离散数学期末考试题答案
离散数学期末考试题及详细答案
离散数学期末考试题及详细答案一、选择题(每题5分,共20分)1. 在离散数学中,下列哪个概念用来描述元素与集合之间的关系?A. 并集B. 交集C. 子集D. 元素答案:D2. 布尔代数中,下列哪个运算符表示逻辑“与”?A. ∨B. ∧C. ¬D. →答案:B3. 下列哪个命题的否定是正确的?A. 如果今天是周一,则明天是周二。
B. 如果今天是周一,则明天不是周二。
答案:B4. 在图论中,一个图的顶点数为n,边数为m,下列哪个条件可以保证该图是连通的?A. m > nB. m ≥ nC. m = nD. m > n-1答案:D二、填空题(每题5分,共20分)1. 在集合论中,一个集合的幂集包含该集合的所有______。
答案:子集2. 如果一个函数f: A → B是单射的,那么对于任意的a1, a2 ∈ A,如果a1 ≠ a2,则f(a1) ≠ f(a2)。
这种性质称为函数的______。
答案:单射性3. 在图论中,一个图的直径是指图中任意两个顶点之间的最短路径的最大值。
如果一个图的直径为1,则该图被称为______。
答案:完全图4. 一个布尔表达式可以表示为一系列逻辑运算符和变量的组合。
布尔表达式(A ∧ B) ∨ (¬ A ∧ C)的真值表中,当A为真,B为假,C为真时,整个表达式的值为______。
答案:真三、简答题(每题10分,共30分)1. 请简述什么是图的哈密顿回路,并给出一个例子。
答案:哈密顿回路是图中的一个回路,它恰好访问每个顶点一次。
例如,在一个完全图中,任意一个顶点出发,依次访问其他顶点,最后回到出发点的路径就是一个哈密顿回路。
2. 请解释什么是二元关系,并给出一个二元关系的例子。
答案:二元关系是定义在两个集合上的一个关系,它关联了第一个集合中的元素和第二个集合中的元素。
例如,小于关系是实数集合上的一个二元关系,它关联了每一对实数,如果第一个数小于第二个数。
离散数学期末考试试题(配答案)
广东技术师范学院模拟试题科 目:离散数学考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号:一.填空题(每小题2分,共10分)1. 谓词公式)()(x xQ x xP ∃→∀的前束范式是__ ∃x ∃y¬P(x)∨Q(y) __________。
2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__,=A _{4,5}____,=B A __ {1,3,4,5} _____3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ {{c},{a,c},{b,c},{a,b,c}} __________,=-)()(A B ρρ_____Φ_______。
4. 在代数系统(N ,+)中,其单位元是0,仅有 _1___ 有逆元。
5.如果连通平面图G 有n 个顶点,e 条边,则G 有___e+2-n ____个面。
二.选择题(每小题2分,共10分)1. 与命题公式)(R Q P →→等价的公式是( )(A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=<E V G ,中,结点总度数与边数的关系是( ) (A)E v i 2)deg(= (B) E v i =)deg((C)∑∈=Vv iE v 2)deg((D) ∑∈=Vv iE v )deg(4. 设D 是有n 个结点的有向完全图,则图D 的边数为( ) (A))1(-n n (B))1(+n n (C)2/)1(+n n (D)2/)1(-n n5. 无向图G 是欧拉图,当且仅当( )(A) G 的所有结点的度数都是偶数 (B)G 的所有结点的度数都是奇数(C)G 连通且所有结点的度数都是偶数 (D) G 连通且G 的所有结点度数都是奇数。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题3分,共30分)1. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A∩B是()A. {1, 2, 3, 4, 5}B. {2, 4}C. {1, 3, 5}D. {2, 4, 6, 8}2. 下列关系中,哪个是等价关系?()A. 小于关系B. 大于等于关系C. 模2同余关系D. 整除关系3. 设P(x)是谓词逻辑公式,下列哪个命题与∀xP(x)等价?()A. ∃x¬P(x)B. ¬∀xP(x)C. ¬∃xP(x)D. ∃x¬P(x)4. 一个图的欧拉回路是指()A. 经过每一条边的路径B. 经过每一个顶点的路径C. 经过每一条边的环D. 经过每一个顶点的环5. 设G是一个无向图,下列哪个说法是正确的?()A. G的每个顶点的度数都相等B. G的每个顶点的度数都不相等C. G的任意两个顶点之间都有一条边D. G的任意两个顶点之间都不一定有边6. 下列哪个图是哈密顿图?()A. K3,3B. K5C. K4,4D. K67. 设G是一个具有n个顶点的连通图,则G的最小生成树至少包含()A. n个顶点B. n-1条边C. n+1条边D. 2n条边8. 下列哪个算法可以用来求解最短路径问题?()A. Dijkstra算法B. Kruskal算法C. Prim算法D. Floyd算法9. 设P和Q是两个命题,下列哪个命题与(P→Q)∧(Q→P)等价?()A. P∧QB. P∨QC. P↔QD. ¬P∨¬Q10. 设A是一个有限集合,A的幂集是指()A. A的所有子集B. A的所有真子集C. A的所有非空子集D. A的所有非空真子集二、填空题(每题3分,共30分)11. 设集合A={1, 2, 3, 4, 5},B={2, 4, 6, 8},则A-B=______。
12. 设P(x)是谓词逻辑公式,∃xP(x)表示“存在一个x使得P(x)成立”,那么∀x¬P(x)表示“______”。
离散数学期末考试题及答案
离散数学期末考试题及答案1.选择题(每题3分,共30分)1. 下列命题中,属于复合命题的是:A. 3是一个奇数,且2是一个偶数B. 如果2是一个素数,那么4也是一个素数C. 不是所有奇数都是素数D. 存在一个整数x,使得x>5且x是一个偶数答案:D2. 已知命题p:草地是绿的,命题q:天空是蓝的。
下列表述可以表示p ∧ ¬q 的是:A. 草地是绿的,天空是蓝的B. 草地不是绿的,天空是蓝的C. 草地是绿的,天空不是蓝的D. 草地不是绿的,天空不是蓝的答案:B3. 设命题p表示“这个数是偶数”,q表示“这个数大于10”。
那么“这个数既是偶数又大于10”可以表示为:A. p ∧ qB. p ∨ qC. ¬p ∧ qD. ¬p ∨ q答案:A4. 下列以下列集合的方式描述,其中哪个是空集∅:A. {x | 0 ≤ x ≤ 1}B. {x | x是一个自然数,x > 10}C. {x | x是一个正偶数,x < 2}D. {x | x是一个负整数,x < -1}答案:C5. 设A = {a, b, c},B = {c, d, e},C = {a, c, e}。
则(A ∪ B) ∩ C等于:A. {a, b, c, d, e}B. {a, c, e}C. {c}D. 空集∅答案:B6. 假设U是全集,A、B、C是U的子集。
则(A ∪ B) ∩ C 的补集是:A. A ∩ B ∩ C的补集B. (A ∪ B) ∩ C的补集C. A ∪ (B ∩ C)的补集D. (A ∩ C) ∩ (B ∩ C)的补集答案:D7. 若关系R为集合A到集合B的一种映射,且|A| = 7,|B| = 4,则R包含的有序对数目为:A. 4B. 7C. 11D. 28答案:D8. 设A={1,2,3},B={4,5,6},则从A到B的映射总数为:A. 3B. 9C. 6D. 18答案:C9. 设A={a,b,c,d,e},则集合A的幂集的元素个数是:A. 2B. 5C. 10D. 32答案:D10. 若f:A→B为满射且g:B→C为单射,则(g ∘ f):A→C为:A. 双射B. 满射C. 单射D. 非单射且非满射答案:A2.简答题(每题10分,共20分)1. 请简要解释什么是关系R的自反性、对称性和传递性。
离散数学期末考试复习题及参考答案
参考答案: B
6、 设 A. 代数系统 B. 半群 C. 群
,*为普通乘法,则<S,*>是( )
