导数题型总结

合集下载

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

最新高考导数问题常见题型总结

最新高考导数问题常见题型总结
在 上的最大值 ,最小值
对任意 ,恒有
题型八:导数在实际中的应用
1.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如右图所示)。试问当帐篷的顶点O到底面中心 的距离为多少时,帐篷的体积最大?
解:设OO1为 ,则
由题设可得正六棱锥底面边长为: ,(单位: )
故底面正六边形的面积为: = ,(单位Байду номын сангаас )
二、资料网址:方法2:设 , 两式相减得 ≥1,u≥1,
我们大学生没有固定的经济来源,但我们也不乏缺少潮流时尚的理念,没有哪个女生是不喜欢琳琅满目的小饰品,珠光宝气、穿金戴银便是时尚的时代早已被推出轨道,简洁、个性化的饰品成为现代时尚女性的钟爱。因此饰品这一行总是吸引很多投资者的目光。然而我们女生更注重的是感性消费,我们的消费欲望往往建立在潮流、时尚和产品的新颖性上,所以要想在饰品行业有立足之地,又尚未具备雄厚的资金条件的话,就有必要与传统首饰区别开来,自制饰品就是近一两年来沿海城市最新流行的一种。 ,
于是,函数 在区间 上的值域为 .
令 得 或 .由 的单调性知, ,即 .
综上所述, 、 应满足的条件是: ,且 .
3.设函数 .
(1)若 的图象与直线 相切,切点横坐标为2,且 在 处取极值,求实数 的值;
(2)当b=1时,试证明:不论a取何实数,函数 总有两个不同的极值点.
解:(1)
由题意 ,代入上式,解之得:a=1,b=1.
依题意 在[-2,1]上恒有 ≥0,即
①当 ;
②当 ;
③当
综上所述,参数b的取值范围是
2.已知三次函数 在 和 时取极值,且 .
(1)求函数 的表达式;
(2)求函数 的单调区间和极值;

导数各类题型方法总结(含答案)

导数各类题型方法总结(含答案)

导数各类题型⽅法总结(含答案)导数各种题型⽅法总结⼀、基础题型:函数的单调区间、极值、最值;不等式恒成⽴; 1此类问题提倡按以下三个步骤进⾏解决:第⼀步:令f '(x)0得到两个根;第⼆步:画两图或列表;第三步:由图表可知;其中不等式恒成⽴问题的实质是函数的最值问题, 2、常见处理⽅法有三种:第⼀种:分离变量求最值 -----⽤分离变量时要特别注意是否需分类讨论( >0,=0,<0)第⼆种:变更主元 (即关于某字母的⼀次函数)-----(已知谁的范围就把谁作为主元);例1:设函数y f (x)在区间D 上的导数为f (x), f (x)在区间D 上的导数为g(x),若在区间D4…、 x3mx 3x 2f (x)126 2(1 )若y f (x)在区间0,3上为“凸函数”,求m 的取值范围;(2)若对满⾜ m 2的任何⼀个实数 m ,函数f (x)在区间a,b 上都为“凸函数”,求b值?4 3^23 2x mx 3xx mx o解:由函数f (x)得f (x)3x12 6 23 2g (x) x 2 mx 3(1) Q y f (x)在区间0,3上为“凸函数”,贝V g(x) x 2 mx 30在区间[0,3]上恒成⽴解法⼀:从⼆次函数的区间最值⼊⼿:等价于g max (x)2x x 3 0 2 1 x 12x x 3 0上,g(x) 0恒成⽴,则称函数y f (x)在区间D 上为“凸函数”,已知实数 m 是常数, a 的最⼤g(0) g(3)3 0 9 3m 3 0解法⼆:分离变量法:0 时,g(x)x 3时,g(x) x 2 3 2x2 x mx mx3 0恒成⽴, 0恒成⽴等价于m -—3x由 3门⽽ h(x) x ( 0 xm 23的最⼤值x(0x3 )恒成⽴, 3 )是增函数,贝 y h max (x) h(3) 2(2) v 当 m 2时f (x)在区间a,b 上都为“凸函数”则等价于当m 2时g(x)2x mx 3 0恒成⽴变更主元法2再等价于F(m) mx x 32恒成⽴ (视为关于 m 的⼀次函数最值问题)F( 2) 0 F(2)例2:设函数f(x) 〔x3 2ax2 3a2x b(0 a 1,b R)3(I)求函数f (x)的单调区间和极值;(⼆次函数区间最值的例⼦)g(x) x2 4ax 3a2在[a 1,a 2]上是增函数.g(x)max g(a 2) 2a 1.g(x)min g(a 1) 4a 4.于是,对任意x [a 1,a 2],不等式①恒成⽴,等价于a 1.4⼜0 a 1, a 1.5点评:重视⼆次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成⽴h(x) f (x) g(x) 0恒成⽴;从⽽转化为第⼀、⼆种题型(n)若对任意的x [a 1,a 2],不等式f (x) a恒成⽴,求a的取值范围.x 3a x a3 3x=a 时,f(x)4b;由| f (x) |< a,得:对任意的[a 1,a 2], x2 4 ax 3a2 a恒成⽴①则等价于g(x)这个⼆次函数gmax(x) ag min(x) a2g(x) x24ax 3a的对称轴x 2a Q 0 a 1, a 1 2a (放缩法)g(x)这个⼆次函数的最值问题:单调增函数的最值问题。

导数题型总结

导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。

题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。

例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。

题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。

求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。

导数的基本题型归纳

导数的基本题型归纳

导数基础题型题型一 导数与切线利用两个等量关系解题:①切点处的导数=切线斜率,即()k x f o =';②切点()o o y x ,代入曲线方程或者代入切线方程.切点坐标或切点横坐标是关键例1:曲线y =错误!在点-1,-1处的切线方程为A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2 例2:已知函数的图象在点1,f 1处的切线方程是x -2y +1=0,则f 1+2f ′1的值是B .1 D .2例3 求曲线132+=x y 过点1,1的切线方程练习题:1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =D .12.曲线y =x 3+11在点P 1,12处的切线与y 轴交点的纵坐标是A .-9B .-3C .9D .153.设曲线y =错误!在点3,2处的切线与直线ax +y +1=0垂直,则a 等于A .2B .-2C .-错误!4.设曲线y =ax 2在点1,a 处的切线与直线2x -y -6=0平行,则a =________.5.已知直线l 1为曲线y =x 2+x -2在点1,0处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.求直线l 2的方程;题型二 用导数求函数的单调区间①求定义域;②求导;③令0)(='x f 求出x 的值;④划分区间注意:定义域参与区间的划分;⑤判断导数在各个区间的正负.例1:求函数c x x x y +-+=33123的单调区间.例2 求函数x a x a x x f )1(ln 21)(2+-+=的单调区间其中a >0例3:已知函数ax x y +=2在),1[+∞上为增函数,求a 的取值范围.练习题:1.求函数x x x f ln 2)(2-=的单调增区间.2.已知331)(23-++=x ax x x f 在]3,1[上单调递减,求a 的取值范围.题型三 求函数极值和最值①求定义域;②求导;③令0)(='x f 求出x 的值;④列表注意:定义域参与区间的划分;⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值例:求函数x x y ln 2-=的极值.例:求函数y =x +2cos x 在区间错误!上的最大值.例:已知函数fx =2x 3-6x 2+mm 为常数在-2,2上有最大值3,那么此函数在-2,2上的最小值为A .-37B .-29C .-5D .-11例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是A .)1,0(B .)1,(-∞C .),0(∞+D .)21,0(练习题:1.设函数x xx f ln 2)(+=则 =21为fx 的极大值点 =21为fx 的极小值点 =2为fx 的极大值点 =2为fx 的极小值点2. 已知函数xbx a x x f +-=ln )(在1=x 处取得极值,则a 与b 满足 .,题型四、函数与导数图象的关系▲函数看增减,导数看正负例:若函数c=2)(的图象的顶点在第四象限,则函数f′x的图象是+bxxxf+练习题:1.下图是函数y=fx的导函数y=f′x的图象,则下面判断正确的是A.在区间-2,1内fx是增函数B.在1,3内fx是减函数C.在4,5内fx是增函数D.在x=2时fx取到极小值2. f′x是fx的导函数,f′x的图象如右图所示,则fx的图象只可能是A B C D。

