三相四线有功电能表报告1
三相四线费控智能电能表使用说明书
三相四线费控智能电能表使用说明书DTZY22-Z 型三相四线费控智能电能表采用当今最先进的电能表专用集成电路、永久保存信息的不挥发性存贮器、红外通讯、汉字大画面液晶显示等多项技术。
该表集众多功能于一体,实现了有功、无功双向分时电能计量、分相双向计量、需量计量、功率因数计量、显示和远传实时电压、电流、功率等,并实现用户的预付费功能,又可灵活预置多种功能:超负荷报警和自动断电、缺相报警、缺相情况记录、自动抄表等。
以手持电脑为媒介实现用户与供电部门计算机的信息传输。
本表还具有双RS485接口,方便电力部门实现计算机网络管理。
并采用多种软件、硬件抗干扰措施,保证电表可靠运行,从而适应了电力部门对用户有效及时地现代化科学管理需求。
1.1、性能 1.1.1、电能表的线路设计和元器件的选择以较大的环境允差为依据,因此可保证整机长期稳定工作。
精度基本不受频率,温度、电压变化影响。
整机体积小,重量轻,密封性能好,可靠性较其它同类产品有明显提高。
1.1.2、经过严格的安全认证,可通过远程对电能表进行远程拉、合闸控制和时段等参数的设置,进而对用户的用电实施远程管理。
1.1.3、当电源失电后,锂电池作为后备电源,可以保证内部数据不丢失,日历,时钟、时段程序控制功能正常运行,来电后自动投入运行。
在电能表端钮盒上设置有光电耦合脉冲输出接口,以便于进行误差测试和数据采集,脉冲输出常数与标牌标志的表常数一致。
1.1.4、电表运行信息可由手持电脑、 RS485 接口两种媒介传输,电力部门可根据本地区具体情况自行选择一种或多种传输方式。
电能表通讯规约符合DL/T645 。
三相四线费控智能电能表使用说明书- 4 -二、原理与主要技术参数: A 、B、C三相电压、电流信号经专用电能表高速集成电路处理转换成相应的数字信息后,计算出各相电压、电流、功率、电能,CPU 中央处理器通过SPI 口读取有关数据量,并通过程序处理求出各总电量、费率电量、需量、功率因素等。
浅谈三相有功电能表接线检查方法及步骤
浅谈三相有功电能表接线检查方法及步骤摘要:在电力系统中,三相电能表的使用十分普遍。
因三相电能表配上互感器时接线复杂,容易出现接线错误。
电能表接线错误,不仅会产生计量差错,还有可能造成电能表损坏或人员伤亡事件。
为及时发现并更正错误接线,确保计量装置接线的正确,及时挽回电量电费损失、降低生产经营风险,对三相电能表进行接线检查十分必要。
本文主要阐述三相三线、三相四线两种有功电能表的正确接线方式、现场检查方法及步骤,通过实例分析,为处理错误接线提供处理建议。
希望能为电能表接线检查工作提供参考与借鉴。
关键词:三相四线、三相三线、有功电能表、接线检查前言:三相电能表应用非常广泛,当三相电能表配上互感器时,接线相对复杂,容易出现接线错误。
本文通过理论结合实例的形式,利用伏安相位表等工具,使用相量图的方法检查错误接线。
正文:一、三相四线有功电能表的正确接法三相四线有功电能表由3组电磁元件组成,正确接入时,接线如图1所示:第1元件接a相电流,a相电压;第2元件接b相电流,b相电压;第3元件接c相电流,c相电压。
在三相负荷均衡时,电能表计量电路的有功功率为:图1二、三相四线电能表接线检查方法使用伏安相位表对低压带电流互感器的三相四线有功电能表进行接线检查分析。
具体方法及步骤如下:1、测量线电压。
使用伏安相位表对三相四线电能表的第1、2、3元件电压端子进行线电压测量。
正常情况下线电压为;;;若非380V需检查电压是否反接、电压接线是否牢固。
2、测量相电压。
使用伏安相位表对电能表的第1、2、3元件电压端子对地端子进行相电压测量。
正常情况下相电压为;;;若出现0V或非全电压则可判断为断相。
3、测量三相对A点电压使用伏安相位表对电能表的第1、2、3元件电压端子对A点进行相电压测量。
正常情况下相电压为;;;测量为0V的元件端子表示接入的为A相。
如果出现两个0V或全为0V或全为380V,则可判断为电压短接。
4、测量相电流使用伏安相位表对电能表第1、2、3元件电流进线端子进行相电流测量。
用电营销考试:电费帐务管理考试题库一
用电营销考试:电费帐务管理考试题库一1、填空题铁路信号灯用电属O照明用电。
正确答案:非居民2、问答题选择电流互流器时,应主要依据哪几个参数?正确答案:应根据以下几个参数选择电流互感器:(1)额定电压;(江南博哥)(2)准确度等级;(3)额定一次电流及变化;(4)二次额定容量和额定二次负荷的功率因数。
3、问答题临时用电逾期不办理延期或永久性正式用电手续的,供电企业应如何处理?正确答案:临时用电逾期不办理延期或永久性正式用电手续的,供电企业应终止供电。
