Figaro传感器
tgs2602.pdf tgs2000 系列传感器产品介绍,空气污染、臭味检测用说明书
TGS2602 空气污染、臭味检测用特点: 应用:・低功耗 ・空气清新机、换气扇控制 ・对VOC 、氨气、硫化氢有高灵敏度 ・脱臭器控制・长寿命、低成本 ・室内空气监视器・可利用简单电路下图是典型的香烟烟雾灵感度特性。
香烟的根数是约10平米的房间吸烟情况下的数值。
这里的纵轴也用传感器电阻比Rs/Rs(Air)来表示, 这里的Rs 、Rs(Air)定义如下: Rs =香烟的烟雾存在时的传感器电阻值 Rs(Air) =清洁大气中的传感器电阻值 香烟灵敏度特性:敏感素子由集成的加热器以及在氧化铝基板上形成的金属氧化物半导体构成。
当可检知的气体存在时,空气中该气体的浓度越高,传感器的电导率就越高。
使用简单的电路就可以将这种电导率的变化变换为与气体浓度对应的输出信号。
TGS2602不仅对香烟的烟雾或烹调臭味有很高的灵敏度,而且对硫化氢、VOC 、氨气有高灵敏度。
这种传感器是利用相对值检知来实现更接近人类感觉的控制,即以空气清洁的时候为基准,通过传感器电阻值比空气清洁时变化了多少来检测空气的污染程度。
下图是典型的灵敏度特性,全部是在标准试验条件下得出的结果。
(请看背面) 纵轴以传感器电阻比Rs/Rs(Air)表示,Rs 、Rs(Air)的定义如下: Rs =各种浓度气体中的传感器电阻值Rs(Air)=清洁大气中的传感器电阻值灵敏度特性:规格: 结构及尺寸:型 号 TGS2602素子类型 26系列 标准封装 金属 对象气体氢气、酒精等检测范围 1 ~10 ppm标准回路加热器电压 VH 5.0±0.2V DC/AC 回路电压 VC 5.0±0.2V DC Ps 15mW ≦ 负载电阻 RL 可变Ps 15mW ≦标准试验加热器电阻 RH59 Ω(室温)加热器电流 IH 56mA 加热器功耗 PH 280mW VH =5.0V DC/AC 传感器电阻Rs10~100 K Ω(空气中) 灵敏度(Rs 的变化率)0.15~0.5Rs(乙醇:10 )Rs(Air)标准试验试验气体条件 20±2℃,65±5%RH 回路条件 VC =5.0±0.2V DCVH =5.0±0.2V DC/AC试验前预热时间 96小时以上功耗(Ps )值可用下式计算: 传感器电阻(Rs ),可根据VOUT测定值,用下式计算:为提高性能,本规格书将不事先预告而变更。
空气质量传感器TGS2600在空气质量监测中的应用
空气质量传感器TGS2600在空气质量监测中的应用引言近年来,空气质量监测越来越受到人们的重视,国内外的众多企业与研究机构在气体传感器研发领域取得了长足进步,目前气体传感器正向集成化、智能化、多参数检测的方向迅速发展。
日本FIGARO公司开发生产的系列半导体气体传感器代表了目前气体传感器领域最新的水平,为研究开发空气质量监测系统创造了有利条件,提供了一条简单而实用的途径。
1 半导体气敏传感器及其特性半导体气敏传感器是利用待测气体与半导体(主要是金属氧化物)表面接触时,产生的电导率等物性变化来检测气体。
半导体气敏器件被加热到稳定状态下,当气体接触器件表面而被吸附时,吸附分子首先在表面自由地扩散(物理吸附),失去其运动能量,其间的一部分分子蒸发,残留分子产生热分解而固定在吸附处(化学吸附)。
这时,如果器件的功函数小于吸附分子的电子亲和力,则吸附分子将从器件夺取电子而变成负离子吸附。
具有负离子吸附倾向的气体最典型的是O2,称为氧化型气体或电子接收性气体。
如果器件的功函数大于吸附分子的离解能,吸附分子将向器件释放电子,而成为正离子吸附。
具有这种正离子吸附倾向的气体有H2、CO、碳氢化合物和酒类等,称为还原型气体或电子供给性气体。
目前可用于检测气体的敏感元件有很多种,如SnO2,ZnO,Fe2O3和气敏元件等。
它们共同的特点是可以检测多种不同的气体,但对气体的选择性较差。
这种非单一选择性是由其敏感机理所决定的,虽然可以采用添加适量的贵重金属Pt、Pd等方法改善其选择性,但仍然会对其它气体有一定的敏感度。
2 半导体空气传感器TGS26002.1 TGS2600 构成和工作原理空气传感器是半导体气敏传感器中的一种,它构造简单,由传感器基板,气敏元件和传感器盖帽组成。
气敏元件由一个以金属铝做衬底的金属氧化物敏感芯片和一个完整的加热器组成。
利用加热器加热,以侦测气体附着于金属氧化物表面而产生的电阻值的变化。
在检测气体时,传感器的传导率依赖于空气中气体浓度的变化。
空气质量传感器(异味传感器)TGS2600应用资料
1—30ppm H2
5.0±0.2VDC/AC(直/交流)
5.0±0.2 Ps≤15mW
V DC
变量
≥0.45kΩ
室温条件下大约 83 Ω
42±4mA
210mW VH=5.0V DC
10K-90 kΩ在空气中
0.3-0.6
RS (10 ppm,氢气) RS (空气)
在20±2°C, 65±5%RH的正常空气
TGS2600 —空气质量检测
特征: ★低功耗 ★对气态空气污染物灵敏度高 ★长寿命, 低成本 ★应用电路简单 ★尺寸小
应用: ★空气清新机 ★气流控制 ★空气质量检测
敏感元件由一个以金属铝做衬底的金属氧化物敏感芯片 和一个完整的加热器组成。在检测气体时, 传感器的传导率 依赖于空气中气体浓度的变化。 一个简单的电路能将该传导 比率的变化转化成对应于气体浓度变化的输出信号.
