人教版九年级数学上册《关于原点对称的点的坐标》参考教案
人教版数学九年级上册23.2《关于原点对称的点的坐标》名师教案
23.2.3 关于原点对称的点的坐标〔李萨〕一、教学目标〔一〕学习目标1.理解P点与P′点关于原点对称时,它们的横纵坐标的关系,掌握P〔x,y〕关于原点的对称点为P′〔-x,-y〕的运用.2.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.〔二〕学习重点两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕•关于原点的对称点P′〔-x,-y〕及其运用.〔三〕学习难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.二、教学设计〔一〕课前设计1.预习任务两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕关于原点O的对称点P′〔-x,-y〕2.预习自测〔1〕点A〔a,1〕与点A'〔5,b〕关于坐标原点对称,那么实数a、b的值是〔〕A.a=5,b=1B.a=-5,b=1C.a=5,b=-1D.a=-5,b=-1【知识点】关于原点对称的点的坐标的性质【解题过程】∵A与A'点关于原点成中心对称∴a+5=0,1+b=0∴a=-5,b=-1【思路点拨】抓住关于原点对称的点的坐标的性质【答案】D.〔2〕如下图,△PQR是△ABC△ABC中任意一点M的坐标为〔a,b〕,那么它的对应点N的坐标为.【知识点】关于原点对称的点的坐标的性质【解题过程】∵M与N点关于原点成中心对称∴a+x=0,b+y=0∴=-a,y=-b∴N〔-a,-b〕【思路点拨】抓住关于原点对称的点的坐标的性质【答案】〔-a,-b〕〔3〕在平面直角坐标系中,点A〔2m+3n,1〕与点B〔5,3m-2n〕关于原点0中心对称,那么m= ,n= .【知识点】关于原点对称的点的坐标的性质【解题过程】∵A与B点关于原点成中心对称∴2m+3n=-5,3m-2n=-1∴ m=-1,n=-1【思路点拨】抓住关于原点对称的点的坐标的性质【答案】-1,-1.〔4〕在平面直角坐标系中,△ABC的三个顶点的坐标分别为A〔-4,3〕,B〔-3,1〕,C〔-1,3〕. (1)请按以下要求画图:①将△ABC先向右平移4个单位长度,再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2 .〔2〕在第1题中,所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出点M的坐标. 【知识点】平移与中心对称的性质【数学思想】数形结合【解题过程】〔1〕①将点A、B、C分别先向右平移4个单位长度,再向上平移2个单位长度得点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;②先找出点A、B、C关于原点O的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;〔2〕点M的坐标为〔2,1〕.【思路点拨】抓住平移和中心对称的性质【答案】〔1〕〔2〕点M的坐标为〔2,1〕.〔二〕课堂设计1.知识回忆〔1〕中心对称的定义:如果把一个图形绕某个点旋转180,它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称.这个点叫做它们的对称中心.这两个图形中的对应点叫做关于中心的对称点.〔2〕中心对称的性质:①中心对称的两个图形,对称点所连线段必过对称中心,且被对称中心平分.②中心对称的两个图形是全等图形.2.问题探究探究一理解P与点P′点关于原点对称时,它们的横纵坐标的关系重点知识★●活动①回忆旧知,回忆中心对称中的相关概念作图:作出三角形AOB关于O点的对称图形,如下图.B AO解:延长AO使OC=AO,延长BO使OD=BO,连结CD那么△COD为所求的,如下图.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动②整合旧知探究P与点'P点关于原点对称时,它们的横纵坐标的关系〔学生活动〕如图,在直角坐标系中,A〔-3,1〕、B〔-4,0〕、C〔0,3〕、•D〔2,2〕、E 〔3,-3〕、F〔-2,-2〕,作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并答复:这些坐标与点的坐标有什么关系?教师点评:画法:〔1〕连结AO并延长AO〔2〕在射线AO上截取OA′=OA〔3〕过A作AD′⊥x轴于D′点,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等∴AD′=A′D″,OA=OA′∴A′〔3,-1〕同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.〔学生活动〕分组讨论〔每四人一组〕:讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?教师点评:〔1〕从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.〔2〕坐标符号相反,即设P〔x,y〕关于原点O的对称点P′〔-x,-y〕.【设计意图】鼓励学生独立自主解决问题,让学生初步感受通过观察来掌握几何知识的相关概念,引导学生由观察得到感性认识,思考满足中心对称关系的条件,寻求解决问题的方法. 探究二轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运●活动①大胆猜测,大胆操作,探究新知如图,利用关于原点对称的点的坐标特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB A、点B关于原点的对称点A′、B′即可.解:点P〔x,y〕关于原点的对称点为P′〔-x,-y〕,因此,线段AB的两个端点A〔0,-1〕,B〔3,0〕关于原点的对称点分别为A′〔1,0〕,B〔-3,0〕.连结A′B′.那么就可得到与线段AB关于原点对称的线段A′B′.【设计意图】教师综合学生的疑惑,把有意义的问题归纳,并展示出来.●活动②集思广益,探索关于原点对称的点的特点〔学生活动〕△ABC,A〔1,2〕,B〔-1,3〕,C〔-2,4〕利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.教师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,•依次连结,便可得到所求作的△A′B′C′.因此,综合以上我们得出关于原点对称的点的性质:①横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.②坐标符号相反,即设P〔x,y〕关于原点O的对称点P′〔-x,-y〕.【设计意图】通过关于原点中心对称的作图,发坐标的关系.●活动③关于原点中心对称的应用1.△ABC在平面直角坐标系xOy中的位置如下图.画出△ABC关于点O成中心对称的△A1B1C1.【知识点】中心对称的性质【数学思想】数形结合【解题过程】先找出点A、B、C关于原点O的对称点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;【思路点拨】抓住中心对称的性质【答案】2.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为〔2,4〕,请解答以下问题:〔1〕画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.