煤矿井下低压检漏保护装置的.

煤矿井下低压检漏保护装置的.
煤矿井下低压检漏保护装置的.

煤矿井下低压检漏保护装置的

安装、运行、维护与检修细则

第一章总则

第1条:本细则仅适用于井下中性点不直接接地的1140V 及以下动力、照明、电网中的各类检漏保护装置,包括各类设备中具有漏电闭锁、漏电跳闸及选择性漏电保护功能的保护单元(以下简称检漏保护装置)。

第2条:凡从事井下电气设备安装、运行、维护与检修的人员均应熟悉本细则。

第3条:对井下使用的检漏保护装置,各矿(井)必须设专人进行维护、检修和整定,并根据本细则的要求制定相应的管理制度,使检漏保护装置正常运行。

第4条:检漏保护装置的防爆性能必须符合国标GB3836《爆炸性环境用防爆电气设备》的要求。检漏保护装置的电气性能必须经煤炭系统归口检验单位检验合格。

第5条:井下各变电所的低压馈电线上,应装设带漏电闭锁的检漏保护装置或有选择性的检漏保护装置。煤(岩)电钻、照明馈电线上,必须装设有自动切断漏电馈电线的检漏保护装置。低压电磁起动器应具备漏电闭锁功能。

第6条:运行中检漏保护装置性能必须可靠,严禁任意拆除或停用。

第7条:选择性检漏保护装置必须配套使用(即总开关

和所有分支开关必须都装设),带延时的总检漏保护装置不准单独使用。

第二章下井前的检验

第8条:检漏保护装置在地面要进行仔细检查、试验,符合要求后才可下井使用。检查试验内容:

1、按GB3836《爆炸性用防爆电气设备》检查隔爆外壳是否符合规定。

2、按厂家说明书上所示线路核对检漏保护装置内部接线是否正确,连线是否良好,元件、导线等有无破损。

3、检漏保护装置的绝缘电阻值应符合:1140V的用1000V 摇表摇测不低10MΩ;660V的用1000V摇表摇测不低于10M Ω;380V的用500V摇表摇测不低于5MΩ;127V的用250V 摇表摇测不低于2MΩ;42V的用250V摇表摇测不低于0.5M Ω。

4、介电性能试验必须能承受交流工频耐压试验,历时1min而无击穿闪络现象。对于主电路以及规定接至主电路的控制电路和辅助电路,其工频耐压试验应符合表1规定。表1主电路及接至主电路的控制电路和辅助电路的工频耐压值主电路额定电压U2(V)工频耐压试验电压值(交流有效值)(V)

U2≤600

60<U2≤300

300<U2≤660

660<U2≤12001000

2000

2500

4200

对于规定不接至主电路的控制电路和辅助电路,其工频耐压试验符合表2规定。表2不接至主电路的控制电路和辅助电路的工频耐压值不接至主电路的控制电路、辅助电路的额定电压U2(V)工频耐压试验电压值(交流有效值)(V)

U2≤60

U2>601000

2U2+1000(但不小于15000)

5、测量各直流电源的电压值及执行继电器的动作电流值,其值应符合厂家规定。

6、检漏保护装置在下井前应先在地面按“井下低压检漏保护装置电气性能要求”、“矿用隔爆型煤电钻变压器综合装置中检漏环节电气性能要求”进行漏电动作电阻值、漏电动作时间、补偿效果的测定;带旁路的漏电保护应进行旁路动作电阻值、动作时间的测定;具有漏电闭锁功能的应测量闭锁电阻值,测量结果应符合上述要求的规定。具有选择性漏电保护功能的各类检漏装置,在地面还要进行不少于两条馈电开关的支路作配套试验,各支路都应轮流进行三次漏电

试验,以保证漏电选择性的可靠性。

第三章安装

第9条检漏保护装置在井下装卸、搬运过程中,应免受剧烈的震动。

第10条检漏继电器、选择性的保护装置应接在馈电开关的负荷侧。带漏电闭锁的检漏继电器、选择性的检漏保护装置,其电源部分接在馈电开关的电源侧,但应有安全措施。如用两台馈电开关作总开关时,可合用一台检漏保护装置。两台馈电开关的跳闸线圈应并联,并注意:

1、馈电开头跳闸线圈必须连接在同一相电源上。

2、两台馈电开关的跳闸线圈联络线间应串接一个隔爆型停止按钮(或开关);当第一台运行,第二台停运时,应按下按钮(或断开开关)并锁住不让其返回,避免该停运开关负荷侧仍带电。否则不允许停运一台开关,另一台仍运行。