4、问答题请说出从2007年1月1日起农业排灌超基数加价标准和基数标准?正确答案:2007年1月1日起,直供区地下水超基数农业排灌电价在现行各扬程基数内电价基础上每千瓦时加价0.07元;地表水超基数农业排灌电价在现行各扬程基数内电价基础上每千瓦时加价0.02元;竟售区地下水超基数农业排灌电价在现行各扬程基数内电价基础上每千瓦时加价0.056元;地表水超基数农业排灌电价在现行各扬程基数内电价基础上每千瓦时加价0.016元;直供区农业排灌基数电量以2005年基数为准,是售区农业排灌基数电量以2006年“双抄”实际结算电量为准,实行基数控制,月结月清,年末总算帐,多退少补。
5、填空题电信机房用电应执行O电价。
正确答案:非工业6、填空题通过实施“彩虹工程”,最终达到的目标是:客户供电可靠率O,优质服务满意率O;行业作风举报投诉率为();实现()的目标。
正确答案:100%;100%;零;只要您一个电话,其余的工作由我们来做7、问答题农村用户是否征收城市公用事业附加费?正确答案:征收城市公用事业附加费对象仅限于城区内各类用电户,城区以外的用户及农村用户中执行目录电价的对象应执行未开征城市附加费的目录电价。
8、问答题简述收费统计台账每日核账的基本内容。
正确答案:(1)台账中每日登记数据必须与收费日报及当日凭证、进账单保持一致,资金收取与资金使用合计栏必须保持一致。
(2)委托收款栏登记发出委托已作实收的金额,收回的委托收款进账单不在银行存款栏反应,单独登记转交财务部门。
三相四线费控智能电能表(载波远程开关内置)
三相四线费控智能电能表(载波/远程/开关内置)产品概述:DTZY3699-Z三相四线费控智能电能表(CPU卡/开关内置)是采用国际上性能优良的单片微处理器和稳定可靠的外围电路,吸收消化国内外同类产品软件功能优点,配以稳定可靠的电子专用计量电路,采用先进的SMT工艺,经精心优化设计而成的新一代智能式电能表。
该表主要遵循电能表相关标准:IEC 62053-21《1和2级静止式交流有功电能表的特殊要求》GB/T 15284-2002 《多费率电能表特殊要求》GB/T 17215.321-2008 《交流电测量设备特殊要求-第21部分静止式有功电能表(1级和2级)》GB/T 17215.211-2006 《交流电测量设备通用要求试验和试验条件- 第11部分:测量设备》GB/T 17215.321-2007 《1级和2级静止式交流有功电能表》GB/T 17215.301-2007 《多功能电能表特殊要求》GB 4208-2008《外壳防护等级(IP代码)》GB/T 15464-1995 《仪器仪表包装通用技术条件》JJG 596-1999《电子式电能表》JB/T 6214-1992《仪器仪表可靠性验证试验及测定试验(指数分布)导则》DL/T614-2007《多功能电能表》DL/T 645-2007《多功能电能表通信协议》DL/T 566-1995《电压失压计时器技术条件》DL/T 830-2002《静止式单相交流有功电能表使用导则》Q/GDW 356—2009《三相智能电能表型式规范》Q/GDW 354—2009《智能电能表功能规范》Q/GDW 365—2009《智能电能表信息交换安全认证技术规范》主要功能特点:●电能计量功能1.具有正向有功、反向有功电能、四象限无功电能计量功能,并据此设置组合有功和组合无功电能。
2.四象限无功电能除分别记录、显示外,还通过软件编程,实现组合无功1和组合无功2的计算、记录、显示。
三相四线电子式多功能电能表说明书(淮北万华国网型)V1.0
用户操作使用说明DTSD843型三相四线电子式多功能电能表淮北万华仪表有限责任公司一.产品简介 (3)1.1概述 (3)1.2技术指标 (3)1.3工作原理 (5)二、外形说明及安装 (6)2.1外形图 (6)2.2液晶显示屏内容 (7)2.3 电表的安装及接线 (8)2.3.1电表的安装 (8)2.3.2端子接线图 (9)三、基本功能 (11)3.1电能计量功能 (11)3.2需量测量 (11)3.3 时钟 (11)3.4费率和时段 (11)3.5清零 (11)3.6数据存储 (12)3.7冻结 (12)3.8事件记录 (12)3.9通讯 (12)3.10信号输出 (13)3.11显示 (13)3.12 测量 (13)3.13 安全保护 (13)3.14 负荷记录 (14)3.15 停电抄表 (14)3.16 报警 (14)五、存储和运输 (14)六、保证期限 (14)七、保养和维修注意事项 (14)附录 (15)附录A 显示项目 (15)附录B 故障显示 (15)一.产品简介1.1概述DTSD843型三相电子式多功能电能表采用了最新设计的专用数字集成电路和超低功耗16位MCU,可以直接准确测量各相正反有功无功电量,并依据相应的费率和需量要求进行调整。