〔2〕画出△A1B1C1绕原点旋转180°后得到的△A2B2C2,并写出点A2的坐标.【知识点】轴对称的性质和中心对称的性质【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于x轴的对称点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;点A1的坐标〔2,-4〕.(2)先找出点A1、B1、C1关于原点O的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;点A2的坐标〔-2,4〕.【思路点拨】抓住轴对称的性质和中心对称的性质【答案】〔1〕如下图:点A1的坐标〔2,-4〕.〔2〕如下图,点A2的坐标〔-2,4〕.探究三拓展应用★▲●活动①根底性例题例1. 如下图,△ABC三个顶点的坐标分别为A〔-2,-1〕,B〔-3,-3〕,C〔-1,-3〕.画出△ABC关于原点0对称的△A2B2C2,并写出点A2的坐标.【知识点】中心对称的性质【数学思想】数形结合【解题过程】先找出点A、B、C关于原点O的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;点A2的坐标〔2,1〕【思路点拨】抓住中心对称的性质【答案】如下图.A2〔2,1〕练习:如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.画出△ABC关于原点成中心对称的△A'B'C'【知识点】中心对称的性质【数学思想】数形结合【解题过程】先找出点A、B、C关于原点O的对称点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;【思路点拨】根据关于原点对称的点的坐标,可得答案;【答案】见解答过程【设计意图】让学生熟练掌握坐标系中中心对称点的性质,并快速作图.●活动2 提升型例题例2.在如下图的单位正方形网格中,△ABC经过平移后得到△A1B1C1,在AC上一点P〔2.4,2〕平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,那么P2点的坐标为〔〕A.〔1.4,-1〕B.〔1.5,2〕C.〔1.6,1〕D.〔2.4,1〕【知识点】平移和旋转的性质【数学思想】数形结合【解题过程】∵A点坐标为:〔2,4〕,A1〔-2,1〕,∴点P〔2.4,2〕平移后的对应点P1为:〔-1.6,-1〕.∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:〔1.6,1〕.应选C.【思路点拨】抓住平移和旋转的性质【答案】 C.练习:如图,在平面直角坐标系中,假设△ABC与△A1B1C1关于E点成中心对称,那么对称中心E点的坐标.【知识点】找对称中心【解题过程】因为△ABC与△A1B1C1关于点E成中心对称,所以点E是AA1的中点,所以点E 的坐标为〔3,-1〕.【思路点拨】抓住中心对称图形的性质【答案】〔3,-1〕.【设计意图】结合平移和中心对称的性质,进展综合运用●活动3 探究型例题例3.如下图,将△ABC绕点C〔0,-1〕旋转180°得到△A'B'C,设点A的坐标为〔a,b〕,那么点A'的坐标为.【知识点】中心对称的性质【解题过程】∵A'与A关于C点成中心对称∴a+x=2×0,b+y=-1×2∴x=-a,y=-b-2,∴点A'的坐标为〔-a,-b-2〕.【思路点拨】对称中心不是原点的中心对称问题.【答案】〔-a,-b-2〕.练习:如下图,把长方形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把长方形OABC绕着原点顺时针旋转90°得到长方形OA'B'C',那么点B'的坐标为.【知识点】旋转的性质【解题过程】∵OA'=OA=4,OC'=OC=2∴B'〔4,2〕【思路点拨】抓住旋转的性质【答案】〔4,2〕【设计意图】提升训练,学会从特殊到一般的转化.3. 课堂总结知识梳理两个点关于原点对称时,它们的坐标符号相反,即点P〔x,y〕,•关于原点的对称点P′〔-x,-y〕,及利用这些特点解决一些实际问题.重难点归纳运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.〔三〕课后作业根底型自主突破1.在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔2,-1〕,B〔3,-3〕,C〔0,-4〕.〔1〕画出△ABC关于原点O成中心对称的△A1B1C1;〔2〕画出△A1B1C1关于y轴对称的△A2B2C2.【知识点】中心对称与轴对称的性质【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于原点成中心对称的点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;(2)先找出点A1、B1、C1关于y轴的对称点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;【思路点拨】中心对称与轴对称的性质【答案】〔1〕△A1B1C1如下图.〔2〕△A2B2C2如〔1〕图所示.2. 在如下图的正方形网格中,△ABC顶点均在格点上,请在所给的平面直角坐标系中按要求作图并完成填空:〔1〕作出△ABC关于原点O成中心对称的△A1B1C1,写出点B1的坐标;〔2〕作出△A1B1C1绕点O逆时针旋转90°的△A2B2C2,写出点C2的坐标.【知识点】中心对称和旋转的性质【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于原点成中心对称的点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;写出点B1的坐标为〔4,-4〕;(2)先找出点A1、B1、C1绕点逆时针旋转90°的对应点A2、B2、C2,然后顺次连接,可得△A2B2C2,如下图;写出点C2的坐标为〔1,4〕.【思路点拨】抓住中心对称和旋转的性质 【答案】〔1〕 如下图,B 1〔4,-4〕 〔2〕如下图,C 2〔1,4〕3.如图,在平面直角坐标系中,直角△ABC 的三个顶点分别是A (-3,1),B(0,3),C (0,1) .〔1〕将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C 1; 〔2〕分别连接AB 1、BA 1后,求四边形AB 1A 1B 的面积. 【知识点】中心对称的性质和菱形的面积 【解题过程】〔1〕如图,△A 1B 1C 1为所作,〔2〕四边形AB 1A 1B 的面积=.124621=⨯⨯【思路点拨】抓住中心对称后图形的特点【答案】〔1〕如图〔2〕四边形AB1A1B的面积为12.4. △ABC在平面直角坐标系中位置如下图,△ABC的顶点A、B、C都在格点上.〔1〕作出△ABC关于原点O的中心对称图形△A1B1C1〔点A、B、C关于原点O的对称点分别为A1、B、C1〕.1〔2〕写出点C1的坐标及CC1长.〔3〕BC与BC1的位置关系为.【知识点】中心对称的性质和两点间的距离公式【数学思想】数形结合【解题过程】〔1〕先找出点A、B、C关于原点成中心对称的点A1、B1、C1,然后顺次连接,可得△A1B1C1,如下图;2. 〔2〕用两点间的距离公式求线段CC1的长,C1〔2,1〕,CC1=5〔3〕垂直【思路点拨】抓住中心对称的性质【答案】〔1〕2.〔2〕C1〔2,1〕,CC1=5〔3〕垂直5.△ABC在平面直角坐标系xOy中的位置如下图.