3、检漏保护装置的电源只需与第一台开关连接;如须停止第一台开关,第二台开关继续运行时,应将检漏保护装置的电源改接到第二台开关上。

第11条:对检漏保护装置接地装置的几点规定:

1、主接地线(即其外壳的保护接地线)要可靠地与采区变电所的辅助接地母线或局部接地极相连;煤电钻、照明综合保护装置只设辅助接地极能够满足要求的可不另设主接地极。

2、供检漏保护装置作检验用的辅助接地线,应用芯线总断面不小于10mm2的像套电缆。检漏保护装置的辅助接地极应单独设置,规格要求与局部接地极相同,并距局部接地极的直线距离不小于5m。煤(岩)电钻、照明信号综合保护装置的辅助接地极,可采用直径不小于22mm、长度不小于500mm的钢管进行埋设。

3、当同一地点装有两台或两台以上的检漏保护装置时,可以共用一个辅助接地极及一根辅助接地导线。如共用一个辅助接地极的几台检漏保护装置为JY82型、JL82型检漏保护装置,则应断开其内部试验按钮常闭触点至局部接地极的连线。

第12条:在由地面变电所直接向采区低压供电的特殊情况下,地面变电所必须设检漏保护装置。

第13条为确保检漏保护装置动作可靠,安装时应将它水平放置于特设的架上,或吊架于硐室墙壁上。放置的高度以便于检查为准,并避免水淋或受潮。

第14条安装前,对配合检漏保护装置使用的开关的跳闸机构,应进行如下检查:

1、跳闸线圈的绝缘电阻应符合:1140V的用1000V摇表摇测不低于10MΩ;660V的用1000V摇表摇测不低于10MΩ;380V的用500V摇表摇测不低于5MΩ;127V的用250V摇表摇测不低于2MΩ;42V的用250V摇表摇测不低于0.5MΩ。

2、跳闸机构灵活可靠。

3、开关的操作机构应无过位或卡阻现象。

第15条:检漏保护装置安装完毕后,应做跳闸试验,如不跳闸,则应立即切断电源作全面检查,合格后方可投入使用。具有对电网对地电容电流进行补偿的各类检漏保护装置,在供电系统安装完毕后,均应在正常负荷下进行电容电流的最佳补偿调节。

第16条:安装时,电网系统总的绝缘电阻值应符合:1140V不低于80kΩ;660V不低于50kΩ;380V不低于30k Ω;127V不低于15kΩ。

第四章运行、维护和检修

第17条:值班电钳工每天应对检漏保护装置的运行情况进行检查试验,并作记录。检查试验内容:

1、观察欧姆表的指示数值是否正常。当电网绝缘1140V 低于50kΩ;660V低于30kΩ;380V低于15kΩ;127V低于10kΩ时,应及时采取措施,设法提高电网绝缘电阻值,尽量避免自动跳闸。

2、安装位置必须平稳可靠,应清洁,无淋水现象。

3、局部接地极和辅助接地极的安设应良好。

4、外观检查检漏保护装置的防爆性能必须合格。

5、用试验按钮对检漏保护装置进行跳闸试验。煤(岩)电钻综合保护装置每班试验一次,照明信号综合保护装置每

天试验一次,对具有选择性功能的检漏保护装置,各支路应每天做一次跳闸试验,总检漏保护装置每周做一次跳闸试验。

第18条:检漏保护装置维修工每月至少对检漏保护装置进行一次详细检查,内容除第17条所规定的外,应检查:

1、各处导线是否良好,有无破损及受潮。

2、闭锁装置及继电器动作是否可靠。

3、各处接头、触点是否良好,有无松动脱落和烧毁现象。

4、内部元件、插件板、熔断器及指示灯有无松动、破损。

5、补偿电感是否达到最佳补偿效果。

6、检漏保护装置的隔爆性能是否符合规定。

第19条:在瓦斯检查员的配合下,对新安装的检漏保护装置在首次投入运行前做一次远方人工漏电跳闸试验。运行中的检漏保护装置,每月至少做一次远方人工漏电跳闸试验。有选择性的检漏保护装置做远方人工漏电跳闸试验时,总检漏保护装置应在分支开关断开后在分支开关入口处做人工漏电跳闸试验,其余分路开关应分别做一次远方人工漏电跳闸试验。试验方法是:在最远端的控制开关的负荷侧按不同电压等级接入试验电阻(127V用2kΩ、10W电阻,380V 用3.5kΩ、10W电阻,660V用11kΩ、10W电阻,1140V用

