郸城县实验中学2018-2019学年上学期高三数学10月月考试题

合集下载

精选2019届高三数学上学期第二次月考(10月)试题文(无答案)

精选2019届高三数学上学期第二次月考(10月)试题文(无答案)

望奎一中2018-2019学年度第一学期考试文科高三数学试题一、单选题 1.集合,,则( )A .B .C .D .2.已知复数,其中.若是纯虚数,则( )A .B .C . 或D .3.已知平面向量(,3)a k =,(1,4)b =,若a b ⊥,则实数为( ) A .12- B . 12 C .43 D .344.命题“,则或1x =-”的逆否命题为( ) A . 若,则且1x ≠- B . 若,则且1x ≠-C . 若且1x ≠-,则D . 若或1x ≠-,则5.若满足,约束条件,则的最大值为( )A .32B .C .D . 6.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A . 三棱锥B . 三棱柱C . 四棱锥D . 四棱柱 7.已知水平放置的用斜二测画法得到平面直观图是边长为的正三角形,那么原来的面积为( )A .B .C .D .8.方程 的解所在区间是( )A .B .C .D .9.下列命题中的假命题是( )A . 且,都有B . ,直线恒过定点C . ,函数都不是偶函数D .,使是幂函数,且在上单调递减10.若两个正实数满足,则的最小值为( )A .B .C .D . 11.将函数的图象向右平移4个单位后得到函数,则具有性质( ) A . 最大值为1,图象关于直线对称 B . 在上单调递增,为奇函数C . 在上单调递增,为偶函数 D . 周期为π,图象关于点对称12.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为( )A .B .C .D .二、填空题13.记等差数列的前项和为,若,,则____.14.已知,,若,则与的夹角是_________.15.已知函数的图象在点处的切线过点,则_______.16.函数,若<2恒成立的充分条件是,则实数的取值范围是______.三、解答题17.函数是定义在(-1,1)上的奇函数,且12=25f (). (1)求的值; (2)求满足的的取值范围.18.已知是公差不为零的等差数列,的前项和为,若成等比数列,且.(1)求数列的通项公式; (2)若数列满足,求的值.19.已知函数的最小正周期为π. (1)求ω的值;(2)求函数()f x 在区间[0,23]上的取值范围. 20.中,内角的对边分别为,的面积为,若(1)求角; (2)若,,求角.21.已知函数.(1)若在处取得极小值,求的值; (2)若在上恒成立,求的取值范围;22.已知某圆的极坐标方程为:.(1)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程; (2)若点P (x ,y )在该圆上,求的最大值和最小值. 23.已知函数(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.。

郸城县高级中学2018-2019学年上学期高三数学10月月考试题

郸城县高级中学2018-2019学年上学期高三数学10月月考试题

郸城县高级中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个2. 已知命题1:0,2p x x x∀>+≥,则p ⌝为( ) A .10,2x x x ∀>+< B .10,2x x x ∀≤+< C .10,2x x x ∃≤+< D .10,2x x x∃>+<3. 在定义域内既是奇函数又是减函数的是( )A .y=B .y=﹣x+C .y=﹣x|x|D .y=4. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.655. 已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=6. 函数2(44)xy a a a =-+是指数函数,则的值是( )A .4B .1或3C .3D .17. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=9. 已知,y 满足不等式430,35250,1,x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则目标函数2z x y =+的最大值为( )A .3B .132C .12D .15 10.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <011.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( )A .y=2x 3B .y=|x|+1C .y=﹣x 2+4D .y=2﹣|x|12.若实数x ,y满足,则(x ﹣3)2+y 2的最小值是( )A.B .8C .20D .2二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设平面向量()1,2,3,i a i =,满足1ia =且120a a ⋅=,则12a a += ,123a a a ++的最大值为.【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.14.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm15.若全集,集合,则16.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 .三、解答题(本大共6小题,共70分。

河南省郸城县高一数学10月月考试题(2021学年)

河南省郸城县高一数学10月月考试题(2021学年)

河南省郸城县2017-2018学年高一数学10月月考试题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省郸城县2017-2018学年高一数学10月月考试题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省郸城县2017-2018学年高一数学10月月考试题的全部内容。

河南省郸城县2017-2018学年高一数学10月月考试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。

)1.下列各式:①1∈{0,1,2};②∅⊆{0,1,2};③{1}∈{0,1,2};④{0,1,2} ={2,0,1},其中错误的个数是( )A.1个B.2个 C .3个 D .4个2.设集合{}2430A x x x =-+<,集合{}230B x x =->, 则A B = ( )A.33,2⎛⎫-- ⎪⎝⎭ B.33,2⎛⎫- ⎪⎝⎭ C.31,2⎛⎫ ⎪⎝⎭ D.3,32⎛⎫⎪⎝⎭3。

设全集{},|-24,{|2},U R A x x B x y x ==≤<==+则图中阴影部分表示的集合为 ( )A 。

{|2}x x ≤-B 。

{|2}x x >- C. {}|4x x ≥ D 。

{|4}x x ≤ 4.集合{}{}04,02A x x B y y =≤≤ =≤≤,下列不表示从A到B 的函数的是( )A.1:2f x y x →= B .1:3f x y x →= C.2:3f x y x →= D .:f x y x →=5.已知函数f (2x +1)=3x +2,则f (1)的值等于( )A .11B .2 C.5 D.-16.已知函数y=f(x+1)定义域是[﹣2,3],则y =f(x ﹣1)的定义域是() A.[0,5]ﻩ B .[﹣1,4]ﻩ C.[﹣3,2]ﻩ D.[﹣2,3]7、化简4216132332)b (a b b a ab ⋅⋅(a, b 为正数)的结果是( )A .a bﻩﻩ ﻩB .ab ﻩ C .b a ﻩﻩ D.a 2b8.已知函数f(x )=,若f[f (0)]=4a,则实数a 等于( )A.ﻩ B .ﻩ C.9ﻩ D.29.已知f (x)=x 5-ax 3+bx +2且f (-5)=17,则f (5)的值为( )A .13B .—13 C.-19 D .1910.若函数f (x )=的定义域为R,则实数a 取值范围是( )A .(﹣2,2) B.(2,+∞)ﻩ C.(﹣∞,2)ﻩD.[﹣2,2]11.若函数f (x)为偶函数,且在[0,+∞)上是增函数,又f(﹣3)=0,则不等式(x ﹣2)f (x)<0的解集为( )A .(﹣∞,﹣3)∪(2,3)ﻩ B.(﹣3,﹣2)∪(3,+∞)C.(﹣3,3)ﻩ D .(﹣2,3)12.已知2+2,(1)()(21)36,(1)x ax x f x a x a x ⎧-≤=⎨--+>⎩,若()f x 在(,)-∞+∞上是增函数,则实数a 的取值范围是( )A.1,12⎛⎤ ⎥⎝⎦ B.[]1,2 C.1,2⎛⎫+∞ ⎪⎝⎭D .[)1,+∞ 二、填空题(本大题共4小题,每小题5分,共20分)13.某校高一某班共有40人,摸底测试数学成绩23人得优,语文成绩20人得优,两门都不得优者有6人,则两门都得优者有________人。

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题(3)

