我国微生物发酵饲料研究进展

合集下载

利用微生物生产生物饲料的研究进展

利用微生物生产生物饲料的研究进展

利用微生物生产生物饲料的研究进展随着全球人口的增长以及农业产业的不断发展,如何从有限的自然资源中生产更多的高质量饲料已成为一个重要的问题。

在过去的几十年里,研究人员们逐渐意识到利用微生物生产生物饲料的潜力,并且取得了一系列令人瞩目的研究进展。

本文将介绍利用微生物生产生物饲料的研究进展以及相关的应用前景。

一、微生物在生物饲料生产中的作用微生物在生物饲料生产中发挥着关键的作用。

首先,微生物可以通过发酵过程将一些废弃物转化为高质量的饲料。

例如,利用微生物发酵稻糠和秸秆,可以生产出富含蛋白质和氨基酸的饲料。

其次,微生物能够合成一些对动物生长和健康有益的生物活性物质,如维生素、酶和氨基酸。

最后,微生物可以降解一些难以消化的植物纤维,提高饲料的消化率和利用效率。

二、利用微生物生产饲料的方法目前,利用微生物生产饲料主要有两种方法:一种是传统的发酵法,另一种是生物技术法。

传统的发酵法是将废弃物与适宜的微生物共同培养并进行发酵。

这种方法简单、成本低,可以利用一些廉价的废弃物制备成高质量饲料。

然而,这种方法也存在一些问题,如发酵时间长、发酵条件难以控制等。

生物技术法是利用基因工程技术将一些有益的基因导入微生物中,使其能够产生特定的饲料成分。

这种方法可以精确控制微生物的合成能力,生产出符合特定需求的饲料。

然而,生物技术法需要高超的实验技术和设备,并且可能引发一些伦理和安全问题。

三、微生物生产生物饲料的应用前景利用微生物生产生物饲料具有巨大的应用前景。

首先,微生物生产的饲料具有更高的营养价值和更好的消化性能,可以提高动物的生长速度和肉质品质。

其次,微生物生产饲料可以减少对传统饲料原料的需求,降低饲料成本,并且减少对农药和化肥的使用,对环境更加友好。

最后,利用微生物生产饲料可以有效地利用农副产品和废弃物资源,实现资源的循环利用。

然而,微生物生产饲料也面临着一些挑战。

首先,微生物生产饲料的发酵过程需要适宜的发酵条件和优良的培养技术。

我国生物肥料研究与应用进展

我国生物肥料研究与应用进展

我国生物肥料研究与应用进展一、本文概述我国生物肥料研究始于20世纪50年代,最初只有提供有效氮、磷、钾元素的细菌肥料。

经过60年的发展,逐步成为拥有11类产品,年产1000万吨生物肥料的庞大产业体系。

本文从四方面对近10年我国生物肥料研究、应用以及产业发展取得的成就进行了简要总结,以期为其今后研究和创新发展提供借鉴。

介绍了根瘤菌、联合固氮菌、溶磷菌、解钾菌和促生菌高效菌种资源筛选、应用效果、关键技术问题与重点突破方向。

总结了不同类型生物肥料包括微生物菌剂、生物有机肥料、有机无机生物复合肥的应用效果。

二、生物肥料的研究进展近年来,我国生物肥料的研究取得了显著的进展。

随着农业科技的不断进步,生物肥料的研究已经从单纯的微生物接种剂发展到复合微生物肥料、生物有机无机复合肥等多种类型。

复合微生物肥料以其综合效果优良、稳定性强等特点,在农业生产中得到了广泛应用。

在生物肥料的研究中,我国科研人员针对我国土壤特点和作物需求,筛选出了大量具有优良特性的微生物菌株。

例如,具有固氮、解磷、解钾等功能的微生物菌株,以及具有抗病、促生等功能的菌株。

这些菌株的筛选和应用,为我国生物肥料的研发提供了有力的支撑。

我国在生物肥料的生产工艺和设备方面也取得了显著进步。

通过优化生产工艺、改进生产设备,提高了生物肥料的生产效率和产品质量。

同时,针对生物肥料在应用过程中存在的问题,如菌剂活性保持、菌肥与土壤的相互作用等,我国科研人员也进行了深入研究,提出了相应的解决方案。

在生物肥料的应用方面,我国已经形成了较为完善的推广体系。

各级农业技术推广部门积极开展生物肥料的试验示范和推广工作,将生物肥料与现代农业技术相结合,实现了生物肥料在农业生产中的广泛应用。

同时,针对不同地区、不同作物的特点,我国还制定了相应的生物肥料使用技术规程,为农民提供了科学、实用的指导。

我国生物肥料的研究与应用进展取得了显著成果。

未来,随着农业科技的不断进步和农业生产对环保、高效、优质肥料的需求不断增加,我国生物肥料的研究与应用将迎来更加广阔的发展空间。

微生物在中国发酵食品中的研究进展

微生物在中国发酵食品中的研究进展

调查 研究微生物在中国发酵食品中的研究进展 施家豪 武汉市第六中学发酵食品是食品工业中重要的一个分支,它在人们日常生活中随处可见。

本文对中国比较有代表性的几种风味发酵食品中的微生物种类,以及发酵过程中微生物动态变化做了总结与分析。

发酵蔬菜食品中的微生物我国发酵蔬菜类食品种类繁多,例如扬州的酱腌菜,东北的发酵酸菜等,但对于发酵时食品中微生物的变化过程研究的较少,起步也比国外晚一些,发酵蔬菜基本上采用传统的方法对微生物进行筛选,分离以及鉴定。

例如:谈重芳等在河南的林州所产的泡菜中筛选并且分离出了15株乳酸菌,乳杆菌属有13株,共六个菌属,包括:粒形乳杆菌、植物乳杆菌、发酵乳杆菌、短乳杆菌和戊糖乳杆菌、布氏乳杆菌;还有两株是肠膜明串珠菌。

张蓓蓓等则从四川泡菜中做了重要筛选,他们共筛选了20多个市县的180余份泡菜,分离得到了包括11个属34个种里面的447株菌种。

还首次确定了主要优势菌群包括植物乳杆菌、短乳杆菌、肠膜明串珠菌、干酪乳杆菌等乳酸菌。

武俊瑞等通过对5份不同产地的发酵酸菜汁进行选择性培养和形态学观察,成功的分离纯化出4株耐酸性优势乳酸菌,经16SrDNA序列分析鉴定后分别确认为清酒乳杆菌和植物乳杆菌;并且为自然发酵酸菜作为潜在的益生乳酸菌筛选资源库提供思路。

李欣等用16S rDNA序列分析从大庆地区的传统酸菜发酵液中筛选出的14株菌株,共得到4株弯曲乳杆菌、5株植物乳杆菌、3株清酒乳杆菌、1株短乳杆菌以及 1株肠膜明串珠菌,对此并进一步得到6株耐酸乳酸菌。

Chao等对台湾所产的酸菜的五个不同发酵阶段进行微生物多样性检测,共筛选到119种乳酸菌,这些乳酸菌属于Enterococcus(1 species)、Lactobacillus(11 species)、Leuconostoc(3 species),Pediococcus(1 species)和Weissella(2 species)5个菌属。

发酵饲料在养猪生产中的应用与研究进展

发酵饲料在养猪生产中的应用与研究进展

禽采食 、 化 、 消 吸收 的养 分更 高且 无 毒 害 作 用 的
饲 料原 料 。通过发 酵处 理的饲 料不仅 具有 改善 饲
料 营 养 吸收水 平 , 降解 饲 料原 料 中可 能存 在 的 毒 素 ,还 能 大 大 减少 抗 生 素 等 药 物 类 添加 剂 的 使

3 发酵饲 料对 猪 的作用机 理 31 发 酵 能改善 饲料 的适 口性 . 激猪 的采食 量 . 刺
量。
4 发 酵饲料 在 养猪 生产 中的应 用效 果
32 发 酵 可提 高饲 料 中 营养 物 质 的 消化 率及 利 .
用 率
研 究表 明 , 酵饲 料 能够 促 进 断奶 仔 猪 的生 发
长 和提 高 饲料 转 化率 。R se 等 (9 6 ̄ e sn u sl 1 9 ) I ne l J
发 酵 饲 料 多 采 用 自然 发 酵 和 接 种 商 品 型 乳 酸菌等 菌种 的发酵 两种 。采 用 自然发酵 生产 的饲 料 一 般质 量不 稳定 。猪 只饲 喂效 果 的变 异 较大 。 采用 接种 商 品 型乳 酸菌 等发 酵 生产 的饲 料 , 量 质 方面较 易控 制 , 成本 较高 。 但
6~
江 西 饲 料
发酵 饲料 是 经过微 生 物f 酸 菌 、 母 菌和 芽 乳 酵 效地 降解 黄 曲霉 等 。
35 发 酵 能 产 生 促 生 长 因 子 .
21 年第 4 00 期
孢杆 菌) 合厌 氧发 酵 制成 的 , 中的酵 母 菌和 芽 混 其 孢 杆 菌 等 好 氧 菌 的存 在 为乳 酸菌 的生 长 繁 殖创
发酵 饲 料的 生产 过 程 比较 简单 , 主要 是 利用
饲 料 批 准使 用 的抗生素 种类 也在逐 渐减少 。发