D. 都不是
参考答案: A
7、 设S={0,1},*为普通乘法,则< S , * >是( ) A. 半群,但不是独异点 B. 只是独异点,但不是群 C. 群 D. 环,但不是群
参考答案: B
A. B. C. D.
参考答案: B
3、 命题“有的人喜欢所有的花”的逻辑符号化为( ) 设D:全总个体域,F(x):x是花,M(x) :x是人,H(x,y):x喜欢y
A. B. C. D.
参考答案: D
4、 下列等价式成立的有( )
A. B. C. D.
参考答案: D
5、 下列公式是重言式的有( )
5、 ( )设S={1,2},则S在普通加法和乘法运算下都不封闭。 参考答案: 正确
8、 谓词公式
中的x是( )
A. 自由变元
B. 约束变元
C. 既是自由变元又是约束变元
D. 既不是自由变元又不是约束变元
参考答案: C
9、 设
是一个有界格,如果它也是有补格,只要满足( )
A. 每个元素都至少有一个补元
B. 每个元素都有多个补元
C. 每个元素都无补元
D. 每个元素都有一个补元
参考答案: A
10、 一棵无向树T有4度、3度、2度的分枝点各1个,其余顶点均为树叶,则T中有( )片树叶
A. 3 B. 4 C. 5 D. 6
参考答案: C
11、 设
A. {{1,2}} B. {1,2 } C. {1} D. {2}
参考答案: A
,则有( )
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,空集表示为:A. {0}B. {1}C. {}D. Ø答案:D2. 命题逻辑中,下列哪个是合取命题的真值表?A. P | Q | P ∧ QB. P | Q | P ∨ QC. P ∧ Q | P ∨ QD. P ∧ Q | ¬(P ∨ Q)答案:A3. 函数f: A → B是单射的,那么f的逆函数:A. 一定存在B. 一定不存在C. 可能存在D. 以上都不对答案:C4. 关系R是自反的,那么对于所有a∈A,以下哪个命题一定为真?A. (a, a) ∈ RB. (a, a) ∉ RC. (a, a) ∈ R或(a, a) ∉ RD. (a, a) ∈ R且(a, a) ∉ R答案:A5. 在图论中,下列哪个不是图的基本术语?A. 顶点B. 边C. 子集D. 路径答案:C6. 命题p: “如果x是偶数,则x能被4整除”的否定是:A. 如果x是偶数,则x不能被4整除B. 如果x不是偶数,则x不能被4整除C. 如果x不是偶数,则x能被4整除D. 如果x是偶数,则x不能被4整除或x不是偶数答案:A7. 有向图G中,如果存在从顶点u到顶点v的有向路径,则称v是u 的:A. 祖先B. 后代C. 邻居D. 连接点答案:B8. 在命题逻辑中,下列哪个命题是永真命题?A. (P ∧ ¬P) ∨ (P ∨ ¬P)B. (P ∧ ¬P) ∧ (P ∨ ¬P)C. (P ∨ ¬P) ∧ (¬P ∨ P)D. (P ∧ ¬P) ∧ (¬P ∧ P)答案:C9. 以下哪个选项是等价命题?A. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)B. P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)C. P ∨ ¬P ≡ ¬P ∧ PD. P ∧ ¬P ≡ ¬P ∨ P答案:A10. 树是无环连通图,以下哪个是树的属性?A. 至少有一个环B. 至少有两个顶点C. 至少有一个顶点D. 至少有一个边答案:B二、填空题(每空2分,共20分)11. 集合{1, 2, 3}的幂集含有__个元素。
离散数学期末试卷(4套附答案)
一、单项选择题(每小题3分,共30分)1.下列为两个命题变元p,q的最小项的是( ) A .p∧q∧⎤ pB .⎤ p∨qC .⎤ p∧qD .⎤ p∨p∨q 2.下列句子不是命题的是( ) A .中华人民共和国的首都是北京 B .张三是学生 C .雪是黑色的D .太好了!3.对于公式(∀x ) (∃y )(P (x )∧Q (y ))→(∃x )R (x ,y ),下列说法正确的是( ) A .y 是自由变元 B .y 是约束变元C .(∃x )的辖域是R(x , y )D .(∀x )的辖域是(∃y )(P (x )∧Q (y ))→(∃x )R (x ,y )4.7.集合A={1,2,…,10}上的关系R={(x ,y )|x +y =10,x ∈A ,y ∈A},则R 的性质是( )A .自反的B .对称的C .传递的、对称的D .反自反的、传递的 5.设论域为{l ,2},与公式)(x xA ∃等价的是( ) A.A (1)∨A (2)B. A (1)→A (2)C.A (1)D. A (2)→A (1)6. 下列关系矩阵所对应的关系具有反自反性的是( ) A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001110101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100001 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001100100D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0010101017. 下列运算不满足...交换律的是( ) A .a *b =a+2bB .a *b =min(a ,b )C .a *b =|a -b |D .a *b =2ab8..设A 是奇数集合,下列构成独异点的是( ) A.<A ,+> B.<A ,-> C.<A ,×> D.<A ,÷> 9. 右图的最大入度是( ) A .0 B .1 C .2D .3第9题图拟题学院(系): 高密校区 适用专业: 学年 2学期 离散数学 (B卷) 试题标准答案10. 设有向图D 的节点数大于1,D=(V ,E )是强连通图,当且仅当( ) A. D 中至少有一条通路 B. D 中至少有一条回路C. D 中有通过每个结点至少一次的通路D. D 中有通过每个结点至少一次的回路 二、填空题(每空3分,共30分)1.设A ={1,2,3,4},B ={2,4,6},则A -B =________,A ⊕B =________。
离散数学期末考试题(附答案和含解析)
一、填空2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 (B ⊕C)-A4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 )()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。
6.设A={1,2,3,4},A 上关系图如下,则 R^2= {(1,1),(1,3),(2,2),(2,4)} 。
//备注:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001010010R⎪⎪⎪⎪⎪⎭⎫⎝⎛=00000000101001012R7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图如下,则R= {(a,b),(a,c), (a,d), (b,d), (c,d)} U {(a,a),(b,b)(c,c)(d,d)} 。
