两大类;铁耗不随负载大小变化,也称为不变损耗;铜耗随负载大小变化,也称为可变损耗;2.变压器的效率通过变压器的空载试验和短路试验,测出变压器的空载损耗和短路损耗,就可以方便的计算出任意负载下的效率;变压器效率大小与负载大小、性质及空载损耗和短路损耗有关;对已制成的变压器,效率与负载大小、性质有关;当负载功率因数一定时,效率特性的效率曲线;当铁耗不变损耗等于铜耗可变损耗时效率最大;由于变压器总是在额定电压下运行,但不可能长期满负载;为了提高运行的经济性,设计时,铁损应设计得小些,一般取βm=~,对应的铜耗与铁耗之比为3~4;变压器额定时的效率比较高,一般在95~98%之间,大型可达99%以上;。

变压器的主要结构和工作原理

变压器的主要结构和工作原理

变压器的主要结构和工作原理引言概述:变压器是电力系统中常见的电力设备之一,它在电能传输和分配中起着重要的作用。

本文将详细介绍变压器的主要结构和工作原理,以帮助读者更好地理解和应用变压器。

正文内容:一、变压器的主要结构1.1 主要结构组成- 主要由铁芯、一次绕组和二次绕组组成。

- 铁芯是变压器的主要磁路部分,通常由硅钢片叠压而成,以减小磁导率和磁阻。

- 一次绕组是输入侧的绕组,通常由导电材料绕制而成。

- 二次绕组是输出侧的绕组,也由导电材料绕制而成。

1.2 绝缘和冷却系统- 变压器的绝缘系统是保证安全运行的关键,通常使用绝缘材料将绕组和铁芯分隔开。

- 冷却系统对于变压器的正常运行至关重要,常见的冷却方式有自然冷却和强制冷却。

1.3 外壳和配电设备- 变压器通常有一个外壳,用于保护内部部件免受外界环境的影响。

- 配电设备包括开关、熔断器和保护装置等,用于控制和保护变压器的正常运行。

二、变压器的工作原理2.1 电磁感应原理- 变压器的工作基于电磁感应原理,当一次绕组通入交流电时,会在铁芯中产生交变磁场。

- 交变磁场会感应二次绕组中的电动势,从而使电能从一次绕组传递到二次绕组。

2.2 变压器的变压比- 变压器的变压比是指输入电压与输出电压之间的比值,可以通过绕组的匝数比来确定。

- 变压器可以实现电压的升高或降低,根据需要选择合适的变压比。

2.3 损耗和效率- 变压器在工作过程中会产生一定的损耗,包括铁损耗和铜损耗。

- 效率是衡量变压器性能的重要指标,可以通过输出功率与输入功率的比值来计算。

三、变压器的应用领域3.1 电力系统- 变压器在电力系统中用于电能传输和分配,将发电厂产生的高压电能转换为适用于用户的低压电能。

- 在输电过程中,变压器可以实现电压的升高,减少输电损耗。

3.2 工业领域- 变压器在工业领域中广泛应用于电力设备、机械设备和照明系统等。

- 它可以为各种设备提供合适的电压和电流,满足工业生产的需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、原理演示
变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理(如上图):当一次侧绕组上加上电压ú1时,流过电流í1,在铁芯中就产生 交变磁通?1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势é1,é2,感应电势公式为:E=4.44fN?m
式中:E--感应电势有效值
2通频带
如果变压器在中间频率的输出电压为U0,当输出电压(输入电压保持不变)下降到0.707U0时的频率范围,称为变压器的通频带B。
3初、次级阻抗比
变压器初、次级接入适当的阻抗Ro和Ri,使变压器初、次级阻抗匹配,则Ro和Ri的比值称为初、次级阻抗比。在阻抗匹配的情况下,变压器工作在最佳状态,传输效率最高。
7效率
指次级功率P2与初级功率P1比值的百分比。通常变压器的额定功率愈大,效率就愈高。
8绝缘电阻
表示变压器各线圈之间、各线圈与铁芯之间的绝缘性能。绝缘电阻的高低与所使用的绝缘材料的性能、温度高低和潮湿程度有关。
三、音频变压器和高频变压器特性参数
1频率响应
指变压器次级输出电压随工作频率变化的特性。
上述的平衡作用实质上是磁势平衡作用,变压器就是通过磁势平衡作用实现了一、二次侧的能量传递。
变压器的制作原理
在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。
二、电源变压器的特性参数
1工作频率
变压器铁芯损耗与频率关系很大,故应根据使用频率来设计和使用,这种频率称工作频率。
2额定率
在规定的频率和电压下,变压器能长期工作,而不超过规定温升的输出功率。
3额定电压
指在变压器的线圈上所允许施加的电压,工作时不得大于规定值。
4电压比
指变压器初级电压和次级电压的比值,有空载电压比和负载电压比的区别。
按防潮方式分类:开放式变压器、灌封式变压器、密封式变压器。
按铁芯或线圈结构分类:芯式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔变压器。
按电源相数分类:单相变压器、三相变压器、多相变压器。
按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器。
f--频率
N--匝数
?m--主磁通最大值
由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻抗压降后,电压ú1和ú2大小也就不同。
当变压器二次侧空载时,一次侧仅流过主磁通的电流(í0),这个电流称为激磁电流。当二次侧加负载流过负载电流í2时,也在铁芯中产生磁通,力图改 变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为激磁电流í0,一部分为用来平衡í2,所以这部分电流随着í2变化而变 化。当电流乘以匝数时,就是磁势。
关键字:变压器(862)变压器工作原理
变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
一、分类
按冷却方式分类:干式(自冷)变压器、油浸(自冷)变压器、氟化物(蒸发冷却)变压器。
5空载电流
变压器次级开路时,初级仍有一定的电流,这部分电流称为空载电流。空载电流由磁化电流(产生磁通)和铁损电流(由铁芯损耗引起)组成。对于50Hz电源变压器而言,空载电流基本上等于磁化电流。
6空载损耗:
指变压器次级开路时,在初级测得功率损耗。主要损耗是铁芯损耗,其次是空载电流在初级线圈铜阻上产生的损耗(铜损),这部分损耗很小。
变压器与变频器的区别
变频器:通过它调整能够达到所需要的用电频率(50hz,60hz等),来满足我们对用电的特殊需要。
变压器变频器
变压器:一般为“降压器”,常见于小区附近或工厂附近,它的作用是将超高的电压降到我们居民正常用电电压,满足人们的日常用电。
相关文档
最新文档