益生菌发酵饲料在畜禽生产中的研究进展

益生菌发酵饲料在畜禽生产中的研究进展

益生菌发酵饲料在畜禽生产中的研究进展目录一、益生菌发酵饲料概述 (2)1. 益生菌定义及作用 (2)2. 发酵饲料基本概念 (3)3. 益生菌发酵饲料在畜禽生产中的重要性 (4)二、益生菌发酵饲料的研究现状 (6)1. 益生菌种类与功能研究 (7)1.1 常见益生菌种类 (8)1.2 益生菌功能研究与应用 (9)2. 发酵饲料生产工艺研究 (10)2.1 传统发酵饲料工艺 (12)2.2 现代益生菌发酵饲料工艺 (13)3. 益生菌发酵饲料的应用效果研究 (14)3.1 提高饲料利用率 (15)3.2 促进畜禽生长性能 (17)3.3 改善畜禽肠道健康 (18)三、益生菌发酵饲料在畜禽生产中的影响因素 (19)1. 环境因素对益生菌发酵饲料的影响 (20)1.1 温度与湿度的影响 (21)1.2 pH值与水分活度的影响 (23)1.3 饲养环境对益生菌发酵饲料的影响 (24)2. 日粮组成与营养水平的影响 (25)2.1 日粮组成对益生菌发酵饲料效果的影响 (26)2.2 营养水平对畜禽生产性能的影响 (27)四、益生菌发酵饲料在畜禽生产中的实践应用与案例分析 (29)五、未来发展趋势与挑战分析 (30)一、益生菌发酵饲料概述益生菌发酵饲料是指通过添加特定的益生菌,利用微生物的发酵作用,将饲料中的部分不易消化的物质转化为易于消化吸收的营养成分,同时提高饲料的营养价值和改善其风味的一种新型饲料。

随着养殖业对环保、高效、可持续发展理念的追求,益生菌发酵饲料在畜禽生产中的应用越来越广泛。

益生菌发酵饲料的主要原理是利用益生菌在厌氧或好氧条件下,通过代谢产酸、产气等过程,将饲料中的大分子物质如蛋白质、多糖、纤维素等分解成小分子物质,如氨基酸、维生素、短链脂肪酸等,从而提高饲料的营养价值。

益生菌还能产生多种有益于畜禽健康的酶类和益生菌,如纤维素酶、半乳糖苷酶等,这些物质有助于提升畜禽的消化吸收能力,增强免疫力。

浅谈微生物发酵饲料的研究进展

浅谈微生物发酵饲料的研究进展

243浅谈微生物发酵饲料的研究进展李旋亮(盘锦市双台子区农业发展服务中心,辽宁盘锦 124000)摘 要:随着我国科学技术的不断发展,发酵饲料作为安全可靠、无毒副作用、无药物残留、适口性好的一种绿色环保型的饲料。

它的应用可促进畜禽的生长发育、提高动物机体免疫力、减少疾病发生、提高饲料利用率等,同时也可以改善肉质。

在饲喂的同时就起到了防病的效果,因此,它的发展前景很大,有待于人们的开发与利用。

关键词:发酵饲料;有益菌;微生态;肠道发酵饲料是利用微生物等为发酵剂菌种,在饲料原料中生长繁殖和新陈代谢,并逐渐积累微生物菌体蛋白、生物活性小肽类氨基酸、微生物活性益生菌等为一体微生物饲料。

1 常用发酵的微生物菌种1.1 乳酸菌特点及种类乳酸菌能够在乳糖或葡萄糖的发酵过程中产生乳酸,属革兰氏阳性菌。

它们形态不一,有杆状和球状,有单个、成对和链状的。

在动物体内通过产生大量乳酸、乙酸降低胃肠道的pH 值,促进肠道绒毛生长,从而增加小肠的吸收面积;增强机体的体液免疫和细胞免疫;乳酸菌可用于哺乳和断乳期动物的饲料中(王海珍等,2005;杨汝德等,2003;刘海军等;2005)。

青贮饲料中常见的乳酸菌有:干酪乳杆菌、弯曲乳杆菌、嗜酸乳杆菌、屎肠球菌;短乳杆菌、绿色乳杆菌、类肠明串珠菌、发酵乳杆菌。

1.2 芽孢杆菌特点及种类芽孢杆菌属于需氧芽孢杆菌中的不致病菌,吕道俊和何明清(1994)的研究发现芽孢杆菌可以产生芽孢,耐受胃内的酸性环境;抑制肠道内有害菌的繁殖;促进有益菌的生长;提高机体免疫力和抗病能力;可以分泌蛋白酶、脂肪酶和淀粉酶;提高动物生长速度促进消化吸收。

目前生产中应用的有枯草芽孢杆菌(Bacillussubtilis)、地衣芽孢杆菌(Bacillus licheniformis)、蜡样芽孢杆菌(Bacillus cereus)及纳豆芽孢杆菌(Bacillus natto)及迟缓芽孢杆菌(Bacillus lentus)等有益菌种类。

微生物发酵豆粕产活性

微生物发酵豆粕产活性

微生物发酵豆粕产活性大豆肽饲料的研究进展近年来,国内饲用蛋白源短缺、饲料成本增加、利润降低等现状严重制约着我国畜牧业的发展,豆粕因含有丰富的营养成分成为重要的植物蛋白源。

但是,因含有抗营养因子制约了动物对豆粕中营养物质的吸收和利用,为了改善这一状况,利用微生物发酵豆粕产活性大豆肽饲料的研究已成为国内外研究的热点。

文章概括了目前微生物发酵豆粕产活性大豆肽饲料的特点、生产及应用的研究进展。

1豆粕和微生物发酵豆粕面对中国畜牧业和饲料工业发展速度快、规模大的现状,为了减少我国饲料工业对鱼粉等昂贵动物蛋白源的依赖,开发、研制出更廉价易得的蛋白源产品来满足动物对饲料蛋白营养的需要至关重要。

大豆粕中因含有丰富的营养成分成为一种重要的植物蛋白源,豆粕中的大豆蛋白含量在43.0%~55.0%之间,多数为水溶性蛋白,除蛋白质外还含有其他丰富的营养物质,是鱼类和单胃动物良好的日粮蛋白源。

但是,豆粕中因含有的蛋白酶抑制剂(Protease Inhibitors)、脲酶(Urease)、大豆原蛋白(Antigen Protein)、大豆低聚糖(Soybean Oligosaccharides) 、植物凝集素(Soybean Agglutinin,SBA)及植酸(Phytic Acid)等成分,影响了动物机体对豆粕中营养物质的充分利用,不但阻碍了动物肠道对豆粕中营养成分的消化、吸收和利用,而且严重地危害了动物机体的健康生长。

目前,为了有效提高豆粕的蛋白利用率和营养价值,应用微生物发酵技术处理豆粕的研究成为热点。

经研究表明,微生物发酵豆粕不但可以有效地去除豆粕中的植物凝集素、脲酶、蛋白酶抑制剂等抗营养因子,而且能够使抗原蛋白的含量明显降低,同时增加了游离氨基酸、活性大豆肽等营养物质的含量,提高了豆粕的应用价值的同时使饲料具有较好的动物适口性。

微生物发酵豆粕是国内近年来发展起来的,利用微生物发酵技术处理豆粕使其含有高活性大豆肽的一种新型的植物蛋白源饲料,其早在欧洲形成产业化,近年来从台湾省传到大陆后逐渐兴起。

微生物发酵秸秆饲料的研究现状及展望

微生物发酵秸秆饲料的研究现状及展望

糖及淀粉酶 ;根霉 产生 淀粉霉 的能力略强 黑 曲霉 能
产生淀粉酶 、 果胶 酶 以 及 能 分 解 直 链 纤 维 素 的 c 酶 x
乳 酸菌是一 类能从可发 酵碳 水化合 物 ( 主要是 葡
萄 糖 、 糖 、 糖 、 糖 、 芽 糖 等 ) 酵 产 生 乳 酸 的陡 乳 果 蔗 麦 发
3 601 5 9 2
低 。现在 多改为多菌种发 酵 ,但对相应 的菌种 和 艺
上要求更高 ①能够分解纤维素; ②能够利用无机氨
转 化为菌体 蛋 白. 合成 和分泌更多 的营养物质 ; 能够 ③ 改 变原料 的适 口性 ; 能够产牛 多种 分解酶 ; 不产牛 ④ ⑤
卢德 勋 卢媛 , 单位 厦 通 讯 地 址 同 第一 作 者。
霉 菌发酵饲料 原料时 , 子越多越有 利于 发酵, 孢 原
发 酵 足 个 怎 样 的过 程 ,因什 么 引 起 ,其 过 程 因 料 含水 量 也 决 定 霉 菌 发 酵 饲 料 的 效 果 ,最 适 含 水 量 在
3 % ~4 % 一 O 0
之 间 的 关 系 问题 ; 次 是 所 使 用 的 菌 种 是 否 具 有 适 合 2 2 酵 母 菌 其 . 酵 母 菌 和 霉 菌不 同 , 状 真 菌 在 固 体 表 面 繁 殖 , 丝 而 次 是 在 发 酵 饲 料 的 实 际 操 作 过 程 中 将 上 述 两 项 以 及 酵 母 菌 易 在 水 分 含量 高 的 原 料 中繁 殖 。 两 者 酶 的 区 别
织代谢层 次上的营养作用 机理进行研究 ,即做好其基 有 乙酸 、 酸 、 珀 酸 、 醇 等 乳 琥 乙 础理论研究 和应用研究工作 ,为在生产实 际中推广普 l 盟奠定坚实 的科 学理论依据 。 2 微 生 物发酵秸 秆饲料 的菌种及 其特性