//备注:偏序满足自反性,反对称性,传递性8.图的补图为 。
//补图:给定一个图G ,又G 中所有结点和所有能使G 成为完全图的添加边组成的图,成为补图. 自补图:一个图如果同构于它的补图,则是自补图 9.设A={a ,b ,c ,d} ,A 上二元运算如下:* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 a ,有逆元的元素为 a,b,c,d ,它们的逆元分别为 a,b,c,d 。
//备注:二元运算为x*y=max{x,y},x,y ∈A 。
10.下图所示的偏序集中,是格的为 c 。
//(注:什么是格?即任意两个元素有最小上界 和最大下界的偏序)二、选择题1、下列是真命题的有( C 、D )A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C .}},{{ΦΦ∈Φ; D .}}{{}{Φ∈Φ。
2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
离散期末考试题及答案
离散期末考试题及答案离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示属于关系?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 有限集合A和B的并集,其元素个数最多是A和B元素个数之和,这个性质称为:A. 德摩根定律B. 幂集C. 并集原理D. 子集原理答案:C3. 命题逻辑中,以下哪个命题是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p ∨ q) ∧ ¬pD. (p ∧ q) ∨ ¬p答案:B4. 在图论中,一个无向图的边数至少是顶点数的多少倍才能保证图中至少存在一个环?A. 1B. 2C. 3D. 4答案:B5. 以下哪个算法用于生成一个集合的所有子集?A. 欧拉回路B. 哈密顿回路C. 深度优先搜索D. 子集生成算法答案:D6. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D7. 以下哪个是有限自动机的状态?A. 初始状态B. 终止状态C. 转移状态D. 所有选项答案:D8. 以下哪个是图论中的一个基本定理?A. 欧拉定理B. 哈密顿定理C. 狄拉克定理D. 所有选项答案:D9. 在命题逻辑中,以下哪个是德摩根定律的逆命题?A. ¬(p ∨ q) ≡ ¬p ∧ ¬qB. ¬(p ∧ q) ≡ ¬p ∨ ¬qC. ¬(p ∨ q) ≡ ¬p ∨ ¬qD. ¬(p ∧ q) ≡ ¬p ∧ ¬q答案:B10. 在集合论中,以下哪个操作表示集合的差集?A. ∩B. ∪C. -D. ×答案:C二、填空题(每空3分,共30分)11. 集合{1, 2, 3}的幂集包含________个元素。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是图的边数与顶点数的关系?A. 边数小于顶点数B. 边数等于顶点数C. 边数大于顶点数D. 边数与顶点数无固定关系答案:D2. 有限自动机的英文缩写是什么?A. FAB. PDAC. TMAD. NFA答案:A3. 布尔代数中,德摩根定律是指什么?A. ¬(A ∧ B) 等于¬ A ∨ ¬ BB. ¬(A ∨ B) 等于¬ A ∧ ¬ BC. A ∧ B 等于¬(A ∨ B)D. A ∨ B 等于¬(¬ A ∧ ¬B)答案:B4. 在命题逻辑中,以下哪个符号表示蕴含?A. ∧B. ∨C. →D. ↔答案:C5. 集合A = {1, 2, 3},B = {2, 3, 4},则A ∪ B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3, 4}D. {1, 3, 4}答案:A6. 以下哪个选项是正确的递归定义?A. 一个数是偶数当且仅当它是2的倍数B. 一个数是偶数当且仅当它不是2的倍数C. 一个数是偶数当且仅当它是另一个偶数加1D. 以上都是正确的递归定义答案:A7. 有向图和无向图的主要区别是什么?A. 有向图的边有方向,无向图的边没有方向B. 有向图的顶点有方向,无向图的顶点没有方向C. 有向图的边可以相交,无向图的边不可以相交D. 有向图可以有环,无向图不可以有环答案:A8. 在命题逻辑中,以下哪个公式是矛盾的?A. A ∧ ¬ AB. A ∨ ¬ AC. A → BD. A ∧ B ∧ ¬ A答案:A9. 以下哪个是图的同义术语?A. 网络B. 矩阵C. 树D. 以上全部答案:A10. 以下哪个命题逻辑公式是有效的?A. (A → B) ∧ (B → A)B. (A ∧ B) → AC. (A ∨ B) → AD. (A ∧ B) → B答案:B二、填空题(每题2分,共20分)11. 在命题逻辑中,_________ 表示一个命题是真的,而 _________ 表示一个命题是假的。
大学离散数学期末考试题库和答案
大学离散数学期末考试题库和答案一、单项选择题(每题2分,共20分)1. 在集合论中,以下哪个符号表示“属于”?A. ∈B. ∉C. ⊆D. ⊂答案:A2. 如果A和B是两个集合,那么A∪B表示什么?A. A和B的交集B. A和B的并集C. A和B的差集D. A和B的补集答案:B3. 以下哪个命题是真命题?A. ∀x∈N, x^2 > xB. ∃x∈N, x^2 = x + 1C. ∀x∈N, x^2 ≥ xD. ∃x∈N, x^2 < x答案:C4. 在图论中,一个无向图的边数为E,顶点数为V,那么这个图的生成树的边数是多少?A. EB. V-1C. VD. E-1答案:B5. 以下哪个算法是用于解决旅行商问题(TSP)的?A. 动态规划B. 贪心算法C. 分支限界法D. 回溯法答案:D6. 在逻辑中,以下哪个符号表示“蕴含”?A. ∧B. ∨C. →D. ↔答案:C7. 以下哪个是二进制数?A. 1010B. 2A3C. 12BD. ZYX答案:A8. 在关系数据库中,以下哪个操作用于删除表中的行?A. SELECTB. INSERTC. UPDATED. DELETE答案:D9. 以下哪个是布尔代数的基本运算?A. 并集B. 交集C. 差集D. 所有以上答案:D10. 在离散数学中,以下哪个概念用于描述两个集合之间的关系?A. 函数B. 映射C. 序列D. 所有以上答案:D二、多项选择题(每题3分,共15分)11. 以下哪些是集合的基本运算?A. 并集B. 交集C. 差集D. 补集答案:ABCD12. 在图论中,以下哪些是图的基本类型?A. 无向图B. 有向图C. 完全图D. 二分图答案:ABCD13. 在逻辑中,以下哪些是命题逻辑的基本连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 蕴含(→)答案:ABCD14. 在关系数据库中,以下哪些是SQL的基本操作?A. SELECTB. INSERTC. UPDATED. DELETE答案:ABCD15. 在离散数学中,以下哪些是组合数学的基本概念?A. 排列B. 组合C. 二项式系数D. 图论答案:ABC三、填空题(每题3分,共30分)16. 如果集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B=______。