20kΩ、10W电阻)。例如电磁起动器中试验电阻的一端接在熔断管的螺扣上,另一端接在外壳上,盖上外盖后送电,观察馈电开关是否跳闸。如跳闸,说明检漏保护装置动作可靠。试验完毕后,要拆除试验电阻。

第20条:检漏保护装置每年应升井进行一次检修,除对防爆外壳修理外,其他项目应照下井前有关检验的各条规定的内容进行检查和试验;对绝缘电阻较低、耐压试验不合格的必须进行干燥处理,并更换不合格的零件。

第21条检漏保护装置的维护、检修及调试工作,应记入专门的检漏保护装置运行记录簿内(见下表)。

第五章故障的判断与寻找

第22条:当电网在运行中发生漏电时,应立即进行寻找和处理,并向矿井调度室或主管电气人员汇报,发生故障的设备或电缆在未消除故障前,禁止投入运行。

第23条:发生漏电故障,一般应从以下几方面进行分析:

1、运行中的电气设备绝缘受潮或进水,造成相与地之间绝缘降低或击穿。

2、电缆在运行中受机械或其他外力的挤压、砍砸、过度弯曲等而产生裂口或缝隙,长期受潮气、水份的侵蚀致使绝缘降低;砍砸或挤压也可能引起相与地间的直接连通、导电芯线裸露或短路。

3、电缆与设备在连接时,由于芯线接头不牢,封堵不严、接线装置压板不紧,运行中产生接头松动脱落与外壳相连或发热烧毁绝缘。

4、检修电气设备时,由于停送电错误或工作不慎将工具材料等其他金属物件残留在设备内部,造成相接地。

5、电气设备接线错误或内部导线绝缘破损造成与外壳相连,以及电缆屏蔽层处理不当造成漏电。

6、在操作电气设备时,产生弧光放电。

7、电气设备或电缆过负荷运行损坏或直接烧毁绝缘。

8、电缆与电缆的冷补、热补接头,由于芯线连接不牢、密封不严、绝缘包扎不良,运行中产生接头松动或受潮进水而造成漏电或绝缘破损。

第24条:检漏保护装置的运行维护人员,应根据下述情况判断漏电性质:

1、集中性漏电

(1)长期集中性漏电:这种漏电,可能是电网内的某

台或电缆,由于绝缘击穿或导体碰及外壳所造成。

(2)间歇的集中性漏电这种漏电,大部分发生在电网内某台设备(主要是电动机)或负荷端电缆,由于绝缘击穿或导体碰及外壳,在设备运转时产生漏电;还可能性由于针状导体刺入负荷侧电缆内产生漏电。

(3)瞬间的集中性漏电这种漏电,主要是由于工作人员或其他物体偶尔触及带电导体或电气设备和电缆的绝缘破裂部分,使之与地相连,还可能在操作电气设备时产生对地弧光放电所致。

2、分散性漏电

(1)某几条线路及设备的绝缘水平降低所致。

(2)整个电网的绝缘水平降低所致。

第25条:发生漏电故障后,应根据设备、电缆新旧程度、下井使用时间的长短、周围条件(如潮湿、积水、淋水等)和设备运转情况、首先判断漏电性质,估计漏电大致范围,然后进行细致检查,找出漏电点。

根据不同的检漏保护装置判断漏电点,如找不到漏电点,应与瓦斯检查员联系,对可能产生与瓦斯积聚的地区(如单巷掘进、通风不良的采掘工作面等)进行瓦斯检查,如无瓦斯积聚(瓦斯浓渡小于1%)时,可用下列方法进行寻找:发生漏电故障后,将各分路开关分别单独合闸,如发生跳闸(或闭锁),为集中性漏电。如不跳闸(或不闭锁),但各分

路开关全部合上时则跳闸,一般为分散性漏电。

1、集中性漏电的寻找方法

(1)漏电跳闸后,试合总馈电开关,如能合上,可能是瞬间的集中性漏电。

(2)试合总馈电开关,如不能合上,再拉开全部分路开关,试合总馈电开关,如仍不能合上,则漏电点在电源上,然后用摇表摇测,确定在哪一条线路上。

(3)拉开全部分路开关,试合总馈电开关,如能合上,再将各分路开关分别逐个合闸,如在合某一开关时跳闸,则表示此分路有集中性漏电。

2、分散性漏电的寻找方法

若电网绝缘水平降低,在尚未发生一相接地时,继电器动作跳闸,可以采取拉开全部分路开关,再将各分路开关分别逐个合闸的办法,并观察继电器的欧姆表指数变化情况,确定是哪一条线路的绝缘水平最低,然后用摇表摇测。检查到某设备或电缆绝缘水平太低时,则应更换。