国内外秸秆类微生物发酵饲料的研究及应用进展

国内外秸秆类微生物发酵饲料的研究及应用进展

一、特点、优势和适用范围
一、特点、优势和适用范围
秸秆类微生物发酵饲料是一种利用微生物对秸秆进行发酵处理的饲料。它具 有以下特点:
1、提高了秸秆的营养价值:发酵过程可以增加秸秆中的蛋白质、纤维素等营 养成分,提高秸秆的营养价值。
一、特点、优势和适用范围
2、改善了秸秆的适口性:发酵过程可以降低秸秆的硬度,改善其口感,提高 动物的采食量。
3、生产成本高:由于目前的发酵技术和生产设备等原因,秸秆类微 生物发酵饲料的生产成本相对较高,制约了其广泛应用。
2、拓展适用范围:加强对其他类型动物养殖的研究,拓展秸秆类微生物发酵 饲料的适用范围。
3、生产成本高:由于目前的发酵技术和生产设备等原因,秸秆类微 生物发酵饲料的生产成本相对较高,制约了其广泛应用。
2、水产养殖中的应用
2、水产养殖中的应用
微生物发酵饲料在水产养殖中也有着广泛的应用。由于水产养殖环境复杂, 动物的消化系统和免疫系统相对较弱,容易受到病原菌和有害物质的侵袭。而微 生物发酵饲料中的有益微生物菌体可以有效地提高水产动物的免疫力和抗病能力, 促进其生长发育,因此在水产养殖中也越来越受到重视。
三、农作物秸秆饲料的营养特点
三、农作物秸秆饲料的营养特点
1、农作物秸秆饲料的营养成分含量较低,主要为粗纤维、木质素等难以消化 的物质,导致其营养价值较低。
三、农作物秸秆饲料的营养特点
2、经、浸泡、氨化等方法处理后,可以提高秸秆饲料的消化吸收率。
三、问题与挑战
2、适用范围有限:目前秸秆类微生物发酵饲料主要适用于草食性动物养殖, 对于其他类型的动物养殖适用性还不够广泛。
三、问题与挑战
3、生产成本高:由于目前的发酵技术和生产设备等原因,秸秆类微生物发酵 饲料的生产成本相对较高,制约了其广泛应用。

菌酶协同发酵生产蛋白饲料的研究进展及应用

菌酶协同发酵生产蛋白饲料的研究进展及应用

菌酶协同发酵生产蛋白饲料的研究进展及应用。

随着我国蛋白资源短缺问题的出现,寻找其他原料弥补优质蛋白资源匮乏成为目前需要解决的问题。

我国非常规饲料原料来源广泛,富含维生素、蛋白质等营养成分,但存在抗营养因子和有毒物质且适口性差以及营养成分不平衡、差异大等缺点。

菌酶协同发酵是在微生物发酵工艺的处理下添加一定量的酶进行协同发酵,兼具酶解法和微生物发酵法的优点,能将原料中的抗营养因子降解,调节饲料苦味,改善饲料适口性,弥补单一微生物发酵产酶不足和酶解口味不佳等问题,促进动物采食,提高饲料转化率和营养价值。

因此,菌酶协同发酵饲料原料生产蛋白饲料能够充分利用我国非常规饲料资源,有效缓解我国蛋白饲料不足的压力,促进养殖业发展。

1菌酶协同发酵生产蛋白饲料的研究1.1菌酶协同发酵常用的菌种和酶菌酶协同发酵常用的菌种主要包括芽孢杆菌、酵母菌、乳酸菌以及霉菌。

芽孢杆菌类主要有枯草芽孢杆菌、地衣芽孢杆菌、凝结芽孢杆菌和蜡质芽孢杆菌等,能降解抗营养因子和有毒物质,分泌纤维素酶和蛋白酶将纤维素和大分子蛋白降解,调节动物肠道健康。

酵母菌类主要有酿酒酵母、产阮假丝酵母和啤酒酵母等,能使发酵饲料产生酒香味,改善饲料适口性,提升饲料风味,且因其本身是菌体蛋白,可增加蛋白产量,增加饲料利用率。

乳酸菌类主要有植物乳杆菌、干酪乳杆菌、乳酸杆菌和乳酸片球菌等,能产生多种有机酸和细菌素进而降低饲料pH值,抑制有害菌生长,提升饲料营养品质,促进动物采食,增强动物免疫力。

霉菌类主要有米曲霉、根霉、木霉、黑曲霉和青霉等,霉菌类菌株能分泌胞外酶,如蛋白酶、半纤维素酶和纤维素酶等来分解原料中的淀粉和蛋白来提升发酵效果和增加饲料利用率。

常用酶主要是非淀粉多糖酶和蛋白酶。

非淀粉多糖酶主要是纤维素酶、半纤维素酶、果胶酶和甘露糖酶等,可将饲料原料中的纤维破坏使营养物质得以释放,且可将原料中碳水化合物分解为葡萄糖和氨基酸等小分子物质为菌群提供能源,促进动物吸收消化。

我国微生物饲料的应用现状及发展趋势

我国微生物饲料的应用现状及发展趋势
我 国微 生物 饲 料 的应 用 现 状及 发 展 趋 势
山西省 太原 市饲料 监测 站 翟 晓莉
微生物饲料是 以微生物 、 复合酶为生物饲料发酵剂菌
2 .微 生 物饲 料选 用 菌种 的 原则
种, 将饲料原料转化为微生物 菌体蛋 白、 生物活性小肽类
() 1 菌种必须是安全的
必须用本动物或实验动物做
( ) 生物 饲料 得 到 了深 入研 究和 大 力推 广 3微 在菌种 、
直接饲用微生物制剂 中的有 益菌 工艺 、 设备 、 加工等方面 , 已研究成功一些方法 , 包埋 、 微囊
制粒 技 术 也取 得 了很 大 进 步 。 在肠道 内代谢可产生多种消化酶 、氨基酸、维生素( c 化 , K、 、
ቤተ መጻሕፍቲ ባይዱ
达到防病促生长 激有益菌 的生长 , 抑制病原微 生物繁殖 , 提高机体免疫力 而保持或恢 复肠道 内微生物群落的平衡 ,
和抗病力 , 对防治畜禽 消化道 系统疾病起有 益作用 , 主要 的 目的。 () 3 抑菌作用 许多乳酸菌和链球菌可 以产生细菌素 , 应用的有 啤酒酵母和石油酵母 。其他还有光合细菌 、 拟杆 如乳 酸链球菌肽等 ,这些多肽类物质能抑制沙 门氏菌、 志 菌、 木霉等。
细菌的生长 , 尤其是革兰 氏阴性病原菌。这是 由于大肠 内 我国存 在着 人多粮少 、 能源匮乏等 隐患 , 这也表明微生 但 的乳酸过氧化氢酶 一 硫氨酸盐反应 系统被激活 的结果 , 其 物饲料在我国具有 巨大的市场潜力 。同时 , 随着我 国高效 反应产物可以抑制细菌的生长 ,也可 以形成酸性环境 , 从 率 、 规模化 、 集约化的畜牧生产体系逐渐形成 , 也为微生物 而起到杀菌的作用 。另外有些有 益微生物可 以产生溶菌 饲料的推广带来 了巨大的商业契机 。 酶, 从而抑制病原菌的生长。 () 4 补充 营养成分

粗饲料生物发酵剂研究及进展.doc

粗饲料生物发酵剂研究及进展.doc

粗饲料生物发酵剂研究及进展地球上最丰富的多糖物质是纤维素,世界上50%的生物量来自天然纤维素,估计年产量在100亿吨~500亿吨。

我国的纤维素资源极为丰富,每年秸秆产量在5.7亿吨,占世界秸秆总产量的20%~30%,然而用作饲料的不足10%。

如果能充分有效地利用这些资源,将成为缓解当今人类面临的粮食、能源、环境三大危机,实现农业可持续发展的重要途径之一。

但由于秸秆饲料粗纤维含量高,蛋白质、矿物质含量低,畜禽消化率低,适口性差,从而限制了它的应用。

在饲喂动物时必须进行预处理,以提高营养价值和适口性。

预处理包括物理、化学、生物方法。

目前,对纤维素的降解利用主要采用生物手段,即采用能分泌有效酶类的微生物来降解纤维素。

微生物发酵粗饲料的机理作物秸秆等低质粗饲料的主要成分是纤维物质,中性洗涤纤维约占干物质的70%~80%;酸性洗涤纤维约占干物质的50%~60%,而粗蛋白的含量很少,仅含3%~6%。

中性洗涤纤维包括纤维素、半纤维素、木质素,是植物细胞壁的主要组成部分,随着植物细胞的老化,细胞壁变厚,中性洗涤纤维就成为秸秆的主要组成。

纯的纤维素能较容易地被瘤胃微生物降解,但由于木质素密实的结构很难被瘤胃微生物降解,同时上述老化的细胞壁主要成分之间存在很强的结合键抵抗微生物的消化,使纤维素在瘤胃中的消化率很低。

因此,要提高秸秆的消化率,关键是降解木质素,保留纤维素。

在发酵过程中,微生物大量生长繁殖,分泌出各种酶。

这些酶通过降解多糖和木质素,破坏其连接的共价键,一方面破坏了秸秆难消化的细胞壁结构,使与木质素交联在一起的纤维素和半纤维素游离出来;另一方面又使秸秆细胞壁内可利用的碳水化合物和其他营养物质暴露出来,增加与消化液接触的机会,从而提高秸秆消化率或瘤胃干物质降解率。