离散数学期末考试题及答案
离散数学期末考试题及答案一、选择题(每题2分,共20分)1. 在集合论中,以下哪个选项不是集合的基本运算?A. 并集B. 交集C. 差集D. 乘法答案:D2. 命题逻辑中,以下哪个命题不是基本的逻辑连接词?A. 与(∧)B. 或(∨)C. 非(¬)D. 等于(=)答案:D3. 在图论中,一个图的度数之和等于边数的几倍?A. 1B. 2C. 3D. 4答案:B4. 以下哪个是布尔代数的基本定理?A. 德摩根定律B. 布尔代数的分配律C. 布尔代数的结合律D. 所有选项都是答案:D5. 以下哪个不是组合数学中的计数原理?A. 加法原理B. 乘法原理C. 排列D. 组合答案:C6. 在关系数据库中,以下哪个操作不是基本的数据库操作?A. 选择B. 投影C. 连接D. 排序答案:D7. 以下哪个是有限自动机的组成部分?A. 状态B. 转移C. 输入符号D. 所有选项都是答案:D8. 以下哪个命题逻辑表达式是真命题?A. (p ∧ ¬p) ∨ qB. (p ∨ ¬p) ∧ qC. (p → q) ∧ (q → p)D. (p → q) ∧ (¬p → ¬q)答案:D9. 以下哪个是归纳法证明的基本步骤?A. 基础步骤B. 归纳步骤C. 反证法D. 所有选项都是答案:B10. 以下哪个是图的遍历算法?A. 深度优先搜索(DFS)B. 广度优先搜索(BFS)C. Dijkstra算法D. 所有选项都是答案:A二、简答题(每题10分,共30分)1. 简述命题逻辑中的德摩根定律。
答案:德摩根定律是命题逻辑中描述否定命题的两个重要定律。
它们分别是:- ¬(p ∧ q) ≡ ¬p ∨ ¬q- ¬(p ∨ q) ≡ ¬p ∧ ¬q2. 解释什么是图的连通分量,并给出一个例子。
答案:图的连通分量是指图中最大的连通子图。
离散数学期末复习试题及答案
离散数学习题参考答案第一章集合1.分别用穷举法,描述法写出以下集合(1)偶数集合〔2〕36的正因子集合〔3〕自然数中3的倍数〔4〕大于1的正奇数(1)E={⋯,-6,-4,-2,0,2,4,6,⋯}={2 i | i∈I }(2) D= { 1, 2, 3, 4, 6, } = {x>o | x|36 }(3) N3= { 3, 6, 9, ```} = { 3n | n∈N }(4) A d= {3, 5, 7, 9, ```} = { 2n+1 | n∈N }2.确定以下结论正确与否〔1〕φ∈φ×〔2〕φ∈{φ}√〔3〕φ⊆φ√〔4〕φ⊆{φ}√〔5〕φ∈{a}×〔6〕φ⊆{a}√〔7〕{a,b}∈{a,b,c,{a,b,c}}×〔8〕{a,b}⊆{a,b,c,{a,b,c}}√〔9〕{a,b}∈{a,b,{{a,b}}}×〔10〕{a,b}⊆{a,b,{{a,b}}}√3.写出以下集合的幂集〔1〕{{a}}{φ, {{ a }}}( 2 ) φ{φ}〔3〕{φ,{φ}}{φ, {φ}, {{φ}}, {φ,{φ}} }〔4〕{φ,a,{a,b}}{φ, {a}, {{a,b }}, {φ}, {φ, a }, {φ, {a,b }},{a, {a b }}, {φ,a,{ a, b }} }〔5〕P〔P〔φ〕〕{φ, {φ}, {{φ}}, {φ,{φ}} }4.对任意集合A,B,C,确定以下结论的正确与否〔1〕假设A∈B,且B⊆C,那么A∈C√ 〔2〕假设A∈B,且B⊆C,那么A⊆C× 〔3〕假设A⊆B,且B∈C,那么A∈C× 〔4〕假设A⊆B,且B∈C,那么A⊆C ×5.对任意集合A,B,C,证明右分配差差左=--=--)C A ()B A ()C B (A M.D )C B (A )C B (A )C A ()B A ()C B (A )1(右差分配差左右差的结论差左=--=-------=-)C A ()B A ()C A ()B A ()C B (A M.D )C B (A )2)C A ()B A ()C A ()B A ()1()C B (A )1)C A ()B A ()C B (A )2(右交换结合幂等差左=--=-)C A ()B A (,)C B ()A A ()C B (A M.D )C B (A )C A ()B A ()C B (A )3())B )B (A ())B B ()B A ((,)B )B A (()B )B A ((B)B A (BA B )B A )(4( --⊕=⊕+结合分配对称差差左右零一互补==φ-φ-)B A ()B A ()A ()U )B A (()C B (A )C B (A M .D )C B (A C )B A ()C B (A C )B A )(5( --=--差结合差左右差结合交换结合差左=----=--B )C A (B)C A ()B C (A )C B (A C )B A (B )C A (C )B A )(6(左交换零一互补分配差右=------------=--C )B A ()5()C B (A )B C (A )U )B C ((A ))C C ()B C ((A ))C B (C (A ))C B (C (A )5()C B ()C A (C )B A )(7(6.问在什么条件下,集合A,B,C满足以下等式时等式成立须左若要右右左A C ),C B (A C ,)C A ()B A (C )B A ()C B (A )1(⊆∴⊆⊆⊆==时等式成立是显然的右左φ=∴⊆=-⊆⊆=-B A ,B A ,B A B A A ,A B A )2(时等式成立代入原式得φ==∴φ=φ-φ=⊆==-B A ,A ,B ,B B ,B B A BB A )3(时等式成立只能B A ,A B ,A B ,B A ,B A ,A B B A A B B A )4(=∴⊆φ=-⊆φ=-φ==-=-矛盾当矛盾当若A B A b ,A b ;A B A b ,A b ,B b ,B ,B A B A )5(=⊕∈∉=⊕∉∈∈∃φ≠φ==⊕} 时等式成立是显然的左右B A BA AB ,B A B BA ,B A A ,B A B A ,B A B A )6(=∴=⎩⎨⎧⊆⊆⊆⊆⊆⊆=时等式成立左φ=∴=-=====--C B A A )C B (A )C B (A )C B (A )C A ()B A (A)C A ()B A )(7(时等式成立左C A ,B A ),C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(8(⊆⊆∴⊆φ=-====φ=--时等式成立左)C B (A )C B (A )C B (A )C B (A )C A ()B A ()C A ()B A )(9(⊆∴φ=-====φ=--时等式成立知由C A B A ,C A B A ),C A ()B A (,)6()C A ()B A ()C A ()B A ())C A ()B A (())C A ()B A (()C A ()B A )(10(=∴-=--=---=--φ=-----φ=-⊕-时等式成立B A B )B A (U )B A ()A A ()B A ()A B (A B)A B (A )11(⊆∴=====-7.