可以进行4种费率、14个时区、14个日时段(8套)、30个节假日及周休日等设置,具有有功最大需量记录功能,对有功功率、无功功率、电压、电流、功率因数等用电参数进行实时测量和处理,具有红外遥控编程抄表、双RS485远程抄表(两通讯接口电气隔离防护,相互通信不受干扰)、有功无功脉冲输出、停电抄表、负荷记录等功能。
数据显示采用宽温度范围的大屏幕中文液晶,便于人工抄表记录。
本产品采用SMT工艺和先进设备制造,严格按照ISO9001:2000控制过程工艺和质量。
高度集成化设计和防静电、防雷、瞬变干扰抑制等多种抗干扰设计,关键元器件均采用国际知名品牌的低功耗、长寿命器件。
三相多功能电表的设计与总结报告
三相多功能电表的设计与总结报告山东省大学生“高教社&XILINX杯”电子设计竞赛三相多功能电表的设计与总结报告参赛题目:三相多功能电表所属单位:曲阜师范大学物理工程学院摘要系统是基于ATMEGA16单片机和ATT7028A专门计量芯片为核心器件的三相多功能电表。
采用电压互感器与电流互感器对三相电网取样,ATT7028A根据取样信号能够测量出各相以及合相的有功功率、有功电能、各相电流电压有效值、功率因数、相角、频率等数据,数据送入ATMEGA16单片机。
用户可以通过单片机提供的丰富的用户界面读取相应的数据,并可以通过标准RS-485通讯来实现远程有线测量和标准USART通讯来实现远程无线测量。
本系统很好的完成了题目要求的基本及发挥要求,并进行了进一步的扩展。
关键词:ATMEGA16 ATT7028A 三相多功能电表远程测量A bstractThis system is a three-phase multi-function power meter, which the core device is based on ATEMGA16 and ATT7028A. It samples on Drehstromnetz with the use of the Voltage Transformer and Current Transformer. According to the sample signals accquired, ATT7028A works out the active power and total active power, active electrical power, RMS current and voltage of each phase, Power Factor, Phase angle, and Frequency. When the above data are inputted into ATEMGA16, users can read the corresponding data by means of the rich user interface provided by ATMEGA16; they can realize remote cable measurement through standard RS-485 communication; and then they can achieve remote wireless measurement by standard USART communication. The design achieved and even exceeded all the technical indexes with better accuracy and control.Keywords: ATMEGA16;ATT7028A;three-phase;multi-function power meter ;distance measurement目录摘要 (1)1 设计要求 (1)1.1 基本要求1.2 发挥部分2 方案设计与论证 (1)2.1 整体方案的设计与论2.2 控制部分MCU的选择2.3 取样电路2.4 显示电路2.5 远程通信单元2.6 垵键电路2.7 软件部分方案3 理论分析与计算 (4)3.1 三相有功功率,有功电能、无功功率、功率因数、无功电能的计算3.2 电压和电流有效值的测量3.3 三相有功功率和有功电能的计算3.4 功率因数的测量3.5 相序检测4 测试方法与数据,测试结果及分析 (6)4.1 测试仪器4.2 校表方法4.3 测试数据4.4 测试结果分析5 总结 (8)5.1 基本功能5.2 发挥部分5.3 功能扩展部分5.4 比赛总结6 附录 (9)6.1 参考文献6.2 ATT7028A外部引脚与内部框图6.3 主要元件清单6.4 电路图6.4.1 5v 电源6.4.2 按键功能对应表与键盘简略电路图6.4.3 Atmega16单片机外围电路图6.4.4 ATT7028A外围电路图6.4.5 电流互感器与电压互感器电路图6.5 程序框图及部分程序6.5.1 框图6.5.2 部分程序1设计要求1.1基本要求(1)测量功能及技术参数A.三相额定交流相电压:100V/220V/380V,过载能力:持续1.2倍、瞬时电流10倍/5秒;B.三相额定交流电流:1A,过载能力:持续1.2倍、瞬时电压2倍/1秒;C.三相三线或者四线任意选择;D.实现电压和电流相序检测功能(2)准确度: 测量精度:1级。