〔1〕作△ABC 关于点C 成中心对称的△A 1B 1C 1.〔2〕将△A 1B 1C 1向右平移4个单位,作出平移后的△A 2B 2C 2.〔3〕在x 轴上求作一点P ,使PA 1+PC 2的值最小,并写出点P 的坐标〔不写解答过程,直接写出结果〕.【知识点】中心对称的性质和轴对称的应用 【数学思想】数形结合 【解题过程】〔1〕先找出点A 、B 、C 分别关于点C 的对称点A 1、B 1、C 1,然后顺次连接,可得△A 1B 1C 1,如下图;〔2〕先找出点A 1、B 1、C 1分别向右平移4个单位的对应点A 2、B 2、C 2,然后顺次连接,可得△A 2B 2C 2 ,如下图;〔3〕作点A 1关于x 轴的对称点A',连接A'C 2,交x 轴于点P ,可得P 点坐标为 〔38,0〕,如下图【思路点拨】抓住中心对称的性质和轴对称的应用 【答案】 〔1〕 如下图.〔2〕 如下图.〔3〕〔38,0〕.6.如下图,将△ABC 绕点P 顺时针旋转 得到 △A'B'C',那么点P 的坐标是 〔 〕A.〔1,1〕B.〔1,2〕C. 〔1,3〕D. 〔1,4〕【知识点】旋转的性质【解题过程】∵将△ABC以某点为旋转中心,顺时针旋转90°得到△A′B′C′,∴点A的对应点为点A′,点C的对应点为点C′,作线段AA′和CC′的垂直平分线,它们的交点为P〔1,2〕,∴旋转中心的坐标为〔1,2〕.应选B.【思路点拨】抓住旋转中心的性质【答案】B.能力型师生共研7.在平面直角坐标系中,线段OP的两个端点坐标分别是O〔0,0〕,P〔4,3〕,将线段OP 绕点O逆时针旋转90°到OP'位置,那么点P'的坐标为A.〔3,4〕B.〔-4,3〕C.〔-3,4〕D.〔4,-3〕【知识点】旋转的性质【解题过程】先做图,将点P绕点O逆时针旋转90°到P',再利用全等知识求线段,应选C.【思路点拨】抓住旋转三要素作图【答案】C.8. 正方形ABCD与正方形A1B1C1D1,关于某点中心对称,A、D1、D三点的坐标分别是〔0,4〕〔0,3〕〔0,2〕.〔1〕求对称中心的坐标;〔2〕写出顶点B 、C 、B 1、C 1的坐标. 【知识点】中心对称的性质【解题过程】〔1〕 因为D 和D 1是对称点,所以对称中心是线段DD 1的中点,所以对称中心的坐标是〔0,25〕. 〔2〕B 〔-2,4〕,C 〔-2,2〕,C 1〔2,3〕,B 1〔2,1〕.【思路点拨】抓住旋转的性质 【答案】〔1〕〔0,25〕. 〔2〕B 〔-2,4〕,C 〔-2,2〕,C 1〔2,3〕,B 1〔2,1〕.探究型 多维突破9.在平面直角坐标系中,△ABC 三个顶点的坐标分别为()()()1,2,3,4,2,9.A B C --- ⑴画出ABC △,并求出AC 所在直线的解析式.⑵画出ABC △绕点A 顺时针旋转90后得到的111A B C △,并求出ABC △在上述旋转过程中扫过的面积.【知识点】旋转的性质和扇形面积【解题过程】⑴如下图,ABC △即为所求. 设AC 所在直线的解析式为()0y kx b k =+≠∵()1,2A -,()2,9C - ∴229k b k b -+=⎧⎨-+=⎩ 解得 75k b =-⎧⎨=-⎩∴75y x =--⑵如下图,11B C 1△A 即为所求.由图可知,52AC =ABC S S S =+△扇形=()2905225663602ππ+=+ 【思路点拨】〔1〕利用两点坐标列方程组就一次函数解析式; 〔2〕利用旋转的性质和扇形面积公式求解. 【答案】〔1〕75y x =-- 〔2〕2562π+ 10.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A 和李村B 送水.经实地勘查后,工程人员设计图纸时,以河道上的大桥O 为坐标原点,以河道所在的直线为x 轴建立直角坐标系〔如图〕,两村的坐标分别为A 〔2,3〕,B (12,7).(1)假设从节约经费考虑,水泵站建在距离大桥O 多远的地方可使所用输水管最短? (2)水泵站建在距离大桥O 多远的地方,可使它到张村、李村的距离相等?【知识点】对称的性质,中垂线的性质 【解题过程】〔1〕作点B 关于x 轴的对称点E ,连接AE ,O2 4 6 8 10 12 x /千米2 4 6 8y /千米 ABA BCOB 1C 1A 1 xy11那么点E 为〔12,-7〕,设直线AE 的函数关系式为y =kx +b ,那么23127k b k b +=⎧⎨+=-⎩,解得15k b =-⎧⎨=⎩, 所以,直线AE 解析式为y =-x +5当y =0时,x =5,所以,水泵站应建在距离大桥5千米的地方时,可使所用输水管道最短. 〔2〕作线段AB 的垂直平分线GF ,交AB 于点F ,交x 轴于点G , 设点G 的坐标为〔x ,0〕,在Rt △AGD 中,AG 2=AD 2+DG 2=32+〔x -2〕2 在Rt △BCG 中,BG 2=BC 2+GC 2=72+〔12-x 〕2 ∵AG= BG ,∴32+〔x -2〕2=72+〔12-x 〕2 解得x =9.所以,水泵站建在距离大桥9千米的地方,可使它到张村、李村的距离相等.【思路点拨】〔1〕利用对称找出最短距离,再用一次函数与x 轴交点求距离 〔2〕先做出AB 的中垂线,再利用AB 的中垂线上与x 轴交点求距离 【答案】〔1〕水泵站应建在距离大桥5千米的地方〔2〕水泵站建在距离大桥9千米的地方自助餐A(a,2)与点A'(3,b)关于坐标原点对称,那么实数a、b的值是______.【知识点】关于原点对称的点的坐标的性质【解题过程】∵A与A'点关于原点成中心对称∴a+3=0,2+b=0∴a=-3,b=-2【思路点拨】抓住关于原点对称的点的坐标的性质【答案】a=-3,b=-2.2.在平面直角坐标系内,假设点P〔-1,p〕和点Q〔q,3〕关于原点O对称,那么pq的值为.【知识点】关于原点对称的点的坐标.【解题过程】∵点P〔-1,p〕和点Q〔q,3〕关于原点O对称,∴q=1,p=-3,那么pq的值为:-3.故答案为:-3.【思路点拨】抓住关于原点对称的点的坐标的性质【答案】-33.在平面直角坐标系中,线段OP的两个端点坐标分别是O〔0,0〕,P〔2,5〕,将线段OP 绕点O逆时针旋转90°到OP'位置,那么点P'的坐标为.【知识点】旋转的性质【解题过程】先做图,将点P绕点O逆时针旋转90°到P',再利用全等知识求线段,故为〔-5,2〕.【思路点拨】抓住旋转三要素作图【答案】〔-5,2〕.4.正方形ABCD在坐标系中的位置如下图,将正方形ABCD绕D点顺时针方向旋转90后,B点的坐标为〔〕A.〔-2,2〕 B.〔4,1〕 C.〔3,1〕 D.〔4,0〕【知识点】坐标和旋转变换【解题过程】由旋转性质找到B旋转后的对应点B',应选D.【思路点拨】抓住旋转的性质【答案】D.5.如图,在正方形网格中每个小正方形的边长都是单位长度1,△ABC的顶点都在格点上,且△ABC与△DEF关于点O成中心对称.〔1〕在网格图中标出对称中心点O的位置;〔2〕画出将△ABC沿水平方向向右平移5个单位后的△D1E1F1.【知识点】作图-旋转变换;作图-平移变换【数学思想】【解题过程】〔1〕如下图,点O为所求.(2)如下图,△D1E1F1即为所画的三角形.【思路点拨】〔1〕连接对应点B、E,对应点C、F,其交点即为对称中心O的位置;〔2〕利用网格构造找出平移后的点的位置,然后顺次连接即可.【答案】见解答过程6.如图,方格纸中有三个点A、B、C要求作一个四边形使这三个点在这个四边形的边〔包括顶点〕上,且四边形的顶点在方格的顶点上.〔1〕在①中作出的四边形是中心对称图形但不是轴对称图形;〔2〕在②中作出的四边形是轴对称图形但不是中心对称图形;〔3〕在③中作出的四边形既是轴对称图形又是中心对称图形.【知识点】轴对称和中心对称的性质【解题过程】〔1〕作一个平行四边形如答图①;〔2〕作一个等腰梯形如答图②;〔3〕作一个正方形如答图③.【思路点拨】抓住轴对称和中心对称的性质【答案】。