设A={a,b,{a,b},},求以下各式〔1〕φ∩{φ}=φ 〔2〕{φ}∩{φ}={φ} 〔3〕{φ,{φ}}-φ={φ,{φ}} 〔4〕{φ,{φ}}-{φ}= {{φ}} 〔5〕{φ,{φ}}-{{φ}}={φ} 〔6〕A-{a,b}={{a,b}, φ} 〔7〕A-φ = A〔8〕A-{φ}={a,b,{a,b}} 〔9〕φ-A=φ 〔10〕{φ}-A=φ8.在以下条件下,一定有B=C吗?(1) C A B A =否,例:A={1,2,3},B={4},C={3,4},C B ,}4,3,2,1{C A B A ≠==而 。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合{1, 2, 3}的子集个数是:A. 3B. 4C. 8D. 2^3答案:C2. 命题逻辑中,命题p∧(q∨¬p)的真值表中,真值个数为:A. 1B. 2C. 3D. 4答案:B3. 函数f: A→B中,若A={1, 2},B={a, b},则f是单射的必要条件是:A. |A| ≤ |B|B. |A| < |B|C. |A| = |B|D. |A| > |B|答案:B4. 以下哪个图是无向图?A. 有向图B. 无向图C. 完全图D. 树答案:B5. 在图论中,一个图的生成树是:A. 包含图中所有顶点的最小连通子图B. 包含图中所有边的最小连通子图C. 包含图中所有顶点和边的连通子图D. 包含图中所有顶点和边的无环子图答案:A6. 以下哪个命题是真命题?A. 所有偶数都是整数B. 所有整数都是偶数C. 所有奇数都是整数D. 所有整数都是奇数答案:A7. 在布尔代数中,以下哪个运算符表示逻辑与?A. ∨B. ∧C. ¬D. →答案:B8. 有限状态机中,状态的转移是由以下哪个决定的?A. 当前状态B. 输入符号C. 当前状态和输入符号D. 输出符号答案:C9. 以下哪个是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 动态规划D. 分治算法答案:A10. 在集合论中,以下哪个符号表示集合的交集?A. ∪B. ∩C. ×D. ÷答案:B二、填空题(每题2分,共20分)1. 集合{1, 2, 3}的幂集是{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},其中包含元素个数最多的子集是_。
答案:{1, 2, 3}2. 在命题逻辑中,如果p和q都为真,则p∨q的真值为_。
答案:真3. 函数f: A→B中,若A={1, 2},B={a, b, c},则f是满射的必要条件是_。
《离散数学》期末练习题考试卷和答案
a , b, c , d , e, f , g,那么 所对应的 19. 设集合 A a , b , c , d , e , f , g , A 上有一个划分
等价关系 R 应有( )个序偶。 )。
20. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
等价关系 R 应有( )个序偶。 )。
25. 在有理数集合 Q 上定义二元运算*: a * b a b ab ,则 Q , * 的幺元是(
26. 一个(
)称为布尔代数。
27.P Q P Q 的主析取范式是
。(写出一般
5
表示形式即可) 28.设集合 A a , b , c , d , R 是 A 上的二元关系,且 R a , b , b , a , b , c , c , d , a , c , 则 R 的传递闭包 t R 。
C. x x是正整数, x 5
D. x x是有理数, x 5
。
6.下面有关集合之间的包含和属于关系的说法,正确的是 Ⅰ. Ⅲ.
Ⅱ. , ,
Ⅳ.
a, b a, b, a, b
B.Ⅰ和Ⅲ
a, b a, b, a, b, c
二、填空题 1.设 A 为非空集合,且 A n ,则 A 上不同的二元关系的个数为 为 。 时, P Q 的真值为 1。 , A 上不同的映射的个数
2.设 P 、 Q 为两个命题,当且仅当
3. 在运算表中的空白处填入适当符号,使 a , b , c, * 成为群。 *
a a
a b c
4. 当 n 为 数时, K n n 3 必为欧拉图。
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)
国家开放大学电大本科《离散数学》2024-2025期末试题及答案(试卷号:1009)一、单项选择题(每小题3分,本题共16分)若集合A = {1,2,3,4},则下列表述不正确的是( ).A.{2,3)€AB.AU{1,2,3,4}C. <1,2,3,4)QAD. 16A2.若无向图G的结点度数之和为20,则G的边数为( ).A.10B. 20C. 30D. 53.无向图G是棵树,结点数为10,则G的边数为( ).A. 5B. 10C.9D. 114.设A(x):x是人,B(x):x是学生,则命题“有的人是学生”可符号化为( )•A.Vx)(A(x)-*B(x»B.(3x)(A(x)AB(x))C.(Vx)(A(x)AB(x»D.-«(3x)(A(x)A -B(x»5.下面的推理正确的是( ).A.(l)(Vx)F(x)->G(x) 前提引入(2)F(>-)-*G(y) US(1).B.(1)( 3 x)F(x)-*G(x) 前提引入(2)F(y)-*G(y) US(1),C.(l)(3x)(F(x)->G(x»前提引入(2)F(y)-*G(x) ES(1).D.(l)(3x)(F(x)-*G(x)) 前提引入(2)F(y)-*G(y) ESQ).二、填空题(每小题3分,本题共15分)6.设A = {1,2),H = {1,2,3},则A到B上不同的函数个数为________________ .7.有&个结点的无向完全图的边数为 ____________ .8.若无向图G中存在欧拉路但不存在欧拉回路,则G的奇数度数的结点有________ 个.9.设G是有10个结点的无向连通图,结点的度数之和为30,则从G中删去条边后使之变成树.10.设个体域£> = {1,2,3,4},则谓词公式(*)人(了)消去量词后的等值式为三、逻辑公式翻译(每小题6分,本息共12分)11.将语句“昨天下甬“翻译成命题公式.12.将语句“小王今天上午或者去看电彩或者去打球”翻译成命JS公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本黑共14分)13.存在集合A与B,使得A6B与AUB同时成立.14.完全图K<是平面图.五、计算题(每小题12分,本题共36分)15.设偏序集VA,R>的哈斯图如下,B为A的子集,其中B = 试(1)写出R的关系表达式;(2)画出关系R的关系图;(3)求出B的最大元、极大元、上界.16.