三相三线和三相四线有功电能表接线的计量影响及改善对策
三相三线和三相四线有功电能表接线的计量影响及改善对策电能表作为衡量电能的计量仪器,其技术性要求很高,既要求精确、更要求稳定,并保证长期可靠运行,并且随着我国电力市场的逐步建立和完善,电力系统越来越复杂,作为电力系统重要组成部分的电能表受到了越来越多的关注。
在工业用户的电力系统中,电能表从性能上要满足恶劣的工作环境,电压高、电流大、负荷重等条件。
随着大庆炼化公司落实国家“十二五规划”提出的节能减排目标,全公司上下正在积极的开展节能工作。
然而,电能计量综合误差过大是电能计量存在的一个关键问题,它直接影响着公司的经济利益。
因此,努力提高电能计量的综合准确水平,是一项刻不容缓的重要任务。
本文通过对三相三线和三相四线有功电能表接线错误接线的分析,希望对减小计量电能误差有所帮助。
二、三相三线有功电能表的正确接线三相三线制只有三根相线,电能表中有两个计量元件,在一定程度上节约了成本,但其中B相的电流是通过其他两相计算出来的,一旦出现三相负载不平衡的情况,就会导致测量不准确。
如图1所示,大写字母A、B、C代表电压的一次侧,小写字母a、b、c代表电压的二次侧,三个电压互感器TV1、TV2、TV3的一次侧与二次侧构成Y/Y 型接线,a、b相之间的相电压构成了第一元件的线电压Uab=Ua-Ub,c、b相之间的相电压构成了第二元件的线电压Uab=Uc-Ub。
TA1和TA2分别是第一元件和第二元件的电流互感器,Ia、Ic分别为第一元件和第二元件的相电流。
①—⑦为两个元件的接线端子,例如①为第一元件的相电流进线端子,③为相电流出线端子,②和④端子构成第一元件的线电压。
在接线正确的情况下,三相三线有功电能表测得电量为第一元件和第二元件测得电量之和,即:当三相电压和电流对称时Uab=Ubc=Uca=U线Ia=Ib=Ic=I当有接线错误或其他计量故障时,有功电能表计量数和实际用电度数之间存在较大误差。
图1 三相三线电能计量装置正确接线图三、三相三线有功电能表的错误接线分析在实际的开关柜中线路远比原理图中的线路多,这就加大了接线错误的几率。
德力西电气 DTS606型三相四线电子式电能表(液晶、红外、485)使用说明书
DTS606型三相四线电子式电能表(液晶、红外、485)使用说明书2022E836-33符合标准:GB/T17215.321-2021安装、使用产品前,请仔细阅读使用说明书并妥善保管、备用1概述DTS606型三相四线电子式电能表(液晶、红外、485) (以下简称"电能表"),是为了适应电网改造而设计开发的有功电能表。
它具有较高的准确度和可靠性。
本电能表采用国际先进的超低功耗大规模集成电路技术及SMT工艺制造的高新技术产品。
可供计量参比频率为50Hz的电网中的三相交流有功电能,并能进行正、反向有功电能计量,且以一个方向累计电量。
其特点是精度高、可靠性好、宽负荷、低功耗、误差曲线平直、抗干扰能力强。
是对需要进行有功电量考核的企业、变电站或电厂最理想的选择,也适合输配电或配网自动化用表。
本电能表符合标准GB/T 17215.321-2021《交流电测量设备特殊要求第21部分:静止式有功电能表(1级和2级)》,通讯规约符合DL/T 645-2007《多功能电能表通信协议》及其备案文件和兼容部分DL/T 645-1997《多功能电能表通信规约》。
2工作原理电能表工作原理如图1所示。
图1 电能表工作原理框图电能表由两个主要功能组成:一是电能计量部分,二是微处理器控制部分。
本电能表的电能计量部分使用大规模专用集成电路,产生表示用电多少的脉冲序列,送至微处理器进行电能计量。
微处理器接收到脉冲信号后,通过对输入脉冲个数进行累计,并根据脉冲常数大小来实现对电能的精确计量,通过各种接口传递数据,实现各种控制功能。
3规格电能表规格如表1所示。
4主要技术参数4.1基本误差带平衡负载百分数误差限值如表2所示;带不平衡负载百分数误差限值:有功1级表为±2.0,有功2级表为±3.0。
0.004Ib(1级)、0.005Ib(2级);当负载电流为互感式时为0.002In(1级)、0.003In(2级),电能表应能起动并连续计量电能。
三相四线有功电能表误接线分析及对电能计量的影响
三相四线有功电能表误接线分析及对电能计量的影响摘要:随着中国国民经济的不断增长和发展,电能需求量的日益增加,电力客户逐步增多,对电能计量装置接线的准确性要求将不断提高。