导数八大题型汇总

导数八大题型汇总

导数八大题型汇总
以下是导数的八大题型汇总:
1. 基本函数的导数:包括常数函数、幂函数、指数函数、对数函数、三角函数等基本函数的导数。

2. 和、差、积的导数:给定两个或多个函数,求其和、差、积的导数。

3. 商的导数:给定两个函数,求其商的导数。

4. 复合函数的导数:给定一个函数和另一个函数的复合,求复合函数的导数。

5. 反函数的导数:给定一个函数和其反函数,求反函数的导数。

6. 参数方程的导数:给定一个参数方程,求其对应的函数的导数。

7. 隐函数的导数:给定一个隐函数关系式,求导数。

8. 极限的导数:给定一个函数的极限,求其导数。

这些题型涵盖了导数的常见应用场景,掌握这些题型可以更好地理解和运用导数的概念和计算方法。

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结

导数的基础知识一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式: ①'0()C C =为常数;②1()'nn x nx-=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'xxe e = ⑥()'ln (0,1)xxa a a a a =>≠且; ⑦1(ln )'x x =; ⑧1(log )'(0,1)ln a x a a x a=>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差).法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号) (2)复合函数(())y f g x =的导数求法:①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x = 题型一、导数定义的理解 题型二:导数运算 1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ', 即有()00V f t '=。