人教版数学九年级上册23.2.3关于原点对称的点的坐标教案
B(0,-2)Y轴C(-3,-2) 第三象限D(-3 ,0) X轴E(-1.5,3.5)第二象限F(2,-3)第四现象的正确率另一个目用类比的方法学习新的知识(二)探索新知:如何确定平面直角坐标系中A点关于原点对称的点A’的坐标?A(2,1)A’(—2,—1)关于原点对称的两个点的坐标之间有什么关系?做出下列关于原点对称的点,并写出它们的坐标1、学生建立平面直角坐标系,并在,坐标系内描出要求点的坐标,根据中心对称的性质,观察、写出对称点的坐标。
1、让学生掌握关于原点对称的点的坐标的变化规律及作图方法。
这些点的坐标已知点的坐标有什么关系?归纳:两个点关于原点对称的坐标特点横坐标、纵坐标的数都互为相反数即点P(X,Y)关于原点对称(—X,—Y)例题讲解:例2如图,做出与△ABC关于原点对称的图形解:点A(-4,1) 、B(-3,2) 、C(-1,-1)关于原点对称的点的坐标分别是A′(4,-1),B(3,-2),C(1,1) 2、分析总结出规律并理解认识2、理清思路形成系统(三)学以致用:1、点 M(a,b)关于原点O的对称点的(-a,-b )2、点A(-1,-3)关于原点对称的点坐标是(1,-3) 3.若点A(m,-2),B(1,n)关于原点对称, m= -1 n= 2下列各点中哪两个点关于原点对称?A(-5,0), B(0,2), C(2,-1), D(2,0), E(0,5) F(-2,1) G(-2,-1)点C(2,-1)与F(-2,1)关于原点对称的点的横坐标、纵坐标的符号都互为相反数你能说出点P关于x轴y轴、原点的对称点坐标吗?1、根据前面的规律找出对应的坐标画出图形检测学生懂得理论之后是否能够利用理论解决数学问题点A与点B的位置关系是怎样的?点P与点C呢?两个三角形有什么位置关系?分别写出对应点的坐标。
2、理解两种作图的方法,并结合轴对称,形成系统(四)课堂小结(本节课你学会了什么?)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),•关于原点的对称点P′(-x,-y),及其利用这些特点解决一些实际问题.学生根据所学归纳总结、反思,注意方法总结,形成系统回顾知识点,突出规律方法教学,使学生熟练掌握这节课的。
九年级数学上册23.2.3关于原点对称的点的坐标教案新人教版(1)
23。
2。
3 关于原点对称的点的坐标一、教学目标1.掌握两点关于原点对称时,横纵坐标的关系。
2。
会在平面直角坐标系内作关于原点对称的图形。
3.进一步体会数形结合的思想.二、课时安排1课时三、教学重点掌握两点关于原点对称时,横纵坐标的关系.四、教学难点会在平面直角坐标系内作关于原点对称的图形.五、教学过程(一)导入新课1.下列各点分别在坐标平面的什么位置上?A(3,2)B(0,-2)C(-3,-2)D(-3,0)E(-1.5,3。
5)F(2,-3)2。
(1)你能说出点P关于x轴对称点的坐标吗?思考:关于x轴对称的点的坐标具有怎样的关系?(二)讲授新课活动1:小组合作问题:如何确定平面直角坐标系中A点关于原点对称的点A′坐标?记作A ( 2,1 )因为△ABC≌△A′B′ C记作A′ ( -2,—1 )问题:在直角坐标系中,作出下列点关于原点的对称点,并写出它们的坐标。
A(4,0) B(0,—3) C(2,1) D(—1,2) E(—3,—2)答案:x-1-2-3-1-2-3y A想一想:关于原点对称的两个点的坐标之间有什么关系?活动2:探究归纳关于原点对称的点的坐标关系特点横坐标、纵坐标的符号都互为相反数,即:点P(a,b)关于原点对称的点的坐标为P′(—a,-b);点P(a,b)关于x轴对称的点的坐标为P′(a,—b);点P(a,b)关于y轴对称的点的坐标为P′(-a, b).简记为:“关于谁,谁不变,关于原点都改变”。
(三)重难点精讲例如图,利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形。
解:解:△ABC的三个顶点 A(—4,1),B(—1,—1),C(-3,2),关于原点的对称点分别为A′(4,-1),B′(1,1),C′(3,—2)依次连接 A ′B ′ ,B ′ C ′ ,C ′ A ′ ,就可得到与△ABC关于原点对称的△A′B′ C ′ 。
(四)归纳小结关于原点对称的点的坐标特征:P (x,y)关于原点的对称点为P′(-x,-y)。
九年级上册数学教案《关于原点对称的点的坐标》
九年级上册数学教案《关于原点对称的点的坐标》教材分析《关于原点对称的点的坐标》是人教版九年级上册第二十三章第二节第三课时的内容。
教材从观察和实验入手,归纳得出坐标平面上的一个点关于原点对称的点的坐标的对应关系,进一步探讨了如何利用点与点的对应关系,在平面直角坐标系中作出一个图形关于原点对称的图形。
学情分析学生已经学习了平面直角坐标系和一次函数。
本节课采用了自主学习,合作交流的方式,让学生学会观察图形,作出决策,共同找出关于原点对称的点的坐标的性质,让学生感受图形中心对称变换后的坐标的变化,并且能进一步解决一些相关问题,培养学生的应用能力和创新意识。
教学目标1、掌握在直角坐标系中关于原点对称的点的坐标的关系。
2、会在平面直角坐标系内作关于原点对称的图形。
3、进一步体会数形结合的思想。
教学重点会在平面直角坐标系内作关于原点对称的图形。
教学难点掌握在直角坐标系中关于原点对称的点的坐标的关系。
教学方法讲授法、演示法、谈话法、讨论法、练习法教学过程一、导入阶段如图,在直角坐标系中,作出下列已知点关于原点O的对称点,并写出它们的坐标。
这些坐标与已知点的坐标有什么关系?A(4,0),B(0,-3),C(2,1),D(-1,2),E(-3,-4) A’(-4,0),B’(0,3),C’(-2,-1),D’(1,-2),E’(3,4) 对称点的横纵坐标与已知点的横纵坐标是相反数。
归纳:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)二、新授阶段如图所示,利用关于原点对称的点的坐标关系,作出与△ABC关于原点对称的图形。
解:点P(x,y)关于原点的对称点为P’(-x,-y)。
因此△ABC的三个顶点A(-4,1),B(-1,-1),C(-3,2)关于原点的对称点分别为A’(4,-1),B’(1,1),C’(3,-2)。
依次连接A’B’,B’C’,C’A’,就可以得到△ABC关于原点对称的△A’B’C’。
人教版九年级数学上册 23.2.3 关于原点对称的点的坐标(教案)