RS=清新空气中的传感器在不同 温、湿度条件下的阻值
R0=清新空气中的传感器在 20℃ 及 65%相对湿度下的阻值
灵敏度特性:
温湿度特性:
浓度(ppm)
环境温度(℃)
基本测量电路: 此传感器要求有两个电压输入:加热器电压 VH
和线路电压 VC。加热器电压 VH 加于集成加热器上 以保持传感器在一个特定的最佳感应温度。电路电压 VC 被加载以便于测量与感应元件串联的负载电阻电压 Vout。此传感器有极性所以电路电压 VC 必须是直流。 可以用一个公共的电源来同时供给 VH 和 VC 以满足传 感器的电气需求。负载电阻 RL 的选择要使报警门限电 压最优化,并使半导体器件的功耗小于 15mw。当目标 气体存在时,传感器功耗在 RS 与 RL 相等时最大。
VC = 5.0±0.01V DC VH = 5.0±0.05V DC
电化学一氧化碳传感器TGS5141介绍及其应用
电化学一氧化碳传感器 TGS5141 介绍及其应用
超小型化实现 让设计产品有更新更广阔的未来 TGS5141 为最新的超小型 CO 传感器,由在电化学 CO 传感器方面有丰硕 成果的“FIGARO”开发而成,以直径 15mm、高 7mm*的轻薄短小尺寸来满足 今后的产品开发需求 * 传感器装在电路板之后的高度 CO 传感器 TGS5141 尺寸仅为 TGS5042 的十分之一
*1 视焊接条件而定,有时可能无法使用浸焊。焊接前请根据实际焊接条 件,确认传感器特性不会受到影响。 一氧化碳传感器 TGS5141 符合以下国际技术标准 *2 TGS5141 已取得 UL2034 零部件认证,使用 TGS5141 的产品申请 UL2034 认证时可免除一年的长期测试。*3 接受 EN50291 测试时不可利用条 型码校准,必须以气体进行校准。 可因急遽又大幅度的温湿度变化 使用场所和用途变的更加广泛 一般的 CO 传感器虽然符合欧洲标准要求的性能,有时却因火灾报警器的
由于 CO 传感器 TGS5141 采用新开发的独特电解质,不需要旧型产品 (TGS5042)的储水槽,装设完成的传感器所占体积大约只有旧型的十分之 一,可大幅缩小产品尺寸。家庭用 CO 报警器的小型化自然不在话下,携带 式 CO 检测器或火灾报警器等安装空间有限的机器也均可使用本产品,用途 相当广泛。 CO 传感器 TGS5141 使用寿命长 近年来,结合烟雾传感器和 CO 传感器的复合型报警器或火灾报警器的需 求越来越高,因此我们开发了与烟雾传感器同样具有十年寿命的传感器。 TGS5141 的催化剂非常优越,保证可使用十年而且由于不设水槽,不用担心 干涸造成寿命减短。有了寿命长达 10 年的 CO 传感器,生活自然更加安心安 全。
TGS2602空气质量传感器(日本费加罗FIGARO)
TGS2602 用于空气污染物检测的气体传感器* 对VOC 与气味有高灵敏度* 低功耗* 对污染空气有高灵敏度* 使用寿命长* 应用电路简单* 体积小特点:应用:敏感素子由集成的加热器以及在氧化铝基板上的金属氧化物半导体构成。
如果空气中存在对象检测气体,该气体的浓度越高传感器的电导率也会越高。
仅用简单的电路,就可以将电导率的变化转换成与该气体浓度相对应的信号输出。
TGS2602对低浓度气味的气体具有很高的灵敏度,这样还可以对办公室与家庭环境中的废弃物所产生的氨、硫化氢等气体进行检测。
该传感器还对木材精加工与建材产品中的VOC 挥发性气体如甲苯有很高的灵敏度。
由于实现了小型化,加热器电流仅需56mA ,外壳采用标准的TO-5金属封装。
下图所示为典型的灵敏度特性曲线,均在我公司的标准试验条件下(参见背面)测出。
纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:Rs = 各种浓度气体中的传感器电阻值下图所示为受温度、湿度影响的典型特性曲线。
纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:Rs = 传感器在清洁空气中各种温/湿度下的电阻值Ro= 传感器在清洁空气中, 温/湿度为20°C / 65% R.H.时的电阻值灵敏度特性:温/湿度特性:重要提示: 费加罗传感器的使用条件将因不同客户的具体运用不同而不同。
费加罗强烈建议在使用前咨询我们的技术人员,尤其是当客户的检测对象气体不在列表范围时,对于未经费加罗专业测试的任何使用,费加罗不承担任何责任。
* 空气清新机控制* 通风控制* 空气质量监测* VOC 监视器* 气味监视器R s /R oR s /R o规格:结构以及尺寸:管脚连接: 1: 加热器2: 传感器电极 (-) 3: 传感器电极 (+) 4: 加热器功耗值(P S )可通过下式求出:传感器电阻(R S )可根据V OUT (V RL )的测定值用下式求出:(V C - V RL )2R SV C V RLR S = (- 1) x R L P S =在此产品规格书中所显示的都是传感器的典型特性,实际的传感器特性因产品不同而不同,详情请参阅各传感器唯一对应的规格表。
酒精传感器原理是什么-
酒精传感器原理是什么?酒精传感器,它是交警查酒驾的得力助手,也能在其他一些禁止酒后上岗的场所用于检测。
伴随着传感器科技水平的飞速发展,酒精传感器的使用越来越加实用,并且检测效果都比较精准。
那么酒精传感器原理是什么呢?一起来看看吧!酒精传感器工作原理:在对乙醇气体进行检测的时候,气体传感器基于乙醇气体的化学反应原理来进行检测。
一个简单的乙醇气体检测工作,背后涉及的气体传感原理是有非常多的细节讲究的,下面我们来具体分析乙醇气体传感器在具体工作时的原理:检测仪上的酒精传感器,能够将气体中将酒精气体检测出来。
而气体中的酒精气体越浓,能够检测到的信号就越大。
而血液中的酒精含量如果越高的话,呼出的气体中的酒精含量越高。
按照国际通用标准,呼气中的酒精含量是血液中酒精含量的2100倍,因此我们可以根据检测到的呼气中酒精含量,得出血液中酒精的含量。
目前各国的交通检查工作使用都是快速血液酒精检测。
随着科学技术水平的发展,现在酒精传感器研制已经相当成熟。
为了更精确的监测出酒精浓度,工采网提供了高精度的酒精传感器:日本figaro 酒精传感器TGS2620 和美国SPEC Sensors 品牌的3SP-Ethanol-1000.一、酒精传感器TGS2620描述敏感素子由集成的加热器以及在氧化铝基板上的金属氧化物半导体构成。
当空气中被检测气体存在时,该气体的浓度越高传感器的电导率也会越高。
使用简单的电路,就可以将电导率的变化转换成与该气体浓度相对应的信号输出。
TGS2620对有机溶剂与其他挥发性气体具有很高的敏感度。
最适合用于有机溶剂气体检测仪。
由于敏感素子体积很小,TGS2620的加热器电流仅需42mA,外壳采用标准的TO-5金属封装。
二、酒精传感器TGS2620特点:* 低功耗* 对乙醇、有机溶剂灵敏度高* 使用寿命长、成本低* 应用电路简单* 体积小三、酒精传感器TGS2620应用:* 乙醇检测仪* 用于检测有机溶剂的检测仪、报警器* 用于工厂、干洗店、半导体工业的溶剂检测仪一、美国SPEC Sensors 酒精传感器3SP-Ethanol-1000 描述:SPEC Sensors的丝网印刷电化学传感器技术(SPEC Sensor?)彻底变革现有技术,能够为用户和工业安全监测提供新的应用。
费加罗 CMM5042 植入式 CO 传感器模块说明书
重要提示: 费加罗传感器的使用条件将因不同客户的具体运用不同而不同。
费加罗强烈建议在使用前咨询我们的技术人员,尤其是当客户的检测对象气体不在列表范围时,对于未经费加罗专业测试的任何使用,费加罗不承担任何责任。
CMM5042 设备植入式CO传感器模块* 直线性很高的线性输出特性* 驱动电压范围大* 内置温度补偿回路* 自诊断控制信号输入端口特点:应用:* 家用一氧化碳报警器* 商用一氧化碳报警器* 换气扇的自动控制* 燃气锅炉与石油液化气暖炉的一氧化碳监测等CMM5042为一款嵌入式CO 传感器模块,解决了气体传感器的灵活运用与单体灵敏度调整等传感器特有的技术问题,让短时间内完成CO 报警器的研发设计成为了可能。
本模块搭载了我司引以为傲的电化学式传感器TGS5042,这款具有优异耐久性与长期稳定性的传感器,已被广泛应用于家庭和商用各领域的CO 报警器。
本模块以模拟电压输出与气体浓度相对应的直线性信号显示。
此外,为确认气体传感器是否正常工作,模块还备有自诊断控制信号输入端口。
由于本传感器模块可即插即用,因此CO 报警器的研发设计变得非常容易。
关于气体传感器规格与灵敏度特性,请参阅TGS5042产品介绍。
另外,关于传感器的详细特性,请参阅TGS5042技术手册,关于应用电路设计,请参阅 TGS5xxx 应用手册。
代表性输出特性如下图所示。
纵坐标表示输出电压。
(插口型号:BH05B-XMSK)推荐对应插头: JST: XMP-05V*1 关于TEST 引脚的功能,请参阅背面的自诊断(步骤)。
输出特性:引脚设置:0.00.51.01.52.02.52004006008001000CO concentration (ppm)V C O N C (V)有的产品未贴标签(仅印刷)REV.11/22在此产品规格书中所显示的都是传感器的典型特性,实际的传感器特性因产品不同而不同,详情请参阅各传感器唯一对应的规格表。
日本费加罗FIGARO人工煤制气传感器 TGS822TF
TGS822TF 传感器因装有活性炭过滤器,消除 了杂质气体的影响,对有机溶剂或其他挥发性气体 的灵敏度低,而对氢气和一氧化碳的灵敏度高,非 常适合用于检测人工煤制气。
下图是典型的灵敏度特性,全部是在标准试验条 件下得出的结果。(请看背面)
纵坐标以传感器电阻比(Rs/Ro)表示,Rs, Ro 的定义如下:
660±55mW VH=5.0V
300ppm 氢气中 1~12KΩ
Rs(H2:300ppm) 0.4~0.63
Rs(H2:100ppm) 20±2℃, 65±5%RH
VC=10.0±0.1V DC/AC VH=5.0±0.05V DC/AC
RL=10.0 KΩ±1%
7 天以上
功耗(Ps)值可用下式计算:
传感器电阻(Rs),可用下式计算:
管脚连接
1 或 3:传感器 4 或 6:传感器 2 :加热器 5 :加热器
为提高性能,本规格书将不事先预告而变更。
深圳市深国安电子科技有限公司
地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900 网址:www.singoan.com www.singoan.com.cn www.shenguoan.com
此传感器需要施加 2 个电 压:加热器电压(VH)和 回路电压(VC)。这个VH用 于维持敏感素子处于与对 象气体相适应的特定温度 而施加在集成的加热器 上。VC则是用于测定与传
感器串联的负载电阻(RL)上的 两端电压(VRL)。这种传感器具 有极性,所以VC需用直流电源。 只要能满足传感器的电性要求,
Rs =不同浓度气体中的电阻值 Ro =1000ppm 一氧化碳中的电阻值
灵敏度ቤተ መጻሕፍቲ ባይዱ性:
溶解氧传感器的作用分析
溶解氧传感器的作用分析溶解氧传感器是一种用于测量氧气在水中的溶解量的传感设备,水中溶解氧浓度的连续测量在水处理领域起着以下几点重要的作用:1、污水处理厂活性污泥池中氧的测量和调节以便在生物降解过程中达到高效。
2、水文监测测量河流、湖泊、海洋中氧含量,指示水的质量。
3、水处理:氧含量测量,如饮用水中检测状态(氧气丰富/腐蚀预防等)。
4、鱼塘:氧含测量和调节以便维持最佳的生态和生长条件。
氧在水中的溶解度取决于温度、压力和水中溶解的盐。
溶解氧分析仪传感器是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。
当给溶解氧分析仪电极加上0.6~0.8V 的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极Ag+ClAgCl+2e- 阴极O2+2H2O+4e4OH- 根据法拉第定律:流过溶解氧分析仪电极的电流和氧分压成正比,在温度不变的情况下电流和氧浓度之间呈线性关系。
目前国内本土品牌中并没质量特别好的溶解氧传感器,比较好的是由日本FIGARO公司生产的溶解氧传感器- KDS-25B,汤浅溶解氧传感器KDS-25B是一款独特的原电池式传感器,是专门为水质控制而开发的。
这款溶解氧传感器最显著的特点就是,使用寿命长,不受CO2影响。
KDS-25B 使用特殊酸性电解液,阴极采用惰性金属金,阳极采用金属铅,氧气以扩散的方式通过氟树脂膜参与氧化还原反应,构成一种氧铅蓄电池,然后由内部电阻将氧化还原反应产生的电流转化成电压输出。
产生的电流与溶解氧的浓度成正比,严格地来说是与氧分压成正比(溶解氧含量越高,透过氟树脂膜参与反应的氧分子越多),KDS-25B是环境监测、水质检测的理想传感器之一。
FIGARO费加罗TGS8100检测甲醛、VOC、酒精等贴片型空气质量传感器芯片