电能计量是电力商品交易中的"一杆秤",电能计量的准确、公平、公正、可靠直接关系到供用电双方的经济利益。
在新装计量装置中由于电流互感器相序、极性的错误导致电能表的误接线,造成电能计量的不准确。
文章在此背景下,初步探讨和分析了三相四线有功电能表误接线分析及对电能计量的影响。
关键词:三相四线有功电能表;误接线分析;电能计量影响随着我国居民的用电需求量日益增大,因此对电能计量装置的要求越来越高。
电能表是统计电能的重要设备,电能计量的准确性和可靠性直接关系到供电企业以及居民用电的实际利益。
此外对于在10kV以上的高压电和10kV以下低压电供电系统而言,也都通常会采用三相四线制供电方式。
三相四线有功电能表是计量电能过程中较为常用的设备,不仅仅能够计量三相和单相动力负荷电能,而且能够计算照明负荷电能,与此同时起到防窃电效果,最终被广泛应用。
在使用三相四线有功电能表时往往需要用到用电流互感器,以期扩大量程。
而诸多研究显示,在使用三相四线有功电能表计量电能过程中,常常出现电能表与电流互感器极性配合问题。
如果忽视上述问题,将显著提高电能表错误接线率。
三相四线有功电能表的错接机会表达多,一旦错接将会出现以下情况:其一,有的不转;其二,有的反转;其三,有的虽然正常运转,但是所计量出的电量数与实际电量数出入较大。
一、三相四线有功电能表计量原理和接线方法1.三相四线有功电能表计量原理分析电能表能够计量电量主要是因为电能表内部有以下零部件:其一,电压;其二,电流线圈。
电能表在负荷电流作用之下会产生转矩,通过机械装置带动电能表计数器,继而显示出用电量。
2.三相四线有功电能表的接线方法分析三相四线有功电能表有三个电路线圈、三个电压线圈,因此在负荷电流作用下会产生三个转矩。
三相四线电子式多功能电能表说明书(淮北万华国网型)V1.0
用户操作使用说明DTSD843型三相四线电子式多功能电能表一.产品简介 (3)1.1概述 (3)1.2技术指标 (3)1.3工作原理 (4)二、外形说明及安装 (6)2.1外形图 (6)2.2液晶显示屏内容 (7)2.3 电表的安装及接线 (8)2.3.1电表的安装 (8)2.3.2端子接线图 (9)三、基本功能 (11)3.1电能计量功能 (11)3.2需量测量 (11)3.3 时钟 (11)3.4费率和时段 (11)3.5清零 (11)3.6数据存储 (12)3.7冻结 (12)3.8事件记录 (12)3.9通讯 (12)3.10信号输出 (13)3.11显示 (13)3.12 测量 (13)3.13 安全保护 (13)3.14 负荷记录 (14)3.15 停电抄表 (14)3.16 报警 (14)五、存储和运输................................................. 错误!未定义书签。
六、保证期限 (14)七、保养和维修注意事项 (14)附录 (15)附录A 显示项目 (15)附录B 故障显示 (15)一.产品简介1.1概述DTSD843型三相电子式多功能电能表采用了最新设计的专用数字集成电路和超低功耗16位MCU,可以直接准确测量各相正反有功无功电量,并依据相应的费率和需量要求进行调整。
可以进行4种费率、14个时区、14个日时段(8套)、30个节假日及周休日等设置,具有有功最大需量记录功能,对有功功率、无功功率、电压、电流、功率因数等用电参数进行实时测量和处理,具有红外遥控编程抄表、双RS485远程抄表(两通讯接口电气隔离防护,相互通信不受干扰)、有功无功脉冲输出、停电抄表、负荷记录等功能。
数据显示采用宽温度范围的大屏幕中文液晶,便于人工抄表记录。
本产品采用SMT工艺和先进设备制造,严格按照ISO9001:2000控制过程工艺和质量。
高度集成化设计和防静电、防雷、瞬变干扰抑制等多种抗干扰设计,关键元器件均采用国际知名品牌的低功耗、长寿命器件。
三相四线电能表错误接线分析及判断
三相四线电能表错误接线分析及判断三相四线电度表接线方式的分析与判断1、三相四线电度表标准接线方式P=P1+P2+P3=U A I A cos ψA + U B I B cos ψB + U C I C cos ψC =3 UI cos ψ负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)2、三相四线电度表电压正相序A 、B 、C 而电流正相序是B 、C 、A 的接线方式P=P1+P2+P3=U A I B cos (120°+ψB )+ U B I C cos (120°+ψC )+ U C I A cos (120°+ψA ) =3 UI cos (120°+ψ)=-3 UI cos (60°-ψ)故当Ψ在0°~60°内,呈反转状态。