导数题型归纳总结

导数题型归纳总结

1.导数的概念(1)函数y =f(x)在x =x 0处的导数称函数y =f(x)在x =x 0处的瞬时变化率lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f(x)在x =x 0处的导数,记作f′(x 0)或y′|x =x 0,即f′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义函数f(x)在点x 0处的导数f′(x 0)的几何意义是在曲线y =f(x)上点P(x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t 的导数).相应地,切线方程为y -y 0=f′(x 0)(x -x 0).(3)函数f(x)的导函数称函数f′(x)=limΔx →0f (x +Δx )-f (x )Δx 为f(x)的导函数.2.注:ln e a =.注意()x x e e '=.3.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x );知识内容考查点一.导数的概念 与几何意义(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考点一:极限与导数例、设()f x 在0x 可导,则()()0003lim x f x x f x x x∆→+∆--∆∆等于( )A .()02f x ' B .()0f x ' C .()03f x ' D .()04f x '举一反三:1.若0()lim1x f x x →=,则0(2)lim x f x x →=________.2.若1(1)lim11x f x x →-=-,则1(22)lim 1x f x x →-=-_______.3.若000(2)()lim13x f x x f x x ∆→+∆-=∆,则0()f x '等于( )A .23B .32C .3D .2作业:1.设()f x 在x 处可导,a b ,为非零常数,则0()()lim x f x a x f x b x x∆→+∆--∆=∆( ). A .()f x ' B .()()a b f x '+ C .()()a b f x '- D .()f x '2.若()2f a '=,则当h 无限趋近于0时,()()2f a h f a h--=______.3.已知函数2()8f x x x =+,则0(12)(1)lim x f x f x∆→-∆-∆的值为 .4.已知1()f x x =,则0(2)(2)lim x f x f x ∆→+∆-∆的值是( )A .14-B .2C .14D .2-5、已知函数()f x 在0x x =处可导,则22000[()][()]lim x f x x f x x∆→+∆-=∆( )A .0()f x 'B .0()f xC .20[()]f x 'D .002()()f x f x '例、计算32lim 43n n n →∞-=+________.变式、222lim 23n n n n →∞+=-_______. 典例分析例、已知某物体的运动方程是3199s t t =+,则当3t =s 时的瞬时速度是_______.举一反三:1.下列哪个图象表示的函数在1x =点处是可导的( )2.已知某物体的运动方程是22232t s t t-=+,则3t =时的瞬时速度是_______.考点二、导数的几何意义之切线问题例1、求曲线1y x=在点(11),的切线1l 方程,与过点(20)-,的切线2l 的方程.例2、已知曲线1y x x =+上一点522A ⎛⎫⎪⎝⎭,,求:⑴ 在点A 处的切线的斜率;⑵ 过点A 的切线方程.变式1、曲线321y x x =+-在点(11)P --,处的切线方程是( )A .1y x =-B .2y x =-C .y x =D .1y x =+2、已知曲线214y x =的一条切线的斜率为12,则切点的横坐标为_______.3、曲线324y x x =-+在点(13),处的切线的倾斜角为( )A .30︒B .45︒C .60︒D .120︒ 4、过点(11),作曲线3y x =的切线,则切线方程为__________.5、过点(1,1)-的直线l 与曲线3221y x x x =--+相切,且(1,1)-不是切点,则直线l 的斜率是( ) A .2 B .1 C .1- D .2-6、已知直线1y x =+与曲线()ln y x a =+相切,则a 的值为( )A .1B .2C .1-D .2-7、求函数()af x ax x=+(0)a ≠的图象上过点A 2(1)a a +,的切线方程.B.A.8、若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( )AB. C .23 D .23或09、函数()f x 的图象如图所示,下列数值排序正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(3)(3)(2)(2)f f f f ''<<-<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(3)(2)(2)(3)f f f f ''<-<<例、曲线ln(21)y x =-上的点到直线230x y -+=的最短距离是( )AB. C. D .0变式 1、抛物线2y x bx c =++在点(1,2)处的切线与其平行线0bx y c ++=间的距离为________.2、求曲线12y x =+上的点到直线10x y ++=的距离的最小值.例、若曲线12y x-=在点12a a -⎛⎫ ⎪⎝⎭,处的切线与两个坐标围成的三角形的面积为18,则a =( )A .64B .32C .16D .8变式 1、曲线1y x=和2y x =在它们的交点处的两条切线与x 轴所围成的三角形的面积是______.2、曲线12e x y =在+点2(4e ),处的切线与坐标轴所围三角形的面积为( )A .29e 2B .24eC .22eD .2e3、曲线3y x =在点3()(0)a a a ≠,处的切线与x 轴、直线x a =所围成的三角形的面积为16,则a = .例、函数2(0)y x x =>的图像在点()2k k a a ,处的切线与x 轴交点的横坐标为1k a +,其中*k ∈N ,若116a =,则135a a a ++的值是 .变式 1、设曲线()1*n y x n +=∈N 在点(11),处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅等于( )A .1nB .11n + C .1n n + D .1例、设P 为曲线C :21y x x =-+上一点,曲线C 在点P 处的切线的斜率的范围是[13],,则点P 纵坐标的取值范围是_______.变式 1、已知点P 在曲线4e 1x y =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .π04⎡⎫⎪⎢⎣⎭,B .ππ42⎡⎫⎪⎢⎣⎭,C .π3π24⎛⎤⎥⎝⎦,D .3ππ4⎡⎫⎪⎢⎣⎭,2、设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,例、若存在过点(10),的直线与曲线3y x =和21594y ax x =+-都相切,则a 等于( ) A .1-或2564- B .1-或214 C .74-或2564- D .74-或7变式 1、已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.⑴则a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程. ⑵若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.3、设0t ≠,点(0)P t ,是函数3()f x x ax =+与2()g x bx c =+的图象的一个公共点,两函数的图象在点P 处有相同的切线.试用t 表示a b c ,,.课后练习巩固1、曲线2xy x =-在点(11)-,处的切线方程为__ .2、设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( )A .2B .12C .12- D .2-3、设曲线2y ax =在点(1)a ,处的切线与直线260x y --=平行,则a =( )A .1B .12C .12- D .1-4、设函数2()()f x g x x =+,曲线()y g x =在点(1(1))g ,处的切线方程为21y x =+,则曲线()y f x =在点(1(1))f ,处切线的斜率为( )A .4B .14-C .2D .12-5、设()f x 是偶函数.若曲线()y f x =在点()()11f ,处的切线的斜率为1,则该曲线在点()()11f --,处的切线的斜率为 .6、若0y =是曲线3y x bx c =++的一条切线,则32()()32b c+=( )A .1-B .0C .1D .27、直线1y kx =-与曲线ln y x =相切,则k =( )A .0B .1-C .1D .1±8、已知函数21()()5g x f x x =+的图象在P 点处的切线方程为8y x =-+,又P 点的横坐标为5,则(5)(5)f f '+=________.9.若2(1)(1)2f x f x x +-=+,则(1)f '=_______.10、⑴曲线32242y x x x =--+在点(13)-,处的切线方程是____.⑵曲线32242y x x x =--+过点(13)-,的切线方程是_________.11、已知曲线s :33y x x =-及点(22)P -,,则过点P 可向s 引切线的条数为_____.12、曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A .19B . 29C .13D .2313、若曲线存在垂直于轴的切线,则实数取值范围是_____________. 14、已知函数()f x 在R 上满足()()22288f x f x x x =--+-,则曲线()y f x =在点()()11f ,处的切线方程是( ) A .21y x =- B .y x = C .32y x =- D .23y x =-+15、已知函数x x e a e x f -⋅+=)((a ∈R )的导函数是)(x f ',且)(x f '是奇函数,若曲线)(x f y =的一条切线的斜率是23,则切点的横坐标为( ) A .ln 2 B .2ln - C .22ln D .22ln -16、设函数()bf x ax x=-,曲线()y f x =在点(2(2))f ,处的切线方程为74120x y --=.⑴求()y f x =的解析式;3()ln f x ax x =+y a⑵证明:曲线()y f x =上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值,并求此定值.17、已知曲线1C :2y x =与2C :2(2)y x =--,直线l 与12C C ,都相切,求直线l 的方程.考查点二、函数的单调性函数的单调性在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x )≥0⇔f (x )在(a ,b )上为增函数. f ′(x )≤0⇔f (x )在(a ,b )上为减函数.单调性一、例1、函数()21x f x x =-( )A .在()02,上单调递减B .在()0-∞,和()2+∞,上单调递增 C .在()02,上单调递增D .在()0-∞,和()2+∞,上单调递减例2、设函数32()91(0)f x x ax x a =+--<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求:⑴a 的值;⑵函数()f x 的单调区间.小结:变式练习:1、函数()ln (0)f x x x x =>的单调递增区间是 .2、求函数3227()154()32f x x x x x R =+-+∈的单调区间.3、已知函数26()ax f x x b-=+的图象在点(1(1))M f --,处的切线方程为250x y ++=. ⑴求函数()y f x =的解析式;⑵求函数()y f x =的单调区间.4、函数()()()321483f x ax a x b x b =+-+-+的图象关于原点中心对称,则()f x ( )A .在⎡-⎣上为增函数B .在⎡-⎣上为减函数C .在)⎡+∞⎣上为增函数,在(-∞-,上为减函数D .在(-∞-,上为增函数,在)⎡+∞⎣上为减函数单调性二、含参讨论单调性例1、已知函数f (x )=ln x -ax (a ∈R ),求函数f (x )的单调区间例2、设函数2()ln(1)f x x b x =++,其中12b >,判断函数()f x 在定义域上的单调性.例3、已知常数a >0,函数f (x )=ln(1+ax )-2xx +2.讨论f (x )在区间(0,+∞)上的单调性.