PRODUCT INFORMATIONApplications:Features:TGS 8100 - for the detection of Air ContaminantsThe figure below represents typical sensitivity characteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows: Rs = Sensor resistance in displayed gases at various concentrationsRo = Sensor resistance in fresh air The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows: Rs = Sensor resistance in fresh air at various temperatures/humidities Ro = Sensor resistance in fresh airat 20°C and 65% R.H.* Indoor air quality monitors * Air cleaners* Ventialtion control* Kitchen range hood controlThe sensing element is comprised of a sensing chip and an integrated heater formed on a silicon substrate using MEMS technology, and a metal-oxide semiconductor layer formed on the sensing chip. The device is housed in a surface-mount ceramic package. Due to miniaturization of the sensing chip, TGS 8100 requires a heater power consumption of only 15mW, and is suitable for low-power equipment and battery-operated instruments. In the presence of detectable gas, sensor conductivity increases depending on gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.The TGS 8100 has high sensitivity to low concentrations of gaseous air contaminants such as cigarette smoke and cooking odors. By utilizing the change ratio of sensor resistance from the resistance in clean air as relative response, human perception of air contaminants can be simulated and practical air quality control can be achieved.* Surface mount package * Low power consumption* High sensitivity to cigarette smoke, cookingodors, and gaseous air contaminants* Long life * Low costTemperature/Humidity Dependency:Sensitivity Characteristics:0.010.11101101001000Gas concentration (ppm)IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.Structure and Dimensions:The value of power consumption (P S ) can be calculated by utilizing the following formula:P S = Sensor resistance (Rs) is calculated witha measured value of Vout by using the following formula:R S = - R L Specifications: (tentative)V C x R L Vout(V C - Vout)2R S All sensor characteristics shown in this brochure represent typical characteristics. Actualcharacteristics vary from sensor to sensor. The only characteristics warranted are those in the Specification table above.Side viewu/m = mmPin connections: 1: Heater2: Sensor electrode (-) 3: Sensor electrode (+) 4: Heater。
目前主流pm2.5传感器品牌及型号对比介绍
目前国内外主流PM2.5传感器品牌及型号对比介绍近些年,全球的空气污染(PM2.5)都越来越严重,甚至严重影响了人们的生活出行,小编之前在《空气环境监测解决方案-PM2.5传感器》一文中提到过当空气污染处于高峰时则导致法国巴黎交通运行停止;新加坡空气污染创历史新高;印度的空气污染比中国还要严重。
因而改善空气质量势在必行,在全球污染检测、控制、防治的号召下,作为检测PM2.5颗粒物的PM2.5传感器应运而生,发展迅速,目前市面上做PM2.5传感器的厂家很多,不过产品参差不齐,很多人在选择传感器时常在问:哪个品牌的PM2.5传感器好呢?靠谱呢?在此,小编整理了一些目前市面上应用比较广泛以及客户反馈比较好的PM2.5传感器品牌和典型型号,以供大家参考。
目前市面上主要是有红外和激光两种类型的PM2.5传感器,至于它们的具体区别就不详细描述了,红外原理PM2.5传感器由于精度不够主要用于工矿扬尘,检测对象为大粒径、高浓度粉尘,检测级别是mg/m3,无法准确测量PM2.5的浓度,只能检测灰尘污染程度,当然早期的空气净化器也是使用这种原理传感器;后来激光型PM2.5传感器的诞生,可以精确测量PM2.5浓度,主要应用在PM2.5检测领域,可嵌入到家用(车载、手持)空气检测仪、空气净化器中。
此外,激光原理传感器在物联网数据采集、环境质量检测等领域亦有应用。
从应用市场上区分,一般激光型传感器应用于一些中高端高价产品市场,对数据要求比较高,而红外型传感器适宜一些低价低端产品应用,而传感器本身也可以分为工业级和民用级产品。
在民用产品应用市场,应用比较广泛的传感器包含民用级激光PM2.5传感器和红外型PM2.5传感器,一般常用于空气净化器、智能家居、空调、新风系统等场合。
目前激光型灰尘传感器已慢慢占据红外型灰尘传感器的市场,对于民用级的激光PM2.5传感器目前做的比较好的品牌有日本figaro、攀腾Plantower、炜盛,典型型号和对比如下:当然,假如对测量数据要求不高,对价格要求比较便宜的,可以考虑红外型PM2.5传感器,目前市场上红外型PM2.5传感器做的比较好的品牌有韩国三赢syhitech、美国GE、日本夏普Sharp、日本神荣Shinyel,这些品牌占据了低价低端产品很大一块市场,典型型号和对比如下:对于高端高价市场,一般对测试数据要求比较严谨、对产品稳定性、一致性、精度等都要求比较高,这就需要用到工业级的PM2.5传感器,首推英国Alphasense PM2.5传感器/大气粒子监测器 - OPC-N3,这款传感器通常适合用于重度污染的室外城市环境监测,常用于一些气象台、城市环境监测站、大气监测站等场合。
一氧化碳探测报警 CO传感器TGS5342
TGS5342 - CO 检测特 点: 应 用:★ 可电池供电工作 ★ 家用、商用CO 检测★ 对CO 选择性和重复性好 ★ 工业应用CO 检测器★ 传感器信号输出与一氧化碳气 ★ 室内停车场通风控制体的浓度成线性关系 ★ 游乐车CO 探测器★ 校准简单 ★ 海洋CO 探测器★ 长寿命 ★ 火灾监测★ UL 认证元件 ★ 符合UL2034、EN50291、RoSH 的要求Figaro 公司的TGS5342是可电池供电工作的电化学传感器,而且是比传统电化学传感器有更多优势的。
它的电解液是环保的,泄漏也是没危险的,能够检测CO 的浓度高达1%,能工作在-40℃—+70℃环境,对干扰气体灵敏度低。
长寿命,长期稳定性以及高精度,使它成为需要数字显示的检测CO 的传感器的理想选择。
OEM 客户将可以在传感器表面的条形码上发现独特的传感器数据,使得客户可以略过成本昂贵的气体标定过程并且能够对传感器进行的独特追踪。
TGS5342的长度是TGS5042的60%。
下图描述的是典型的灵敏度特性,所有 下图描述的是典型的温度特性。
Y 轴显 数据都是在标准条件下收集到的。
Y 轴显示 示的是下面定义的传感器的输出比例(I/I0)。
的是传感器在不同浓度气体中的输出电流 I/I0和CO 浓度之间的线性关系在CO 浓度 (Iout/uA)。
输出电流跟CO 浓度是呈线性的, 发生改变的情况下也是不变的。
在0-500ppm 的范围内它的偏差小于±5%。
I=传感器在400ppm 时不同温度的输出电流 I0=在400ppm 时20˚C/50%RH 的输出电流 灵敏度特性: 温度特性:气体浓度(ppm ) 温度(˚C )小尺寸,零功耗 S:zheng_xinghui@163.com,T:1807 0430 980基本测量电路:右图为TGS5342的基础测量电路。
传感器产生的瞬时电流经过运算放大器和电阻组合电路被转换为传感器的输出电压。
费加罗传感器
费加罗传感器广州南创陈工FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。
FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。
半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。
我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。
目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。
费加罗传感器KE-25KE-50信息费加罗传感器KE-25KE-50性能:测量范围:0-100%O2精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)工作温度:5~40℃储存温度:-20~+60℃响应时间:KE-25:14±2秒;KE-50:60±5秒初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv期望寿命:KE-25:5年;KE-50:10年费加罗传感器KE-25KE-50特性:长寿命(KE-25-5年,KE-50-10年)不受CO2,CO,H2S,NOx,H2影响低成本,在常温下工作信号输出定,无需外部电源不需加热以上费加罗传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》产品特性描述:氧气传感器KE-25KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传。
日本费加罗FIGARO可燃气体传感器 TGS813