设图G — <V,E>,V={vj f v it v t,Vi»v s)»(v2, v3)»(v3»vs)}»试(1)画出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出图G的补图的图形,17.求P TQ代R)的合取范式与主合取范式.六、证明题(本题共8分)18.设A.B是任意集合,试证明:若AXA=BXB,^ A = B.M答杖松标准(仅辩者)一、单项选择题(每小题3分,本题共15分)1. A2. A3. C4.B5. D二、填空题(每小题3分,本题共]5分)6.97.”3 — 1)/2(或庆)8.210. A(l) VA(2) V A(3) V A(4)三、 逻辑公式翻译(每小题6分,本题共】2分)H,设P :昨天下雨. 则命题公式为:P ,12. 设P :小王今天上午去看电影 Q :小王今天上午去打球 则命题公式为:r (PiQ ). 或者(rPAQ )V 〈PA rQ )四、 判断说明题(每小题7分,本题共14分)13. 正确.例:设 A = {a} t H — {a,{a}) 则有且ACI3.说明:举出符合条件的例均给分. 14. 正确.完全图K 〈是平面图, 如K,可以如下图示嵌入平面.(7分)五、计算题(每小题12分,本题共36分)15. (l )R = {Va ,a>,Vb,Q>,Vc,c>,Vd,d>・Va0>・Va ・c>,V&,d>,VQ,d >}. (4 分)(2)关系图(8分)(3)集合B 无最大元,极大元为6与c.无上界. 16, 解: (1)关系图(2分) (6分)(2分)(6分)(3分) (517. P TQAR) 5PV(QAR) 0(rPVQ 〉A(rPVR)合取范式<=>(-PVQ)V(K A rR)A(rPVR) 0("VQ)V(& A rR)A(" VR)V(QA -Q)D(rPVQVR)A(rPVQVA("VR VQ) A(-、PVR V -Q) c=>(-PVQV7?)A(-'PVQV-R)A(-PV-QVR) 主合取范式 六、证明题(本意共8分)18. 证明:V2(2)邻接矩阵bioir 101001001 1 00 0(6分)(3) deg(vi)=,3deg(v t )—2 <ieg(v 3)~2 deg顷)=1 deg(v s )=2 (4) 补图(9分)(】2分)(2分) (5分)(7分〉设x€A,则Vx,x>€AXA,(1 分)因AXA = BXB,故V X,X>€BXB,则有xGB, (3 分)因此AGB. (5分)设xQB,则Vx,x>€BXB,(6 分)因AXA-BXB,故Vx,x>eAXA,则有因此BWA. (7 分)故得A=B. (8分)。
离散数学期末考试题及答案
离散数学期末考试题及答案一、单项选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∩B=()。
A. {1,2,3}B. {2,3}C. {2,4}D. {1,4}答案:B2. 命题“若x>0,则x>1”的逆否命题是()。
A. 若x≤0,则x≤1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤1,则x≤0答案:B3. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A4. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A5. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A6. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C7. 函数f: A→B的定义域是集合A,值域是集合B,则()。
A. A⊆BB. A⊂BC. A⊇BD. A⊃B答案:A8. 集合{1,2,3}与集合{3,2,1}是否相等?()。
A. 是B. 否C. 无法确定D. 以上都不对答案:A9. 命题p:“x>0”,则¬p为()。
A. x≤0B. x<0C. x=0D. x<0或x=0答案:A10. 命题“若x>0,则x>1”的逆命题是()。
A. 若x>0,则x>1B. 若x≤1,则x≤0C. 若x>1,则x>0D. 若x≤0,则x≤1答案:C二、填空题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},则A∪B=______。
答案:{1,2,3,4}2. 命题“若x>0,则x>1”的逆否命题是:若x≤1,则x≤0。
(完整word版)离散数学期末考试试题及答案
离散数学试题(B卷答案1)一、证明题(10分)1)(⌝P∧(⌝Q∧R))∨(Q∧R)∨(P∧R)⇔R证明: 左端⇔(⌝P∧⌝Q∧R)∨((Q∨P)∧R)⇔((⌝P∧⌝Q)∧R))∨((Q∨P)∧R)⇔(⌝(P∨Q)∧R)∨((Q∨P)∧R)⇔(⌝(P∨Q)∨(Q∨P))∧R⇔(⌝(P∨Q)∨(P∨Q))∧R⇔T∧R(置换)⇔R2) ∃x (A(x)→B(x))⇔∀xA(x)→∃xB(x)证明:∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x)二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。
证明:(P∨(Q∧R))→(P∧Q∧R)⇔⌝(P∨(Q∧R))∨(P∧Q∧R))⇔(⌝P∧(⌝Q∨⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q)∨(⌝P∧⌝R))∨(P∧Q∧R)⇔(⌝P∧⌝Q∧R)∨(⌝P∧⌝Q∧⌝R)∨(⌝P∧Q∧⌝R))∨(⌝P∧⌝Q∧⌝R))∨(P∧Q∧R)⇔m0∨m1∨m2∨m7⇔M3∨M4∨M5∨M6三、推理证明题(10分)1)C∨D, (C∨D)→⌝E,⌝E→(A∧⌝B), (A∧⌝B)→(R∨S)⇒R∨S 证明:(1) (C∨D)→⌝E P(2) ⌝E→(A∧⌝B) P(3) (C∨D)→(A∧⌝B) T(1)(2),I(4) (A∧⌝B)→(R∨S) P(5) (C∨D)→(R∨S) T(3)(4), I(6) C∨D P(7) R∨S T(5),I2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) P(2)P(a) T(1),ES(3)∀x(P(x)→Q(y)∧R(x)) P(4)P(a)→Q(y)∧R(a) T(3),US(5)Q(y)∧R(a) T(2)(4),I(6)Q(y) T(5),I(7)R(a) T(5),I(8)P(a)∧R(a) T(2)(7),I(9)∃x(P(x)∧R(x)) T(8),EG(10)Q(y)∧∃x(P(x)∧R(x)) T(6)(9),I四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题4分,共40分)1.下列哪一个不是集合操作? A. 并 B. 交 C. 补 D. 叉积正确答案:D2.下列哪一个不是真命题? A. 1 + 1 = 2 B. 所有的猫都会飞 C. 所有的数都是整数 D. 狗是哺乳动物正确答案:B3.设A = {1, 2, 3},B = {3, 4, 5},则A ∩ B的结果是:A. {1, 2}B. {3}C. {1, 3}D. {4, 5}正确答案:B4.