例4、已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.例5、已知函数()()()22e 1x f x x a x =-+-. (I)讨论()f x 的单调性;小结:变式 1、已知函数2()ln(1)2kf x x x x =+-+(0k ≥).⑴当2k =时,求曲线()y f x =在点()()1,1f 处的切线方程;⑵求()f x 的单调区间.2、设a ∈R ,函数()()()()2121ln 1f x x a x =--+-+.⑴若函数()f x 在点()()00f ,处的切线方程为41y x =-,求a 的值; ⑵当1a <时,讨论函数()f x 的单调性.3、已知函数321()32a a f x x x xb +=-++,其中a ,b ∈R . ⑴若曲线()y f x =在点(2(2))P f ,处的切线方程为54y x =-,求函数()f x 的解析式;⑵当0a >时,讨论函数()f x 的单调性.4、已知函数22()(1)x bf x x -=-,求导函数()f x ',并确定()f x 的单调区间.5、函数f (x )=ax 3+3x 2+3x (a ≠0).讨论f (x )的单调性6、已知函数g (x )=2a ln(x +1)+x 2-2x ,当a ≠0时,讨论函数g (x )的单调性;7、设函数(I)讨论的单调性; 1()ln ().f x x a x a R x=--∈()f x8、9、 设,讨论函数的单调性10、已知函数.(I )讨论的单调性;考查点三、根据单调情况求参数范围例1、三次函数3()1y f x ax ==-在()-∞+∞,内是减函数,则( )A .1a =B .2a =C .0a ≤D .0a <例2、已知函数321()53f x x x ax =++-,若()f x 的单调递减区间是(31)-,,则a 的值是 .例3、已知函数. ⑴当3a =时,求函数()f x 的单调递增区间;⑵若在区间10,2⎛⎫⎪⎝⎭上是减函数,求实数的取值范围.例4、已知函数()21()ln 202f x x ax x a =--≠存在单调递减区间,求a 的取值范围.例5、已知函数f (x )=2x 2-ax +ln x 在其定义域上不单调,求实数a 的取值范围. 变式1、若32()(0)f x ax bx cx d a =+++>在R 上是增函数,则( )A .240b ac -≥B .240b ac -≤C .230b ac -≥D .230b ac -≤0>a x a x a a x x f )1(2)1(ln )(2---+=x a ax x x f )2(ln )(2-+-=)(x f x ax x x f ln 1)(2-++-=)(x f a2、321()53f x x x ax =++-,若()f x 在[1)+∞,上是单调增函数,则a 的取值范围是 .3、函数()23k kh x x x =-+,()()ln g x h x x =+①h(x)在(1,)+∞上是增函数,则实数k 的取值范围是______. ②()g x 在(1,)+∞上是增函数,则实数k 的取值范围是______.4、若y ax =与by x=-在()0+∞,上都是减函数,对函数3y ax bx =+描述正确的是( ) A .在()-∞+∞,上是增函数 B .在()0+∞,上是增函数 C .在()-∞+∞,上是减函数 D .在()0-∞,上是增函数,在()0+∞,上是减函数5、若21()ln(2)2f x x b x =-++在(1)-+∞,上是减函数,则b 的取值范围是( )A .[1)-+∞,B .(1)-+∞,C .(1]-∞-,D .(1)-∞-,6、设函数()()e 0kx f x x k =≠.⑴ 求曲线()y f x =在点()()00f ,处的切线方程; ⑵ 求函数()f x 的单调区间;⑶ 若函数()f x 在区间()11-,内单调递增,求k 的取值范围.7、设f (x )=-13x 3+12x 2+2ax .若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,求a 的取值范围.8、若函数32()1f x x ax =-+的单调递减区间为(02),,则实数a 的取值范围是( )A .3a ≥B .3a =C .3a ≤D .03a <<9、已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m2在区间(t ,3)内总不是单调函数,求m 的取值范围.10、已知函数32()(1)(2)f x x a x a a x b =+--++()a b ∈R ,.若函数()f x 在区间(11)-,上不单调...,求a 的取值范围.11、已知函数f (x )=x 2+b sin x -2(b ∈R ),F (x )=f (x )+2,且对于任意实数x ,恒有F (x )-F (-x )=0.(1)求函数f (x )的解析式;(2)已知函数g (x )=f (x )+2(x +1)+a ln x 在区间(0,1)上单调递减,求实数a 的取值范围.12、已知函数()ln xf x x=.⑴判断函数()f x 的单调性;⑵若()1y xf x x=+的图像总在直线y a =的上方,求实数的取值范围;⑶若函数()f x 与()1263m g x x x =-+的图像有公共点,且在公共点处的切线相同,求实数m 的值.例、)(x f 是定义在(0,)+∞上的非负可导函数,且满足()()0xf x f x '+≤,对任意正数,a b ,若a b <,则必有( )A .()()af a bf b ≤B .()()bf b af a ≤C .()()af b bf a ≤D .()()bf a af b ≤变式、设()f x 、()g x 是R 上的可导函数,()f x '、()g x '分别是()f x 、()g x 的导函数,且()()()()0f x g x f x g x ''+<,则当a x b <<时,有( )aA .()()()()f x g x f b g b >B .()()()()f x g a f a g x >C .()()()()f x g b f b g x >D .()()()()f x g x f a g a >例、对于R 上可导的函数()f x ,若满足(1)()0x f x '-≥,则必有( )A .(0)(2)2(1)f f f +<B .(0)(2)2(1)f f f +≤C .(0)(2)2(1)f f f +≥D .(0)(2)2(1)f f f +>变式1、已知函数()f x 是偶函数,在()0,+∞上导数()f x '0>恒成立,则下列不等式成立的是( )A .()()()312f f f -<-<B .()()()123f f f -<<-C .()()()231f f f <-<-D .()()()213f f f <-<-2、已知对任意实数x 有()()f x f x -=-,()()g x g x -=,且0x >时,()0f x '>,()0g x '>,则0x <时( ) A .()0f x '>,()0g x '> B .()0f x '>,()0g x '< C .()0f x '<,()0g x '> D .()0f x '<,()0g x '<考查点三、函数的极值1.函数的极值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值、极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.例1、设函数()xf x xe =,则( )A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 极大值点D .1x =-为()f x 的极小值点变式1、曲线3223y x x =-共有____个极值.变式2、求函数43()4f x x x =-的单调区间与极值点.变式3、若函数f (x )=x -2e x 在x =x 0处取得极值,则x 0=________.变式4、已知函数()6ln (0)f x x x =>和2()8g x ax x =+(a 为常数)的图象在3x =处有平行切线.⑴求a 的值;⑵求函数()()()F x f x g x =-的极大值和极小值.例2、函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =( )A .2B .3C .4D .5变式1、若函数322y x x mx =-+,当13x =时,函数取得极大值,则m 的值为( )A .3B .2C .1D .23变式2、函数3()4f x ax bx =++在12x =-有极大值283,在22x =有极小值是43-,则a = ;b = .变式3、函数3()3(0)f x x ax b a =-+>的极大值为6,极小值为2,则()f x 的单调递减区间是 .例3、设a ∈R ,若函数xy e ax x =+∈R ,有大于零的极值点,则a 的取值范围( ) A .1a <- B .10a -<< C .10a e -<< D .ea 1-<变式1、若函数3()63f x x bx b =-+在(01),内有极小值,则实数b 的取值范围是( )A .(01),B .(1)-∞,C .(0)+∞,D .102⎛⎫ ⎪⎝⎭,变式2、函数31()43f x x ax =++有极大值又有极小值,则a 的取值范围是 .变式3、若函数[]32()33(2)1f x x ax a x =++++有极大值又有极小值,则a 的取值范围是______.例4、已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数()y f x '=的图象经过点(10),,(20),,如图所示,求⑴0x 的值;⑵a b c ,,的值.变式1、已知函数32()f x x px qx =++的图象与x 轴切于非原点的一点,且()4f x =-极小,那么p = ,q = .变式2、设函数32y x ax bx c =+++的图象如图所示,且与0y =在原点相切,若函数的极小值为4-,⑴求a b c ,,的值;⑵求函数的递减区间.变式3、已知函数32()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-.⑴ 求函数()f x 的解析式;⑵ 设函数1()()3g x f x mx =+,若()g x 的极值存在,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.例5、已知函数()2()2e ,(,)x f x x ax x a =++∈R .⑴ 当0a =时,求函数()f x 的图象在点()()1,1A f 处的切线方程; ⑵ 若()f x 在R 上单调,求a 的取值范围;⑶ 当52a =-时,求函数()f x 的极小值.变式1、已知函数2()(2)e ax f x ax x =-,其中a 为常数,且0a ≥.⑴若1a =,求函数()f x 的极值点;⑵若函数()f x 在区间2)上单调递减,求实数a 的取值范围.变式2、已知函数()(1)e x f x ax =-,a ∈R ,⑴当1a =时,求函数()f x 的极值;⑵若函数()f x 在区间(0,1)上是单调增函数,求实数a 的取值范围.变式3、设()323()1312f x x a x ax =-+++. ⑴若函数()f x 在区间()1,4内单调递减,求a 的取值范围;⑵若函数()f x 在x a =处取得极小值是1,求a 的值,并说明在区间()1,4内函数()f x 的单调性.例6、已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R .⑴当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;⑵当0a ≠时,求函数()f x 的单调区间与极值.变式1、设函数3()3(0)f x x ax b a =-+≠.⑴ 若曲线()y f x =在点()()22f ,处与直线8y =相切,求a b ,的值; ⑵ 求函数()f x 的单调区间与极值点.变式2、设函数32()23(1)1f x x a x =--+,其中1a ≥.⑴求()f x 的单调区间;⑵讨论()f x 的极值.变式3、已知函数()()2223x f x x ax a a e =+-+(x ∈R ),其中a ∈R .⑴当0a =时,求曲线()y f x =在点()()11f ,处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.4、已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .2或-235、函数f (x )=x 3-3ax +b (a >0)的极大值为6,极小值为2,则f (x )的单调递减区间是__________.6、设函数f (x )=ln x -12ax 2-bx ,若x =1是f (x )的极大值点,则a 的取值范围为________.7、已知函数f (x )=e xx.