Technical Information for Combustible Gas SensorsFigaro TGS 8-series sensors are a type of sintered bulk metal oxide semiconductor wh ich offer low cost, long life, and good sensitivity to target gases while utilizing a simple electrical circuit. Th e TGS813 displays h igh selectivity and sensitivity to LP Gas and methane.PageSpecificationsFeatures..........................................................................2 Applications...................................................................2 Structure..........................................................................2 Basic measuring circuit....................................................2 Circuit & operating conditions.........................................3 Specifications..............................................................................3 Dimensions...............................................................................3Basic Sensitivity Characteristics Sensitivity to various gases................................................4 Temperature and humidity dependency............................5 Heater voltage dependency..........................................................6 Gas response....................................................................................6 Initial action........................................................................7 Long term characteristics.............................................................7Cautions . (8)See also Technical Brochure ‘Technical Information on Usage of TGSSensors for Toxic and Explosive Gas Leak Detectors’.IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WH EN CUSTOMER’S TARGET GASES ARE NOT LISTED H EREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.a n I S O 9001 c o m p a n y1. Specifications 1-1 Features * General purpose sensor for a wide range of combustible gases* High sensitivity to LP gas and methane * Low cost * Long life* Uses simple electrical circuit1-2 Applications* Domestic gas leak detectors and alarms * Recreational vehicle gas leak detectors * Portable gas detectors1-3 StructureFigure 1 shows the structure of TGS813. This sensor is a sintered bulk semiconductor composed mainly of tin dioxide (SnO 2). The semiconductor material and electrodes are formed on an alumina ceramic tube. A heater coil, made of 60 micron diameter wire, is located inside the ceramic tube. Lead wires from the sensor electrodes are a gold alloy of 80 microns in diameter. Heater and lead wires are spotwelded to the sensor pins which have been arranged to fit a 7-pin miniature tube socket.The sensor base and cover are made of Nylon 66, conforming to UL 94H B (Authorized Material Standard). The deformation temperature for this material is in excess of 240˚C. The upper and lower openings in the sensor case are covered with a flameproof double layer of 100 mesh stainless steel gauze (SUS316). Independent tests confirm that this mesh will prevent a spark produced inside the flameproof cover from igniting an explosive 2:1 mixture of hydrogen/oxygen.1-4 Basic measuring circuitFigure 2 shows the basic measuring circuit for use with TGS813. Circuit voltage (Vc) is applied across the sensor element which has a resistance between the sensor’s two electrodes and the load resistor (R L ) connected in series. The sensor signal (V RL ) is measured indirectly as a change in voltage across the R L . The Rs is obtained from the formula shown at the right.Fig. 1 - Sensor structureFig. 2 - Basic measuring circuitVc- V RLV RLRs = x R LFormula to determine RsSensor elementFig. 3 - Sensor dimensions1-5 Circuit & operating conditionsThe ratings shown below should be maintained at all times to insure stable sensor performance:1-6 Specifications NOTE 1Mechanical Strength:The sensor shall have no abnormal findings in its structure and shall satisfy the above electrical specifications after the following performance tests:Withdrawal Force - Vibration - Shock -withstand force > 5kg in eachdirectionfrequency-1000c/min., totalamplitude-4mm, duration-one hour, direction-verticalacceleration-100G, repeated 5timesNOTE 1: Sensitivity characteristics are obtained under the following standard test conditions:(Standard test conditions)Temperature and humidity: 20 ± 2˚C, 65 ± 5% RH Circuit conditions:Vc = 10.0±0.1V AC/DC V H = 5.0±0.05V AC/DC R L = 4.0kΩ ± 1%Preheating period: 7 days or more under standard circuit conditions17ø±0.516.5±0.56.5±0.59.5ø1ø±0.0545˚45˚132645u/m:mm1-7 DimensionsTop viewSide viewBottom view2. Basic Sensitivity Characteristics 2-1 Sensitivity to various gasesFigure 4 shows the relative sensitivity of TGS813 to various gases. The Y-axis shows the ratio of the sensor resistance in various gases (Rs) to the sensor resistance in 1000ppm of methane (Ro).Using the basic measuring circuit illustrated in Figure 2, these sensitivity characteristics provide the sensor output voltage (V RL ) change as shown in Figure 5.NOTE :All sensor characteristics in this technical brochure represent typical sensor characteristics. Since the Rs or output voltage curve varies from sensor to sensor, calibration is required for each sensor (for additional information on calibration, please refer to the Technical Advisory ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’).12-2 Temperature and humidity dependencyFigure 6 shows the temperature and humidity dependency of TGS813. The Y-axis shows the ratio of sensor resistance in 1000ppm of methane under various atmospheric conditions (Rs) to the sensor resistance in 1000ppm of methane at 20˚C/65%RH (Ro).under various ambient conditionsTable 1 - Temperature and humidity dependency(typical values of Rs/Ro for Fig. 6)Table 1 shows a chart of values of the sensor’s resistance ratio (Rs/Ro) under the same conditions as those used to generate Figure 6.Figure 7 shows the sensitivity curve for TGS813 to methane under several ambient conditions. While temperature may have a large influence on absolute Rs values, this chart illustrates the fact that effect on the slope of sensor resistance ratio (Rs/Ro) is not significant. As a result, the effects of temperature