而菌体自身生物量的增长又可以提高蛋白含量。

当用微生物发酵以求提高秸秆消化率时,应选择能降解木质素的微生物,以真菌效果较好。

当用农作物秸秆生产单细胞蛋白时,应选择能降解纤维素和半纤维素的微生物,因为农作物秸秆内纤维素和半纤维素的含量高,生产单细胞蛋白时提供的能量多。

微生物发酵生产蛋白饲料的研究进展

微生物发酵生产蛋白饲料的研究进展

第30卷增刊福州大学学报(自然科学版)V ol.30Supp. 2002年11月Journal of Fuzhou University(Natural Science)N ov.2002文章编号:1000-2243(2002)S0-0709-05微生物发酵生产蛋白饲料的研究进展徐姗楠,邱宏端(福州大学侨兴轻工学院,福建福州 350002)摘要:对近10年来微生物发酵生产蛋白饲料的生产菌种、原料资源的开发与应用、生产技术和微生态制剂等产品的研究成果及发展进行了总结与分析.关键词:微生物;发酵;蛋白饲料中图分类号:T Q920.1文献标识码:AR esearch development of the production of protein-enrichedfeed fermented by microorganismX U Shan-nan,QI U H ong-duan(C ollege of Qiaoxing Light Industry,Fuzhou University,Fuzhou,Fujian350002,China)Abstract:T his paper summarizes and analyzes the achievements and development of the production of pro2tein-enriched feed fermented by microorganism in the past ten years.T hey include producing microbe,development and application of raw material res ource,producing techn ology and effective microorganisms.K eyw ords:microbe;fermentation;protein-enriched feed微生物蛋白饲料大体分为两类:一类是利用微生物发酵作用改变饲料原料的理化性质,提高饲料适口性、消化吸收率及其营养价值,或进行解毒、脱毒作用,积累有用的中间产物;另一类是利用各种废弃物如纤维素类、淀粉质、矿物质等原料及工业生产废水培养微生物菌体蛋白、藻类等[1].本文对近年来国内外微生物发酵生产蛋白饲料和单细胞蛋白的研究进行了综述.1 生产菌种类多并趋向复合菌株协同发酵微生物发酵生产蛋白饲料,菌种是关键.从目前报道的资料看,微生物蛋白饲料的菌种包括细菌(芽孢杆菌、枯草杆菌、拟杆菌、乳酸杆菌、双歧杆菌、乳酸球菌、光合细菌等)、酵母菌(啤酒酵母、假丝酵母、石油酵母等)、霉菌(曲霉、木霉、根霉、青霉[2]等)、放线菌、担子菌和微型藻类(小球藻、绿藻、螺旋藻等).作为微生物蛋白饲料的生产菌种,其原则为:①对所要处理的饲料原料作用要大;②菌种细胞及代谢产物对动物无毒无副作用;③对其他菌株不拮抗;④繁殖快、性能稳定、不易变异;⑤对环境适应性强[3].利用微生物单一菌株或组合菌株发酵,实现高蛋白菌体饲料的生物转化,已有较多文献报道,如张西宁等、周哓云等采用热带假丝酵母、产朊假丝酵母和黑曲霉单一菌种和组合菌种对酱渣[4,5]、碱性蛋白酶发酵渣[6]和柠檬酸渣[5]进行微生物发酵生产蛋白饲料.结果显示,采用热带假丝酵母A1、A2、A3,产朊假丝酵母E311和黑曲霉A S777单一菌种发酵,效果最好的为黑曲霉A S777发酵,粗蛋白和SCP净增量平均为20.26%和14.05%;而采用组合菌种发酵如A3+E311+A S777,粗蛋白和SCP净增量平均为22. 18%和17.95%,组合菌种发酵,粗蛋白含量从整体上高于单菌种发酵.徐坚平等[7]以稻草、玉米秸杆物质为原料,固态培养绿色木霉,液态糖化后接入产朊假丝酵母和快速酵母发酵生产单细胞蛋白,其中单一酵母发酵蛋白增量为3.1%,单一木霉发酵蛋白增量为9.0%,木霉与酵母共发酵蛋白增量为25.2%.侯收稿日期:2002-04-15作者简介:徐姗楠(1979-),女,硕士研究生;通讯联系人:邱宏端,副教授.文华等[8]从热带假丝酵母、白地霉、康宁木霉、树状酵母、绿色木霉、乳酸杆菌、担子真菌中选择30株菌种,以白酒糟为原料筛选得5株生产蛋白饲料的优化菌种,并采用液体发酵法,其中单一菌株发酵酒糟,粗蛋白提高了2%-7.2%,而采用多种菌株协同发酵酒糟,粗蛋白可提高10.1%-14.3%.陈庆森等[9]利用氨法对玉米秸秆进行前处理,建立了绿色木霉(T B9701)、康宁木霉(T B9704)、米曲霉、黑曲霉和四种酵母(323,321,1817,2.21)构成的菌种发酵体系;通过对单一菌株与组合菌种发酵比较,表明T B9704、曲霉与酵母建立的共发酵体系效果最好(粗蛋白含量增加7.13%,总纤维利用率增加12.30%).代小江等[10]以沙棘果渣作为唯一碳源进行单细胞蛋白的发酵研究,从40多株(包括霉菌、酵母菌和细菌)中选育出My -931霉菌与酵母菌组合发酵,产品粗蛋白提高35.8%,粗纤维降低10%.蔡俊等[11]以啤酒糟为主原料,配以麸皮等辅料,采用黑曲霉、米曲霉、异常汉逊氏酵母、产朊假丝酵母进行多菌种固态发酵生产蛋白饲料,真蛋白平均提高率为41.19%.钟世博等[12]以大曲酒糟为原料,采用热带假丝酵母和绿色木霉混合发酵生产蛋白饲料,产品粗蛋白提高13.96%,真蛋白提高11.58%,粗纤维减少7.43%,淀粉含量减少14.1%.王冬梅等[13]利用E M 技术固体发酵啤酒糟生产蛋白饲料,发酵后产品粗蛋白提高15.88%,总氨基酸提高17.34%,粗纤维含量降低10.02%.李发生等[14]采用霉菌(J Z -1)为主发酵菌种,和大型食用真菌(J Z -2)为辅助性菌种发酵白酒酒糟,获得比原糟粉粗蛋白提高10.46%,粗纤维减少3.91%的生物转化蛋白饲料产品.Smirnova I E 等[15]用芽孢杆菌、纤维单胞菌和扣囊拟内孢霉、热带假丝酵母、丝孢酵母混合发酵稻草生产蛋白饲料,获得了微生物细胞生物量和纤维素酶活有效提高的良好结果.从上述例子中看出,微生物蛋白饲料的生产菌种具有种类多和采用多菌种组合发酵的特点.从多菌种的使用情况看,霉菌和酵母菌的组合发酵为多数,这是由于霉菌同化淀粉、纤维素的能力强,可将工业废渣中的淀粉和纤维素降解为酵母能利用的单糖、双糖等简单糖类物质,使酵母得以良好地生长繁殖,实现生物转化蛋白饲料的效果.采用两种或两种以上微生物发酵,体现了微生物之间的互惠、偏利生等关系.该发酵形式对各种原料的有效转化、蛋白饲料的品质提高起到了积极重要的作用.2 发酵原料多为工农业生产的废弃物,趋向资源再生和治理环境微生物发酵蛋白饲料,就原料种类而言是多种多样的.其中有工农业生产的废水(如酿酒、味精、制糖、造纸、石油工业等产生的废水),废渣(如酱油、淀粉加工[16]、糖蜜、甲醇、醋酸等富含有机物的工业废渣),纤维素类物质(如木薯、玉米杆、豇豆藤[17]、花生茎、山药皮、橘皮[2]、香蕉皮[18]、菠萝皮、可可豆、豆荚、棕榈粉、米糠、木屑等),菜籽、棉籽饼粕、桐饼、芝麻饼等蛋白质的下脚料,屠宰厂废弃的毛、血、骨、蹄、壳、皮等,鸡、猪等畜禽粪便[19],鱼虾等海产品深加工产生的废弃物[20-23],甚至包括城市生活垃圾[17].这些原料大都是工农业生产活动的附属物或废弃物,以价格低廉,原料利用率低或污染环境而引起人们的关注.通过微生物发酵,将生产、废弃物综合利用和环境保护三者有机的结合起来,不但可弥补我国动物性蛋白饲料的不足,又可有效地降低对环境的污染.金其荣等[24]以味精、酒精及柠檬酸等工业废水为原料,以假丝酵母为菌种生产饲料酵母蛋白,产品粗蛋白含量为40%-50%,味精废液C OD Cr 降低75%-80%,柠檬酸废液C OD Cr 降低30%-50%,酒精废液C OD Cr 降低70%.焦士蓉[25]利用高浓度玉米酒精废糟液生产饲料酵母,产品的粗蛋白含量为50108%,废糟液C OD 的去除率平均为72.50%,酸去除率平均为89.29%.Shojaosadati S A 等[26]从酒精厂废液中分离出汉逊酵母,利用甜菜废糖蜜蒸馏残液连续发酵生产SCP ,培养过程中添加N 、S 源后,产品粗蛋白含量可达50.6%,C OD Cr 降低35.7%,细胞含量8.5g/dm ,必需氨基酸组分与大豆、鱼粉等其他食物蛋白相当.刘仲敏等[27]从12株曲霉中筛选出一株能发酵降解猪、牛血的RA 3菌株,并用于猪、牛血固态发酵生产蛋白饲料,产品粗蛋白含量达31%-35%,成品收率为40%-44%.涂国全等[28]利用E M 制剂对含有羽毛角蛋白饲料和啤酒糟粉的粗饲料进行发酵,使粗蛋白提高20.15%,粗纤维降低46.3%.