(1)求函数f (x )的单调区间;(2)设g (x )=xf (x )-ax +1,若g (x )在(0,+∞)上存在极值点,求实数a 的取值范围例7:函数()f x 的导函数图象如下图所示,则函数()f x 在图示区间上( )B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点变式 1、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( )A .1个B .2个C .3个D .4个2、设()f x '是函数()f x 的导函数,()y f x '=的图象如下左图所示,则()y f x =的图象可能是( )3、已知函数()y xf x '=的图象如下左图所示(其中()f x '是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )课后作业 1、有下列命题:①0x =是函数3y x =的极值点;②三次函数32()f x ax bx cx d =+++有极值点的充要条件是230b ac ->; ③奇函数32()(1)48(2)f x mx m x m x n =+-+-+在区间(4,4)-上是单调减函数. 其中假命题的序号是 .2、已知函数()()1ln 1x f x x x a-=+++,其中实数1a ≠. ⑴若2a =-,求曲线()y f x =在点()()00f ,处的切线方程;⑵若()f x 在1x =处取得极值,试讨论()f x 的单调性.3、已知2a <,函数2()()e x f x x ax a =++.⑴当1a =时,求()f x 的单调递增区间;A.D.C.B.A.⑵若()f x 的极大值是26e -⋅,求a 的值.4、已知函数32()f x x bx cx =++的导函数的图象关于直线2x =对称.⑴ 求b 的值;⑵ 若()f x 在x t =处取得极小值,记此极小值为()g t ,求()g t 的定义域和值域.5、已知函数32()31(0)f x kx x k =-+≥.⑴求函数()f x 的单调区间;⑵若函数()f x 的极小值大于0,求k 的取值范围.6、已知函数3221()23(0)3f x x ax a x b a =-++>,⑴当()y f x =的极小值为1时,求b 的值;⑵若()f x 在区间[12],上是减函数,求a 的范围.7、已知函数321()33f x ax bx x =+++,其中0a ≠.⑴当a ,b 满足什么条件时,()f x 取得极值?⑵已知0a >,且()f x 在区间(01],上单调递增,试用a 表示出b 的取值范围.8、设函数322()31(,)f x ax bx a x a b =+-+∈R 在1x x =,2x x =处取得极值,且122x x -=.⑴若1a =,求b 的值,并求()f x 的单调区间;⑵若0a >,求b 的取值范围.9、求函数22()(0100)1a b f x x a b x x=+<<>>-,,的单调区间与极小值.10、设函数1()(2)ln()2f x a x ax x=--++(a ∈R ).⑴当0a =时,求()f x 的极值; ⑵当0a ≠时,求()f x 的单调区间.11、已知函数2()1f x x =-与函数()ln (0)g x a x a =≠.⑴若()f x ,()g x 的图象在点()1,0处有公共的切线,求实数a 的值; ⑵设()()2()F x f x g x =-,求函数()F x 的极值.12、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( )13、如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )14、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )15、如图所示是函数()y f x =的导函数()y f x '=图象,则下列哪一个判断可能是正确的( ) A.在区间(20)-,内()y f x =为增函数B .在区间(03),内()y f x =为减函数C .在区间(4)+∞,内()y f x =为增函数D .当2x =时()y f x =有极小值16、如果函数()y f x =的导函数的图象如图所示,给出下列判断:D.C.B.A.y D①函数()y f x =在区间13,2⎛⎫-- ⎪⎝⎭内单调递增;②函数()y f x =在区间1,32⎛⎫- ⎪⎝⎭内单调递减;③函数()y f x =在区间(4,5)内单调递增;④当2x =时,函数()y f x =有极小值;⑤当12x =-时,函数()y f x =有极大值;则上述判断中正确的是___________.17、已知R 上可导函数)(x f 的图象如图所示,则不等式0)()32(2>'--x f x x 的解集为( )A .(,2)(1,)-∞-+∞B .(,2)(1,2)-∞-C .(,1)(1,0)(2,)-∞--+∞D .(,1)(1,1)(3,)-∞--+∞18、已知函数2()axf x x b=+,在1x =处取得极值2. ⑴求函数()f x 的解析式;⑵若函数()f x 在区间(21)m m +,上为增函数,求实数m 的取值范围;⑶若00()P x y ,为2()ax f x x b =+图象上的任意一点,直线l 与2()axf x x b=+的图象相切于点P , 求直线l 的斜率的取值范围.19、设函数2()ln()f x x a x =++,⑴若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; ⑵证明:当a 时,()f x 没有极值.⑶若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于eln 2.题型四:函数的最值例1、函数3()31f x x x =-+在闭区间[30]-,上的最大值和最小值分别是( )A .11-,B .117-,C .317-,D .919-,变式1、函数3()34([01])f x x x x =-∈,的最大值是( )A .1B .12C .0D .1-变式2、下列说法正确的是( )A .函数在闭区间上的极大值一定比极小值大B .函数在闭区间上的最大值一定是极大值C .满足()0f x '=的点可能不是函数的极值点D .函数()f x 在区间()a b ,上一定存在最值变式3、设函数1()20)f x x x x=+< 则()f x 的最大值为 .例2、已知函数321()23f x ax x =+,其中0a >.若()f x 在区间[11]-,上的最小值为2-,求a 的值.变式1、已知函数32()6([12])f x ax ax b x =-+∈-,的最大值为3,最小值为29-,求a 、b 的值.变式2、已知32()26f x x x a =-+(a 是常数)在[22]-,上有最大值3,那么在[22]-,上的最小值是( ) A .5- B .11- C .29- D .37-变式3、设a ∈R ,函数32()3f x ax x =-.⑴若2x =是函数()y f x =的极值点,求a 的值; ⑵若函数()()()[02]g x f x f x x '=+∈,,在0x =处取得最大值,求a 的取值范围. ⑶若函数()()()g x f x f x '=+在[02]x ∈,时的最大值为1,求a 的值.4、已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0.(1)当a =-4时,求f (x )的单调递增区间;(2)若f (x )在区间[1,4]上的最小值为8,求a 的值.已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0.例3、已知0a ≥,函数2()(2)x f x x ax e =-,()f x 是否存在最小值?若存在,当x 为何值时,()f x 取得最小值?变式1、已知函数()1e x a f x x⎛⎫=+ ⎪⎝⎭,其中0a >.⑴求函数()f x 的零点;⑵讨论()y f x =在区间(,0)-∞上的单调性;⑶在区间,2a ⎛⎤-∞- ⎥⎝⎦上,()f x 是否存在最小值?若存在,求出最小值;若不存在,请说明理由.变式2、已知函数2()()e x f x x mx m =-+,其中m ∈R .⑴若函数()f x 存在零点,求实数m 的取值范围;⑵当0m <时,求函数()f x 的单调区间,并确定此时()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由.变式3、已知()ln()[0)f x ax x x e =--∈-,,.⑴ 当1a =-时,讨论()f x 的单调性、极值; ⑵ 是否存在实数a ,使()f x 的最小值是3,如果存在,求出a 的值;若不存在,请说明理由.例4、已知函数()ln f x ax x =+,(1)x e ∈,,且()f x 有极值.⑴求实数a 的取值范围; ⑵求函数()f x 的值域;⑶函数3()2g x x x =--,证明:1(1)x e ∀∈,,0(1)x e ∃∈,,使得01()()g x f x =成立.变式1、已知函数247()2x f x x-=-,[01]x ∈,.⑴求()f x 的单调区间和值域;⑵设1a ≥,函数32()32g x x a x a =--,[01]x ∈,.若对于任意1[01]x ∈,,总存在0[01]x ∈,,使得01()()g x f x =成立,求a 的取值范围.变式2、已知函数()()1ln 1af x x ax a x-=-+-∈R .⑴ 当12a ≤时,讨论()f x 的单调性;⑵ 设()224g x x bx =-+.当14a =时,若对任意()102x ∈,,存在[]212x ∈,,使()()12f x g x ≥,求实数b 取值范围.变式3、设3x =是函数23()()e ()x f x x ax b x -=++∈R 的一个极值点.⑴求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间;⑵设0a >,225()e 4xg x a ⎛⎫=+ ⎪⎝⎭.若存在12[04]ξξ∈,,使得12()()1f g ξξ-<成立, 求a 的取值范围.例5、对于函数()f x ,在使()f x M ≥恒成立的所有常数M 中,我们把M 中的最大值称为函数()f x 的“下确界”,则函数221()(1)x f x x +=+的下确界为 .课后作业1、对于函数22e ,0()12,02x x x f x x x x ⎧⋅⎪=⎨-+>⎪⎩≤,有下列命题: ①过该函数图象上一点()()2,2f --的切线的斜率为22e -; ②函数()f x 的最小值为2e-;③该函数图象与x 轴有4个交点;④函数()f x 在(,1]-∞-上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是 .2、已知函数()e ln x f x a x =+的定义域是D ,关于函数()f x 给出下列命题:① 对于任意()0,a ∈+∞,函数()f x 是D 上的减函数;② 对于任意(),0a ∈-∞,函数()f x 存在最小值;③ 存在()0,a ∈+∞,使得对于任意的x D ∈,都有()0f x >成立; ④ 存在(),0a ∈-∞,使得函数()f x 有两个零点.其中正确命题的序号是_____.(写出所有正确命题的序号).3、已知32()21f x x bx cx =+++在区间[]12-,上是减函数,那么2b c +( ) A .有最大值152- B .有最大值152C .有最小值152-D .有最小值1524、设函数()()()ln ln 20f x x x ax a =+-+>⑴当1a =时,求()f x 的单调区间;⑵若()f x 在(]01,上的最大值为12,求a 的值.5、已知函数()ln a f x x x=+. ⑴当0a <时,求函数()f x 的单调区间;⑵若函数()f x 在[]1,e 上的最小值是3,2求a 的值.6、已知函数()2()ln 12ax f x x a x =+-+,a ∈R ,且0a ≥.⑴若(2)1f '=,求a 的值;⑵当0a =时,求函数()f x 的最大值; ⑶求函数()f x 的单调递增区间.7、在实数集R 上定义运算(1)x y x a y ⊗⊗=+-:(),若()2f x x =,()g x x =,若()()()F x f x g x =⊗.⑴求()F x 的解析式;⑵若()F x 在R 上是减函数,求实数a 的取值范围;⑶若53a =,()F x 的曲线上是否存在两点,使得过这两点的切线互相垂直,若存在,求出切线方程;若不存在,说明理由.8、已知a 是实数,函数()()2f x x x a =-.⑴若(1)3f '=,求a 的值及曲线()y f x =在点()()11f ,处的切线方程; ⑵求()f x 的极值.⑶求()f x 在区间[]02,上的最大值.9、设函数()y f x =在()-∞+∞,内有定义.对于给定的正数K ,定义函数()()()()K f x f x Kf x K f x K ⎧=⎨>⎩≤,取函数()2x f x x e -=--,若对任意的()x ∈-∞+∞,,恒有()()K f x f x =,则( )A .K 的最大值为2B .K 的最小值为2C .K 的最大值为1D .K 的最小值为1。