城区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 在极坐标系中,圆的圆心的极坐标系是( )。

ABC D2. 已知双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F 、,过2F 的直线交双曲线于Q P ,两点且1PF PQ ⊥,若||||1PF PQ λ=,34125≤≤λ,则双曲线离心率e 的取值范围为( ).A. ]210,1(B. ]537,1(C. ]210,537[ D. ),210[+∞ 第Ⅱ卷(非选择题,共100分)3. 二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .414. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .324356. 已知在平面直角坐标系xOy 中,点),0(n A -,),0(n B (0>n ).命题p :若存在点P 在圆1)1()3(22=-++y x 上,使得2π=∠APB ,则31≤≤n ;命题:函数x xx f 3log 4)(-=在区间)4,3(内没有零点.下列命题为真命题的是( )A .)(q p ⌝∧B .q p ∧C .q p ∧⌝)(D .q p ∨⌝)( 7. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象,则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 8. 已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .1129. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}10.函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.双曲线=1(m ∈Z )的离心率为( )A .B .2C .D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.14.设,x y 满足条件,1,x y a x y +≥⎧⎨-≤-⎩,若z ax y =-有最小值,则a 的取值范围为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题(本大共6小题,共70分。

郸城县高级中学2018-2019学年高二上学期第一次月考试卷数学

郸城县高级中学2018-2019学年高二上学期第一次月考试卷数学

郸城县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错2. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0) D .(﹣∞,﹣1)3. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .24. 设a ∈R ,且(a ﹣i )•2i (i 为虚数单位)为正实数,则a 等于( )A .1B .0C .﹣1D .0或﹣15. 若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( )A .¬p 为假命题B .¬q 为假命题C .p ∨q 为假命题D .p ∧q 真命题6. 如图所示是一个几何体的三视图,其中正视图是一个正三角形,则这个几何体的表面积是( )A .B .C . +D . ++17. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=C .1x =或1y =D .20x y +-=或0x y -=8.已知四个函数f(x)=sin(sinx),g(x)=sin(cosx),h(x)=cos(sinx),φ(x)=cos(cosx)在x∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A.f(x)﹣①,g(x)﹣②,h(x)﹣③,φ(x)﹣④B.f(x)﹣①,φ(x)﹣②,g(x)﹣③,h(x)﹣④C.g(x)﹣①,h(x)﹣②,f(x)﹣③,φ(x)﹣④D.f(x)﹣①,h(x)﹣②,g(x)﹣③,φ(x)﹣④9.二项式(x2﹣)6的展开式中不含x3项的系数之和为()A.20 B.24 C.30 D.3610.设i是虚数单位,则复数21ii在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.以的焦点为顶点,顶点为焦点的椭圆方程为()A.B.C.D.12.已知函数f(x)=x2﹣6x+7,x∈(2,5]的值域是()A.(﹣1,2] B.(﹣2,2] C.[﹣2,2] D.[﹣2,﹣1)二、填空题13.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为.14.△ABC中,,BC=3,,则∠C=.15.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN所成角的余弦值为.16.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .17.【泰州中学2018届高三10月月考】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是18.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.三、解答题19.已知函数3()1xf x x =+,[]2,5x ∈. (1)判断()f x 的单调性并且证明; (2)求()f x 在区间[]2,5上的最大值和最小值.20.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.(1)求实数b 和c 的值;(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.21.(本小题12分)在多面体ABCDEFG 中,四边形ABCD 与CDEF 是边长均为a 正方形,CF ⊥平面ABCD ,BG ⊥平面ABCD ,且24AB BG BH ==.(1)求证:平面AGH ⊥平面EFG ; (2)若4a =,求三棱锥G ADE -的体积.【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,间在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想.22.如图,在△ABC 中,BC 边上的中线AD 长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.23.如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

郸城县实验中学2018-2019学年上学期高二数学12月月考试题含解析

郸城县实验中学2018-2019学年上学期高二数学12月月考试题含解析

郸城县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 某三棱锥的三视图如图所示,该三棱锥的表面积是 A 、 B 、28+30+C 、D 、56+60+2. 由直线与曲线所围成的封闭图形的面积为( )A B1C D3. =( )A .2B .4C .πD .2π4. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A∈5. 已知向量,(),且,点在圆上,则(,2)a m = (1,)b n =- 0n >0a b ⋅= (,)P m n 225x y +=( )|2|a b +=AB .C.D.6. 设是虚数单位,则复数在复平面内所对应的点位于( )i 21ii-A .第一象限B .第二象限C .第三象限D .第四象限7. 已知α∈(0,π),且sin α+cos α=,则tan α=( )A .B .C .D .8. 设全集U=M ∪N=﹛1,2,3,4,5﹜,M ∩∁U N=﹛2,4﹜,则N=( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}9. 若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.10.某程序框图如图所示,该程序运行输出的k 值是()A .4B .5C .6D .711.若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.12.“p q ∨为真”是“p ⌝为假”的( )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要二、填空题13.某种产品的加工需要 A ,B ,C ,D ,E 五道工艺,其中 A 必须在D 的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有 种.(用数字作答)14.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .15.经过A (﹣3,1),且平行于y 轴的直线方程为 .16.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是 .17.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .18.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .三、解答题19.已知顶点在坐标原点,焦点在x 轴上的抛物线被直线y=2x+1截得的弦长为,求此抛物线方程.20.数列中,,,且满足.{}n a 18a =42a =*2120()n n n a a a n N ++-+=∈(1)求数列的通项公式;{}n a (2)设,求.12||||||n n S a a a =++ n S 21.已知椭圆E : +=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为,点(,)在椭圆E上.(1)求椭圆E 的方程;(2)设过点P (2,1)的直线l 与椭圆相交于A 、B 两点,若AB 的中点恰好为点P ,求直线l 的方程. 22.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点.(1)求证:BC 1∥平面A 1CD ;(2)若四边形BCC 1B 1是正方形,且A 1D=,求直线A 1D 与平面CBB 1C 1所成角的正弦值.23.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个,,x y z 盒中的球数.(1)求,,的概率;0x =1y =2z =(2)记,求随机变量的概率分布列和数学期望.x y ξ=+ξ【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.24.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.郸城县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。