蔡皓等[29]利用乳酸菌、芽孢菌、酵母菌、白地霉及光合细菌组成微生态制剂,对废弃物蛋白资源如血粉、皮革粉、芝麻粕、棉籽粕、角粒粉、玉米粉等原料进行混合固态发酵,结果其蛋白质・017・福州大学学报(自然科学版)第30卷消化率由发酵前的75.9%提高到发酵后的91.2%.Faid M 等[30]利用剁碎的沙丁鱼废弃物包括内脏、鱼头和鱼尾等,混合25%的糖蜜,接种酵母、乳酸菌进行发酵,相对原料而言,其发酵产物中三甲胺含量降低或保持较低水平,大肠杆菌、梭状芽孢杆菌以及具有分解脂肪、蛋白能力的有害微生物显著减少.陶德录等[3]选育了产纤维素酶较高的丝状真菌,并以酵母菌、芽孢杆菌和乳酸菌协同完成对各种秸杆类作物的青贮或“黄贮”,达到降解粗纤维5%-10%,提高粗蛋白3%-5%的效果.冯克宽等[31]利用绿色木霉和啤酒酵母混合发酵纤维素物质(玉米秆、玉米芯、油菜秆、洋芋秆、麦秆、青草、胡麻秆、黄豆秆、麸皮等),蛋白质含量均有不同程度的提高,其中以玉米秆发酵的效果最好,蛋白质含量比对照组提高5-6倍.林晓艳等[32]用康宁木霉、黑曲霉和博伊丁假丝酵母N o.2201诱变菌株Y -108混菌两步发酵混合原料(玉米芯水解渣、米糠、麸皮和油饼)生产高蛋白饲料,其发酵产品的粗蛋白质含量从12.21%提高到25.00%.K uo Y u -Haey 等[33]用米曲霉和小孢根霉发酵低毒性的山黧豆种子生产蛋白饲料,发酵产品中神经毒素b -ODAP (3-N -乙二酰基-L -2,3-二氨基丙酸)的去除率可达52.4%-82.2%,脱毒效果显著.此外,从60年代起,世界各国也高度重视以液态正构石蜡或用石油馏分、原油及气态烃(主要是甲烷)作为原料,用酵母或细菌为生产菌生产SCP.采用石油微生物发酵生产单细胞蛋白同样具有原料来源广泛、产率高和营养丰富等方面的优点[34].微生物发酵后的蛋白粗饲料,由于复杂的大分子物质被消化分解为小分子物质,有毒有害物质被去除,同时增加了蛋白质、氨基酸,维生素、酶类等有用代谢产物[35],使物料适口性改善,营养价值提高,有助于动物对营养物质的消化吸收、并提高了饲料的转化率和利用率.微生物发酵蛋白饲料,其效果有较大的差异,这是由于发酵原料与菌种的差异所致.3 发酵工艺微生物发酵蛋白饲料的方法包括固态、液态、吸附在固体表面的膜状培养以及其他形式的固定化细胞培养等.常规发酵以固态发酵和液体深层发酵为主.3.1 固态发酵工艺流程斜面菌种扩培至种子罐↓废渣→粉碎→配料→灭菌→接种→发酵→产品烘干→质检→包装→成品固态发酵一般为浅盘发酵,接种量约为10%.在发酵过程中物料碳氮比、营养成分、含水量、pH 和发酵温度是主要的影响因素.碳氮比(C/N )对微生物生长影响很大,氮源不足,菌体繁殖缓慢;碳源缺乏,菌体容易衰老和自溶,要开展物料成分与微生物菌种需要的研究.最适C/N 应在10-100∶1[36];基质含水量应控制在发酵菌种能够生长而又低于生长所需要的水分活度值,基质初始含水量一般控制在30%-75%,也可采用低含水量物料、中间补水的工艺等;为防止基质内缺氧,常选用薄层、粗粒的培养基质,并在发酵过程中以通风、搅拌或翻动来增大氧的传递,促进均匀传热.此外,发酵种龄、发酵时间与温度等条件也应在实验基础上根据不同菌种、不同工艺及不同发酵目的进行确定.生料发酵也是固态发酵中的一种,如郭维烈等[37]利用粗淀粉及渣粕类原料不经灭菌成功地进行固态发酵生产4320菌体蛋白饲料,该制造工艺简单,由于减少了能耗,降低了成本,因而应用前景良好.但是生料发酵的技术核心是选育微生物菌种的问题.固态发酵具有工艺粗放,技术简单,投资少,产率高,污染环境少等优点,但也存在着劳动强度大,易染杂,工艺控制和过程参数难以实现准确测定与自动化等问题.3.2 液体深层发酵工艺流程斜面菌种→种子罐→发酵罐→板框过滤或介质吸附→干燥→粉碎→质检→包装→成品.液体深层发酵有分批发酵和连续发酵两种.连续发酵是在对数期用恒流法培养菌体细胞,使基质消耗和补充、细胞繁殖与细胞物质抽出率[3]维持相对恒定.该法和分批培养相比,不易染杂,质量稳定.近年来兴起的生物反应器和分离耦合技术在液体深层发酵中的应用已取得了很大进展[38],根据不同的菌种控制好不同的发酵条件如营养成分、温度、pH 、搅拌等是决定发酵成功与否的关键因素,例如・117・增刊徐姗楠,等:微生物发酵生产蛋白饲料的研究进展在酵母菌的高密度发酵中,主要限制因素表现在营养供给不适宜、生产抑制性物质的积累和发酵液流变学特性的影响上,可采用分批补料、重复补料的发酵方式,并保持一定的溶氧和比生长速率,使所产生的乙醇为酵母菌再利用[39].液体深层发酵具有发酵时间短,效率高,适合于工业化生产和易于控制条件等优点,但存在着投资大,生产成本较高等缺点.4 微生态制剂渐趋活跃微生态制剂是由许多有益的微生物及其代谢产物、促生长等物质组成,是近年来出现的一类新型饲料添加剂.目前市场上出现的微生态制剂产品如:E M 、增菌素、生态宝、益生菌王等.这些微生态制剂多数是以乳酸杆菌[20-23]、双歧杆菌、芽孢杆菌[40]、光合细菌、拟杆菌和消化杆菌等菌种进行单一或多菌株组合发酵而成.微生态制剂作为活菌制剂,不但可保证动物的正常代谢,提高动物的免疫机能[41],为动物的生长发育提供丰富的营养物质[42],并具有抑制有害菌,改善微生态环境的功能.在这些微生态制剂中,光合细菌在作为饵料、饲料添加剂、处理高浓度有机废水和改善养殖水体水质方面的作用尤为突出.光合细菌细胞富含蛋白质、人和动物必需的氨基酸等生理活性物质;能分解多种有机物质,转化氨氮、亚硝态氮和H 2S 等物质,其应用前景广阔.如田维熙等[43]将光合细菌应用于反刍动物奶牛、肉牛饲养中,奶牛平均每天多产奶2.5-3kg ,肉牛平均每天多增重0.2kg ,净肉率提高0.7%;李坤宝等[44]在淡水家鱼养殖中添加2%干饵料量的光合细菌,结果家鱼成活率提高5%-28%,单位产量提高22%-38%,饲料系数降低14%-27%.G etha K 等[45]在西米淀粉加工废液中分离与培养光合细菌生产SCP ,在最佳条件下,最大细胞产率约为2.5g drycell /L ,同时淀粉废液C OD Cr 降低77%.邱宏端等[46]利用光合细菌进行鱼池养殖,结果使鱼池水化学因子氨氮、亚硝基氮和C OD Cr 降低,水体病害细菌如假单胞菌、气单胞菌减少,有益细菌如硝化细菌等数量增多.微生态制剂以其天然、无毒、无副作用、无污染、无残留、无抗药性等优点,而逐渐取代抗生素,成为养殖业、畜牧业上安全可靠的兽药和饲料添加剂,其研究领域也日渐成熟与活跃.综上所述,利用生物技术,对可再生资源、废弃资源进行工业化生产微生物蛋白饲料,发展前景广阔.微生物蛋白饲料近年来虽然已取得可喜的研究进展和成果,但是也存在许多问题有待于解决,如生产菌株性能不稳定,耐受性低;某些活菌制剂不易保存;有益菌群协同作用机制或拮抗作用机理不明[47]等.因而,今后的研究可着重于筛选高性能、高耐受性的菌株;或利用基因工程技术对菌株进行遗传改造,促进生料发酵的应用和开发新型饲料;并从生理、代谢和遗传角度深入研究多菌株发酵的协同作用机制;拓宽微生物发酵蛋白饲料的原料资源等,从而更好地发展微生物蛋白饲料的研究与应用.参考文献:[1] 刘仲敏,马德强,常琴.微生物饲料资源的开发[J ].中国饲料,1998(4):36.[2] Scerra V ,Caridi A ,F oti F ,et al.In fluence of dairy Penicillium spp.on nutrient content of citrus fruit peel[J ].Animal Feed Sci 2ence and T echnology ,1999,78(1-2):169-176.[3] 陶德录,韩宁,蒋安文.微生态饲料菌株和成套设备的研究[J ].饲料工业,2000,21(12):31-33.[4] 张西宁.以酱渣为原料生产蛋白饲料的研究[J ].食品与发酵工业,1996(2):1-4.[5] 周晓云,王飞雁.食品工业废渣以发酵技术生产菌体蛋白饲料的研究[J ].中国环境科学,1998,18(3):223-226.[6] 张西宁,许培雅.以碱性蛋白酶发酵渣制备蛋白饲料的研究[J ].粮食与饲料工业,1996(12):22-24.[7] 徐坚平,刘均松,孔维,等.利用秸杆类物质进行微生物共发酵生产单细胞蛋白[J ].微生物学通报,1995,22(4):222-225.[8] 侯文华,李政一,杨力,等.利用酒糟生产饲料蛋白的菌种选育[J ].环境科学,1999,20(1):77-79.[9] 陈庆森,刘剑虹,蔡红远,等.多菌种共发酵生物转化天然纤维素材料的研究[J ].天津商学院学报,2000,20(3):1-6.[10] 代小江,王礼德,贺锡勤,等.利用微生物混合培养物生产沙棘果渣单细胞蛋白[J ].微生物学通报,1995,22(5):267-270.[11] 蔡俊,邱雁临.啤酒糟发酵生产蛋白饲料影响因子的研究[J ].粮食与饲料工业,2000(4):30-31.[12] 钟世博,赵建国,朱中原.混种固态发酵大曲酒糟生产蛋白饲料研究[J ].粮食与饲料工业,2000(11):23-25.[13] 王冬梅,郭书贤,薛刚.E M 技术在啤酒糟发酵饲料上的应用研究[J ].粮食与饲料工业,1999(4):25-26.・217・福州大学学报(自然科学版)第30卷[14] 李发生,谷庆宝,菅小东,等.双菌联合固态发酵生产酒糟菌体蛋白饲料的试验研究[J ].环境科学研究,1999,12(6):39-42.