导数在函数中的应用——题型总结

导数在函数中的应用——题型总结

导数在函数中的应用一.根底知识1.函数的导数与单调性在*个区间,假设()f x '>0,则函数)(x f y =在这个区间单调递增;假设()f x '<0, 则函数)(x f y =在这个区间单调递减.2.函数的导数与极值〔1〕极大值:如果在0x 附近的左侧()f x '>0,右侧()f x '<0,且()f x '=0,则0()f x 是极大值; 〔2〕极小值:如果在0x 附近的左侧()f x '<0,右侧()f x '>0,且()f x '=0,则0()f x 是极小值;3.函数的导数与最值(1)函数)(x f y =在区间[a,b]上有最值的条件:一般地,如果在区间[a,b]上,函数)(x f y =的图象是一条连续不断的曲线,则它必有最大值和最小值.(2) 求函数)(x f y =在区间[a, b]上最大值与最小值的步骤:①求函数)(x f y =在区间〔a,b 〕的极值;②将函数)(x f y =的各个极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值4.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f(*);(2)求函数的导数f′(*),解方程f′(*)=0;(3)比较函数在区间端点和f′(*)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.本卷须知1.直线与曲线有且只有一个公共点,直线不一定是曲线的切线;反之直线是曲线的切线,但直线不一定与曲线有且只有一个公共点.2.(1)f′(*)>0在(a ,b)上成立是f(*)在(a ,b)上单调递增的充分条件.(2)对于可导函数f(*),f′(*0)=0是函数f(*)在*=*0处有极值的必要不充分条件.3.求函数单调区间的步骤:(1)确定函数f(*)的定义域;(2)求导数f′(*);(3)由f′(*)>0(f′(*)<0)解出相应的*的围.当f′(*)>0时,f(*)在相应的区间上是增函数;当f′(*)<0时,f(*)在相应的区间上是减函数,还可以列表,写出函数的单调区间.4.(1)注意实际问题中函数定义域确实定.(2)在实际问题中,如果函数在区间只有一个极值点,则只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.二.题型训练题型一 求曲线切线的方程例1.函数f (*)=*3-4*2+5*-4.(1)求曲线f (*)在*=2处的切线方程;(2)求经过点A (2,-2)的曲线f (*)的切线方程. 变式1.曲线y =*e *+1在点(0,1)处的切线方程是( )A .*-y +1=0B .2*-y +1=0C .*-y -1=0D .*-2y +2=02.直线y =k*+1与曲线y =*3+a*+b 相切于点A (1,3),则a -b 的值为( )A .-4B .-1C .3D .-2题型二.求函数的单调区间例2.函数f (*)=e *(a*+b )-*2-4*,曲线y =f (*)在点(0,f (0))处的切线方程为y =4*+4.(1)求a ,b 的值;(2)讨论f (*)的单调性,并求f (*)的极大值.练习:1. 设函数f (*)=*(e *-1)-12*2,则函数f (*)的单调增区间为________. 2.函数f(*)=13*3+a*2+b*(a ,b ∈R ).(1)当a =1时,求函数f(*)的单调区间;(2)假设f(1)=13,且函数f(*)在⎝ ⎛⎭⎪⎫0,12上不存在极值点,求a 的取值围.题型三.分类讨论求函数的单调区间例3.函数f (*)=*2+a*+b ln *(*>0,实数a ,b 为常数).(1)假设a =1,b =-1,求函数f (*)的极值;(2)假设a +b =-2,讨论函数f (*)的单调性.练习:1.函数f(*)=*2-(a +2)*+a ln *+2a +2,其中a≤2.(1)求函数f(*)的单调区间;(2)假设函数f(*)在(0,2]上有且只有一个零点,数a 的取值围.2.a ∈R ,函数3()42f x x ax a =-+〔1〕求()f x 的单调区间〔2〕证明:当0≤x ≤1时,()f x + 2a ->0.3. 设函数()x f x e ax 2=--(Ⅰ)求()f x 的单调区间(Ⅱ)假设a=1,k 为整数,且当*>0时,()()x k f x x 10'>-++,求k 的最大值小结:利用导数研究函数的单调性关注四点(1)利用导数研究函数的单调性,大多数情况下归结为对含有参数的不等式的解集的讨论.(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进展分类讨论.(3)在不能通过因式分解求出根时,根据不等式对应方程的判别式进展分类讨论.(4)讨论函数的单调性是在函数的定义域进展的,千万不要无视了定义域的限制.题型四.单调性的逆用例4.函数f (*)=*3-a*2-3*.(1)假设f (*)在[1,+∞)上是增函数,数a 的取值围;(2)假设*=3是f (*)的极值点,求f (*)的单调区间.练习:1.函数f (*)=(*+a )2-7b ln *+1,其中a ,b 是常数且a ≠0.(1)假设b =1时,f (*)在区间(1,+∞)上单调递增,求a 的取值围;(2)当b =47a 2时,讨论f (*)的单调性. 2.假设函数f (*)=*2+a*+1*在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值围是( ) A .[-1,0] B .[-1,+∞)C.[0,3] D .[3,+∞)3.函数f (*)=13*3-*2+a*-5在区间[-1,2]上不单调,则实数a 的围是________.4. 函数f 〔*〕=3213x x ax b -++的图像在点P 〔0,f(0)〕处的切线方程为y=3*-2 (Ⅰ)数a,b 的值;(Ⅱ)设g 〔*〕=f(*)+1m x -是[2,+∞]上的增函数,数m 的最大。

导数的常考题型

导数的常考题型

导数及其应用题型一:求解导数中的切线问题题型二:利用导数研究函数的单调性1、求不含任何参数的函数的单调区间2、求含参函数的单调区间3、根据函数的单调性求参数的取值范围 常考题型 题型三:利用导数研究函数的极值1、求函数的极值(含参与不含参);2、已知函数的极值求参数题型四:导数与零点题型五:导数中的恒成立问题题型六:利用导数证明不等式题型七:有关隐零点的导数题题型一:求解导数中的切线问题1、已知曲线C :y =ln x x. (1)求曲线C 在点(1,0)处的切线l 1的方程;(2)求过原点与曲线C 相切的直线l 2的方程.2、若直线1y x =+与函数()ln f x ax x =-的图像相切,则a 的值为 .题型二:利用导数研究函数的单调性:1、求不含任何参数的函数的单调区间2、求含参函数的单调区间3、根据函数的单调性求参数的取值范围1、求函数3()4ln f x x x x=--的单调区间2、设函数()(1)ln(1)f x ax a x =-++其中1a ≥-,求()f x 的单调区间。

3、若函数21()ln 2f x x x x tx =+++在定义域内递增,求实数t 的范围。

题型三:利用导数研究函数的极值:1、求函数的极值(含参与不含参);2、已知函数的极值求参数例1、求函数2()ln 1f x x x x =--+的极值例2、求函数23212()=33f x a x ax -+,0a >在[1,1]-上的极值例3、已知函数322()3f x x ax bx a =+++在1x =-时有极值0,求,a b思路点拨:求定义域→求导→令'(1)0(1)0f f -=⎧⎨-=⎩→求得,a b →检验变式1:已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52,求m 的值.变式2:已知函数32()132x a f x x x =-++在区间1(,3)2上有极值点,求实数a 的取值范围。

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。

2.变更主元:已知谁的范围就把谁作为主元。

3.根分布。

4.判别式法:结合图像分析。

5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。

基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。

2.画两图或列表。

3.由图表可知。

另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。

例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。

已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。

解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。

当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。

根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。

因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数常见题型及知识点分析(名师总结)

导数常见题型及知识点分析(名师总结)