郸城县实验中学2018-2019学年高二上学期第二次月考试卷数学

郸城县实验中学2018-2019学年高二上学期第二次月考试卷数学

郸城县实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A .24B .80C .64D .2402. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=3. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力. 4. “a >0”是“方程y 2=ax 表示的曲线为抛物线”的( )条件.A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.(+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .456. 执行右面的程序框图,若输入x=7,y=6,则输出的有数对为( )A.(11,12)B.(12,13)C.(13,14)D.(13,12)7.如图,半圆的直径AB=6,O为圆心,C为半圆上不同于A、B的任意一点,若P为半径OC上的动点,则的最小值为()A.B.9 C. D.﹣98.某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.20+2πB.20+3πC.24+3πD.24+3π9.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种10.已知抛物线x2=﹣2y的一条弦AB的中点坐标为(﹣1,﹣5),则这条弦AB所在的直线方程是()A .y=x ﹣4B .y=2x ﹣3C .y=﹣x ﹣6D .y=3x ﹣2 11.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假12.二进制数)(210101化为十进制数的结果为( ) A .15 B .21 C .33 D .41二、填空题13.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .14.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .15.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 . 16.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49 …照此规律,第n 个等式为 . 17.不等式的解集为R ,则实数m 的范围是.18.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.三、解答题19.已知等差数列{a n }中,其前n 项和S n =n 2+c (其中c 为常数),(1)求{a n }的通项公式;(2)设b 1=1,{a n +b n }是公比为a 2等比数列,求数列{b n }的前n 项和T n .20.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.21.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.22.计算: (1)8+(﹣)0﹣;(2)lg25+lg2﹣log 29×log 32.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.【无锡市2018届高三上期中基础性检测】在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形ABC 内种植花卉.已知AB 长为1千米,设角,C θ=AC 边长为BC 边长的()1a a >倍,三角形ABC 的面积为S (千米2). 试用θ和a 表示S ;(2)若恰好当60θ=时,S 取得最大值,求a 的值.郸城县实验中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 2. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 3. 【答案】B 【解析】4. 【答案】A【解析】解:若方程y 2=ax 表示的曲线为抛物线,则a ≠0.∴“a >0”是“方程y 2=ax 表示的曲线为抛物线”的充分不必要条件.故选A .【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.5. 【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.6.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.7.【答案】C【解析】解:∵圆心O是直径AB的中点,∴+=2所以=2•,∵与共线且方向相反∴当大小相等时点乘积最小.由条件知当PO=PC=时,最小值为﹣2×=﹣故选C【点评】本题考查了向量在几何中的应用,结合图形分析是解决问题的关键.8.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.9.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.10.【答案】A【解析】解:设A、B两点的坐标分别为(x1,y1),(x2,y2),则x1+x2=﹣2,x12=﹣2y1,x22=﹣2y2.两式相减可得,(x1+x2)(x1﹣x2)=﹣2(y1﹣y2)∴直线AB的斜率k=1,∴弦AB所在的直线方程是y+5=x+1,即y=x﹣4.故选A,11.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.12.【答案】B【解析】试题分析:()21212121101010242=⨯+⨯+⨯=,故选B. 考点:进位制二、填空题13.【答案】.【解析】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,设点P 到CD 的距离为h ,则有 V=×2×h ××2,当球的直径通过AB 与CD 的中点时,h 最大为2,则四面体ABCD 的体积的最大值为.故答案为:.【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.14.【答案】 6 .【解析】解:根据题意可知:f (x )﹣2x是一个固定的数,记为a ,则f (a )=6,∴f (x )﹣2x =a ,即f (x )=a+2x,∴当x=a 时,又∵a+2a=6,∴a=2,∴f (x )=2+2x,∴f (x )+f (﹣x )=2+2x +2+2﹣x =2x +2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f (x )+f (﹣x )的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.15.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.16.【答案】n+(n+1)+(n+2)+…+(3n﹣2)=(2n﹣1)2.【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…等号右边是12,32,52,72…第n个应该是(2n﹣1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n 个等式为n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2, 故答案为:n+(n+1)+(n+2)+…+(3n ﹣2)=(2n ﹣1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.17.【答案】 .【解析】解:不等式,x 2﹣8x+20>0恒成立可得知:mx 2+2(m+1)x+9x+4<0在x ∈R 上恒成立.显然m <0时只需△=4(m+1)2﹣4m (9m+4)<0,解得:m <﹣或m >所以m <﹣故答案为:18.【答案】11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,) 【解析】当x <0时,由f (x )﹣1=0得x 2+2x+1=1,得x=﹣2或x=0,当x ≥0时,由f (x )﹣1=0得110x xe+-=,得x=0, 由,y=f (f (x )﹣a )﹣1=0得f (x )﹣a=0或f (x )﹣a=﹣2,即f (x )=a ,f (x )=a ﹣2, 作出函数f (x )的图象如图:y=1x xe +≥1(x ≥0), y ′=1xx e-,当x ∈(0,1)时,y ′>0,函数是增函数,x ∈(1,+∞)时,y ′<0,函数是减函数,x=1时,函数取得最大值:11e+,当1<a ﹣211e <+时,即a ∈(3,3+1e )时,y=f (f (x )﹣a )﹣1有4个零点,当a ﹣2=1+1e 时,即a=3+1e 时则y=f (f (x )﹣a )﹣1有三个零点,当a >3+1e 时,y=f (f (x )﹣a )﹣1有1个零点当a=1+1e 时,则y=f (f (x )﹣a )﹣1有三个零点,当11{ 21a e a >+-≤时,即a ∈(1+1e,3)时,y=f (f (x )﹣a )﹣1有三个零点.综上a ∈11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,),函数有3个零点. 故答案为:11[133ee ⎧⎫+⋃+⎨⎬⎩⎭,). 点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.三、解答题19.【答案】【解析】解:(1)a 1=S 1=1+c ,a 2=S 2﹣S 1=3,a 3=S 3﹣S 2=5﹣﹣﹣﹣﹣(2分)因为等差数列{a n },所以2a 2=a 1+a 3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分) ∴a 1=1,d=2,a n =2n ﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)a 2=3,a 1+b 1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.20.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N+≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++==21.【答案】【解析】解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.∴ξ的分布列为:E ξ=0×+1×+2×+3×+4×=.【点评】本题主要考查n 次独立重复实验中恰好发生k 次的概率,等可能事件的概率,体现了分类讨论的数学思想,属于中档题.22.【答案】 【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e ) =e ﹣.(2)lg25+lg2﹣log 29×log 32 = ==1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】(1)21sin 212cos a S a a θθ=⋅+- (2)2a =+【解析】试题解析:(1)设边BC x =,则AC ax =, 在三角形ABC 中,由余弦定理得:22212cos x ax ax θ=+-,所以22112cos x a a θ=+-, 所以211sin 2212cos a S ax x sin a a θθθ=⋅⋅=⋅+-,(2)因为()()222cos 12cos 2sin sin 1212cos a a a a a S a a θθθθθ+--⋅=+-'⋅, ()()2222cos 121212cos a a aa a θθ+-=⋅+-, 令0S '=,得022cos ,1aaθ=+ 且当0θθ<时,022cos 1aa θ>+,0S '>,当0θθ>时,022cos 1aaθ<+,0S '<, 所以当0θθ=时,面积S 最大,此时0060θ=,所以22112a a=+, 解得2a =±因为1a >,则2a =+点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。