煤矿井下低压供电系统漏电保护分析

煤矿井下低压供电系统漏电保护分析 发表时间:2018-08-13T16:16:15.610Z 来源:《电力设备》2018年第8期作者:杨帆[导读] 摘要:在进行煤矿开采的过程中,往往也离不开对于电能的使用,只有确保煤矿井下供电的安全可靠,才能够使得煤矿开采活动得以顺利进行。 (天地(常州)自动化股份有限公司江苏常州 213015)摘要:在进行煤矿开采的过程中,往往也离不开对于电能的使用,只有确保煤矿井下供电的安全可靠,才能够使得煤矿开采活动得以顺利进行。而在煤矿生产的过程中,煤矿井下低压供电机械设备应用得非常普遍,对低压供电机械设备进行合理地布置能够满足煤矿开采的各方面需求。由于矿井中的环境较为特殊,所以对于井下低压供电系统也提出了更高要求,在对供电机械设备进行布置的过程中,必须 要考虑多方面因素的影响,同时还必须要采取必要的保护措施,防止井下低压供电机械设备遭到破坏,因此对于煤矿井下低压供电系统及其保护措施进行研究有着非常重要的意义。 关键词:煤矿井;低压供电系统;漏电保护 1煤矿井下低压供电系统的特征低压供电系统是由总配电室内的低压配电柜、低压输送电缆、用户进线总配电柜、分配电箱和机械设备等组成的,低压配电线路的主要作用就在于向低压机械设备进行电能的输送以及分配,因而对于低压供电系统而言,机械设备往往具有接头多、规格型号多、敷设方式多以及线路较长的特征,而且各个分配电箱内的控制开关的操作次数也非常的多。同时在矿井下,机械设备也具有多样性,比如说照明设备、输送设备以及钻进设备等,这些机械设备的用电特性往往也是不一样的,因而就使得煤矿井下低压供电系统容易受到多方面因素的影响,而且其系统结构往往也较为复杂。 2漏电保护实际运行情况分析 2.1当触电或漏电现象未发生时 设备的漏电保护装置动作就产生了误动作。而导致误动作发生的因素很多,包括供电线路、设备、环境及漏电保护装置自身的。主要原因分析如下:在开关合闸瞬间,会发生不同步合闸,在先合闸的一相上可能产生比较大的泄露电流;接线错误,造成三相不平衡;线缆绝缘恶化或相线对地绝缘不对称降低,会产生不平衡泄露电流;漏电保护器生产制造质量不高或装配存在问题都会降低保护器的可靠性,这些因素都会使漏电保护装置发生误动作现象。 2.2当触电或漏电现象发生时 设备的漏电保护装置未动作,或在供电系统分级保护中发生越级动作现象,就产生了拒动作。漏电保护器动作电流选择不当,供电线路过长绝缘阻抗降低,互感器、脱扣机构等产品质量低劣,接线错误等都会导致漏电发生时保护装置不动作。拒动作比较少见,但拒动作会造成较大的危害,尤其会在发生漏电现象时给人的生命造成威胁,因此对于漏电保护装置的检测试验应该常态化,做到每天试验。若发生不动作现象应立即处理。 2.3低压供电系统 在漏电分级保护形式上会选择各级漏电保护开关的额定动作电流的递减或递增对系统进行分级保护,而当供电线路出现漏电电流较大时,甚至大于首台漏电保护开关动作电流整定值,就会造成越级动作,导致大面积停电。也有选择各级漏电保护开关的额定动作时间的时差对供电系统进行分级保护,但是分级保护开关的漏电动作时差太小,也会造成越级动作。由此可见,仅仅从各级漏电保护开关额定动作电流或额定动作时间的差别对漏电进行分级保都无法实现真正的分级保护。所以,要实现分级保护在充分考虑各级漏电保护开关的额定动作电流级差的配合间题的同时,又要考虑各级漏电保护开关的动作时差配合问题。 2.4低压漏电分级保护使用过程中存在问题 供电系统分支多,一般总开关后,又分一级、二级分开关,随着供电距离的延长及负荷的增加,分开关数量也跟着增加。而现实中所用开关漏电保护原理不同,接地极打设不规范,接地电阻值不符合要求等等,造成了发生漏电后,漏电保护开关不动作或越级跳闸。这就要求规范使用漏电开关,尽量做到漏电保护原理相同,才能确保各级保护的正常使用。在生产中,常会出现故障排除不掉,甩掉漏电保护继续供电的现象,这是对企业及他人不负责的行为,应严格进行杜绝! 3煤矿井下低压供电系统保护措施 3.1安装过流保护机械设备 在煤矿井下低压供电系统之中,要想有效地保证其安全运行,必须要安装过流保护机械设备,在系统中所有馈出线的电源端,必须要加装过流保护机械设备,而且低压电动机械设备必须具备短路、过负荷、单相断电的保护装置,才能够确保供电系统的安全运行。其次,如果干线上的开关不能够同时对分支线路进行保护时,必须要在靠近分支点的位置另外加装过流保护机械设备,这样才能够确保分支线路的安全运行。最后,对于所有安装在井下低压供电系统中的过流装置,必须要严格进行计算、整定和校验,以确保过流保护机械设备的灵敏可靠,严禁使用不合格的过流保护机械设备。 3.2加强漏电保护 在煤矿井下供电系统之中,漏电保护也是一个非常重要的问题,为了确保井下低压供电系统的安全运行,必须要安装漏电保护机械设备,而当前应用于低压供电系统之中的漏电保护机械设备有很多种,比如说电子电路的以及单片机控制的等,常用的漏电保护方式主要有漏电保护、选择性漏电保护以及漏电闭锁。通过安装漏电保护机械设备,在被保护电路发生故障的时候,保护机械设备往往就能够自动迅速地将故障部分断开,并且确保非故障部分正常运行,同时向工作人员发出警报,便于工作人员及时地对故障部分进行处理。在选择漏电保护机械设备以及漏电保护方式的时候,必须要结合矿井下的实际情况和需求,以保证煤矿井下供电系统能够安全运行。 3.3供电系统保护接地 在对于煤矿井下低压供电系统进行建设的时候,为了确保其能够安全运行,还必须要重视电气设备的接地保护,在建设过程中必须要做好接地系统和电气设备的电气连接,以确保故障机械设备的漏电流通,使得漏电电流始终保持在相对安全的范围之内。保护接地对于井下低压供电系统的安全运行有着非常重要的影响,必须要依据供电系统的实际情况对其进行安装,从而避免在煤矿生产的过程中出现安全事故。