on the sensor can easily be compensated.For economical circuit design, a thermistor can be incorporated to compensate for temperature (for additional information on temperature compensation in circuit designs, please refer to the Technical Advisory ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’).1010Rs (kΩ)102-6 Initial actionclean air.process is called “Initial Action”.circuit be incorporated into the detector’s design (TGS Sensors for Toxic and Explosive Gas Leak Detectors’). This is especially recommended for intermittent-operating devices such as portable gas detectors.2-7 Long-term characteristicsFigure 13 shows long-term stability of TGS813 as measured for more than 8 years. The sensor is first energized in normal air. Measurement for confirming sensor characteristics is conducted under ambient air conditions rather than in a temperature/humidity controlled environment. The cyclic change in sensitivity corresponds to the seasonal changes of temperature/humidity in Japan (peak T/H conditions occur in July, as corresponds with the sensitivity peaks in this chart ). The Y-axis represents the ratio of sensor resistance in 1000ppm of methane on the date tested (Rs) to sensor resistance in 1000ppm of methane at the beginning of the test period (Ro).As this chart illustrates, TGS813 shows stable characteristics over a very long period of time.Fig. 12 - Long term stability(Ro = Rs on day 1)3 Cautions3-1 Situations which must be avoided1) Exposure to silicone vaporsIf silicone vapors adsorb onto the sensor’s surface, the sensing material will be coated, irreversibly inhibiting sensitivity. Avoid exposure where silicone adhesives, hair grooming materials, or silicone rubber/putty may be present.2) Highly corrosive environmentHigh density exposure to corrosive materials such as H2S, SOx, Cl2, HCl, etc. for extended periods may cause corrosion or breakage of the lead wires or heater material.3) Contamination by alkaline metalsSensor drift may occur when the sensor is contam-inated by alkaline metals, especially salt water spray.4) Contact with waterSensor drift may occur due to soaking or splashing the sensor with water.5) FreezingIf water freezes on the sensing surface, the sensing material would crack, altering characteristics.6) Application of excessive voltageIf higher than specified voltage is applied to the sensor or the heater, lead wires and/or the heater may be damaged or sensor characteristics may drift, even if no physical damage or breakage occurs.7) Application of voltage on lead wiresOn six-pin type sensors, if a voltage is applied on the lead wires between pins 1 and 3 and/or pins 4 and 6, this would cause breakage of the lead wires.8) Operation in zero/low oxygen environment TGS sensors require the presence of around 21% (ambient) oxygen in their operating environment in order to function properly and to exhibit characteristics described in Figaro’s product literature. TGS sensors cannot properly operate in a zero or low oxygen content atmosphere.3-2 Situations to be avoided whenever possible1) Water condensationLight condensation under conditions of indoor usage should not pose a problem for sensor performance.H owever, if water condenses on the sensor’s surface and remains for an extended period, sensor characteristics may drift.2) Usage in high density of gasSensor performance may be affected if exposed to a high density of gas for a long period of time, regardless of the powering condition.3) Storage for extended periodsWhen stored without powering for a long period, the sensor may show a reversible drift in resistance according to the environment in which it was stored. The sensor should be stored in a sealed bag containing clean air; do not use silica gel. Note that as unpowered storage becomes longer, a longer preheating period is required to stabilize the sensor before usage. 4) Long term exposure in adverse environment Regardless of powering condition, if the sensor is exposed in extreme conditions such as very high humidity, extreme temperatures, or high contamination levels for a long period of time, sensor performance will be adversely affected.5) VibrationExcessive vibration may cause the sensor or lead wires to resonate and break. Usage of compressed air drivers/ultrasonic welders on assembly lines may generate such vibration, so please check this matter.6) ShockBreakage of lead wires may occur if the sensor is subjected to a strong shock.7) SolderingIdeally, sensors should be soldered manually. For soldering conditions of 8-series gas sensors, refer to Technical Advisory for Soldering 8-type Gas Sensors. 8) PolarityIf the polarity of Vc is reversed during powering, sensor characteristics may temporarily become unstable.15 24 36Figaro USA Inc. and the manufacturer, Figaro Engineering Inc. (together referred to as Figaro) reserve the right to make changes without notice to any products herein to improve reliability, functioning or design. Information contained in this document is believed to be reliable. H owever, Figaro does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.Figaro’s products are not authorized for use as critical components in life support applications wherein a failure or malfunction of the products may result in injury or threat to life.。
费加罗检测空气质量VOC传感器TGS2600
因为采用小型化芯片,TGS2600 的加热器所需电流仅为 42mA,并且安置于标准 TO-5 封装 中。
检测B麲空气质量V O <C传感器TG S2600
特征: ★低 功耗,5V供电 ★对气态空气污染物灵敏度高 ★长寿命, 低成本 ★小尺寸, 应用电路简单
应用: ★ 空气净化器 ★ 新风系统,智能家居 ★ 空气质量检测 ★ 1807*0430*980,zheng_xinghui@163.com
敏感元件由一个以金属铝做衬底的金属氧化物敏感芯片 和一个完整的加热器组成。在检测气体时, 传感器的传导率 依赖于空气中气体浓度的变化。 一个简单的电路能将该传导 比率的变化转化成对应于气体浓度变化的输出信号.