2019届高三10月月考数学(文)试题(3).docx

2019届高三10月月考数学(文)试题(3).docx

一. 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1•已知集合A={0, 1,2},则集合B={x-y|xeA,yEA}中元素的个数是(2.命题 3x ()eR, sin的否定为()4. 一个扇形的面积为2,周长为6则扇形的圆屮角的弧度数为(是奇函数7T 17T6. 已知 sin(cr-—)=-,贝!|cos(a + —)的值是(A. 1B. -1C.空3337. sin 7° cos37° - sin 83° cos307 =(1 B. -2A. (-1,0) U (2, +8)B. (一8, -2) U (0, 2)9. 为了得到函数y=sin (2兀一申)的图象,只需把函数y=cos 加的图象上所有的点()5 77S TTA.向左平行移动莎个单位长度B.向右平行移动石个单位长度且在(_8,0)上是减函数,若f ( —2)=0,则 xf{x ) <0的解集为)•C. (―°°, —2) U (2, +°°)D. (-2,0) U (0, 2)A.1B.3C.5D.9A. 3%oR, sinxo=£()B. D.17T3.已知sin(^-S) = log 8—,且Qw(■—,0),则tan (2^-5)的值为(A.-M5C•普D.752B.1 或 4 5.设fd )是R 上的任意函数,则下列叙述正确的是A.1C.4D.2 或 4c. gn 是偶函数 D. f{x)+f{-x)是偶函数D.V32、兀Syr C. 向左平行移动「个单位长度 D.向右平行移动「个单位长度66T[7T10. 函数…沖(巧―逅)的图象是()(A) (B) (C) (D)11・某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为(JA. 40 米,20 米B. 30 米,15 米C. 32 米,16 米D. 36 米,18 米 12.若函数/W 二log 2(tz-2v )+x-2有零点,则d 的取值范围为( )A. (-oc, -2]B. (-co, 4]C. [2, +oo)D. [4, +oo)二、填空题(木大题共4小题,每小题5分,共20分.)13. 函数/(兀)=J2cosx-1的定义域是 _____________ ・14. 已知函数夬力=x(x~m)2在兀=1处取得极小值,则实数加 _____________ 15. 曲线y=xe+2x~l 在点(0, —1)处的切线方程为 _______________ ..16. 已知函数 沧)=¥—1+111 x,若存在x 0>0,使得/(AO )<0有解,则实数a 的取值范围•/V是 _______ .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤”)17. (本小题满分10分)己知角u 终边上一点卩(一4, 3),⑴求sin 2a 的值; ⑵求tan 書―的值.19. (本小题满分12分).己知aWR,函数/(x)=(-?+ar)e x (xeR,e 为自然对数的底数).⑴当a=2时,求函数fg 的•单调递增区间…18.cos (号+«jsin( ~71~a) cos (■导- Jsin 伴 + J的值(本小题满分12分)已知cos (彳+a)cos(^—幺丿=—£ «e.| Z3, 2/⑵函数/U)是否为R上的单调递减函数,若是,求出a的取值范围;若不是,请说明理由.20.(本小题满分12分)已知函数fix)=x3— 3ax—}, dHO.(1)求/U)的单调区间;(2)若/(兀)在兀=—1处収得极值,直线y=m与y=/U)的图象有三个不同的交点,求加的収值范围.若人兀)的极大值为1,求a的值.21.(本小题满分12分) 已知函数几v) =(X2—Zv)ln x+ax1+2.(1)当G=—1时,求7W在点(1,川))处的切线方程;⑵若°=1,证明:当x$l时,g(x)=/U)—x—2M0成立22.(本小题满分12分)已知函数几。

郸城县高中2018-2019学年上学期高三数学10月月考试题

郸城县高中2018-2019学年上学期高三数学10月月考试题

郸城县高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )A .16cmB .123cmC .243cmD .26cm2. 2016年3月“两会”期间,有代表提出适当下调“五险一金”的缴存比例,现拟从某工厂职工中抽取20名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为350,500,150,按分层抽样的方法,应从青年职工中抽取的人数为( ) A. 5 B.6 C.7D.10【命题意图】本题主要考查分层抽样的方法的运用,属容易题.3. 设n S 是等比数列{}n a 的前项和,425S S =,则此数列的公比q =( )A .-2或-1B .1或2 C.1±或2 D .2±或-1 4. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )A .2015B .2016C .2116D .20485. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C. D.6. 若()()()()2,106,10x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩,则()5f 的值为( )A .10B .11 C.12 D .137. 以下四个命题中,真命题的是( ) A .(0,)x π∃∈,sin tan x x =B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .ABC ∆中,“sin sin cos cos A B A B +=+”是“2C π=”的充要条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 8. 在等差数列{}n a 中,已知4816a a +=,则210a a +=( )A .12B .16C .20D .24 9. 若直线l的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直10.在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 11.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A.B.C.D.12.函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .4二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.在(x 2﹣)9的二项展开式中,常数项的值为 .14.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.15.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .16.命题:“∀x ∈R ,都有x 3≥1”的否定形式为 .三、解答题(本大共6小题,共70分。

高三数学10月月考试题

高三数学10月月考试题

周口中英文学校高中部2018―2019学年度高三上期10月考试题 数 学一、选择题:本大题共12个小题,每小题5分,共60分、在每小题给出的四个选项中,只有一项是符合题目要求的 1。

设全集,集合, ,则 ( )A 、 B、 C。

D 。

2、命题“”的否定是( ) A 、 ﻩﻩﻩﻩB 、C 、ﻩ ﻩﻩD 、3、若将函数y =2sin (2x +π6)的图像向右平移\F(1,4)个周期后,所得图像对应的函数为(A)y =2sin(2x +π4) (B)y =2si n(2x +π3) (C)y =2sin(2x –\F(π,4)) (D)y=2si n(2x –π3)4、下列函数中,既是偶函数又在上单调递增的是( ) A 、 B 。

ﻩC 、 ﻩD 、5、若角的终边经过点,则( )A 、B 。

C、 D 、 6、函数的零点所在的区间是A 。

B、 C 、 D 。

7、函数的图象的大致形状是( ) A 、B 、C、 ﻩD 、8、设,,,则的大小关系为( )A 、B 、 C、 D 、 9、已知曲线在点处的切线的倾斜角为,则( )A、 B 、 C。

2 D、 10、设函数,则使得成立的的取值范围是 )A、ﻩB、ﻩ C、ﻩﻩD、11、(理科做)由曲线围成的封闭图形的面积为( )A、ﻩﻩﻩB。

ﻩC。

ﻩﻩﻩD、(文科做)若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小值为()A、1 B、 C。

D。

12、已知为函数的导函数,且,若则方程有且仅有一个根时,的取值范围是A、(﹣∞,0)∪{1}B、(﹣∞,1]ﻩC、(0,1] ﻩD。

[1,+∞)二、填空题(每题5分,共计20分)13、已知p:,q:,则是的条件14、函数的图象和函数且的图象关于直线y=x对称,且函数,则函数的图象必过定点___________、15、6月23日15时前后,江苏盐城市阜宁、射阳等地突遭强冰雹、龙卷风双重灾害袭击,风力达12级、灾害发生后,有甲、乙、丙、丁4个轻型救援队从A,B,C,D四个不同的方向前往灾区、已知下面四种说法都是正确的、⑴甲轻型救援队所在方向不是C方向,也不是D方向;⑵乙轻型救援队所在方向不是A方向,也不是B方向;⑶丙轻型救援队所在方向不是A方向,也不是B方向;⑷丁轻型救援队所在方向不是A方向,也不是D方向;此外还可确定:假如丙所在方向不是D方向,那么甲所在方向就不是A方向,有下列判断: ①甲所在方向是B方向;②乙所在方向是D方向;③丙所在方向是D方向;④丁所在方向是C 方向、其中判断正确的序号是。