导数常见题型及知识点分析(名师总结)第⼀部分:导数的运算法则及基本公式应⽤重难点归纳1深刻理解导数的概念,了解⽤定义求简单的导数y表⽰函数的平均改变量,它是Δx 的函数,⽽f ′(x 0)表⽰⼀个数值,即f ′(x )=xyx ??→?lim0,知道导数的等价形式()()(lim)()(lim 0000000x f x x x f x f x x f x x f x x x '=--=?-?+→?→? 2求导其本质是求极限,在求极限的过程中,⼒求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键3对于函数求导,⼀般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应⽤,⽽且要特别注意求导法则对求导的制约作⽤,在实施化简时,⾸先必须注意变换的等价性,避免不必要的运算失误4 复合函数求导法则,像链条⼀样,必须⼀环⼀环套下去,⽽不能丢掉其中的⼀环必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合⽽成的,分清其间的复合关系典型题例⽰范讲解例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω命题意图本题3个⼩题分别考查了导数的四则运算法则,复合函数求导的⽅法,以及抽象函数求导的思想⽅法这是导数中⽐较典型的求导类型知识依托解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数错解分析本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错技巧与⽅法先分析函数式结构,找准复合函数的式⼦特征,按照求导法则进⾏求导22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解y =µ3,µ=ax -b sin 2ωx ,µ=av -byv =x ,y =sin γγ=ωxy ′=(µ3)′=3µ2·µ′=3µ2(av -by )′=3µ2(av ′-by ′)=3µ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法⼀设y =f (µ),µ=v ,v =x 2+1,则y ′x =y ′µµ′v ·v ′x =f ′(µ)·21v -21·2x=f ′(12+x )·21112+x ·2x =),1(122+'+x f x x 解法⼆y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x =12+x x f ′(12+x )例2利⽤导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C nn ,(n ∈N *)命题意图培养考⽣的思维的灵活性以及在建⽴知识体系中知识点灵活融合的能⼒知识依托通过对数列的通项进⾏联想,合理运⽤逆向思维由求导公式(x n )′=nx n -1,可联想到它们是另外⼀个和式的导数关键要抓住数列通项的形式结构错解分析本题难点是考⽣易犯思维定势的错误,受此影响⽽不善于联想技巧与⽅法第(1)题要分x =1和x ≠1讨论,等式两边都求导解(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时,∵x +x 2+x 3+…+x n =xx x n --+11,两边都是关于x 的函数,求导得(x +x 2+x 3+…+x n)′=(xx x n --+11)′即S n =1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1,令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n ,即S n =C 1n +2C 2n +…+n C n n =n ·2n -1学⽣巩固练习1 y =e sin x cos(sin x ),则y ′(0)等于( ) A 0 B 1 C -1D 22经过原点且与曲线y =59++x x 相切的⽅程是( ) A x +y =0或25x +y =0 B x -y =0或25x+y =0C x +y =0或25x -y =0D x -y =0或25x-y =03若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的⽅程 6求函数的导数 (1)y =(x 2-2x +3)e 2x ;(2)y 7有⼀个长度为5 m 的梯⼦贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚14 m 时,梯⼦上端下滑的速度8求和S n =12+22x +32x 2+…+n 2x n -1 ,(x ≠0,n ∈N *) 参考答案1解析y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1答案B2解析设切点为(x 0,y 0),则切线的斜率为k =00x y ,另⼀⽅⾯,y ′=(59++x x )′=2)5(4+-x , 故y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0 得x 0(1)=-3, x 0 (2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53),从⽽得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- , 由于切线过原点,故得切线l A :y =-x 或l B :y =25x答案A3解析根据导数的定义f ′(x 0)=kx f k x f k ---+→)()]([(lim 000(这时k x -=?)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---?-=--∴→→→x f k x f k x f kx f k x f k x f k x f k k k答案-14解析设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n !答案n ! 5解设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1y ′=2x ,则与C 1相切于点P 的切线⽅程为 y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①对于C 2y ′=-2(x -2),与C 2相切于点Q 的切线⽅程为 y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0∴直线l ⽅程为y =0或y =4x -4 6解(1)注意到y >0,两端取对数,得 ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2x x xe x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1?+-=?+-?+-+-=?+-+-='∴+-+-=++--=++-'+-='?∴(2)两端取对数,得ln|y |=31(ln|x |-ln|1-x |),两边解x 求导,得 31)1(31)1(131)1(131)111(311xx x x y x x y x x x x y y --=?-?='∴-=---='?7解设经时间t 秒梯⼦上端下滑s ⽶,则s =5-2925t -,当下端移开14 m 时,t 0=157341=?,⼜s ′=-21(25-9t 2)21-·(-9·2t )=9t29251t-, 所以s ′(t 0)=9×2)157(9251157?-?=0875(m/s)8解(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1),当x ≠1时,1+2x +3x 2+…+nx n -1 =21)1()1(1x nx x n n n -++-+,两边同乘以x ,得x +2x 2+3x 2+…+nx n=221)1()1(x nx x n x n n -++-++两边对x 求导,得S n =12+22x 2+32x 2+…+n 2xn -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++第⼆部分:⽤导数求切线⽅程的四种类型求曲线的切线⽅程是导数的重要应⽤之⼀,⽤导数求切线⽅程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的⼀点,则以P 的切点的切线⽅程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平⾏于y 轴(即导数不存在)时,由切线定义知,切线⽅程为0x x =.下⾯例析四种常见的类型及解法.类型⼀:已知切点,求曲线的切线⽅程此类题较为简单,只须求出曲线的导数()f x ',并代⼊点斜式⽅程即可.例1 曲线3231y x x =-+在点(11)-,处的切线⽅程为()A.34y x =- B.32y x =-+C.43y x =-+ D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线⽅程为(1)3(1)y x --=--,即32y x =-+,因⽽选B.例2已知曲线C y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的⽅程及切点坐标解由l 过原点,知k =00x y(x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0,∴00x y =x 02-3x 0+2y ′=3x 2-6x +2,k =3x 02-6x 0+2⼜k =00x y,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23由x ≠0,知x 0=23∴y 0=(23)3-3(23)2+2·23=-83∴k =00x y =-41∴l ⽅程y =-41x 切点(23,-83)类型⼆:已知斜率,求曲线的切线⽅程此类题可利⽤斜率求出切点,再⽤点斜式⽅程加以解决.例3 与直线240x y -+=的平⾏的抛物线2y x =的切线⽅程是()A.230x y -+= B.230x y --=C.210x y -+= D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线⽅程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利⽤?法加以解决,即设切线⽅程为2y x b =+,代⼊2y x =,得220x x b --=,⼜因为0?=,得1b =-,故选D.类型三:已知过曲线上⼀点,求切线⽅程过曲线上⼀点的切线,该点未必是切点,故应先设切点,再求切点,即⽤待定切点法.例4 求过曲线32y x x =-上的点(11)-,的切线⽅程.解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线⽅程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.⼜知切线过点(11)-,,把它代⼊上述⽅程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线⽅程为(12)(32)(1)y x --=--,或13112842y x--+=-+,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728??-,为切点的直线.这说明过曲线上⼀点的切线,该点未必是切点,解决此类问题可⽤待定切点法.类型四:已知过曲线外⼀点,求切线⽅程此类题可先设切点,再求切点,即⽤待定切点法来求解.例5 求过点(20),且与曲线1y x=相切的直线⽅程.解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线⽅程为00201()y y x x x -=--,即020011()y x x x x -=--.⼜已知切线过点(20),,把它代⼊上述⽅程,得020011(2)x x x -=--.解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的⼀点,但在解答过程中却⽆需判断它的确切位置,充分反映出待定切点法的⾼效性.例6 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线⽅程.解:曲线⽅程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,,则点M 的坐标满⾜30003y x x =-.因200()3(1)f x x '=-,故切线的⽅程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线⽅程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型⼀或类型三;若点A 不在曲线上,应先设出切点并求出切点.第三部分:导数的应⽤最⼤值与最⼩值⼀、教学内容导数的应⽤最⼤值与最⼩值⼀般地,在闭区间],[b a 上连续的函数)(x f 在],[b a 上必有最⼤值与最⼩值;在开区间),(b a 内连续的函数)(x f 不⼀定有最⼤值与最⼩值,例如xx f 1)(=在),0(∞+内的图象连续,但⽆最⼤值和最⼩值。

导数大题20种主要题型

导数大题20种主要题型

导数大题20种主要题型一、求函数的单调性1. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间。

2. 给出函数解析式和区间,求函数在区间内的单调性。

二、求函数的极值3. 给出函数解析式,求导数,并根据导数正负确定函数的极值点,求出极值。

4. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值。

三、求函数的最大值或最小值5. 给出函数解析式,求导数,并根据导数正负确定函数的单调区间,从而确定函数的最大值或最小值。

6. 给出函数解析式和区间,求函数在区间内的极值点,并求出极值,再与区间端点的函数值比较,得到函数的最大值或最小值。

四、确定函数图像的单调区间7. 给出函数解析式,求导数,并根据导数正负确定函数图像的单调区间。

8. 给出函数图像的大致形状,根据图像的变化趋势,确定函数解析式,并求导数,确定函数图像的单调区间。

五、判断函数的零点9. 给出函数解析式和区间,判断函数在区间内的零点个数。

10. 给出函数解析式和大致的图像,根据图像的变化趋势,判断函数在某一点的零点是否存在。

六、判断函数的最值点11. 给出函数解析式和区间,判断函数在区间内的最值点。

12. 给出函数图像的大致形状,根据图像的变化趋势,确定函数在某一点的最值点。

七、判断函数的极值点13. 给出函数解析式,求导数,并根据导数正负确定函数的极值点。

14. 给出函数图像的大致形状,根据图像的变化趋势,判断函数在某一点的极值点。

八、求解不等式九、求解方程的根十、利用导数证明不等式十一、利用导数求最值十二、利用导数求多变量函数的平衡点十三、利用导数研究函数的图像性质十四、利用导数研究函数的极值和最值十五、利用导数求解高阶导数十六、利用导数求实际问题的最优解十七、利用导数求解曲线的切线方程十八、利用导数研究函数的凹凸性十九、利用导数求解函数的零点个数二十、物理问题的应用。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