23.2.3关于原点对称的点的坐标【知识与技能】1.理解点P与P′关于原点对称时,它们的横、纵坐标的关系;2.能运用关于原点对称的点的坐标的关系解决具体问题.【过程与方法】通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力以及与他人合作交流的能力.【情感态度】结合坐标系内点的坐标对称关系的学习,培养学生合作交流的意识和归纳类比的能力,增强数学学习的信心和乐趣.【教学重点】关于原点对称的点的坐标关系及其应用.【教学难点】运用中心对称的知识导出关于原点对称的点的坐标性质.一、情境导入,初步认识问题1以前我们学习过关于x轴、y轴对称的点的坐标问题,你能说说关于x轴、y轴对称的点的坐标的关系吗?问题2在平面直角坐标系中,点A的坐标为(-3,2),则点A关于原点O 的对称点A′的坐标是什么呢?你能说说吗?【教学说明】让学生通过对问题的思考,初步感受关于原点对称的点的坐标的确定方法,激发学习兴趣和求知欲望,导入新知.二、思考探究,获取新知探究如图,在直角坐标系中,作出下列已知点关于原点O的对称点,并写出它们的坐标.A(4,0)B(0,-3)C(2,1)D(-1,2)E(-4,-3)思考通过你的作图,你能说出这些点和它们关于原点O的对称点的坐标之间有什么关系吗?【教学说明】通过让学生在平面直角坐标系中画出某点关于原点O的对称点的过程,可让学生初步感受到关于原点对称的点的坐标的特征,学生在自我探索的过程中,体会成功的喜悦和学习的乐趣.如图所示,可得到点A、B、C、D、E关于原点O的对称点分别为A′、B′、C′、D′、E′.以点C为例,作C点关于原点O的对称点C′的方法为:连接CO并延长至C′,使CO=C′O,则C′点即为点C关于原点O的对称点.过C作CM⊥x轴于M,作C′N⊥x轴于N.易知△OCM≌△OC′N.∴CM=C′N,OM=ON.又C(2,1),即OM=2,CM=1,∴ON=2,C′N=1.∴C′点坐标为(-2,-1).同理可知点A、B、D、E关于原点O的对称点A′、B′、D′、E′的坐标分别为(-4,0),(0,3),(1,-2),(4,3)【归纳结论】两个点关于原点对称时,它们的横、纵坐标的符号相反,即点P(x,y)关于原点O的对称点P′的坐标为(-x,-y).【教学说明】在上面的探索活动过程中,先让学生动手画出一些点关于原点的对称点,并写出它们的坐标,然后让学生观察坐标之间的变化,总结出规律,从而归纳出结论,即本节的重点.在这一活动中,既学到了新知识,又锻炼了学生的数学归纳能力.三、典例精析,掌握新知例1 图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.分析:(1)由图可知,A、B、C三点坐标分别是什么?(2)它们关于原点的对称点的坐标又应分别是什么?(3)这样画出的△A′B′C′与前面利用中心对称来作图有什么区别?解:(1)A、B、C三点坐标分别是(-4,1)、(-1,-1)、(-3,2)(2)它们关于原点对称的点的坐标分别是(4,-1)、(1,1)、(3,-2)(3)略例2 如图,平行四边形的中心在坐标原点,AD∥BC,D(3,2),C(1,-2),求A、B两点的坐标.分析:因为平行四边形是中心对称图形,所以相对的两个顶点关于中心对称,图中该平行四边形的中心为原点,故A与C、B与D关于原点对称,从而可求出A、B坐标.解:平行四边形是中心对称图形,A与C,B与D关于原点对称.∴A(-1,2),B(-3,-2).【教学说明】教师提出问题来帮助学生理清思路,既是对所学知识的回顾与反思,又为解决问题寻求解题思路,增强学生运用知识的能力.例1的作图过程可由学生自己完成.四、运用新知,深化理解1.点M(-2,3)关于原点的对称点M′的坐标为()A.(-2,-3)B.(2,-3)C.(3,-2)D.(2,3)2.下列各点中哪两个点关于原点O对称?A(-5,0),B(0,2),C(2,-1),D(2,0),E(0,5),F(-2,1),G (-2,-1)【教学说明】设计这两个小题的目的在于进一步使学生掌握知识,可由学生自主完成,教师予以点评.【答案】1.B2.C(2,-1)与F(-2,1)关于原点O对称五、师生互动,课堂小结通过这节课的学习,你有哪些收获和想法?说说看.【教学说明】教师还可让学生及时回顾本节课的知识,通过反思、提炼学习的收获,并通过交流,教师可了解学生的学习情况,并及时调整.1.布置作业:从教材“习题23.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.1.本节课通过P(x,y)关于原点的对称点为P′(-x,-y)的运用,初步向学生渗透“数形结合”思想.也为以后的函数学习奠定一定的基础.整个教学和知识点的衔接都比较的流畅,但在很多细节的处理不是很到位,尤其是题目的设置,需要再斟酌.充分利用教材,适当的时候可以将教材内容有机的整合起来,选取适当的载体呈现,这样的教学才能达到更好的效果.2.这一节与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节的学习,既可以让学生认识图形的三种基本运动中“旋转”在几何知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称图形、中心对称图形)的知识讲授.中心对称是以轴对称为基础,是三角形全等知识的运用,是平行四边形的进一步研究,是今后学习其它图形的必备知识.。
人教版数学九年级上册 23.2.3 关于原点对称的点的坐标 教学设计
23.2.3 关于原点对称的点的坐标一、教学目标:1.知识与技能(学习目标)⑴掌握点P(x,y)关于原点的对称点P'(-x,-y)的运用.⑵能运用关于原点对称的点的坐标的关系解决具体问题.2.过程与方法通过观察和操作,理解关于原点对称的点的坐标的关系,并会运用.3.情感态度与价值观通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力以及与他人合作交流的能力.二、教学重难点:重点:关于原点对称的两个点的横坐标相反,纵坐标相反.难点:利用特殊图形与特殊坐标之间的对应关系发展数形结合思想.三、教学过程:1.温故知新:回忆所学过的直角坐标系中点关于X轴、Y轴对称的点的坐标关系,引出本节课的内容-----关于原点对称的点的关系2.合作探究(一):⑴教材68页的“探究”通过利用前面学习的“中心对称”知识,作已知点关于原点的对称点,探究对称点间的坐标关系.⑵归纳得出结论:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y)。
⑶练习: 做“找关于原点的对称点的”3个小练习1.请直接说出下列各点关于原点的对称点的坐标:A(3,1) B(-2,3) C(-1,-2)D(2,-3) E(-5,0) F(0,2)2.若点P(x,-3)与点Q(4,y)关于原点对称,则x+y等于()A.1 B.-1 C.7 D.-73 .已知点A(-2m+4,3m-1)关于原点的对称点位于第三象限,则m的取值范围是()3.合作探究(二):⑴教材68页的“例2”关于原点对称的点的坐标的关系的应用:------利用关于原点对称的点的坐标关系,做出与△ABC关于原点对称的图形。
⑵练习:利用关于原点对称的点的坐标关系,做出关于原点对称的图形(线段、多边形)。
练习1. 如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.练习2. 四边形ABCD个顶点分别为A(5,0),B(-2,3),C(-1,0),D(-1,-5),作出与四边形ABCD关于原点对称的图形。
九年级数学上册《关于原点对称的点的坐标》教案、教学设计
首先,回顾坐标系的基本概念,让学生明确坐标系的构成。然后,引入关于原点对称的概念,讲解原点对称的性质。
2.坐标规律推导
3.方法与技巧讲解
针对学生在理解坐标规律时可能遇到的困难,讲解坐标运算的方法和技巧,帮助学生更好地掌握关于原点对称的点的坐标规律。
(三)学生小组讨论
1.分组讨论
将学生分成小组,让他们相互讨论关于原点对称的点的坐标规律。要求学生在讨论中积极发表自己的观点,学会倾听、尊重他,培养学生解决问题的方法和策略。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,激发学生的学习积极性,使学生积极主动地参与课堂学习。
2.引导学生体验数学学习的成就感,增强学生的自信心,培养学生面对困难勇于挑战的精神。
3.培养学生的审美观念,让学生在学习过程中感受对称美,提高学生的审美能力。
(2)已知等腰三角形的底边长为6,顶点在原点,求该等腰三角形另外两个顶点的坐标。
4.思考题
(1)除了原点对称,你还能想到其他的对称类型吗?它们在坐标系中是如何表示的?