2019届高三上学期第二次月考数学试题.docx

2019届高三上学期第二次月考数学试题.docx

1.设全集 1/= {0,1,2,3,4},集合A = {1,2,3}, 8 ={2,4},则An (QB )=()A. {0,1,3}B. {1,3}C. {1,2,3}D. {0,1,2,3} 1. B2. 如下图所示,观察四个儿何体,其中判断正确的是()2. [答案]C[解析]图①不是由棱锥截來的,所以①不是棱台;图②上.下两个面不平行,所以②不是所以④是棱柱;很明显③是棱锥.A. 必要而不充分条件B. 充分而不必要条件D.既不充分也不必耍条件4. B5. 设(1 + 2Q(a + i)的实部与虚部相等,其中Q 为实数,贝归=()A. -3B. -2C. 2D. 3 5. 【答案】A6. 下列命题正确的个数是() ®AB + BA = 6;②0 伽=0;③代-AC = BC ;④0-AB = 0A. 1B. 2 C- 3 D. 4 6. A3.已知复数z= 1 ■ . + /,则复数Z 的模|z|=(1-1c. V104. “兀>2”是“〒_4>o”的( 圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个川边形的公共边平行,C.充要条件8. A9. 为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁〜18岁的根据上图可得这100名学生中体重在(56.5, 64. 5)的学生人数是(). A. 20 B. 30 C. 40D. 509. C10. C7.有一个几何体的三视图及其尺寸如下图(单位:cm ),体的表面积为()则该几何A. 12n cm 2 侧视图B. 15 n cm 2C. 24 n cm 2D. 36JI cm 2 7.C8.己知九V 满足不等式x-y>0x+y-3>0,则函数z = x + 3y 取得最大值是() x<3A. 12(B) 9 (C) 6 (D) 310.在矩形ABCD 中,0为AC 的中点,A. — (3tz + 2/?)B. 扫亠)C. ^(3a-2b)5俯视冬•— 6-1止视冬男生体重(kg ),得到频率分布直方图如下:体重(kg )(第9题)BC = 3a 、CD = 2b 、则 AO =(11. 下列不等式正确的是()A. %1 2 +1 > —2xB.+ —T =- > 4 (x > 0)C. x + 丄 n 2D. sin x 4 ----------- ' 2 (x H k7r)x sinx11. A12. 已知向量 a,b,满足 Q ・b=0,Q = b=l,贝 ij a-b =() A. 0 B. 1 C. 2 D. V2-12. D.22【解析】由己知有I :-亦=(:-7)2 = : —2打+/ =1 —0+1 = 2,所以\a-b\=y/2-. —2考点:|a|2=Q ,向量的数量积运算.13. 已知直线与平面则下列四个命题中假命题是()• • •14. C15. 答案:C13又••• SbAEF= 4 S, S%R= 4 SA-如果d 丄a"丄那么a//b B. 如果a 丄a.a!!b,那么/?丄a C. 如果d 丄%a 丄伏那么/?//&D. 如果a 丄a.b! !a ,那么a 丄b13. C14.己知样本的平均数为4,方差为 3,则 %] +9,花 +9,X 3 +9^X 4 +9,X 5 +9的平均数和方差分别为(A. 4 和 3B. 4 和 12C. 13 和 3D. 13 和 1215. 在面积为S 的△/!比的内部任収一点P,s则的面积小于㊁的概率为()丄A. 41 B-23 C. 4解析:如图所示,矿为△初C 的中位线.S 当点P 位于四边形砂71内时,氐破的面枳小于N3 S4S 3:./\PBC 的面积小于㊁的概率为7?=~5=4-16、命题 0: VxeR,x 3 4+l>l,则初是 _____________________________________________ 16. Kx G R, %2 4-1 < 117. 设向量a 二(尢 对1), b 二(1,2),且a 丄/?,则尸 ________ ・【答案】3【解析】由题意’讥=0,兀+ 2(兀+1) = 0,・*-彳・18. 已知一个几何体的三视图如图3所示,正视图、俯视图为直角三角形,侧视图是直角梯形,则它的体积等于 _________40 18. —319、一个体枳为8",的正方体的顶点都在球面上,则球的表面积是________________________________________________________________________19. 12/rcm 2 :20. 从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量)(80,85) 185,90) 190,95) (95,100) 频数(个)51020153 根据频数分布表计算苹果的重量在[90,95)的频率;4 用分层抽样的方法从重量在[80,85:和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?正视图⑶ 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率・2020.(1)重量在[90,95)的频率=一=0.4 ;(2)若采用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,则重量在[80,85)的个数=(3)设在[80,85)屮抽収的一个苹果为兀,在[95,100)屮抽取的三个苹果分别为a,b,c ,从抽出的4个苹果中,任取2个共有(x,a),(x,b),(x,c),a/?),(Q,c),0,c)6种情况,其中符合“重量在[80,85)和[95,100)中各有一个”的情况共有(兀卫),(兀“),(兀,c)种;设“抽出的4 个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个”为事件A,则事件A的概21.如图,在矩形血尬9中,〃〃丄平面力庞;AE=EB=BC二2,尸为必'上的点,且处丄平U ACE.(1)求证:九LL平面〃必;(2)求证:皿〃平而BFD.(3)求三棱锥E-ABF的体积.E21.证明:⑴・・•初丄平面肋E AD//BC・•・BCA_平面ABE,则AEL BC又•・•〃、丄平而彳6K :.AEIBF:.AEV平面磁(2)依题意可知:6■是化的中点,•: BFI平面彳传,:・CEA_BF.又BC=BE, :.F是应'的中点.在△力兀中,连接FG则FG//AE. 又/冈平面BFD, FGu平面BFD, :.AE//平面BED.A.723.D。

2019-2020学年高三数学10月月考试题.doc

2019-2020学年高三数学10月月考试题.doc

2019-2020学年高三数学10月月考试题注意事项:1.答题前,考生务必用黑色碳素笔将自己的考号、姓名、考场、座位号、班级在答题卡上填写清楚。

2.每小题选出答案后,用2B 铅笔把答题卡上对应的题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试卷上作答无效。

第Ⅰ卷(选择题,共60分)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.=0330cos ( ) A.23B. 23-C.21D.21-2.已知复数z 满足i zi +-=1,则z 在平面直角坐标系中对应的点是( ) A.()1,1- B.()1,1- C.()1,1 D.()1,1--3.已知集合{}11|≤≤-=x x A ,{}02|2>-=x x x B ,则()=B C A U ( ) A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞) 4.已知向量()2,1=,()m ,4-=,若b a +2与a 垂直,则m =( ) A.-3 B.3 C.-8 D.85.正项等比数列{}n a 中,23=a ,6464=⋅a a ,则2165a a a a ++的值是( )A.4B.8C.16D.646.已知双曲线C :()0,012222>>=-b a by a x 的渐近线方程为x y 43±=,且其左焦点为(-5,0),则双曲线C 的方程为( )A .116922=-y x B .191622=-y x C .14322=-y x D .13422=-y x 7.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A .34000cm 3B .38000cm 3C .32000cmD .34000cm8.右图程序框图输出S 的值为( ) A.2 B.6 C.14 D.309.将函数()()ϕ+=x x f 2sin 的图象向左平移8π个单位,所得到的函数是偶函数,则ϕ的一个可能取值为( ) A .43π B .4πC .0D .4π-10.下列三个数:2323ln-=a ,ππ-=ln b ,33ln -=c ,大小顺序是( ) A .b c a << B .c b a >> C .c a b >> D .b c a >>11.若直线2-=kx y 与抛物线x y 82=交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则=k ( )A.-1B.2C.2或-1D.1±512.定义在R 上的奇函数()x f 和定义在{}0|≠x x 上的偶函数()x g 分别满足()⎪⎩⎪⎨⎧≥<≤-=)1(1)10(12x x x x f x ,()()0log 2>=x x x g ,若存在实数a 使得()()b g a f =成立,则实数b 的取值范围是( )A .[]2,2-B .⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡-21,00,21 C .(][)+∞-∞-,22, D .⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--2,2121,2第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤+≥+≥32320y x y x x ,则y x z -=的最小值是 .14.若()51-ax 的展开式中3x 的系数是80,则实数a 的值是 .15.已知四棱锥ABCD P -的顶点都在半径为2的球面上,底面ABCD 是正方形,且底面经过球心O ,E 是AB 的中点,⊥PE 底面ABCD ,则该四棱锥ABCD P -的体积于 .16.在数列{}n a 中,已知7,221==a a ,2+n a 等于1+⋅n n a a ()+∈N n 的个位数,则=2015a .三、解答题:解答时写出文字说明,证明过程和演算步骤. 17.(本题满分12分)已知向量()x x cos ,22sin 3+=,()x cos 2,1=,设函数()x f ⋅= (1)求()x f 的最小正周期;(2)在△ABC 中,c b a ,,分别是角A ,B ,C 的对边,若3=a ,f (A )=4,求△ABC 的面积的最大值.18.(本题满分12分)如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,CD AB //,4,2===CD AD AB ,M 为CE 的中点.(1)求证:BM ∥平面ADEF ;(2)求平面BEC 与平面ADEF 所成锐二面角的余弦值.19.(本题满分12分)某公司对员工进行身体素质综合测试,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)按优秀、良好、合格三个等级分层,从中抽到50人,其中成绩为优秀的有30人. (1)求a 的值;(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选3人,记X 为抽取女员工的人数,求X 的分布列及数学期望.20.(本题满分12分)已知椭圆L :()012222>>=+b a b y a x 的一个焦点与抛物线y 2=8x 的焦点重合,点()2,2在L 上. (1)求L 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与L 有两个交点A ,B ,线段AB 的中点为M ,证明:OM 的斜率与直线l 的斜率的乘积为定值.21.(本题满分12分)已知函数()R a xax x x f ∈+-=,21ln (1)当2=a 时,求曲线()x f y =在1=x 处的切线方程; (2)当1>x 时,()0<x f 恒成立,求a 的取值范围请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分。