设A = {1, 2, 3},B = {3, 4, 5},则A × B的结果是:A. {(1, 3), (2, 4), (3, 5)}B. {(1, 1), (2, 2), (3, 3)}C. {(3, 3), (3,4), (3, 5)} D. {(3, 1), (3, 2), (3, 3)}正确答案:A5.若n为正整数,则n是偶数的充要条件是: A. n可以被2整除 B. n除以2的余数为1 C. n大于2 D. n的绝对值是偶数正确答案:A6.若A = {1, 2, 3, 4},B = {3, 4, 5},则A - B的结果是:A. {1, 2}B. {3}C. {1, 3, 4}D. {4, 5}正确答案:A7.已知命题P和命题Q,下列哪个是它们的逻辑等价式?A. P ∧ (P ∨ Q) = P B. P ∧ (P ∨ Q) = Q C. P ∨ (P ∨ Q) = P D. P ∨ (P ∨ Q) = Q正确答案:A8.设n为奇数,则n + n的结果是: A. 2n B. n^2 C.n(n+1) D. n(n-1)正确答案:C9.已知集合A = {1, 2, 3, 4},B = {4, 5, 6},C = {6, 7, 8},则(A ∩ B)∩ C的结果是: A. {1, 2, 3} B. {4} C. {6} D. 空集正确答案:D10.若命题P为真,则下列哪个推理是正确的? A. 如果P为真,则Q为真(反证法) B. P与Q都为真(析取引理)C. P蕴含Q(推理法则) D. P等价于Q(假设法)正确答案:A二、解答题(每题10分,共60分)1.证明:任取集合A和B,有(A ∪ B) - B = A - B解答:运用集合的基本运算性质:对任意元素x,x∈ (A ∪ B) - B,即x ∈ (A ∪ B)且x ∉ B。
离散数学期末考试试题及答案
离散数学期末考试试题及答案一、选择题(每题5分,共25分)1. 设A={1,2,3,4,5},B={2,3,5,7,11},则A∩B等于()A. {1,2,3,4,5}B. {2,3,5}C. {1,4}D. {2,3,5,7,11}2. 下面哪一个图是连通图?()A. 无向图B. 有向图C. 平面图D. 连通图3. 若一个图G有n个顶点,e条边,则以下哪个条件是图G 为连通图的必要条件?()A. n ≥ eB. n ≤ eC. n = eD. n + e = 24. 在一个简单图中,若每个顶点的度数都等于n-1,则该图是()A. 无向图B. 有向图C. 完全图D. 平面图5. 以下哪一个命题是正确的?()A. 每个图都有欧拉回路B. 每个连通图都有哈密顿回路C. 每个图都有哈密顿路径D. 每个连通图都有欧拉路径二、填空题(每题5分,共25分)6. 设A={a,b,c},B={1,2,3},则A×B的结果是______。
7. 一个连通图的生成树包含______条边。
8. 在一个n阶完全图中,任意两个不同顶点之间的距离是______。
9. 一个图G的顶点集为V,边集为E,则图G的邻接矩阵表示为______。
10. 在一个简单图中,若每个顶点的度数都等于n-1,则该图的边数是______。
三、判断题(每题5分,共25分)11. 一个图的子图包含原图的所有顶点和边。
()12. 一个连通图的所有顶点都连通。
()13. 在一个简单图中,每个顶点的度数都小于等于n-1。
()14. 每个图都有哈密顿路径。
()15. 一个图G的生成树是原图G的子图。
()四、解答题(共50分)16. (10分)设A={1,2,3,4,5},B={2,3,5,7,11},求A∪B 和A-B。
17. (10分)证明:一个连通图的每个顶点的度数都大于等于2。
18. (10分)给定一个图G,顶点集V={a,b,c,d,e},边集E={ab,bc,cd,de,ac,ad},求图G的所有连通分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京交通大学2007-2008学年第二学期《离散数学基础(信科专业)》期末考试卷(A)学院:____________ _专业:___________________ 班级____________姓名:学号:□选修□必修一、填空题(共10分,每空1分)1.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做(T规则)。
2.设A={a,{b}},则A的幂集是P (A)= {Φ, a,{b}, {a,{b}};3.设R 是集合A上的二元关系,如果关系R同时具有自反性、反对称性和传递性,则称R是A上的一个偏序关系。
4.既是满射,又是单射的映射称为1-1映射(双射)。
5.设S为非空有限集,代数系统<P(S),∪>的单位元和零元分别为S和φ。
6.具有n个顶点的无向完全图共有n(n-1)/2条边。
7.简单图是指无环、无重边的图。
8.k-正则图是指所有顶点的度数均为k的的图。
9.Hamilton通路是指通过图中所有顶点一次且仅一次的通路。
10.设G=(E,V)是图,如果G是连通的,则P(G)= 1 。
11.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项( A )A.P∧Q∧R;B.P∧Q∧⌝R;C .P ∧⌝Q ∧R ;D .P ∧⌝Q ∧⌝R12. 下列谓词公式中( A )不正确。
A .(∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; B .(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C .(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D .(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ;13. 设S = {2,a ,{3},4},R ={{a},3,4,1},指出下面的写法中正确的是( D )(A )R=S ; (B ){a,3}⊆S ; (C ){a}⊆R ;(D )φ⊆R ;14. 下列命题公式不是重言式的是 C 。
A. Q →(P ∨Q);B.(P ∧Q)→P ;C.⌝(P ∧⌝Q );D.⌝(⌝P ∧0)。
15. 下列谓词公式中( )不正确。
(A) (∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; (B) (∃x)(B →A(x)) ⇔ B →(∃x) A(x); (C) (∀x)(B →A(x)) ⇔ B →(∀x) A(x); (D) (∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ; 16. 下列命题中正确的是( B )。
(A) φ∪{φ}=φ; (B) {φ,{φ}}-{{φ}}={φ};(C) {φ,{φ}}-{φ}={φ,{φ}}; (D) {φ,{φ}}-φ={{φ}}; 17. 设A,B,C 为任意三个集合,下列各命题中正确的是( A )。