[15] Smirnova I E ,Inst M ikrobioli Virus ol ,M oin R K,et al.M ixed cultures of cellulolytic bacteria and yeasts for preparation of feedprotein based on plant waste material[J ].Vestn S -kh Nauki K az (Russian ),2000(6):62-63.[16] Senez J C ,Raimbault M ,Descham ps F.Protein enrichment of starchy substrates by s olid -state fermentation.the use of organicresidues in rural communities[M].Japan :United Nations University Press ,1983.[17] Onwuka C F I ,Adetiloye P O ,A folami C e of household wastes and crop residues in small ruminant feeding in Nigeria[J ].Small Ruminant Research ,1997,24(3):233-237.[18] Joshi S S ,Dhopeshwarkar Rahul ,Jadhav Unmesh ,et al.C ontinuous ethanol production by fermentation of waste banana peels us 2ing flocculating yeast[J ].Indian Journal of Chemical T echnology ,2001,8(3):153-156.[19] 周立新,黄凤洪.蛋白饲料资源的开发利用[J ].粮食与饲料工业,1999(4):23-24.[20] Dapkevicius M lne ,R ombouts F M ,H ouben J H ,et al.Biogenic amine formation and degradation by potential fish silage startermicroorganisms[J ].International Journal of F ood M icrobiology ,2000,57(1-2):107-114.[21] Hamm oumi A ,E l Y achioui M ,Amarouch H ,et al.Characterization of fermented fish waste used in feeding trials with broilers[J ].Process Biochemistry ,1998,33(4):423-427.[22] Z akaria Z ,Shama G,Hall G ctic acid fermentation of scam pi waste in a rotating horizontal bioreactor for chitin recovery[J ].Process Biochemistry ,1998,33(1):1-6.[23] Hamm oumi A ,Faid A ,Amarouch e of fermented fish waste as a poultry feed ingredient[J ].Cahiers Agricultures ,1999,8(3):207-209.[24] 金其荣,赵建国.利用发酵工业废水生产饲料酵母[J ].无锡轻工业学院学报,1987,6(2):85-89.[25] 焦士蓉.利用高浓度有机废水选育单细胞蛋白菌株的研究[J ].四川工业学院学报,1999,18(1):41-44.[26] Shojaosadati S A ,Jalilzadeh A ,Sanaei H R ,et al.Bioconversion of m olasses stillage to protein as an economic treatment of thiseffluent[J ].Res ources ,C onservation and Recycling ,1999,27(1-2):125-138.[27] 刘仲敏,何伯安,曹友声,等.猪、牛血固态发酵生产蛋白质饲料的研究[J ].微生物学通报,1995,22(6):351-354.[28] 涂国全,张宏玉,张宝.E M 在粗饲料发酵中的转化效果[J ].中国饲料,1999(16):9-11.[29] 蔡皓,余哓斌.多菌种发酵生物活性蛋白饲料的发酵研究[J ].粮食与饲料工业,2000(6):32-34.[30] Faid M ,Z ouiten A ,E lmarrakchi A ,et al.Biotrans formation of fish waste into a stable feed ingredient [J ].F ood Chemistry ,1997,60(1):13-18.[31] 冯克宽,曾家豫,王明谊,等.利用木霉和酵母混合发酵提高纤维素物质蛋白质含量[J ].西北师范大学学报(自然科学版),1998,34(4):67-69.[32] 林晓艳,陈彦,尹淑媛.玉米芯混菌两步发酵生产单细胞蛋白及高蛋白饲料[J ].中国饲料,1999(18):28-29.[33] K uo Y u -Haey ,Bau H wei -M ing ,R ozan Pascale ,et al.Reduction efficiency of the neurotoxin b -ODAP in low -toxin vari 2eties of Lathyrus sativus seeds by s olid state fermentation with Aspergillus oryzae and Rhizopus microsporus var chinensis[J ].Sci F ood Agric ,2000,80(15):2209-2215.[34] 罗家立.生物工程技术的发展及其在石油化工中的应用[J ].石油化工动态,2000,8(2):8-11.[35] 罗明朗.论固体发酵对物料蛋白质含量的提高[J ].粮食与饲料工业,1996(11):26-28.[36] 赵德英,茌亚青,张景宏,等.固态发酵及其在饲料工业中的应用[J ].中国饲料,2000(10):28-29.[37] 郭维烈,郭庆华,谢小保,等.4320菌体蛋白饲料中双菌作用机制的研究[J ].农业工程学报,2002,18(1):122-125.[38] Mattiassin B ,H olst O.Extractive Bio -conversions[M].New Y ork :M orcel Dekker Inc ,1991.[39] 陈洪章,李佐虎.酵母菌的高密度发酵[J ].工业微生物,1998,28(1):28-31.[40] Smirnova I E ,Saubenova M e of celluloselytic nitrogen -fixing bacteria in the enrichment of roughage with protein[J ].Prikl Biokhim M ikrobiol ,2001,37(1):86-92.[41] Maqbool A ,Shafiq M K,K han I A.S tudies on effective microorganism treated rice straw on Deg Nala disease in Bu ffaloes[J ].Indian Journal of Dairy Science ,1999,52(6):389-392.[42] 叶成远,张惠云.微生态制剂在水产养殖中的应用[J ].水产养殖,2000,21(3):25-27.[43] 田维熙,王叶,赵荣芝,等.光合细菌在奶牛、肉牛饲养中应用的试验[J ].中国饲料,2000(13):11-12.[44] 李坤宝,程启明.光合细菌在淡水家鱼养殖中的应用研究[J ].粮食与饲料工业,1998(10):35-36.[45] G etha K,Vikines wary S ,Chong V C.Is olation and growth of the phototrophic bacterium Rhodopseudom onas palustris strain B1insag o -starch -processing wastewater[J ].W orld Journal of M icrobiology &Biotechnology ,1998,14(4):505-511.[46] 邱宏端,徐姗楠,朱航,等.耐盐红螺菌科细菌对淡水鱼池水质及细菌类群的影响[J ].水产学报,2002,26(3):231-236.[47] 冯树,张忠泽.混合菌———一类值得重视的微生物资源[J ].世界科技研究与发展,2000,22(3):44-47.・317・增刊徐姗楠,等:微生物发酵生产蛋白饲料的研究进展。