负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)P=P1+P2+P3=U A I C cos (120°-ψC )+ U B I A cos (120°-ψA )+ U C I B cos (120°-ψB ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。
负载120o120o120oU AU BU CI AI BI C ΨAΨBΨC(a)(b)4、三相四线电度表电压正相序B 、C 、A 而电流正相序是A 、B 、C 的接线方式P=P1+P2+P3=U B I A cos (120°-ψA )+ U C I B cos (120°-ψB )+ U A I C cos (120°-ψC ) =3 UI cos (120°-ψ)=-3 UI cos (60°+ψ)故当Ψ在0°~30°内,呈反转状态。
12 13电能计量装置的整体接线检查(一)(二)
(2)检查接地,确定接地点 )检查接地, 将黑笔接地,用红笔依次分别接触到1 将黑笔接地,用红笔依次分别接触到1、2、3的电压 接线端子上。当显示值为“0”时 接线端子上。当显示值为“0”时,即可确定此相为电能 表实际接线中的b 表实际接线中的b相。 (3)测量电流: 。(II为流入电能表第一个元件的电流, )测量电流: 。( 为流入电能表第一个元件的电流, III为流入电能表第二个元件的电流) 为流入电能表第二个元件的电流) 测量电能表的电流II、III并记录: 测量电能表的电流 并记录 若两个电流基本相等为正常; 若两个电流基本相等为正常 若数值相差较大,或其一为“ , 若数值相差较大,或其一为“0”,说明电流回路存在问 题。
(4)测量电压与电流之间的相位差角 ) a.将相位表选择至“φ”档。 将相位表选择至“φ”档 先将相位表的电流卡钳卡住电能表的I 电流进线( b. 先将相位表的电流卡钳卡住电能表的 II 电流进线 ( 应 注意电流卡钳的极性一定要正确) 注意电流卡钳的极性一定要正确 ) ,再将相位表的红笔和 黑笔分别接触到电能表的电压端子1、2上。此时的显示值 黑笔分别接触到电能表的电压端子1 之间的夹角,并作记录。 是u12和iI之间的夹角,并作记录。 再将红笔接触到电压端子3 再将红笔接触到电压端子3上,黑笔仍在2上,此时的显示 黑笔仍在2 值是u 之间的夹角,并作记录。 值是u32和iI之间的夹角,并作记录。
(二)伏安相位表法 1.相位表的使用方法 (1)将相位表的红笔和黑笔连线的另一端分别插入相位 表上标有“正极” 负极”的插孔内。 表上标有“正极”、“负极”的插孔内。 (2)将相位表电流卡钳连线的另一端插入相位表上标有 “I” 的插孔内。 的插孔内。 (3)测量电压:选择电压档“U”,将红、黑表笔与测量 测量电压:选择电压档“U”,将红、 点接触,窗口显示电压值。 点接触,窗口显示电压值。 (4)测量电流:选择电流档“I”,将电流卡钳卡住需测 测量电流:选择电流档“I”, 窗口显示电流值。 电流的导线 ,窗口显示电流值。
2013新国网三相四线远程费控智能电能表(通信模块)-产品说明书
三相四线费控智能电能表DTZY183-Z型使用说明书(陕)制00000312号西安中顺实业发展有限公司三相费控智能电能表,是根据国家电网“统一坚强智能电网”建设的总体要求,在国网公司智能电表系列标准的基础上研制而成的新一代智能电能表。
该智能电表能精确地计量有功正反向总电能、各费率电能,无功四象限电能,具有有功正反向最大需量记录功能,对有功无功功率、电压、电流、功率因素和频率等用电参数进行实时测量和处理,具有分时计量、自动抄表、电量和需量的数据存储、负荷曲线记录、事件数据记录等功能。
该系列电能表采用超大规模数字信号处理芯片、全隔离标准RS485通讯接口和红外通讯、可配置载波通讯模块、无线通讯模块。
大画面宽温液晶显示等先进技术。
制造上运用先进的SMT表面贴装工艺和进口高性能长寿命电子元器件,外壳采用高强度、阻燃环保材料、造型新颖、实用, 具有较高的绝缘强度和耐腐蚀性,是电能信息采集智能电网建设的理想选择。