完整word版导数题型分类大全

完整word版导数题型分类大全

y = f(u),u =®(x),则 y ; = f'(X)冲'(X)如,(e sinx )』题型二:利用导数几何意义及求切线方程导数的几何意义: 函数y = f (x )在X o 处的导数是曲线 y=f (x )上点(X o , f (X o ))处的切线的斜 率.因此,如果f '(x o )存在,则曲线y = f (X )在点(X o , f (x o ))处的切线方程为导数题型分类(A )题型一:导数的定义及计算、常见函数的导数及运算法则 △v f (x 0 + A x ) — f (x 0)(一)导数的定义:函数y = f (X )在X o 处的瞬时变化率lim 丿=lim o o2 i x 心T O y ,即 为函数y = f (X )在X = X o 处的导数,记作f / (X o )或y / /f (X o +&)_f (X o )f (x o ) = lim ---------------- 如果函数y = f (x )在开区间(a,b )内的每点处都有导数, 此时对于每一个 X 亡(a,b ),都对 应着一个确定的导数 f /(X ),从而构成了一个新的函数 f /(X )。

称这个函数f /(X )为函数 y = f (x )在开区间内的 导函数,简称导数,也可记作y /,即f^x ) = y / = ,f (x +A x )-f (x ) lim - ------ --- -- 2 A x 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 y = f (X )在X o 处的导数y / X 赳,就是导函数f^x )在X o 处的函数值,即 XzX o=f / ( X o )。

例1.函数y = f (x 在X =a 处的导数为A ,求Ijmf (a+4t )— f(a +5t ) ---------------------- 。

导数题型总结

导数题型总结

导数题型总结题型一:利用导函数解析式求原函数解析式例1:已知多项式函数()f x 的导数/2()34f x x x =-,且(1)4f =,求()f x例2:已知多项式函数()f x 为奇函数,/2()31()f x x ax a R =++∈,求()f x例3:已知函数432()f x ax bx cx dx e =++++为偶函数,它的图象过点(0,1)A -,且在1x =处的切线方程为210x y +-=,求()f x题型二:求切线问题例1:已知曲线方程为2122x -y=,则在点3(1,)2P -处切线的斜率为 ,切线的倾斜角为例2:求曲线13y x=在原点处的切线方程切线斜率不存在所以切线方程为0x =例3:求曲线3y x =在点(1,1)出的切线与X 轴,直线2x =所围成的三角形的面积切线方程为320x y --= 三角形面积83S =例4:求曲线2y x =分别满足下列条件的切线方程(1)平行于直线45y x =- (2)垂直于直线2650x y -+= (3)与X 轴成0135的倾斜角 (4)过点(1,3)P -,且与曲线相切的直线 例5:已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是例6:已知函数()f x 在R 上满足3()3()8f x f x x =--+,则曲线()y f x =在点(2,(2))f 处的切线方程是题型三:求倾斜角例1:P 在曲线323+-=x x y 上移动,在点P 处的切线的倾斜角为α,则α的取值范围是______例2:.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;题型四:导数与函数图像问题例1:若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在[,]a b 上的图象可能是( )A .B .C .D ..例2函数y=ax 2+ bx 与y= ||log b ax (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是( )ab a例3函数22x y x =-的图像大致是( )例4设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )例5设()f x '是函数()f x 的导函数,()y f x '=的图象如下图(1)所示,则()y f x =的图象最有可能的是例6.设函数f(x)y=f '(x)可能为 ( )A .B .C .D .AB C D题型五:结合单调性求参数的取值范围例1:若函数32()f x x ax bx c =+++为R 上的增函数,则实数,,a b c 满足的条件是 例2:已知函数32()1f x x ax x =-+--在R 是单调函数,则实数a 的取值范围是例3:已知函数32()321f x x x =+-在区间(,)m o 上是减函数,则m 的取值范围是例4:已知向量2(1)a x x =+ ,,(1,)b x t =- ,若函数()f x a b = 在区间(1,1)-上是增函数,求t 的取值范围例5:已知函数32()33(2)1f x x ax a x =++++既有极大值又有极小值,则实数a 的取值范围是例6:若函数34()3f x x bx =-+有三个单调区间,则b 的取值范围是 0b >例7:设函数3()65f x x x =-+ (1)求()f x 的单调区间和极值(2)若关于x 的方程()f x a =有三个不同实根,求a 的取值范围 (3)已知当(1,)x ∈+∞时,()(1)f x k x ≥-恒成立,求实数k 的取值范围例8:已知32()f x x ax bx c =+++在213x x =-=与时取得极值(1)求,a b 的值(2)若对[1,2]x ∈-,2()f x c <恒成立,求c 的取值范围 例9:已知函数()f x 的图象与函数1()2g x x x=++的图象关于点(0,1)A 对称 (1)求函数()f x 的解析式 (2)若()()ah x f x x=+,且()h x 在区间(0,2]上是减函数求实数a 的取值范围 题型六:求单调区间例1:(1) 432()3861f x x x x =-++ (2)3()f x x ax =- (3) 2()x f x x e -= 例2:已知函数32()f x ax bx cx d =+++的两个极值点是1-和3 ,且(0)7f =-,/(0)18f =-,求函数()f x 的解析式例3:已知()f x 是三次函数,()g x 是一次函数,321()()2372f xg x x x x -=-+++,()f x 在1x =处有极值2 ,求()f x 的解析式和单调区间题型七:求极值问题例1.(本小题满分12分)设函数32()63(2)2f x x a x ax =+++.(1)若()f x 的两个极值点为12,x x ,且121x x =,求实数a 的值;(2)是否存在实数a ,使得()f x 是(,)-∞+∞上的单调函数?若存在,求出a 的值;若不存在,说明理由. 例2设函数()sin cos 1 , 02f x x x x x π=-++<<,求()f x 的单调区间与极值. 例3已知函数42()32(31)4f x ax a x x =-++ (I )当16a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围 例4设定函数32()(0)3a f x x bx cx d a =+++>,且方程'()90f x x -=的两个根分别为1,4。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数题型总结一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下步骤进行解决: 第一步:令''()0()0f x f x ><或者求出函数的单调区间; 第二步:根据第一步求出函数的极大值,极小值和最大值;至于不等式恒成立,则要分离变量或者变更主元。

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解: 由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=-- (1)()y f x =在区间[]0,3上为“凸函数”,则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2()30g x x mx =--< 恒成立 等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值围. 解:(Ⅰ)01a << 令,0)(>'x f 得)(x f 的单调递增区间()()22()433f x x ax a x a x a '=-+-=---为(a ,3a ) 令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞) ∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立① 则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩ 22()43g x x ax a =-+的对称轴2x a =01,a << 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.max min ()(2)2 1.()(1)4 4.g x g a a g x g a a =+=-+=+=-+∴于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于(2)44,41.(1)215g a a a a g a a a+=-+≤⎧≤≤⎨+=-+≥-⎩解得 又,10<<a ∴.154<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系例3:已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,数t 的取值围。

解:(Ⅰ)/2()32f x x ax =+∴/(1)31f b a⎧=-⎨=+⎩, 解得32a b =-⎧⎨=-⎩2x a =[]1,2a a ++(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]- (Ⅲ)令2()()()(1)3[1,4]2t h x f x g x x t x x =-=-++-∈思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2(2)26t x x x -≥- 分离变量 思路2:二次函数区间最值二、参数问题1、题型一:已知函数在某个区间上的单调性求参数的围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值围.解:)14()1(41)(2++++='a x a x x f . (Ⅰ)∵ ()f x '是偶函数,∴ 1-=a . 此时x x x f 3121)(3-=,341)(2-='x x f , 令0)(='x f ,解得:32±=x . 列表如下:可知:()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f . (Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立 判别式法则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤,解得:02a ≤≤. 综上,a 的取值围是}20{≤≤a a . 例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥ (I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值围。

子集思想解:(I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++-1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。

2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且 单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a --(II )当()[0,1],f x 在上单调递增 则[]0,1是上述增区间的子集:1、0a =时,()(,)f x -∞+∞在单调递增 符合题意2、[]()0,11,a ⊆-+∞,10a ∴-≤ 1a ∴≤ 综上,a 的取值围是[0,1]。

2、题型二:根的个数问题题1 函数f(x)与g(x)(或与x 轴)的交点,即方程根的个数问题 解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系; 第三步:解不等式(组)即可。

例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.(1) 数k 的取值围;(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,数k 的取值围.解:(1)由题意x k x x f )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值围为1≤k(2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:由于021<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k 综上,所求k 的取值围为31-<k。

相关文档
最新文档