被动人体红外传感器电路图

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

被动人体红外传感器电路图

被动红外传感器的电路也有好多,但是不管什么形式的,差不多都是上面的样子,有的可能会少一级放大。这里的一款电路是我从尼赛拉厂家那里得到的,很经典的使用方法。前面是一级低频信号放大,放大倍数大约是100倍,放大后信号通过R6、C5再次选出

0.2-10HZ的信号,最后送到IC1B进行再次放大,运放的5脚是1/2VCC电压脚,在静态时,6、7脚的电压也是1/2VCC,当有信号后,6脚就会有一个在1/2VCC电压附近上下摆动的电压值,这个电压通过运放进一步放大后,输入到后面的门限比较电路,该门限电路不管你输入信号是在1/2VCC电压上偏还是下偏,都将在超过门限值后在二极管4148的负极输出一个高电平信号。这里,RP1和RP2都可以调检测的灵敏度,一般RP2可以用一个220K的电阻代替,只要调节RP1就可以了。这里,我顺便说一下运放的使用吧,好多的同志在论坛上经常要发表关于运放是单电源供电还是双电源供电,其实,任何一个运放都可以用单电源或者双电源供电的,这里是典型的单电源供电的方法,最典型的地方是

IC1B的5脚电压来自与电源和地之间2个100K电阻R9、R10的分压,然后一个电容到地滤波,如果是双电源供电的话,这个部分一般会接地线,好了,题外话我不多说了,红外感应头自己到/去搜索一下吧,多得是。电路排版要求不是很高,紧凑点吧,哪怕节省点线路板也是好的,有几个电解电容的极性我没有标出来,C4、C7肯定不用说了,C5要看你买的红外感应头了,一般感应头的输出会低于1.5V,所以C5的左端是1.5V以下的,右端是1/2VCC,现在该明白了吧!当然,如果感应头输出大于1/2VCC,就要反过来了哦!我曾经解剖过一个知名产品的电路,发现那极性居然是接反的,好在它用的是红宝石的电容,即使是反向,漏电也很小,但是作为一个设计者,我们还是要仔细为妙的

基于LM324的被动式人体红外线感应开关

上传者:葱爆羊肉浏览次数:11881

红外报警开关采用国内外最流行的PIR人体热释电传感器作信号探测器,灵敏度高,探测距离可达10米以上,其俯视角可达86°,水平视角可达120°。因它仅对人体释放的、特定波长的红外光最敏感,因而误动作极小。

当有人在其探测区域内以0.3~3Hz的频率活动时,PIR探头就能感生出微弱的电信号,经U1-1、U1-2两级放大后,从U1(7)脚输出0.5~5.5V的强信号。

D4、D5、R12~R15及U1-3组成双门限比较器,因PIR感生的信号电压可正可负,故U1(7)脚输出的电压亦可正可负(对中心电压3V而言)。当其输出的电压达到4.1V以上时,通过D4施加于U1(10)脚的电压高于(9)脚的电压(3.3V),使U1(8)脚输出高电位;而当U1(7)脚输出的电位低于2V时,则U1(9)脚的电压将通过D2下降至2.7V以下,U1(8)脚也输出高电位。

平时无信号时,由于U1(9)脚的电位3.3V高于(10)脚(2.7V),故(8)脚无输出。当PIR 接收到信号时,(8)脚就一定输出高电位,通过D6、R17给C9充电,使U1(12)脚电位高于(13)脚,其(14)脚输出高电位触发双向可控硅导通,点亮电灯。

由于C8所储电能通过R19、RW2放电需时约2分钟,故在此2分钟内灯一直亮着。当C9上的电压低于(13)脚电压(1V)时,(14)脚无输出,可控硅关闭,灯自动熄灭。

光敏电阻CDS及三极管Q1等组成光控电路,白天因光敏电阻的阻值很小(10KΩ以下),三极管Q1饱和导通,将U1(8)脚钳位至0.3V左右,故无论有无感应信号,可控硅均不能导通,灯不能点亮;到了夜晚,因光敏电阻的阻值变大到几兆欧,三极管Q1截止,U1(8)脚不再受其钳位,一旦PIR接收到信号,(8)脚就立即输出高电平,使可控硅导通,将灯点亮。

菲涅尔镜片的原理和应用

菲涅尔镜片是红外线探头的“眼镜”,它就象人的眼镜一样,配用得当与否直接影响到使用的功效,配用不当产生误动作和漏动作,致使用户或者开发者对其失去信心。配用得当充分发挥人体感应的作用,使其应用领域不断扩大。

菲涅尔镜片是根据法国光物理学家FRESNEL发明的原理采用电镀模具工艺和PE(聚乙烯)材料压制而成。镜片(0.5mm厚)表面刻录了一圈圈由小到大,向外由浅至深的同心圆,从剖面看似锯齿。圆环线多而密感应角度大,焦距远;圆环线刻录的深感应距离远,焦距近。红

外光线越是靠进同心环光线越集中而且越强。同一行的数个同心环组成一个垂直感应区,同心环之间组成一个水平感应段。垂直感应区越多垂直感应角度越大;镜片越长感应段越多水平感应角度就越大。区段数量多被感应人体移动幅度就小,区段数量少被感应人体移动幅度就要大。不同区的同心圆之间相互交错,减少区段之间的盲区。区与区之间,段与段之间,区段之间形成盲区。由于镜片受到红外探头视场角度的制约,垂直和水平感应角度有限,镜片面积也有限。镜片从外观分类为:长形、方形、圆形,从功能分类为:单区多段、双区多段、多区多段。

红外热释电处理芯片BISS0001

管脚图

管脚说明

151IN-I第一级运算放大器的反相输入端

161OUT O第一级运算放大器的输出端

工作原理

BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。

以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。不可重复触发工作方式下的波形

首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。由于

VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V时,可有效抑制±1V的噪声干扰,提高系统的可靠性。 COP3是一个条件比较器。当输入电压

VcVR时,COP3输出为高电平,进入延时周期。当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。

以下图所示的可重复触发工作方式下的波形,来说明其工作过程。可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo在Tx周期内一直保持有效状态。在Tx

时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs 保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。应用线路图

相关文档
最新文档