二、依据主要标准和规范DL/T 645—2007 《多功能电能表通信协议》及其备案文件DL/T 566 《电压失压计时器技术条件》YD/T 1208—2002 《800MHz CDMA蜂窝移动通信网无线智能网(WIN)阶段1:接口技术要求》YD/T 1214—2006 《900/1800MHz TDMA数字蜂窝移动通信网通用分组无线业务(GPRS)设备技术要求:移动台》GB 4208-2008 外壳防护等级(IP代码)GB/T 13384—2008 机电产品包装通用技术条件GB/T 17215.211—2006 交流电测量设备 通用要求 试验和试验条件 第11部分:测量设备GB/T 17215.301—2007 多功能电能表 特殊要求GB/T 17215.321—2008 交流电测量设备 特殊要求 第21部分 静止式有功电能表(1级和2级)GB/T 17215.322—2008 交流电测量设备 特殊要求 第22部分 静止式有功电能表(0.2S级和0.5S级)GB/T 17215.323—2008 交流电测量设备 特殊要求 第23部分 静止式无功电能表(2级和3级) DL/T 645—2007 多功能电能表通信协议 DL/T 830—2002 静止式单相交流有功电能表使用导则 JJG 596-2012 电子式电能表Q/GDW 1354-2013 智能电能表功能规范Q/GDW 1356-2013 三相智能电能表型式规范Q/GDW 1827—2013三相智能电能表技术规范三、工作原理3.1 工作原理说明智能电表工作时,三相电压、电流经传感器件转换为采样信号通过滤波处理后送入数字信号处理器,由于采用了专用的数字信号处理芯片,使得电压电流采样分辨率大为提高,且有足够的时间来精确地测量电能数据,从而使电表的计量准确度有了显著改善。
三相电能表测量误差不确定分析报
三相电能表测量误差不确定分析报.三相四线电能表测量误差不确定分析报告1 概述1.1 测量依据:JJG307-2006《机电式交流电能表检定规程》1.2 环境条件:温度(20±2)℃,相对湿度(35~85)%。
1.3 测量标准:三相电能表检定装置,型号CJ-3000D,规格60V~380V,(0~100)A,准确度级别为0.1级。
1.4 被测对象:三相四线有功电能表,准确度等级1.0级,型号DTSD847-F4,规格3×220/380V;3×1.5(6)A,编号为00033733 1.5 测量过程:三相电能表检定装置输出一定功率给被检表,并对被检表进行采样积分,得到的电能值与装置输出的标准电能值比较,得到被检表在该功率时的相对误差。
1.6 评定结果的使用:符合上述条件的测量结果,一般可直接使用本不确定度的评定方法。
2 数学模型r=r0式中:r——被检电能表的相对误差;r0——三相电能表检定装置上测得的相对误差。
3输入量的标准不确定度评定输入量r0的标准不确定度u(r0)的来源主要有两个方面:在重复性条件下由被测电能表测量重复性引起的不确定度分量u(r01),采用A类评定方法;由三相电能表检定装置的误差引起的不确定度分量u(r02),采用B类评定方法。
3.1 标准不确定度分量u(r01)的评定该不确定度分量主要是由于被检电能表的测量不重复引起的,可以通过连续测量得到测量列,采用A类方法进行评定。
(1)对1.0级被测三相四线电能表在3×220/380V;3×1.5(6)A;co sφ=1.0的Imax量程上每天测量2次,每点重复测量10次,得到测量列如表1.1所示:表1.1 被检电能表的相对误差 %平均值081.0101X 101-==∑=i i r %单次试验标准差s 1=()=--∑=112n XXni i0.012%同理得到s 2= 0.013%,s 3=0.013%, s 4=0.014%。
三相四线有功电能表检查
三相四线有功电能表检查、三相三线有功电能表检查、停电检查等现场检查方法。
1、三相四线有功电能表检查(1)检查接线:主要检查电流互感器的极性是否与电能表的电流进出线相符,电压的相序是否为正相序,电压与电流是否同相,接头接触是否良好等。
(2)电流短接和电压断开法:分别短接A、B、C相电流的进出线或断开A、B、C相电压,看电能表转盘转动的快慢,如果负荷比较稳定且平衡,则短接一相电流或断开一相电压,电能表转速为正常的2/3,如果偏差大,说明计量异常。
也可用同时送同一相的电压、电流的办法进行检查,此时电能表的转速应为正常的1/3。
(3)检验电能表误差:现场校验仪的电压从电能表的端钮盒取,电流用钳形电流互感器从电流互感器的二次侧钳入采样,校验时要注意观察校验仪显示屏上的有关参数(如有带一次钳形互感器的校验仪还可以方便地测出电流互感器的变比误差),有助于判别接线、电流、电压是否正常,若电能表误差较大需拆回校验。
2、三相三线有功表的检查(1)测量线电压:用万用表测电能表各电压端钮间的线电压:正常时Uab=Ubc=Uca=100V(一般实际一次电压高于额定电压,二次电压也略高于100V)如果测出的结果是Uab=0,Ubc=Uca=100V,则说明A相电压断开,Uab=Ubc=50V,Uca=100V,则说明B相电压断开,Uab=Uca=100V,Ubc=0,则说明C相电压断开。
(2)确定B相电压:用电压表测电能表各电压端钮对地电压,若为100/1.732 V,则为A或C相电压端钮,是0V的为B相电压端钮。
(3)Ua、Uc对调法:如果Ua、Uc对调后,电能表仍能转动说明接线肯定是错误的,反之不成立。