郸城县第二中学2018-2019学年上学期高三数学10月月考试题

郸城县第二中学2018-2019学年上学期高三数学10月月考试题

郸城县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( ) A .14 B .12C .1D .2 2. sin 3sin1.5cos8.5,,的大小关系为( ) A .sin1.5sin 3cos8.5<< B .cos8.5sin 3sin1.5<< C.sin1.5cos8.5sin 3<<D .cos8.5sin1.5sin 3<<3. 已知双曲线C :22221x y a b-=(0a >,0b >),以双曲线C 的一个顶点为圆心,为半径的圆被双曲线C 截得劣弧长为23a π,则双曲线C 的离心率为( )A .65BC .5D 4. 若某算法框图如图所示,则输出的结果为( )A .7B .15C .31D .635. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 6. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:27. 图1是由哪个平面图形旋转得到的( )A .B .C .D .8. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e9. 已知函数()x F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )A .(-∞B .(-∞C .D .)+∞ 10.直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( ) A .0B .1C .2D .311.已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D . +12.已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个二、填空题13.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.14.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.15.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 16.设α为锐角,若sin (α﹣)=,则cos2α= .17.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .三、解答题18.(本小题满分10分)选修4-1:几何证明选讲如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2.19.如图,四棱锥P ABC -中,,//,3,PA BC 4PA ABCD AD BC AB AD AC ⊥=====,M 为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明://MN 平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值;20.已知函数3()1xf x x =+,[]2,5x ∈. (1)判断()f x 的单调性并且证明; (2)求()f x 在区间[]2,5上的最大值和最小值.21.已知:函数f(x)=log2,g(x)=2ax+1﹣a,又h(x)=f(x)+g(x).(1)当a=1时,求证:h(x)在x∈(1,+∞)上单调递增,并证明函数h(x)有两个零点;(2)若关于x的方程f(x)=log2g(x)有两个不相等实数根,求a的取值范围.22.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.23.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F . (1)求证:BDCE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长郸城县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】试题分析:因为(1,2)a =,(1,0)b =,所以()()1,2a b λλ+=+,又因为()//a b c λ+,所以()14160,2λλ+-==,故选B. 考点:1、向量的坐标运算;2、向量平行的性质. 2. 【答案】B 【解析】试题分析:由于()cos8.5cos 8.52π=-,因为8.522πππ<-<,所以cos8.50<,又()sin3sin 3sin1.5π=-<,∴cos8.5sin 3sin1.5<<. 考点:实数的大小比较. 3. 【答案】B考点:双曲线的性质. 4. 【答案】 D【解析】解:模拟执行算法框图,可得 A=1,B=1满足条件A≤5,B=3,A=2满足条件A≤5,B=7,A=3满足条件A≤5,B=15,A=4满足条件A≤5,B=31,A=5满足条件A≤5,B=63,A=6不满足条件A≤5,退出循环,输出B的值为63.故选:D.【点评】本题主要考查了程序框图和算法,正确得到每次循环A,B的值是解题的关键,属于基础题.5.【答案】D.第Ⅱ卷(共110分)6.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.7. 【答案】A 【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A 选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念. 8. 【答案】C【解析】解:由积分运算法则,得=lnx=lne ﹣ln1=1因此,不等式即即a >1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a >e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.9. 【答案】B 【解析】试题分析:因为函数()x F x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函数,()()()()()()(],,,,0,222x x x xxxe e e e e g x h x eg x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式()()20g x ah x -≥恒成立, 即22022xxx xe ee e a--+--≥恒成立, ()2222x x x xx xx xe e e ea e e e e -----++∴≤=--()2x x x xe e e e--=-++, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,22t e e -∴<≤-, 此时不等式2t t +≥当且仅当2t t=,即t =, 取等号,a ∴≤故选B.考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.10.【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”, ∴命题P 是真命题,∴命题P 的逆否命题是真命题;¬P:“若直线m不垂直于α,则m不垂直于l”,∵¬P是假命题,∴命题p的逆命题和否命题都是假命题.故选:B.11.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.12.【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为M ∩N , 又由M={x|﹣2≤x ﹣1≤2}得﹣1≤x ≤3, 即M={x|﹣1≤x ≤3}, 在此范围内的奇数有1和3.所以集合M ∩N={1,3}共有2个元素, 故选B .二、填空题13.【答案】48 【解析】14.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。