(2)关于原点对称的点的坐标规律在现实生活中有哪些应用?请举例说明。
作业要求:
1.学生需独立完成作业,书写规范,表述清晰。
2.鼓励学生在解题过程中尝试不同的方法,展现自己的思维过程。
4.能够运用所学的对称知识,解决实际生活中的对称问题,提高数学应用能力。
(二)过程与方法
1.通过观察、分析、归纳等教学活动,引导学生自主探究原点对称的点的坐标规律,培养学生的观察能力和逻辑思维能力。
2.采用小组合作的学习方式,让学生在讨论、交流中共同解决问题,提高学生的合作意识和沟通能力。
3.设计丰富多样的练习题,使学生在解决问题中巩固所学知识,提高学生的解题能力和数学素养。
最新人教版九年级数学上册《关于原点对称的点的坐标》教学设计(精品教案)
23.2.3 关于原点对称的点的坐标教学目标:知识与技能目标:1.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y).2.对上述知识的运用.过程与方法目标:1.复习轴对称、旋转,尤其是中心对称;2.然后知识迁移到关于原点对称的点的坐标的关系;3.最后关于原点对称的点的坐标的关系的运用.情感与态度目标:让学生经历观察、操作等过程,了解关于原点对称的点的坐标的关系,并运用该知识去解决相关问题,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点和难点重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用. 难点:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.一.课堂导入 (学生活动)请同学们完成下面三题.1.已知点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.l A2.如图,△ABC 和△ADC 是正三角形,以点A 为中心,把△ADC 顺时针旋转603.如图△ABC ,绕点C 旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二.探索发现,形成方法(学生活动)如图,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、•D (2,2)、E (3,-3)、F (-2,-2),作出A 、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连结AO并延长AO(2)在射线AO上截取OA′=OA(3)过A作AD′⊥x轴于D′点,过A′作A′D″⊥x 轴于点D″.∵△AD′O与△A′D″O全等∴AD′=A′D″,OA=OA′∴A′(3,-1)同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P (x ,y )关于原点O 的对称点P ′(-x ,-y ).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B ′即可.解:点P (x ,y )关于原点的对称点为P ′(-x ,-y ), 因此,线段AB 的两个端点A (0,-1),B (3,0)关于原点的对称点分别为A ′(1,0),B (-3,0).连结A ′B ′.则就可得到与线段AB 关于原点对称的线段A ′B ′.(学生活动)例2.已知△ABC ,A (1,2),B (-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,•依次连结,便可得到所求作的△A′B′C′.三、巩固练习1.教材P69 练习.四、归纳小结,布置作业1.(学生总结,老师点评)1.两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y).2.对上述知识的运用.2.布置作业书面作业:P70 习题23.2第3,4题课堂作业1ΔABC和ΔA’B’C’关于原点O对称,若ΔABC的周长为12cm,ΔA’B’C’的面积为6cm2,则ΔA’B’C’的周长为___________,ΔABC的面积为_________。
人教版九年级数学上23.2.3关于原点对称的点的坐标(教案)教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了关于原点对称的点的坐标的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对坐标变换规律的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(3)难点三:在多步骤的解题过程中,学生可能会出现计算错误。教学中应强调准确进行数学运算的重要性,并通过练习加强学生的运算能力。
(4)教师需要通过对比不同类型的题目,明确对称性质适用的场景,并指导学生如何判断题目是否适用该性质。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《关于原点对称的点的坐标》这一章节。在开始之前,我想先问大家一个问题:“你们在玩游戏时,有没有注意过一些图形在镜子中的反射现象?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索坐标对称的奥秘。
(二)新课讲授(用时10分钟)
3.重点难点解析:在讲授过程中,我会特别强调坐标变换规律和实际应用这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与关于原点对称的点的坐标相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过在坐标系中画出点P,然后找到它关于原点对称的点P',直观演示坐标变换的基本原理。
其次,小组讨论环节,部分学生的参与度不高。我意识到,在分组时需要更加注意学生的个性和能力搭配,确保每个学生都能在讨论中发挥作用。同时,我要在讨论过程中适时给予引导,提出更具启发性的问题,激发学生的思考和参与热情。
人教初中数学九年级上册 23.2.3 关于原点对称的点的坐标教案
关于原点对称的点的坐标1.理解点P与点P'关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点对称点为P'(-x,-y)的运用.2.能运用关于原点对称的点的坐标关系特征解决简单问题.【重点难点】点P与点P'关于原点对称时,它们的横纵坐标的关系.【新课导入】前面我们知道:两个点关于x轴对称,这两个点的坐标具有一定的规律;两个点关于y轴对称,这两个点的坐标具有一定的规律.如果两个点关于原点对称时,它们的横纵坐标有什么关系? 【课堂探究】一、关于原点对称的点的坐标特点1.已知点A(x,y-4)与点B(1-y,2x)关于原点对称,则y x的值是( B )(A)1 (B)2 (C) (D)-22.(2013安徽节选)如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.请画出△ABC关于原点O对称的△A1B1C1.解:如图所示.二、点关于原点对称的应用3.直线y=x+3上有一点P(m-5,2m),则P点关于原点的对称点P'的坐标为(7,4) .4.如图,直线AB与x轴、y轴分别相交于B、A两点,且A(0,3),B(3,0),点A1、点B1是点A、点B关于原点O的对称点.(1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1的函数解析式. 解:(1)如图所示.(2)y=-x-3.在坐标系1.已知点P(a,3)和P'(-4,b)关于原点对称,则(a+b)的值为( A ) (A)1 (B)-1 (C)7 (D)-72.若点P(-1-2a,2a-4)关于原点对称的点是第一象限的点,则a 的整数解有( B ) (A)1个 (B)2个 (C)3个 (D)4个3.如图,△PQR 是△ABC 经过某种变换后得到的图形.如果△ABC 中任意一点M 的坐标为(a,b),那么它的对应点N 的坐标为( C )(A)(a,-b) (B)(-a,b)(C)(-a,-b) (D)(a,b)4.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称或中心对称变换,若原来点A 坐标是(a,b),则经过第2011次变换后所得的A点坐标是(a,-b) .5.如图,画出△ABC关于原点的对称图形△A'B'C',并求△A'B'C'的面积.解:如图,过C'作C'D∥y轴交x轴于点D,所以S△A'B'C'=S梯形A'ODC'-S△B'C'D-S△A'OB'=×(2+3)×2-×2×1-×3×1=2.5.。
人教版九年级数学上册23.2.3《关于原点对称的点的坐标》说课稿
人教版九年级数学上册23.2.3《关于原点对称的点的坐标》说课稿一. 教材分析《关于原点对称的点的坐标》是人教版九年级数学上册第23章《坐标与图形的变换》的第三节内容。
这部分教材是在学生已经掌握了坐标系的建立、点的坐标、图形的平移等知识的基础上进行学习的。
通过这部分内容的学习,使学生能够掌握原点对称的点的坐标规律,进一步理解和运用坐标系和图形的变换。
教材通过引入对称轴、对称点的概念,引导学生探索原点对称的点的坐标特征,从而推导出对称点的坐标规律。
二. 学情分析九年级的学生已经具备了一定的数学基础,对坐标系和图形的变换有一定的了解。
但是,对于原点对称的点的坐标规律的理解和运用还需要进一步的引导和培养。
因此,在教学过程中,需要关注学生的学习情况,针对学生的实际水平进行教学设计和调整。
三. 说教学目标1.知识与技能目标:学生能够理解原点对称的点的坐标概念,掌握原点对称的点的坐标规律,能够运用坐标规律解决实际问题。
2.过程与方法目标:通过观察、操作、思考、表达等活动,培养学生的空间想象能力、逻辑思维能力和数学表达的能力。
3.情感态度与价值观目标:学生能够积极参与数学学习,体验数学学习的乐趣,增强自信心,培养合作意识和探究精神。
四. 说教学重难点1.教学重点:原点对称的点的坐标规律。
2.教学难点:理解原点对称的点的坐标规律,并能够灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究学习法、合作交流法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、教学挂图、学具等辅助教学,帮助学生直观形象地理解原点对称的点的坐标规律。
六. 说教学过程1.导入新课:通过展示一些对称的图形,引导学生观察和思考,引出原点对称的点的坐标规律。
2.探究新知:学生分组讨论,每组提供一些关于原点对称的点的坐标数据,引导学生通过观察、操作、思考,总结出原点对称的点的坐标规律。
3.巩固新知:学生进行一些相关的练习题,加深对原点对称的点的坐标规律的理解和运用。
人教版数学九年级上册教学设计:23.2.3关于原点对称的点的坐标
3.应用举例:结合实际例子,如平面几何图形的对称、物理中的镜像现象等,让学生理解原点对称知识在实际问题中的应用。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每个小组针对以下问题进行讨论:(1)如何判断一个点是否关于原点对称?(2)如何求一个点关于原点对称的点的坐标?(3)原点对称在实际问题中有哪些应用?