标准测试 抗
条件下的 加热器电 IH 42±4mA
电气特性 流
加热器消 PH 210mW VH=5.0V DC
耗功率
传感器阻 RS 10K-90 kΩ在空气中
抗
灵敏度 测试气体条件
0.3-0.6
RS (10 ppm,氢气) RS (空气)
在20±2°C, 65±5%RH的正常空气
标准测试 电路条件
VC = 5.0±0.01V DC
RS=清新空气中的传感器在不同 温、湿度条件下的阻值
R0=清新空气中的传感器在 20℃ 及 65%相对湿度下的阻值
灵敏度特性:
温湿度特性:
浓度(ppm)
环境温度(℃)
基本测量电路: 此传感器要求有两个电压输入:加热器电压 VH
FAGIRO TGS 传感器 TGS822 有机溶剂蒸气检测用 说明书
TGS822 有机溶剂蒸气检测用特点: 应用:・对乙醇等有机溶剂有高灵敏度 ・酒精检测器・长期稳定性优良 ・工厂、干洗店、半导体产业的 ・长寿命、低成本 有机溶剂检知 ・以简单电路即可使用费加罗气体传感器的气敏素子,使用在清洁空气中电导率低的二氧化锡(SnO2)。
当存在检知对象气体时,传感器的电导率随空气中气体浓度增加而增大。
使用简单的电路即可将电导率的变化,转换为与该气体浓度相对应的输出信号。
TGS822传感器对酒精、有机溶剂的灵敏度高,在酒精检测器等方面得到广泛应用。
相同特性的TGS823,采用了陶瓷底座,可以在200℃的高温气氛中使用。
下图是典型的灵敏度特性,全部是在标准试验条件下得出的结果。
(请看背面)纵坐标以传感器电阻比(Rs/Ro )表示,Rs ,Ro 的定义如下:Rs =不同浓度气体中的电阻值 Ro =300ppm 乙醇中的电阻值灵敏度特性: 下图为受温度、湿度影响的典型曲线。
图中纵坐标也以传感器电阻比(Rs/Ro )表示,这里的Rs ,Ro 定义如下:Rs=含300ppm 乙醇、各种温/湿度下的电阻值 Ro=含300ppm 乙醇、20℃65%R.H.下的电阻值温/湿度的影响:SUNSTAR传感与控制 0755-********SUNSTAR传感与控制/TEL:0755-********FAX:0755-********E-MAIL:**************规格: 结构及尺寸:型 号 TGS822 素子类型 8系列标准封装塑料、SUS 双重金属网对象气体 酒精、有机溶剂 检测范围50~5,000 ppm 加热器电压VH 5.0±0.2V DC/AC 回路电压 VC MAX 24VPs ≦15mW标准回路 条件负载电阻 RL 可变 Ps ≦15mW 加热器电阻RH 38±3.0 Ω(室温) 加热器功耗PH 660±55mWVH =5.0V传感器电阻Rs300ppm 乙醇中 1~10K Ω 标准试验 条件下的 电学特性灵敏度(Rs 的变化率)0.4±0.1Rs(EtOH:300ppm)Rs(EtOH:50ppm)试验气体条件20±2℃, 65±5%RH 回路条件 VC =10.0±0.1V DC/AC VH =5.0±0.05V DC/AC RL=10.0 K Ω±1%标准试验 条件预热时间7天以上功耗(Ps)值可用下式计算: 传感器电阻(Rs ),可用下式计算:管脚连接 1或3:传感器4或6:传感器2 :加热器5 :加热器SUNSTAR传感与控制 0755-********SUNSTAR传感与控制/TEL:0755-********FAX:0755-********E-MAIL:**************FIGAROApplications:Features:TGS 822 - for the detection of Organic Solvent VaporsThe figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as sensor resistance ratio (Rs/Ro) which is defined as follows:The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as sensor resistance ratio (Rs/Ro), defined as follows:Rs = Sensor resistance at 300ppm of ethanol* High sensitivity to organic solvent vaporssuch as ethanol* High stability and reliability over a longperiod* Long life and low cost* Uses simple electrical circuit* Breath alcohol detectors* Gas leak detectors/alarms* Solvent detectors for factories, dry clean-ers, and semiconductor industriesThe sensing element of Figaro gas sensors is a tin dioxide (SnO 2) semiconductor which has low conductivity in clean air. In the presence of a detectable gas,the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.The TGS 822 has high sensitivity to the vapors of organic solvents as well as other volatile vapors. It also has sensitivity to a variety of combustible gases such as carbon monoxide, making it a good general purpose sensor. Also available with a ceramic base which is highly resistant to severe environments as high as 200°C (model# TGS 823).IMPORTANT NOTE: RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.SUNSTAR自动化/TEL:0755-********FAX:0755-********E-MAIL:**************Structure and Dimensions:1 Sensing Element:SnO 2 is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.2 Cap:Nylon 663 Sensor Base:Nylon 664 Flame Arrestor:100 mesh SUS 316 double gauzePin Connection and Basic Measuring Circuit:The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (above). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V RL ) increases as the sensor's resistance (Rs) de-creases, depending on gas concentration.Sensor Resistance (Rs) is calculated by the following formula:Rs = (-1) x R LV CV RL Power dissipation across sensor electrodes (Ps) is calculated by the following formula:Ps = 2V C x Rs 2(Rs + R L )Basic Measuring Circuit:REV: 9/99when the sensor is tested in standard conditions as speci-fied below:Test Gas Conditions:20°±2°C, 65±5%R.H.Circuit Conditions:V C = 10.0±0.1V (AC or DC),V H = 5.0±0.05V (AC or DC),R L = 10.0k Ω±1%Preheating period before testing: More than 7 daysFor information on warranty, please refer to Standard Terms and Conditions of Sale of Figaro USA Inc.17 ± 0.59.516.5±0.56.5±0.51.0±0.563425145˚45˚um : mmSUNSTAR自动化/TEL:0755-********FAX:0755-********E-MAIL:**************TGS822TF 人工煤制气检测用特点: 应用:・对煤制气中的氢气和一氧化碳有高灵敏度 ・家庭用、业务用煤制气报警器 ・乙醇等有机溶剂的干扰小 ・便携式煤制气检知 ・长寿命、低成本 ・以简单电路即可使用费加罗气体传感器的气敏素子,使用在清洁空气中电导率低的二氧化锡(SnO2)。
日本费加罗催化燃烧可燃气体传感器 TGS6812
Technical Information for Hydrogen Gas SensorsThe Figaro TGS6812 catalytic type gas sensor can detect levels of hydrogen up to 100%LEL. This sensor features high accuracy, good d urability and stability, quick response, and linear output. This sensor can detect hydrogen as well as methane and LP gas, making it an excellent solution for monitoring gas leakage from stationary fuel cell systems which transform combustible gases into hydrogen.P a g e Basic Information and SpecificationsFeatures..........................................................................2 Applications...................................................................2 Structure..........................................................................2 Basic Measuring Circuit....................................................2 Circuit & Operating Conditions.........................................3 Specifications..............................................................................3 Dimensions...............................................................................3Typical Sensitivity Characteristics Sensitivity to Various Gases................................................4 Temperature Dependency...........................................................4 Humidity Dependency...........................................................4 Heater Voltage Dependency.............................................5 Gas Response....................................................................................5 Initial Action........................................................................5Reliability Long Term Characteristics.............................................................6 Durability to Hydrogen.......................................................................6 Durability to Sulphur Dioxide...........................................................6 Durability to Nitrogen Dioxide.........................................................7 Durability to HMDS....................................................................7 Effects of Air Flow.............................................................................7Cautions (8)a n I S O 9001 c o m p a n yIMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WH EN CUSTOMER’S TARGET GASES ARE NOT LISTED H EREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH A SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.1. Basic Information and Specifications 1-1 Features* Linear output * Compact size* Small sensitivity to alcohol* Sensitive to hydrogen, methane, and LP gas * Meets RoHS requirements 1-2 Applications* Hydrogen and combustible gas leak detectors for fuel cell applications1-3 StructureFigure 1 shows the structure of TGS6812. The sensor is comprised of two elements: element (D) which is sensitive to combustible gases, and a reference element (C) which does not have sensitivity to combustible gases. The sensing element (D) is made of alumina doped with catalysts, while the reference element (C) is made of alumina. Both coils are made of Pt wire, and the wires of both elements (D) and (C) are connected to nickel pins No. 2 & 3 and No. 1 & 4 respectively. The sensor base and cap are made of reinforced Polybutylene Terephthalate (PBT). The upper opening in the cap is covered with a double layer of 100 mesh stainless steel gauze (SUS316). The TGS6812 utilizes a zeolite filter inside the cap for reducing the influence of interference gases.1-4 Basic measuring circuitThe T GS6812 i s c omprised o f t wo e lements: 1) e lement (D) which is sensitive to combustible gases and 2) a reference element (C) which is not sensitive to combustible gases. These elements are installed into a “Wheatstone Bridge”. A variable resistor should be adjusted so that the bridge will produce a stable baseline signal when in an environment free of combustible gases. When combustible gases are present, they will be combusted on the detecting element, causing its temperature to rise. Accordingly the resistance of this element will increase. This results in an “out-of-balance” signal across the bridge and a corresponding change in output voltage which can be measured.Fig. 1 - Sensor structureFig. 2 - Basic measuring circuitTop viewSide viewu/m = mmCapBottom viewBaseDetector sideCompensator side<Pin connection>1-4 : Compensator 2-3 : Detector1-5 Circuit & operating conditionsThe ratings shown below should be maintained at all times to insure stable sensor performance:1-6 Specifications NOTE 1Mechanical Strength:The sensor shall have no abnormal findings in its structure and shall satisfy the above electricalspecifications after the following performance tests: Vibration - Drop test -frequency:10~150H z, accel-eration: 2G, duration:10 times, direction: three dimensions drop onto a cement floor from a height of 250mm, repeated 5 timesNOTE 1:Sensitivity characteristics are obtained under the following standard test conditions:(Standard test conditions)Temperature and humidity: 20 ± 2˚C, 65 ± 5% RH Circuit conditions:V H = 3.0±0.05V AC/DC Preheating period: 30 seconds or more under standard circuit conditions 1-7 DimensionsFig. 3 - Sensor dimensionsAll sensor characteristics shown in this brochurerepresent typical characteristics. Actualcharacteristics vary from sensor to sensor andfrom production lot to production lot. The onlycharacteristics warranted are those shown inthe Specification table above.-101020304050020*********Relative humidity (%RH)2-2 Temperature dependencyFigure 5 shows the temperature dependency ofTGS6812 at 65%RH in 10%LEL of methane, LP gas,and hydrogen. Since the temperature dependencyof element (D) is compensated by element (C), thetemperature dependency of sensor output in therange from -10˚C to +70˚C is very small.2-3 Humidity dependencyFigure 6 shows the relative humidity dependencyof TGS6812 under constant temperature of 20˚C in10%LEL of methane, LP gas, and hydrogen. Thisdata demonstrates that the humidity dependency ofTGS6812 is negligible as humidity varies.Fig. 4 - TGS6812 sensitivity to various gasesFig. 6 - TGS6812 humidity dependency-10010203040502.902.953.003.05 3.10Operating voltage (V)2-4 Heater voltage dependencyFigure 7 shows the change in the sensor output according to variations in the heater voltage (V H ).Note that 3.0±0.1V as a heater voltage must be maintained because variance in applied heater voltage will cause the sensor’s characteristics to be changed from the typical characteristics shown in this brochure.2-5 Gas responseFigure 8 shows the change pattern of sensor output (Vout) for TGS6812 when the sensor is inserted 4000ppm of hydrogen.As these charts display, the sensor’s response speed to the presence of gas is extremely quick.2-6 Initial actionnormal air and later energized in clean air.warm-up process is called “Initial Action”.powering on, it is recommended that an initial delay circuit be incorporated into the detector’s design. This is especially recommended for intermittent-operating devices such as portable gas detectors.Fig. 7 - Heater voltage dependencyFig. 8 - Gas responseFig. 9- Initial action-1010201020-101020period.3-2 Durability to hydrogenconcentration exposure to hydrogen gas. The measurement was taken, the sensor was exposed to 1% of H 2 for over 2000 hours. At each measurement point, the sensor was removed from H 2measuring sensor output.characteristics after exposure to high concentrations of hydrogen.3-3 Durability to sulphur dioxideFigure 12 shows the effect on TGS6812 of exposure to SO 2. The initial point of the graph shows the value of sensor output prior to SO 2 exposure. After the initial measurement was taken, the sensor was exposed to 25ppm of SO 2 for over 2400 hours in total. At each measurement point, the sensor was removed from SO 2 and energized in normal air for 10 hours prior to measuring the sensor output.The data demonstrates that TGS6812 shows stable characteristics after exposure to SO 2.Fig. 11 - Durability to hydrogenFig. 12 - Durability to SO 2-101020-101020characteristics after exposure to NO 2. 3-5 Durability to HMDSFigure 14 shows the effect on TGS6812 of exposure to HMDS. The initial point of the graph shows the value of sensor output prior to HMDS exposure. After the initial measurement was taken, the sensor was exposed to 10ppm of HMDS for one hour in total. At each measurement point, the sensor was removed from HMDS and energized in normal air for 1 hour prior to measuring the sensor output.This data demonstrates that TGS6812 shows stable characteristics after exposure to HMDS.3-6 Effects of Air FlowTable 1 shows how the sensor is affected by airflows (refer to Fig. 15 for illustration of airflows in Table 1). This data demonstrates that there is no significant influence on the sensor by an air flow of 3.1 meters/sec.Fig. 14 - Durability to HMDSFig. 