2019-2020中学高三上学期10月月考数学试题(解析版).docx

2019-2020中学高三上学期10月月考数学试题(解析版).docx

2019-2020中学高三上学期10月月考数学试题一、单选题A.{1,2,3,4} B.{1,2,3} C.{4,5} D .{1,4}【答案】A【解析】将阴影部分对应的集合的运算表示出来,然后根据集合AB 表示元素的范 围计算结果. 【详解】因为阴影部分是:A (C R B );又因为x (4—x )<0,所以x>4或x<0,所以B = {x|x )4或x<0},所以 C R B = {X |0<X <4},又因为 A = {1,2,3,4,51,所以 A (QB )= {1,2,3,4}, 故选:A. 【点睛】本题考查根据已知集合计算伽"图所表示的集合,难度较易.对于图中的阴影部 分首先要将其翻译成集合间运算,然后再去求解相应值.3.设a, b 是非零向量,是“a//b”的()4 3 . A. 1B. —1C.—I —I5 5【答案】D 【解析】【详解】由题意可得:忖=(¥ +3? = 5,且:乞=4一3几z 4-3/4 3 .据此有:旧-丁十一尹 本题选择D 选项.D.-3. —I52.若集合A = {1,2,3,4,5}傑合B = {x|x (4-x )<0}侧图中阴影部分表示()ZA.充分而不必要条件 C.充分必要条件【答案】A 【解析1 a-b =|a|-|Z?|cos^,Z?^ ,由已知得cos(a,b 〉= l,即仏巧=0,加/方.而当 a 〃Q 时,仏方)还可能是兀,此时a-b =-|®|j^|,故“a"=问”| ”是“a//b ”的充分 而不必要条件,故选A. 【考点】充分必要条件、向量共线.4. 设 a = log 4S,b = log 0A 8, c = 204,!S!l ()A.b<c<aB.c<b<aC.c<a<bD.b< a<c【答案】A【解析】根据指数函数、对数函数单调性比较数值大小. 【详解】因为 a = log 4 8 = ^-log 2 2 =扌’b = log 04 8 < log 041 = 0, c = 20'4< 20'5 = A /2 < 扌, 所以b<c<a , 故选:A. 【点睛】本题考查利用指、对数函数的单调性比较数值大小,难度一般•利用指、对数函数单调 性比较大小时,注意利用中间量比较大小,常用的中间量有:0,1.5. 若直线 lax-by + 2 = 0(a > 0,b > 0)被圆 x 2 + y 2+2x-4_y+ 1 = 0 截得弦长为 4,4 1一则—:的最小值是()a b1 1 A. 9B. 4C.-D.-24【答案】A 【解析】圆x2+ y 2 + 2x-4y + l = 0的标准方程为:(x+1) 2+ (y - 2) 2 =4,它表示以(-1, 2)为圆心、半径等于2的圆; 设弦心距为d,由题意可得22+d 2=4,求得d=0,可得直线经过圆心,故有-2a - 2b+2=0, 即a+b=l,再由a>0, b>0,可得B.必要而不充分条件 D.既不充分也不必要条件4 14 1I =(Ia ba b4Z? a4 ]当且仅当一=—时取等号,•••一 + 〒的最小值是9. a b a b故选:A.点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表 示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.① 一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一 个为定值;③三相等:含变量的各项均相等,取得最值.6.函数/(%) = x 2-cos%在-彳冷 的图像大致是()【解析】先判断奇偶性,然后通过计算导函数在特殊点的导函数值正负来判断相应结果. 【详解】因为/ (兀)定义域关于原点对称且=- cos (-%) = X 2 - cos % = /(%),所以/(X )是偶函数,排除A 、C ;又因为/,(x) = x (2cosx-xsinx),所以【点睛】 本题考查函数图象的辨别,难度一般•辨别函数图象一般可通过奇偶性、单调性、特殊 点位置、导数值正负对应的切线斜率变化等来判断.7.如图,长方体 ABCD-A.B^D, ^,AA l =AB^2,AD = l,^E,F,G 分别是 D0, AB, CC,的中点,则异面直线与GF 所成角的余弦值是71所以“护对应的切线斜率大于零,所以排除D,)(a+b) =5+ —+ ->5+2 a b=9故选:B.【答案】D 【解析】以DA,DC,DD [所在直线为x,y,z 轴,建立空间直角坐标系,可得4疋和GF 的坐标,进而可得cos^EGF,从而可得结论. 【详解】以DA, DC, DD,所在直线为X, % z 轴,建立空间直角坐标系, 则可得 4(l,0,2),E (0,0,l ),G (0,2,l ),F (l,l,0),设异面直线4E 与GF 所成的角为0,【点睛】本题主要考查异面直线所成的角,属于中档题.求异面直线所成的角主要方法有两种: 一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向 量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位 线等方法找出两直线成的角,再利用平面几何性质求解.& 在AABC 中,ZA, ZB, ZC 的对边分别为 a, b, c, cos 2— =,贝U ABC2 2c的形状一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】Byk h + C【解析】在△ ABC 中,利用二倍角的余弦与正弦定理可将已知cos?—=——,转化为2 2c cosA=^-,整理即可判断△ ABC 的形状.sinC【详解】 亠亠 c A b + c在AABC 中,Vcos2—=-------- , 2 2cD.O则 cos 0 = |cos 4E, GF | =-lxl + 0 + (-l )x (-l )72x^2=0, 故选D..l + cosA = sinB + sinC=j_ sinB+j_2 2sinC 2 sinC 2sinB an sinB・°・ 1+cosA = 1,艮卩cosA = ----- ,sinC sinCcosAsinC = sinB = sin (A+C) = sinAcosC+cosAsinC,:.sinAcosC=0, *.* sin A#),cosC=0,・・・c为直角.故选:B.【点睛】本题考查三角形的形状判断,着重考查二倍角的余弦与正弦定理,诱导公式的综合运用, 属于中档题.9.若函数f(x) = ^x2-2x + alnx有两个不同的极值点,则实数。

郸城县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案

郸城县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案

郸城县第二高级中学2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知平面向量与的夹角为3π,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D . 2. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有 1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<3. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是()A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.65 4. 记,那么A B C D5. 已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力.6. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移4π个单位长度,所得的图象经过点 )0,43(π,则ω的最小值是( ) A .31 B . C .35D .7. 圆222(2)x y r -+=(0r >)与双曲线2213y x -=的渐近线相切,则r 的值为( )A B .2 C D .【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.8. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D29. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .1310.函数是( )A .最小正周期为2π的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数11.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.12.若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .14.已知函数21()sin cos sin 2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.15.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________.16.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .三、解答题(本大共6小题,共70分。