(A) 若A ∈B 且B ⊆C ,则A ∈C ; (B) 若A ∈B 且B ⊆C ,则A ⊆C ;(C) 若A ⊆B 且B ∈C ,则A ∈C ; (D) 若A ⊆B 且B ∈C ,则A ⊆C 。
18. ⎩⎨⎧<-≥=→3 ,23,)( ,: 2x x x x f R R f 设,则,2)(,:+=→x x g R R g =))((x g f A 。
(A )⎩⎨⎧<-≥+121 )2(2x x x ;(B )⎩⎨⎧<-≥+323 )2(x x x ;(C )⎩⎨⎧<-≥+1 21 )2(2x x x ;(D )⎩⎨⎧<≥+303 )2(2x x x .19. 设R 1,R 2是集合A={a ,b ,c ,d}上的两个关系,其中R 1={(a ,a ),(b ,b ),(b ,c ),(d ,d )},R 2={(a ,a ),(b ,b ),(b ,c ),(c ,b ),(d ,d )},则R 2是R 1的( B )闭包。
(A) 自反 (B) 对称(C) 传递 (D) 以上都不是20.设偏序关系R是集合A={1,2,3,4,5,6}中数的“整除”关系,则A的极大元、极小元的个数分别是( C )。
(A) 2,1 (B) 2,2 (C) 3,1 (D) 3,2二、计算题(共40分,每小题10分)1.求命题公式(P∧Q)∨(⌝P∧R)的主合取范式。
2.在一个班级的50个学生中,有26人在第一次考试中得到A,21人在第二次考试中得到A。
假如有17人两次考试都没有得到A,问有多少学生两次考试中都得到了A?3.设为一个偏序集,其中,A={1,2,3,4,6,9,24,54}是A上的整除关系。
(1)画出的哈斯图;(2)求R关于A的极大元;(3)求B={4,6,9}的最小上界和最大下界。
4.用逻辑推理方法证明:{P→Q,R→S,P∨R }蕴涵Q∨S。
5.将公式P→((P→Q)∧⌝(⌝Q∨⌝P))化为主析取范式和主合取范式:解:P→((P→Q)∧⌝(⌝Q∨⌝P))⇔⌝P∨((⌝P∨Q) ∧ Q∧P)⇔⌝P∨(Q∧P)⇔ (⌝P ∧(Q∨⌝Q)) ∨(Q∧P)⇔ (⌝P ∧Q) ∨(⌝P∧⌝Q) ∨(Q∧P) (主析取范式)P→((P→Q)∧⌝(⌝Q∨⌝P))⇔⌝P∨((⌝P∨Q) ∧ Q∧P)⇔⌝P∨(Q∧P)⇔(⌝P∨Q) ∧(⌝P∨P)⇔⌝P∨Q (主合取范式)6.化简(A-B-C)⋃((A-B)⋂C)⋃(A⋂B-C)⋃(A⋂B⋂C)解:(A-B-C)⋃((A-B)⋂C)⋃(A⋂B-C)⋃(A⋂B⋂C)=(A⋂~B⋂~C)⋃(A⋂~B⋂C)⋃(A⋂B⋂~C)⋃(A⋂B⋂C)=((A⋂~B)⋂(~C⋃C))⋃((A⋂B)⋂(~C⋃C))=((A⋂~B)⋂E)⋃((A⋂B)⋂E)E为全集=(A⋂~B)⋃(A⋂B)= A⋂(~B⋃B)= A⋂E= A7.写出下面有向图(关系图)所表示的关系R的关系矩阵,并求出R的自反闭包和对称闭包。
解:1{,,,,,,,}110001010(){,,,,,,,,,,,}(){,,,,,,,,,}R AR a a a b b c c b M r R R I a a b b c c a b b c c b s R R R a a a b b a b c c b -=<><><><>⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦=⋃=<><><><><><>=⋃=<><><><><>8. 设图G 中各点的度都是3,且点数n 与边数m 满足2n-3=m 。
问:G 中点数n 和边数m各为多少? 解:由图G 中各点的度都是3知,)()(v G P v Gd∑∈=3n ,而)()(v G P v Gd∑∈=2m ,故,3n=2m 。
再由已知2n-3=m ,解得n=6,m=9。
9. 张三说李四在说谎,李四说王五在说谎,王五说张三、李四都在说谎。
问张三、李四、王五三人到底谁说真话,谁说假话?解:10. 对102名学生调查表明,有35人学日语,20人学法语,45人学英语,15人既学日语又学英语,8人既学日语又学法语,10人既学法语又学英语,28人不学这三门中的任何一门。
(1) 求三门语言都学的人数; (2) 求至少两门语言的人数;(3) 求只学英语,只学法语,只学日语的人数。
解:REFx15 -x10 -x8-x2+x12+x20+x(1) 45+20+2+x+18=102,1).x=7 (2) 至少学两门的人数为15+4=19,(3) 只学英语27人, 只学法语9人, 只学日语19人,11. 设为一个偏序集,其中,A={1,2,3,4,6,9,24,54}是A 上的整除关系。
(1)画出的哈斯图;(2)求R 关于A 的极大元;(3)求B={4,6,9}的最小上界和最大下界。
12. 设A = {0,1},B ={1,2},试确定下列集合: (1) A ×{1}×B ; (2) A 2×B ; (3) (B ×A)2。
解:13. 画出K4的所有非同构的生成子图,其中有几个是连通图?非同构的生成子图有11个,其中六个连通图. 三、 证明题(共28分)1. 用逻辑推理方法证明:{P →Q , R →S ,P ∨R }蕴涵Q ∨S 。
证明:(1) P ∨R 规则P (2) ⌝R →P 规则Q ,根据(1) (3) P →Q 规则P (4) ⌝R →Q 规则Q ,根据(2)(3) (5) ⌝Q →R 规则Q ,根据(4) (6) R →S 规则P (7) ⌝Q →S 规则Q ,根据(5)(6) (8)Q ∨S 规则Q ,根据(7)2. 证明集合等式(A-B )∪(B-A )=(A ∪B )-(A ∩B ).3. 设R 是一个关系,用R -1表示R 的逆关系,s(R)表示S 的对称闭包,证明 s(R)=R ∪R -1。
证明:①任取(x,y)∈ R ∪R -1 ,则(x,y)∈ R 或(x,y)∈ R -1,若(x,y)∈ R ,则有(y,x)∈R -1,所以(y,x)∈ R ∪R -1;若(x,y)∈ R -1 ,则有(y,x)∈R ,所以(y,x)∈ R ∪R -1 , R ∪R -1具有对称性;②显然,R ⊆ R ∪R -1③对A 上任意关系R '', 若R ⊆ R '',且R ''是对称的,往证R ∪R -1⊆R ''。
任取(x,y)∈R∪R -1,则(x,y)∈ R 或(x,y)∈ R -1,若(x,y)∈ R ,因为R ⊆ R '',则(x,y)∈ R '' ;若(x,y)∈ R -1,则有(y,x)∈R ,则(y,x)∈R '',因为R ''是对称的,所以(x,y)∈R '' , 因此,R ∪R -1⊆R ''。
4. 设R 是一个二元关系,证明:(1) 若R 是自反的,则s (R )和t (R )是自反的; (2) 若R 是对称的,则r (R )和t (R )是对称的;5.在半群<G,*>中,若对∀a,b∈G,方程a*x=b 和y*a=b都有惟一解,则关于运算*存在单位元。
证明:任意取定a∈G,记方程a*x=a的惟一解为e R。
即a*e R=a。
下证e R为关于运算*的右单位元。
对∀b∈G,记方程y*a=b的惟一解为y。
因为<G,*>是半群,所以运算*满足结合律。
从而b*e R=(y*a)*e R=y*(a*e R)=y*a=b。
故e R 为关于运算*的右单位元。