15 - Air flow testing direction (ref. Table 1)Table 1 - Effects of air flow on output voltage4 Cautions on Usage of Figaro Gas Sensors4-1 Situations which must be avoided1) Exposure to silicone vaporsIf silicone vapors adsorb onto the sensor’s surface, the sensing material will be coated, irreversibly inhibiting sensitivity. Avoid exposure where silicone adhesives, hair grooming materials, or silicone rubber/putty may be present.2) Highly corrosive environmentHigh density exposure to corrosive materials such as H2S, SOx, Cl2, HCl, etc. for extended periods may cause corrosion or breakage of the lead wires or heater material.3) Contamination by alkaline metalsSensor drift may occur when the sensor is contaminated by alkaline metals, especially salt water spray.4) Contact with waterSensor drift may occur due to soaking or splashing the sensor with water.5) FreezingIf water freezes on the sensing surface, the sensing material would crack, altering characteristics.6) Application of excessive voltageIf higher than specified voltage is applied to the sensor, the lead wires and/or sensor elements may be damaged or sensor characteristics may drift, even if no physical damage or breakage occurs.7) Operation in zero/low oxygen environment TGS6812 requires the presence of a certain amount of oxygen in its operating environment in order to generate a combustion reaction of gas on the sensor’s surface. It cannot properly operate in a zero or low oxygen content atmosphere.8) Excessive exposure to alcoholIf TGS6812 is exposed to high concentrations of alcohol (such as 10,000ppm or more) for a long period, the filter may become saturated. In this case, the sensor would show a lower resistance in alcohol than indicated in Figure 4.9) VibrationExcessive vibration may result in zero drift or cause the sensor or lead wires to resonate and break. Usage of compressed air drivers/ultrasonic welders on assembly lines may generate such vibration, so tests should be conducted to verify that there will be no influence on sensor characteristics.10) ShockZero drift and breakage of lead wires may occur if the sensor is subjected to a strong shock. To avoid shock, please keep the sensor in the original packing foam during storage.4-2 Situations to be avoided whenever possible1) Water condensationLight condensation under conditions of indoor usage should not pose a problem for sensor performance.H owever, if water condenses on the sensor’s surface and remains for an extended period, sensor characteristics may drift.2) Usage in high density of gasSensor performance may be affected if exposed to a high density of gas for a long period of time, regardless of the powering condition.3) Storage for extended periodsWhen stored without powering for a long period, the sensor may show a reversible drift in resistance according to the environment in which it was stored. The sensor should be stored in a sealed bag containing clean air; do not use silica gel. Note that as unpowered storage becomes longer, a longer preheating period is required to stabilize the sensor before usage. 4) Long term exposure in adverse environment Regardless of powering condition, if the sensor is exposed in extreme conditions such as very high humidity, extreme temperatures, or high contamination levels for a long period of time, sensor performance will be adversely affected.5) SolderingIdeally, sensors should be soldered manually.H owever, wave soldering can be done under the following conditions:a) Suggested flux: rosin flux with minimal chlorineb) Speed: 1-2 meters/min.c) Preheating temperature: 100±20˚Cd) Solder temperature: 250±10˚Ce) Up to two passes through wave soldering machine allowed Results of wave soldering cannot be guaranteed if conducted outside the above guidelines since someFigaro USA Inc. and the manufacturer, Figaro Engineering Inc. (together referred to as Figaro) reserve the right to make changes without notice to any products herein to improve reliability , functioning or design. Information contained in this document is believed to be reliable. H owever, Figaro does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.Figaro’s products are not authorized for use as critical components in life support applications wherein a failure or malfunction of the products may result in injury or threat to life.flux vapors may cause drift in sensor performance similar to the effects of silicone vapors.。
日本费加罗FIGARO一氧化碳传感器 TGS2442气体检测仪 气体泄漏报警器
地址:广东省深圳市龙华新区牛栏前大厦C507 蒋小姐:134 2876 2631 电话:86 755-85258900 网址:www.singoan.com www.singoan.com.cn www.shenguoan.com
Circuit voltage (VC) is applied across the sensing element which has a resistance (Rs) between the sensor’s two electrodes (pins No. 2 and No. 3) and a load resistor (RL) connected in series. The sensing element is heated by the heater which is connected to pins No. 1 and No. 4. Heating cycle--The sensor requires application of a 1 second heating cycle which is used in connection with a circuit
Sensor resistance
Rs
13.3kΩ ~ 133kΩ in 100ppm of carbon monoxide
45o
Sensitivity (change ratio of Rs)
β
0.13 ~ 0.31
4
1 �5.1±0.1
Test gas conditions
Standard test conditions
Features:
TGS 2442 - for the detection of Carbon Monoxide
费加罗传感科技(上海)有限公司介绍企业发展分析报告
Enterprise Development专业品质权威Analysis Report企业发展分析报告费加罗传感科技(上海)有限公司免责声明:本报告通过对该企业公开数据进行分析生成,并不完全代表我方对该企业的意见,如有错误请及时联系;本报告出于对企业发展研究目的产生,仅供参考,在任何情况下,使用本报告所引起的一切后果,我方不承担任何责任:本报告不得用于一切商业用途,如需引用或合作,请与我方联系:费加罗传感科技(上海)有限公司1企业发展分析结果1.1 企业发展指数得分企业发展指数得分费加罗传感科技(上海)有限公司综合得分说明:企业发展指数根据企业规模、企业创新、企业风险、企业活力四个维度对企业发展情况进行评价。
该企业的综合评价得分需要您得到该公司授权后,我们将协助您分析给出。
1.2 企业画像类别内容行业批发业-机械设备、五金产品及电子产品批发资质增值税一般纳税人产品服务设计、开发、转让自研成果并提供咨询服务;1.3 发展历程2工商2.1工商信息2.2工商变更2.3股东结构2.4主要人员2.5分支机构2.6对外投资2.7企业年报2.8股权出质2.9动产抵押2.10司法协助2.11清算2.12注销3投融资3.1融资历史3.2投资事件3.3核心团队3.4企业业务4企业信用4.1企业信用4.2行政许可-工商局4.3行政处罚-信用中国4.4行政处罚-工商局4.5税务评级4.6税务处罚4.7经营异常4.8经营异常-工商局4.9采购不良行为4.10产品抽查4.11产品抽查-工商局4.12欠税公告4.13环保处罚4.14被执行人5司法文书5.1法律诉讼(当事人)5.2法律诉讼(相关人)5.3开庭公告5.4被执行人5.5法院公告5.6破产暂无破产数据6企业资质6.1资质许可6.2人员资质6.3产品许可6.4特殊许可7知识产权7.1商标7.2专利7.3软件著作权7.4作品著作权7.5网站备案7.6应用APP7.7微信公众号8招标中标8.1政府招标8.2政府中标8.3央企招标8.4央企中标9标准9.1国家标准9.2行业标准9.3团体标准9.4地方标准10成果奖励10.1国家奖励10.2省部奖励10.3社会奖励10.4科技成果11土地11.1大块土地出让11.2出让公告11.3土地抵押11.4地块公示11.5大企业购地11.6土地出租11.7土地结果11.8土地转让12基金12.1国家自然基金12.2国家自然基金成果12.3国家社科基金13招聘13.1招聘信息感谢阅读:感谢您耐心地阅读这份企业调查分析报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Figaro传感器
广州南创陈工
FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。
FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。
半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。
我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。
目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。
Figaro传感器KE-25KE-50信息
Figaro传感器KE-25KE-50性能:
测量范围:0-100%O2
精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)
工作温度:5~40℃
储存温度:-20~+60℃
响应时间:KE-25:14±2秒;KE-50:60±5秒
初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv
期望寿命:KE-25:5年;KE-50:10年
Figaro传感器KE-25KE-50特性:
长寿命(KE-25-5年,KE-50-10年)
不受CO2,CO,H2S,NOx,H2影响
低成本,在常温下工作信号输出定,无需外部电源不需加热
以上Figaro传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》
产品特性描述:
氧气传感器KE-25KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传。