(2)已知线段AB的两个端点坐标分别为A(-2, 3),B(4, -1)。求线段AB关于原点对称的线段A'B'的端点坐标。
3.拓展提高题:
(1)已知点P(x, y)关于原点对称的点为P'坐标。
(2)平面直角坐标系中,若点M(a, b)关于原点对称的点为M'(-a, -b),且点M在直线y=2x上。求点M关于原点对称的点M'是否也在直线y=2x上,并说明理由。
4.思考题:
请思考原点对称在生活中的应用,结合实际例子,阐述原点对称在解决问题中的优势。
作业要求:
1.请同学们认真完成作业,保持字迹清晰,步骤齐全。
2.鼓励同学们相互讨论、交流,共同解决问题,提高作业质量。
3.提交作业前,请认真检查,确保答案正确,避免低级错误。
4.作业完成后,请及时反思,总结自己在解决问题过程中的收获和不足,为下一节课的学习做好准备。
此外,九年级学生正处于青春期,思维活跃,求知欲强,对于具有挑战性的问题具有一定的探究欲望。因此,在教学过程中,应注重激发学生的兴趣,设置具有一定难度的问题,引导学生主动思考,发挥学生的主体作用。
同时,学生之间的个体差异较大,部分学生对数学学习存在恐惧心理。在教学过程中,要关注每一个学生的成长,给予他们个性化的指导,鼓励他们克服困难,增强自信心,使他们在学习过程中感受到数学的乐趣和成就感。
人教版九年级上册数学23.2.3关于原点对称的点的坐标 教学设计
23.2.3关于原点对称的点的坐标一、学习目标1.理解并掌握关于原点对称的点的坐标特征,会运用关于原点对称的点的坐标特征解决相关问题;2.运用轴对称、旋转、中心对称的知识探究关于原点对称的点的坐标的特征;3.在探究过程中体会类比思想和数形结合思想在数学中的作用。
二、重点和难点重点:掌握点P(x,y)关于原点的对称点P’(-x,-y)及其应用.难点:运用中心对称的知识推导出点P(x,y)关于原点对称的点P’(-x,-y).三、学习过程(一)问题导入:1、下列各点分别在坐标平面的什么位置上?A(3,2)————B(0,-2)————C(-3,-2)————D(-3,0)————E(-1.5,3.5)————F(2,-3)————2、在平面直角坐标系中,关于X轴、y轴对称的点的坐标具有怎样的关系?(二)自主学习:自学指导:研读教材P68的内容,要求:1、思考关于原点对称的两点在直角坐标中位置的特点。
2、认真研究例2,掌握作出与△ABC关于原点对称的图形的作图方法。
(三)自学检测(1)在平面直角坐标系中,两个点关于原点对称时,它们的坐标,即点P(x,y)关于原点对称的点的坐标P’(,)。
(2)点A(2,-3)关于原点对称的点的坐标A’(,);点B(0,7)关于原点对称的点的坐标B’(,);点C(-8,-1)关于原点对称的点的坐标C’(,)。
(四)探究新知探究1:关于原点对称的点的坐标如下图:在直角坐标系中,已知A(4,0)、B(0,-3)、 C(2,1)、D(-1,2)、E(-3,-4),作出A、B、C、D、E点关于原点O的中心对称点,写出它们的坐标。
思考:这些坐标与已知点的坐标有什么关系?学法:自主探究,探索发现法。
[归纳结论]在直角坐标系中,两个点关于原点对称时,它们的坐标,即点P(x,y)关于原点对称的点的坐标为P’。
延伸:若点P与P'的横,纵坐标分别互为相反数,即P(x,y), P' (-x,-y),则点P与P'关于原点O成 .探究2:关于原点对称的点的坐标的应用已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于原点对称的图形。
23.2.3关于原点对称的点的坐标教学设计++++2024-2025学年人教版数学九年级上册+
23.2.3 关于原点对称的点的坐标教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册第二十三章“旋转”23.2.3 关于原点对称点的坐标,内容包括:关于原点对称的点的坐标及应用.2.内容解析本节课在学生学习平移、轴对称在平面直角坐标系中坐标特点的基础上,进一步探究关于原点对称的两点坐标间的关系,并利用这一关系解决一些问题.基于以上分析,确定本节课的教学重点是:掌握关于原点对称的两点坐标间的关系.二、目标和目标解析1.目标1)通过探究学习能够正确认识关于原点对称的两点坐标间的关系.2)通过对知识的学习能够运用关于原点对称的两点坐标间的关系,在平面直角坐标系中作图.3)通过学生经历观察、操作、交流、归纳等过程,培养学生探究问题的能力、动手能力、观察能力,以及与他人合作交流的能力.2.目标解析达成目标1)的标志是:求直角坐标系中任意一点关于原点对称的点的坐标.达成目标2)的标志是:运用关于原点对称的两点坐标间的关系,在平面直角坐标系中作图.教学重难点:通过探究学习能够正确认识关于原点对称的两点坐标间的关系.通过对知识的学习能够运用关于原点对称的两点坐标间的关系,在平面直角坐标系中作图.三、教学问题诊断分析本节课是在中心对称的基础上学习关于原点对称的点的坐标,学生得出两个点关于原点对称时,它们的坐标符号相反,教学时,教师要充分利用具体图形,让学生获得感性认识,进而利用这一性质作一个图形关于原点对称的图形.基于以上分析,本节课的教学难点是:能够运用关于原点对称的两点坐标间的关系,在平面直角坐标系中作图.四、教学过程设计(一)复习旧知,引入新课问题1:对于图形的运动,我们已经学习了哪些内容?平移,轴对称,旋转,中心对称追问1:以轴对称为例,我们学习了它的哪些相关知识,是按照怎样的顺序学习的?定义——性质——作图——坐标表示追问2:对于中心对称,我们已经学习了哪些内容?定义——性质——作图与轴对称的学习过程作对比,我们这一节课就来学习用坐标表示中心对称。
《关于原点对称的点的坐标》教案
《关于原点对称的点的坐标》教案一、教学目标1.了解坐标系的概念和画法。
2.理解原点对称的概念。
3.学习求原点对称点的方法。
4.掌握原点对称点的坐标计算。
二、教学重点与难点三、教学过程1.引入导入 (5分钟)教师询问学生是否听说过坐标系的概念,提问如下:1)什么是坐标系?2)有没有画过坐标系?3)什么是原点?4)你们知道什么是对称吗?通过学生的回答,引导学生了解坐标系、原点及对称的概念。
2.概念阐释 (10分钟)教师向学生详细解释坐标系的概念和画法,重点讲解直角坐标系的画法及其主要部分的含义。
沿着 x 轴正方向称为 x 轴,原点就是针对该坐标系的定点,称其为坐标系的原点,坐标系的 y 轴垂直于 x 轴,沿着 y 轴正方向定向。
坐标系将平面分割成四个象限,象限的编号顺序为第一象限、第二象限、第三象限、第四象限,从第一象限沿顺时针方向进行编号。
教师讲解原点对称的概念并给出实例,引导学生了解什么情况下会出现原点对称的情况,如何确定原点对称点的位置。
4.求原点对称点坐标的方法 (15分钟)通过具体实例,教师逐步演示求原点对称点的方法,强调步骤以及计算过程中需要注意的问题,帮助学生掌握这一方法。
提供一些练习题,让学生参与计算和做题,帮助他们巩固所学知识,同时帮助他们锻炼自己的计算能力。
6.巩固与拓展 (5分钟)总结本堂课的内容,帮助学生理解本次教育的目的并掌握所学知识。
对于掌握得不太好的学生,可以采取巩固训练和拓展学习的方式。
四、课堂小结本课程共分为六个环节:引入导入、概念阐释、原点对称、求原点对称点坐标的方法、练习、巩固与拓展。
通过本次课程,学生了解和掌握了坐标系的概念和画法;理解了原点对称的概念;学习了求原点对称点的方法,为学习接下来的数学课程奠定了基础。
人教版九年级数学上册23.2.3 关于原点对称的点的坐标 一等奖优秀教学设计
人教版义务教育教科书九年级数学上册23.2.3 关于原点对称的点的坐标教学设计一、教材分析1、地位和作用:《关于原点对称的点的坐标》是人教版九年级上册第二十三章第二节第三课时的内容。