(4)断开B相电压法:当负载稳定接线正确时,将电能表的B相电压断开,此时电能表电压线圈承受的电压为额定电压的一半,所以电能表仍正转且转速减慢一半,如果断开B相电压后,电能表不是减慢一半,说明接线肯定错误,反之不成立。
(5)改正接线:查清错误接线后应该把接线改成正相序的正常接线,即B相电压改接在电能表中间电压端钮,A相元件加线电压Uab和电流Ia,C相元件加线电压Ucb与电流Ic。
三相四线有功电度能表错误接线分析
三相四线有功电度能表错误接线分析发表时间:2019-03-13T11:38:27.180Z 来源:《电力设备》2018年第27期作者:陈勇[导读] 摘要:三相四线有功电能表分为直接接入式和经过电流互感器间接接入两种方式,三相四线有功电能计量属中性点接地系统,对常见的几种经电流互感器间接接入方式错误接线原理进行分析,根据错误接线绘制向量图,写出功率表达式并计算更正系数,得出了追补电量判断的依据。
(国网新疆阿克苏电力公司温宿供电公司新疆阿克苏 843100)摘要:三相四线有功电能表分为直接接入式和经过电流互感器间接接入两种方式,三相四线有功电能计量属中性点接地系统,对常见的几种经电流互感器间接接入方式错误接线原理进行分析,根据错误接线绘制向量图,写出功率表达式并计算更正系数,得出了追补电量判断的依据。
关键词:三相四线有功电能表;电流互感器;接线原理分析;绘制向量图;计算更正系数引言:三相四线有功电能表在低压计量中性点接地系统应用普遍,其接线方式有直接接入和经过电流互感器间接接入两种方式,直接接入式主要用于负荷电流较小的设备,负荷较大的设备多采用经电流互感器接入式。
采用电流互感器间接接入时,由于电流流互感器二次接线复杂,在接线过程中经常会出现电流互感器二次接线错误;电流互感器二次接线极性接反;电压、电流相序接入不对应;电压回路二次接线开路等造成三相四线有功电能表不能准确计量,本文针对以下几种接线进行分析,并绘制错误接线原理图及向量图;计算更正系数得出追补电量的依据。
1.三相四线有功电能表经电流互感器间接接入正确接线1.1正确接线图及向量图如图1所示此时三相有功功率的计算式为:P=UaIaCOS(180°-Φa)+ UbIbCOSΦb+ UcIcCOSΦc假设三相负载对称,则此时有功功率为:P=UICOSΦ,是正确接线计量值的1/3,此时电能表明显走慢。
B、C相CT接反与A相接反结果相同。
1.2 3个CT中2个CT接反,假设为A、B相CT接反接线图及向量图如图3所示:此时三相有功功率的计算式为:P=UaIaCOS(180°-Φa)+ UbIbCOS(180°-Φb)+ UcIcCOSΦc接线图及向量图如图4所示:此时三相有功功率的计算式为:P=UaIaCOS(180°-Φa)+ UbIbCOS(180°-Φb)+ UcIcCOS(180°-Φc)假设三相负载对称,则此时有功功率为:P=-3UICOSΦ,是正确接线计量值的-1倍,此时电能表反转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ib
0.5Ib
0.2Ib
1
1.09
1.77
1.54
0.77
1.97
1.78
1.70
1.20
1.11
0.69
0.57
1.95
0.5L
1.08
0.99
1.38
标准校验
设 备
名 称
电能表现场校验仪
型 号
ST9040
编 号
958723
调修备注:
八、检定结论:
合格
校验人员
审 核
三相有功电能表校验报告
2004年 9 月 20 日
用 途
安装位置
一、铭牌
名 称
三相四线有功电度表
频 率
50HZ
温 度
2Байду номын сангаас℃
型 号
DT862-2
等 级
2级
湿 度
70%
制 标
GB/T15283-1994
电 流
3×3(6)A
出厂编号
2001-0013773
常 数
450r/KWh
电 压
3×220/380V
出厂日期
制造厂家
青岛电度表厂
二、外观检查:完好
三、工频耐压试验:所有线路与外壳间加工频电压2000KV,持续1min;
电流线路与电压线路间加工频电压0.6KV,持续1min,无击穿现象
四、潜动试验:电压线路加110%Ue,转盘转动不超过一周
五、起动试验:加Ue=220V,COSΦ=1,f=50HZ,I=15mA电流时,转盘连续不停转动
六、校核常数:走字正确
七、基本误差校验:
平 衡
负 载
COSΦ
Imax
Ib
0.5Ib
0.2Ib
0.1Ib
0.05Ib
1
1.35
1.39
1.54
1.91
0.5L
0.36
1.20
1.54
1.44
0.5C
0.8C
不平衡
负 载
COSΦ
A元件
B元件
C元件
Imax
Ib
0.5Ib
0.2Ib
Imax
Ib
0.5Ib
0.2Ib