微生物发酵工艺的研究及应用现状分析

微生物发酵工艺的研究及应用现状分析

微生物发酵工艺的研究及应用现状分析微生物发酵工艺是一种利用微生物进行生物转化的技术,该技术被广泛应用于食品、医药、生物制品等众多领域。

本文将从微生物发酵工艺的基本原理、应用现状以及未来发展方向三个方面进行分析,以期能够为相关领域的科学研究和工程实践者提供一些参考。

一、基本原理微生物发酵工艺使用的微生物通常是一些具有代谢功能的单细胞或多细胞生物,如酵母菌、细菌、真菌和藻类等。

微生物在其代谢过程中会产生一些有用的代谢产物,比如一些生物活性物质、蛋白质、酶、生物饲料、制粉、酒精等,在食品、医药、生物制品等众多领域都有广泛的应用。

微生物发酵工艺的基本原理就是将微生物培养在一定的环境下,给予其特定的养分和条件,促使其代谢产生有用的代谢产物。

通常情况下,微生物发酵工艺分为两种类型:静态发酵和动态发酵。

静态发酵是指将微生物培养在一个封闭、静止的容器中,使其在特定的环境条件下生长繁殖,并产生有用的代谢物。

静态发酵常用于食品生产中,比如酵母菌发酵面包、咖啡、酸奶等。

动态发酵是指将微生物培养在一个无定形的搅拌器或发酵罐中,使其在特定的环境条件下生长繁殖,并产生有用的代谢物。

动态发酵常用于生产高价值化学物质、药物等。

动态发酵不仅具有高效性,而且能够适应不同的环境条件。

二、应用现状微生物发酵工艺在不同领域都有广泛的应用,其中最常见的应用是在食品工业、医药工业以及生物制品工业。

在食品工业方面,微生物发酵工艺被广泛应用于提高食品的营养价值、口感和品质。

常见的食品发酵工艺包括酸奶、面包、啤酒、酱油、奶酪等。

在医药工业方面,微生物发酵工艺被广泛应用于制备各种药物,如青霉素、链霉素、速效救心丸等。

微生物发酵工艺可以提高药物的纯度和药效,并且具有经济、绿色、高效的特点。

在生物制品工业方面,微生物发酵工艺被广泛应用于制备多种重要的生物制品,如酶、激素、蛋白质等。

微生物发酵工艺可以提高生物制品的纯度和效率,并能对生物制品进行修饰和改良,以适应不同的临床需求。

生物发酵和发酵工程技术的研究进展及应用

生物发酵和发酵工程技术的研究进展及应用

生物发酵和发酵工程技术的研究进展及应用生物发酵技术作为一种传统的养殖方式,在不断地发展和创新中,被人们广泛应用于食品加工、医药、化工以及环保等领域。

而发酵工程技术作为生物发酵产业链的重要组成部分,也随着市场需求的变化而发生着快速的变革和创新,为生物发酵产业的发展添砖加瓦。

一、生物发酵的概念和发展历程生物发酵是指利用微生物代谢产生的酶和代谢产物在一定条件下合成化合物或物质的过程。

它是日常生活中常见的一种传统发酵技术,如酸奶、酒酿、豆腐等均使用了发酵技术。

而现代生物技术的发展和成熟,也为生物发酵技术的创新和进步提供了更多的手段和途径。

生物发酵技术的历程可以追溯到远古时代。

早期人们通过使用天然的微生物群落来实现发酵的过程,这种方法虽然效率较低,但却被广泛应用于食品加工和药物研发等领域。

随着人们对微生物的深入研究和对发酵过程的更深刻理解,一些基本的微生物学原理和技术被逐渐确立和发展。

在此基础上,发酵工程技术逐渐成为一门独立的学科,为生物发酵技术的创新与发展提供了坚实的技术基础和支柱。

二、基于微生物的生物发酵技术生物发酵技术主要是基于微生物的代谢特性进行设计和调控的。

生物发酵技术的核心在于微生物的生长过程,其基本内容包括微生物分离和筛选、称量和混合培养基、pH控制、氧气供应和控制、发酵时间以及产品分离和纯化等方面。

微生物的分离和筛选是保证发酵效率和质量的基础。

在此基础上,混合培养基的配方和添加量则会直接影响到微生物的生长和代谢过程。

为了保证培养基的适宜性和稳定性,必须掌握微生物的真实生长特性以及微生物与培养基之间相互作用的影响机制。

pH的控制是发酵工程中一个最关键的参数之一。

在发酵过程中,细胞的代谢过程会引起pH的变化,从而影响细胞的生长和代谢活性。

因此,pH的调节必须精准并稳定,这样才能保证发酵过程的稳健和高效。

氧气的供应和控制同样是生物发酵过程中一个重要的参数。

细胞的生长和代谢都需要氧气参与,因此对于不同的微生物种类,需要设计相应的氧气供应策略和调控方案,以实现发酵过程中细胞活性的最大化。

微生态发酵饲料的应用研究进展

微生态发酵饲料的应用研究进展
别是0.641和0.676kg)也依然高于后两种饲料(分 别是0.577和0.558kg)。饲料转化率方面,饲喂发 酵液体饲料的生长育肥猪(3.09)显著低于其余三 种饲料(干料3.79,未发酵湿料3.76,添加乳酸
的干料3.41)。饲喂发酵液体饲料的生长育肥猪有 机物质和粗蛋白的消化利用率在四种饲料中最高
直接饲喂畜禽,而后者发酵完毕一般再与其它组
分复配,然后进行饲喂。针对这两种发酵底物的 比较研究也比较多¨孓bJ,结果却是不尽相同。所
以,有关这方面还需进一步研究。
4.3发酵过程中营养成分的变化 在以前的研究中对发酵过程中氨基酸、微生 物、以及有机酸等成分的变化进行了初步研究
[6,1
3微生态发酵饲料的不足
影响 和饲喂未发酵的饲料相比,给断奶仔猪饲喂 发酵液体饲料可以给仔猪胃肠道创造一个酸性环
更好的解决菌种之间的协同作用,避免菌种之间
的相互抑制也是目前要解决的技术关键。 4.2发酵底物 目前发酵的底物主要有两种,一种是全价饲 料,一种是某种或几种单一原料。前者发酵完毕
境,显著降低胃内大肠杆菌的数量一J。Russell
进行发酵。后者比前者提高了发酵的速率,并使
得发酵效果更好。但目前所开发的菌种大多是通 用型的菌种,还没有针对某一种或几种原料,即 发酵底物的不同而开发专一性的菌种。同时,如 何有效地避免发酵过程中感染杂菌也是发酵控制 的关键因素。另外,采用复合型菌种发酵,如何
食物在胃内的消化滞留时间哺J。 2.3微生态发酵饲料对畜禽胃肠道微生态环境的
179
山东畜牧兽医 仔时粪便中的大肠杆菌数量显著比饲喂干料的母
2008年增刊
赖氨副11】,Pedersen认为。这可能是由于赖氨酸
的本身化学结构相对于其他氨基酸更容易被细菌 利用而脱掉羰基所致。而Canibe(2003)的试验结果 却与此相反巾1,加入游离赖氨酸发酵以后,未发现 赖氨酸和氨基酸总量的减少。所以,有关发酵过 程中,赖氨酸含量的变化是否与发酵接人的菌种 以及发酵的条件,如温度、时间长短有关还需进 一步的研究。 3.2能量的损失 在液体饲料发酵的过程中,由于有益菌种利 用饲料中的碳水化合物氧化而生成二氧化碳和 水,造成饲料能量的损失,所以在饲料发酵过程 中应注意补充能量。王喜生等(2007)在发酵饲

微生物发酵饲料的研究与应用

微生物发酵饲料的研究与应用

3 ℃ , 适 宜 的 p 值 为 30 6 ; 常 用 2 H .~ . 0 的 霉 菌 包 括 黑 曲 霉 、 米 曲霉 、 白 地 霉 和 木 霉 .其 适 宜 的 生 长 温 度 是 2 — 5 3 ℃ , 适 宜 的 p 值 为 30~ . 。 0 H . 6O
酵饲 料 是 以微 生物 、 复合 酶 为 生物 饲 料 发 酵荆 菌 种 .将 饲 料原 料 转 化 为微 生 物
茵体 蛋 白、 生物 活性 小肽 类氨 基 酸 、微
中 大 量 生 长 繁 殖 的 菌 体 以 及 生 产 单 细
胞 蛋 白 ( cP) 如 酵 母 饲 料 、 细 菌 饲 s
酵 母 或 细 菌 等 单 细 胞 菌 类 能 够 产 生 单
细 胞 蛋 白 ( P ) 多 细 胞 的 丝 状 真 菌 SC , 类能够产生菌体蛋白 ( B ) M P ,此 两 者 都 可 用 做 人 和 动 物 的 蛋 白补 充 剂 ,从 而 也 在 很 大 程 度 上 弥 补 了我 国 蛋 白 饲
发酵和深层发酵。
酵 母 菌 和 霉 菌 。饲 料 T 业 常 用 的 细 菌 包 括 有 枯 草 芽 孢 杆 菌 、乳 酸 杆 菌 、 醋 酸 杆 菌 、地 衣 芽 孢 杆 菌 、 纳 豆 芽 孢 杆
广 泛 , 主 要 分 为 四 大 类 :第 一 类 是 固 态 发 酵 饲 料 ,就 是 利 用 微 生 物 的 发 酵
产 的 饲 料 蛋 白 、 酶 制 剂 、氨 基 酸 、维 生 素 、抗 生 素 和 益 生 菌 微 生 物 制 剂 等
此 生 产 饲 用 氨 基 酸 、 酶 制 剂 以 及 抗 生
素 、 维 生 素 等 :第 四类 是 培 养 繁 殖 可 以直 接 饲 用 的 微 生 物 , 制 备 活 菌 制 剂 ( 称 微 生 态 制 剂 、益 生 素 等 ) 又 。 最 常见的发酵原料主要包 括薯类 、 籽 实 类 、糠 麸 类 、渣 粕 类 ( 种 薯 渣 、 各 玉 米 渣 、 脚 粉 、柑 橘 渣 、 甜 菜 渣 、 某 些 草粉等 ) 、饼 粕 类 ( 棉 籽 饼 、菜 籽 如 饼 、油 茶 资 饼 、蓖 麻 饼 等 ) 。还 有 秸 杆 类 、粪 便 、及 动 物下 脚 料 等 等 。