郸城县实验高中

郸城县实验高中

郸城县实验高中数学试卷题号一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、学校等信息2.请将答案正确填写在答题卡上 第I 卷(选择题)评卷人 得分一、选择题(本题共12道小题,每小题5分,共60分) 1.设集合A={4,5,6,8},B={3,5,7,8},则A ∪B 中元素的个数为( )A .8B .7C .6D .52.集合A={x|2≤x<5},B={x|3x ﹣7≥8﹣2x}则(∁R A )∩B 等于()A . ∅B . {x|x <2}C . {x|x≥5}D . {x|2≤x<5}3.若集合A={x|x >﹣3},则()A . 0⊆AB . {0}∈AC . ∅∈AD . {0}⊆A4.已知全集U=R ,集合A={x|x >1},集合B={x|3x ﹣4≤0},满足如图所示的阴影部分的集合是()A . {x|x >1}B . {x|1<x≤}C . {x|x≤1}D . {x|x >}5.设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U (M∩N)=()A . {1,2}B . {2,3}C . {2,4}D . {1,4}6.抛物线y=222x mx m -++的顶点在第三象限,试确定m 的取值范围是( )A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-17.已知集合A={y|y=|x|﹣1,x ∈R},B={x|x≥2},则下列结论正确的是( )A .﹣3∈AB .3∉BC .A∩B=BD .A∪B=B8.函数f(x)=,则f(f(2))的值为()A.﹣1 B.﹣3 C.0 D.﹣89.设集合A={x|y=x2﹣1},B={y|y=x2﹣1},C={(x,y)|y=x2﹣1},则下列关系中不正确的是()A.A∩C=∅B.B∩C=∅C.B⊆A D.A∪B=C10.下列四个函数中,与y=x表示同一函数的是()A.y=()2B.y=C.y=D.y=11.函数则的值为()A.B.C.D.1812.函数y=x2﹣6x+7的值域是()A.{y|y<﹣2} B.{y|y>﹣2} C.{y|y≥﹣2} D.{y|y≤﹣2}第II卷(非选择题)评卷人得分二、填空题(本题共4道小题,每小题5分,共20分)13.已知集合A={﹣2,3,6m﹣9},集合B={3,m2}.若B⊆A,则实数m= .14.集合用列举法可表示为.15.已知f(x)=,则f(1)= .16.函数的定义域为.评卷人得分三、解答题(本题共6道小题,第17题10分,第18题12分,第19题12分,第20题12分,第21题12分,第22题12分,共70分)17.设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},求A∩B,∁U(A∪C)18.已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}.求:(1)A∩B;(2)(∁U A)∪(∁U B).19.(12分)已知全集U={0,1,2,3,4,5,6},集合A={x∈N|1<x≤4},B={x∈R|x2﹣3x+2=0}(1)用列举法表示集合A与B;(2)求A∩B及∁U(A∪B).20.(12分)若A={x2,2x﹣1,﹣4},B={x﹣5,1﹣x,9},B∩A={9},(1)求X的值(2)求A∪B.21.已知集合A={x|﹣3≤x≤2},集合B={x|1﹣m≤x≤3m﹣1}.(1)求当m=3时,A∩B,A∪B;(2)若A∩B=A,求实数m的取值范围.22.已知函数y=的定义域为R,求实数m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郸城县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33% B .49%C .62%D .88%2. 双曲线的焦点与椭圆的焦点重合,则m 的值等于()A .12B .20C .D .3. “1<m <2”是“方程+=1表示的曲线是焦点在y 轴上的椭圆”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大,A B O 60AOB ∠=︒C O ABC -值为,则球的体积为()O A . B . C . D .81π128π144π288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.5. 若某程序框图如图所示,则该程序运行后输出的值是( )A. B. C. D. 78910【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.6. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .141017. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .308. 已知在平面直角坐标系中,点,().命题:若存在点在圆xOy ),0(n A -),0(n B 0>n p P 上,使得,则;命题:函数在区间1)1(3(22=-++y x 2π=∠APB 31≤≤n x xx f 3log 4)(-=内没有零点.下列命题为真命题的是( ))4,3(A .B .C .D .)(q p ⌝∧q p ∧q p ∧⌝)(qp ∨⌝)(9. ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=若 )12PF F ∆C. D. 11+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.10.有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④二、填空题11.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为y=()t ﹣a (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.12.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m 【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.13.已知向量满足,,,则与的夹角为 .b a ,42=2||=4)3()(=-⋅+【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.14.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .15.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .16.已知函数,则__________;的最小值为__________.三、解答题17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<)在某一个周期内的图象时,列表并填入的部分数据如表:x x1x2x3ωx+φ0π2πAsin(ωx+φ)+B00﹣0(Ⅰ)请求出表中的x1,x2,x3的值,并写出函数f(x)的解析式;(Ⅱ)将f(x)的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间[0,m](3<m<4)上的图象的最高点和最低点分别为M,N,求向量与夹角θ的大小.18.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.19.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.20.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.21.已知函数f (x )=sin2x •sin φ+cos 2x •cos φ+sin (π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f (x )在[0,π]上的单调递减区间;(Ⅱ)若x 0∈(,π),sinx 0=,求f (x 0)的值.22.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=.(1)求数列{}n a 的通项公式n a ;(2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .郸城县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】2. 【答案】A 【解析】解:椭圆的焦点为(±4,0),由双曲线的焦点与椭圆的重合,可得=4,解得m=12.故选:A . 3. 【答案】C【解析】解:若方程+=1表示的曲线是焦点在y 轴上的椭圆,则,即,解得1<m <2,即“1<m <2”是“方程+=1表示的曲线是焦点在y 轴上的椭圆”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据椭圆方程的性质是解决本题的关键. 4. 【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径.设球的半径为OC ⊥AOB O ABC -OC,则由题意,得,解得,所以球的体积为,故选D .R 211sin 6032R R ⨯⨯︒⋅=6R =342883R π=π5. 【答案】A【解析】运行该程序,注意到循环终止的条件,有n 10,i 1;n 5,i 2;n 16,i 3;n 8,i 4;n =========4,i 5;n 2,i 6;n 1,i 7,到此循环终止,故选 A.=====6. 【答案】B【解析】解:∵a n+1a n +2=2a n+1+2a n (n ∈N +),∴(a n+1﹣2)(a n ﹣2)=2,当n ≥2时,(a n ﹣2)(a n ﹣1﹣2)=2,∴,可得a n+1=a n ﹣1,因此数列{a n }是周期为2的周期数列.a 1=3,∴3a 2+2=2a 2+2×3,解得a 2=4,∴S 2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题. 7. 【答案】B【解析】解:∵a n =(﹣1)n (3n ﹣2),∴S 11=()+(a 2+a 4+a 6+a 8+a 10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S 20=(a 1+a 3+...+a 19)+(a 2+a 4+...+a 20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S 11+S 20=﹣16+30=14.故选:B .【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 8. 【答案】A 【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以p 2π=∠APB AB ()()11322=-++y x ,解得,因此,命题是真命题.命题:函数,,121+≤≤-n n 31≤≤n p ()xxx f 3log 4-=()0log 1443<-=f ,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是()0log 34333>-=f ()x f []4,3()x f ()4,3假命题.因此只有为真命题.故选A .)(q p ⌝∧考点:复合命题的真假.【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆P 2π=∠APB AB P 上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数1)1(3(22=-++y x P 是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.x xx f 3log 4)(-=9. 【答案】D【解析】∵,∴,即为直角三角形,∴,120PF PF ⋅=12PF PF ⊥12PF F ∆222212124PF PF F F c +==,则,12||2PF PF a -=222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-.所以内切圆半径2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-12PF F ∆,外接圆半径.,整理,得12122PF PF F F r c +-==R c =c =,∴双曲线的离心率,故选D.2(4ca=+1e =+10.【答案】B【解析】解:①由于“若a 2+b 2=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x 2+2x+q=0有实根,则△=4﹣4q ≥0,解得q ≤1,因此“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B .【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题. 二、填空题11.【答案】0.6【解析】解:当t >0.1时,可得1=()0.1﹣a∴0.1﹣a=0a=0.1由题意可得y ≤0.25=,即()t ﹣0.1≤,即t ﹣0.1≥解得t ≥0.6,由题意至少需要经过0.6小时后,学生才能回到教室.故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案. 12.【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,为连续两项和,为接下来三3m 3233项和,故的首个数为.3m 12+-m m ∵的分解中最小的数为91,∴,解得.)(3+∈N m m 9112=+-m m 10=m 13.【答案】32π【解析】14.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系15.【答案】 .【解析】解:由于角A 为锐角,∴且不共线,∴6+3m >0且2m ≠9,解得m >﹣2且m .∴实数m 的取值范围是.故答案为:.【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题. 16.【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的最小值为故答案为:三、解答题17.【答案】【解析】解:(Ⅰ)由条件知,,,∴,,∴,.(Ⅱ)∵函数f(x)的图象向右平移个单位得到函数g(x)的图象,∴,∵函数g(x)在区间[0,m](m∈(3,4))上的图象的最高点和最低点分别为M,N,∴最高点为,最低点为,∴,,∴,又0≤θ≤π,∴.【点评】本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,向量夹角公式的应用,属于基本知识的考查.18.【答案】【解析】解:由题意设a=n、b=n+1、c=n+2(n∈N+),∵最大角是最小角的2倍,∴C=2A,由正弦定理得,则,∴,得cosA=,由余弦定理得,cosA==,∴=,化简得,n=4,∴a=4、b=5、c=6,cosA=,又0<A<π,∴sinA==,∴△ABC的面积S===.【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.19.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.20.【答案】【解析】(1)证明:取ED的中点为O,由题意可得△AED为等边三角形,,,∴AC2=AO2+OC2,AO⊥OC,又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,∴平面AED⊥平面BCDE;…(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),,,,设面EAC的法向量为,面BAC的法向量为由,得,∴,∴,由,得,∴,∴,∴,∴二面角E﹣AC﹣B的余弦值为.…2016年5月3日21.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f (x )图象过点()知:所以:φ=所以f (x )=令(k ∈Z )即:所以:函数f (x )在[0,π]上的单调区间为:(Ⅱ)因为x 0∈(π,2π),则:2x 0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.22.【答案】(1)n a n 2=;(2)=n T )1(2+n n .考点:1.一元二次方程;2.裂项相消法求和.。

相关文档
最新文档