教材从观察和实验入手,归纳得出坐标平面上一个点关于原点对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于原点对称的图形。
本节课目的在于让学生感受图形中心对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来。
本节课是在中心对称、中心对称图形和它们的性质的学习之后,并且在以往学习平移、轴对称在平面直角坐标系中坐标的特点的基础上,进一步研究中心对称在直角坐系中的坐标的特点,并利用这一特点解决一些问题。
掌握了这部分知识为以后平移、轴对称和中心对称在平面直角坐标系中的综合运用打下坚实的基础。
2、教学目标:(1)、知道P与点P′点关于原点对称时,它们的横纵坐标的关系;(2)、会运用P(x,y)关于原点的对称点为P′(-x,-y)求出关于原点对称的点的坐标。
3、重点和难点:重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用。
难点:运用中心对称的知识导出关于原点对称的点的坐标的性质及运用它解决实际问题。
突破重难点的方法:在复习中心对称的知识,特别是中心对称在平面直角坐标系中坐标的特点,迁移到关于原点对称的点的坐标的关系中突破重难点。
二、教学准备:多媒体课件、导学案。
三、教学过程把一个图形绕着某一点旋转180︒,如果他能与另一个图形重合,那么就说这两个图形关于这点成中心对称。
如果一个图形绕着一点旋转180︒后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。
2、中心对称有哪些性质?(1)关于中心对称图形的两个图形是全等形(2)关于中心对称图形的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。
人教版九年级数学上册23.2.3 关于原点对称的点的坐标精品教案
(学生活动)请同学们完成下面三题.1.已知点A和直线l,如图,请画出点A关于l对称的点A'.2.如图,△ABC是正三角形,以点A为中心,把△ABC逆时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.探索新知合作探究(学生活动)如图,在平面直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?续表探索新知合作探究老师点评:画法:(1)连接AO并延长AO;(2)在射线AO上截取OA'=OA;(3)过A作AD'⊥x轴于D'点,过A'作A'D″⊥x轴于点D″.因为△AD'O与△A'D″O全等,所以AD'=A'D″,OD'=OD″,所以A'(3,-1).同理可得B,C,D,E,F这些点关于原点的对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标的绝对值什么关系?纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学上面的问题.老师点评:(1)从上可知,它们的横坐标的绝对值相等,它们的纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点为P'(-x,-y).两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点为P'(-x,-y).当堂训练 1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.2.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC关于原点O对称的三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A'B'C'.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育基础课程初中教学资料
23.2.3 关于原点对称的点的坐标
教学目标:
一、知识目标:
掌握在直角坐标系中关于原点对称的点的坐标的关系。
二、能力目标:
经历---猜想---验证的实践过程,积累数学活动的经验。
三、情感、态度与价值观目标:
从坐标的角度揭示中心对称与轴对称的关系,培养观察、分析、探究及合作交流的学
习惯,体验事物的变化之间是有联系的。
教学重点:探究关于原点对称的点的坐标的规律。
教学难点:关于原点对称的点的坐标的规律的运用。
教与学互动设计:
(一)复习引入
什么叫中心对称?
(二)合作交流、探究规律
1、如图,在直角坐标系中,已知A(4,0)、
B(0,-3)、C(2,1)、D(-1,2)、
E(-3,-4),作出A、B、C、D、E点关于
原点O的中心对称点,并写它们的坐标,
并回答:这些点与已知点的坐标有什么关系?
分组讨论:(每四人一组):讨论的内容:
关于原点作中心对称时,•
①它们的横坐标与横坐标绝对值什么关系?
纵坐标与纵坐标的绝对值又有什么关系?
②坐标与坐标之间符号又有什么特点?
(让每组派代表发表本组的结论,并利用三角形全等证明规律。
)
【归纳】:这些点的坐标与已知点的坐标相比较,他们的横纵坐标分别互为相反数。
两个点关于原点对称时,它们的坐标符号相反,
即点P(x,y)关于原点O的对称点P′(-x,-y).
【引申】:反过来:若P与P′的横纵坐标分别互为相反数,即P(x,y), P′(-x,-y),则点P与点P′关于原点O成中心对称。
③关于x,y轴对称的坐标与中心对称点的坐标符号规律有什么区别?(找学生说的看法)
④老师随意举几个点的坐标让学生口答说出其对称点的坐标。
2、☆例题精析
线段A′B′。
分析:要作出线段AB关于原点的对称线
段,只要作出点A、点B关于原点的对称
点A′、B′即可.
变式:(1)△ABO和△A′B′O的位置关系?
(2)教材P67页例2:如果△ABC的
三个点的坐标分别为A(-4,1),
B(-1,-1),C(-3,2),你能做出与
△ABC关于原点对称的图形吗?
【点评】:在平面直角坐标系中,做关于原点的中心对称
的图形的步骤:
(1)写出各点关于原点对称的点坐标;
(2)在坐标平面内描出这些对称点的位置;
(3)顺次连接各点即为所求作的对称图形。
(三)、应用迁移巩固提高
☆练一练
1.如果点P(-3,1),那么点P(-3,1)关于原点
的对称点P′的坐标是P′_______.
2、已知点P(a,3)和P′(-4,b)关于原点对称,则(a+b)的值为()
A、1
B、-1
C、7
D、-7 (分析略)
3、若点P(-1-2a,2a-4)关于原点对称的点是第一象限的点,则a整数解有()
A、1个
B、2个
C、3个
D、4个(分析略)
4、想一想:如图,直线a⊥b,垂足为O,点A与点A′关于
直线a对称,点A′与点A
点A与点A″有怎样的对称关系?
你能说明理由吗?
b
(四)、总结反思拓展升华
本节课你学会了什么?
1、两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点
P′(-x,-y),及其利用这些特点解决一些实际问题.
2、本节课学习的数学方法是:数形结合。
☆作业设计
1、课本P68 3,4题
2、如图,已知△ABC中,A(-2,3)、B(-3,1)、C(-1,2)。
(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1
(2)画出△ABC关于x轴对称的△A2B2C2
(3)将△ABC绕原点O旋转180度,画出旋转后的△A3B3C3
(4)在△A1B1C1、△A2B2C2、△A3B3C3中:△与△
成轴对称,对称轴是
△与△成中心对称,对称中心的坐标是(_,_)。