微生物发酵饲料的研究进展与前景展望

微生物发酵饲料的研究进展与前景展望

微生物发酵饲料的研究进展与前景展望刘艳新;刘占英;倪慧娟;朱明达;胡建华【摘要】微生物发酵饲料是利用微生物的新陈代谢和繁殖,生产或调制出具有绿色、安全以及高效等诸多优点的饲料.其在促进动物生长、替代抗生素、废弃物再生资源化和减少人畜争粮等方面具有良好的发展前景.文章从概念剖析、发展背景、生产工艺与优化、国内外研究与应用现状等方面对微生物发酵饲料作以综述.并总结了其作用机理和在发展中存在的问题,同时分析了其未来发展的趋势和前景,旨在进一步拓展微生物发酵饲料在动物生产中的研究与应用.【期刊名称】《饲料博览》【年(卷),期】2017(000)002【总页数】8页(P15-22)【关键词】微生物发酵饲料;生产工艺;优化;应用;作用机理;前景【作者】刘艳新;刘占英;倪慧娟;朱明达;胡建华【作者单位】内蒙古工业大学化工学院,呼和浩特010050;内蒙古工业大学化工学院,呼和浩特010050;内蒙古工业大学煤炭转化与循环经济研究所,呼和浩特010050;内蒙古工业大学化工学院,呼和浩特010050;内蒙古工业大学化工学院,呼和浩特010050;内蒙古工业大学化工学院,呼和浩特010050【正文语种】中文【中图分类】S816.7;S816.6微生物发酵饲料是指在人工控制条件下,通过微生物的新陈代谢和菌体繁殖,将饲料中的大分子物质和抗营养因子分解或转化,产生更有利于动物采食和利用的富含高活性益生菌及其代谢产物的饲料或原料。

狭义方面微生物发酵饲料是指利用某些具有特殊功能的微生物与原料及辅料混合发酵,经干燥或制粒等特殊工艺加工而成的含活性益生菌安全、无污染、无药物残留的优质饲料[1-2]。

微生物发酵技术为饲料工业提供了氨基酸、维生素、酶制剂、有机酸和活菌制剂等大量产品,不仅具有改善饲料营养吸收水平,降解饲料原料中可能存在的某些毒素,还能大幅减少抗生素等药物添加剂在动物生产中的使用。

2.1 饲料资源缺乏近年来,饲料资源的制约逐渐成为世界饲料行业甚至畜牧生产发展的瓶颈。

生物发酵技术的研究现状和应用

生物发酵技术的研究现状和应用

生物发酵技术的研究现状和应用生物发酵技术是一种利用微生物发酵生产产物的技术。

从古代酿造酒类饮品,到现代的生产酶、抗生素、维生素、有机酸等化学品和食品,都离不开生物发酵技术。

随着现代科技的不断发展和进步,生物发酵技术的研究和应用也在不断深入和扩展。

一、生物发酵技术的研究现状生物发酵技术的传统应用可以追溯到公元前7000年左右的中国和中东地区。

随着工业革命的到来,人们开始使用发酵技术生产化学品和食品。

如今,生物发酵技术已经成为了一种重要的生产工艺,广泛应用于制药、食品、饲料、化妆品等领域。

在生物发酵技术的研究中,从微生物的筛选、培养、突变、重组、基因工程等方面不断进行了研究,并取得了许多重要的进展。

目前,国内外的生物发酵技术的研究现状表明,该领域已经取得很大的发展。

研究人员通过基因工程手段,对微生物进行了基因重组,使其在生物发酵生产中起到更重要的作用。

同时,生物发酵技术的研究方向也在向“智能化、自动化、高通量”方向不断发展,研究人员正在努力进行新技术新方法的开发,以更大程度地提高生物发酵生产效率和品质。

二、生物发酵技术的应用生物发酵技术广泛应用于制药、食品、饲料、化妆品等领域。

制药领域:在制药领域中,生物发酵技术被广泛应用于抗生素、细胞因子、疫苗等的生产。

针对不同的药物,研究人员会选择不同的微生物作为发酵菌株,进行培养和生产。

食品领域:在食品领域中,生物发酵技术被广泛应用于酸奶、豆浆、葡萄酒等食品的生产。

同时,生物发酵技术也被应用于食品添加剂(如:酶、蛋白质、氨基酸等)的生产。

饲料领域:在饲料领域中,生物发酵技术被广泛应用于发酵酵料、制造酵母蛋白饲料等方面。

这些都是非常有价值的饲料原料,能够提高动物的生产效益。

化妆品领域:在化妆品领域中,生物发酵技术被广泛应用于生产乳化剂、保湿剂、修复剂、发酵精华等化妆品原料。

三、生物发酵技术的未来发展趋势生物发酵技术是一种高效、环保、可持续发展的生产方式,因此在未来的发展趋势中,生物发酵技术仍然会扮演着非常重要的角色。

国内外微生物发酵饲料的研究进展

国内外微生物发酵饲料的研究进展

青 贮饲 料 分为 一般 青贮 和特殊 青贮 。一般 青 可 以进行 外加 剂 青贮 。外 加 剂 青贮 的 作用 主 要有
贮, 又称乳酸 发酵饲 料 。 乳酸菌 是发酵 的主角 , 厌 三方 面 : , 进 乳 酸 菌 发 酵 ; , 制 不 良发 酵 ; , 在 1促 2抑 3 氧 条件 下 它大 量繁 殖 ,占支配 地位 时产 生 大量 乳 提 高 青贮 的 营养 价值 。外 加 剂青 贮 扩 大 了青贮 原
酸 , 制不 良微 生 物 的生长 繁殖 , 而 制成 优 质 的 料 范 围 ,把一 般青 贮 法 中认 为不 易 青贮 的原料 加 抑 从 青贮 饲料 。青 贮是调 制和贮 藏青饲料 的有效 方法 。 11 一般 青贮 .

以利 用 ,如含 糖分 过 少 的植 物或 经 过加 工 的副 产 物 ( 加 工过程 中乳酸 菌受 到损 失 ) 如 。
培牧草都是 良好的青贮原料。 1 特 殊 青 贮 . 2 特殊 青贮 主要 是 低水 分 青贮 ( 半 干青 贮 ) 或 和9 J DU 剂青贮 。低水分青贮的基本原理是原料含
分保留, 在添 加 酸或 防腐剂 的青 贮 中保存 更 多 。 此
外, 微生物的发酵还能产生少量 的 B族维生素。
国内外微生物发酵饲料的研究进展
饶 辉
( 西省兽 药饲 料监 察所 江
南 昌 30 2 30 9)
微生 物发 酵 饲料是 利 用微 生 物 的新 陈 代谢 和 菌会 造成 生理 干燥 状态 , 生长 繁殖 受到抑 制 。因 使
繁殖 菌体 来生 产 和调 制 的饲 料 ,它 主要 是 利用 微 此 ,在 青贮 过程 中微生 物 发酵 弱 ,蛋 白质不 被 分 生物 的发 酵作 用 改变 饲料 的理化 性 状 ,增 加适 口 解 , 机 酸 形 成 少 , 种 方 式 青贮 , 须 在 高 度 厌 有 这 必 性 及 营养价 值 , 提高 消化 利用率 。 微生 物发 酵饲 料 氧条 件下 进行 。低水 分青 贮 可 以扩 大 青贮 原 料 范
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国微生物发酵饲料研究进展
微生物发酵饲料是一种利用微生物代谢产物作为饲料添加剂的新型饲料,其研究和应
用在我国已取得一定的进展。

下面将就我国微生物发酵饲料的研究进展进行详细介绍。

我国在微生物发酵饲料的原料选择方面进行了大量的研究。

传统的微生物发酵饲料主
要使用农副产品作为原料,如玉米秸秆、稻草等。

但是这些原料的产量有限,且含有较多
的纤维素和木质素等难以降解的成分,导致发酵效果不佳。

为了解决这一问题,研究人员
开始探索新的原料选择。

他们发现,使用糖蜜、蔗渣等高糖基质可以提高发酵效率,并得
到了较好的效果。

还有些学者选择利用工业废水、畜禽排泄物等资源进行微生物发酵饲料
的生产,可以实现资源的综合利用,降低了生产成本。

微生物发酵饲料中微生物菌种的选择也是一个重要的研究内容。

目前,我国在培养活
菌和选育发酵菌种方面都取得了一定的成果。

通过筛选,在大量微生物菌种中选出了适合
发酵饲料生产的优良菌株,如乳酸菌、酵母菌等。

这些菌株在发酵过程中能够分解原料中
的复杂有机物,产生有益的代谢产物,提高饲料的营养价值。

微生物发酵饲料的添加剂研究也是我国的一个重要研究方向。

通过添加适量的微生物
发酵饲料,可以改善动物的消化功能,增强免疫力,提高生长速度等。

还可以减少养殖过
程中的环境污染问题。

我国的研究人员已经开展了多项实验,验证了微生物发酵饲料作为
添加剂的效果。

研究结果表明,适量添加微生物发酵饲料可以显著提高家禽和猪的生长速
度和饲料转化率。

微生物发酵饲料的贮藏和保鲜技术也是一个研究热点。

由于微生物发酵饲料中含有大
量的微生物活菌,容易受到外界环境的影响,导致饲料的质量下降。

研究人员开始探索微
生物发酵饲料的贮藏和保鲜技术,以延长饲料的保质期。

目前已经有一些研究表明,通过
低温保存、真空包装等技术可以有效地保持微生物饲料的活菌数量和质量。

我国微生物发酵饲料的研究进展取得了一定的成果。

通过改进原料选择、菌种培养和
添加剂研究等,我国的微生物发酵饲料已经逐渐应用于动物养殖业,并取得了显著的效果。

未来,研究人员将继续努力,进一步提高微生物发酵饲料的质量和效果,为动物养殖业的
可持续发展做出更大的贡献。

相关文档
最新文档