煤矿井下供电的三大保护细则

新《煤矿安全规程》知识竞赛试题 1新的《煤矿安全规程》自哪一年哪一月哪一日起施行?答:2 0 0 5年1月1日。 2、煤矿企业必须遵守国家有关安全的什么规定?答:煤矿企业必须遵守国家有关安全生产的法律、法规、规章、规程、标准和技术规范。 3、煤矿企业必须建立、健全各级领导哪些责任制?答:煤矿企业必须建立、健全各级领 导安全生产任制,职能机构安全生产责任制,岗位人员安全生产责任制。 4、煤矿企业应建立、健全哪些制度?答:煤矿企业应建立、健全安全目标管理制度,安 全奖惩制度,安全技术措施审批制度,安全隐患排查制度、安全检查制度,安全办公会议等制度。5、煤矿企业必须设置什么机构,配备什么?答:煤矿企业必须设置安全生产机 构,配备适应工作需要的安全生产人员和装备。 6、煤矿安全工作必须实行什么,煤矿企业必须支持什么?答:煤矿安全工作必须实行群 众监督,煤矿企业必须支持群众安全监督组织的活动,发挥职工群众安全监督作用。 7、对危害安全的行为,矿山企业职工的三大权力是什么?答:有批评、检举、控告的权力。 8、煤矿生产的五大灾害有哪些?答:水、火、瓦斯、煤尘、顶板。 9、煤矿安全生产的方针是什么?答:安全第一,预防为主,综合治理,总体推进。 10、入井人员须知?答:入井人员必须戴安全帽,随身携带自救器和矿灯,严禁携带烟草和点火物品,严禁穿化纤衣服,入井前严禁喝酒,煤矿企业必须建立入井检身制度和出入井人员清点制度。 11、煤矿企业所说的“三大规程”指的是哪“三大规程”?答:煤矿安全规程、作业规程、操作规程。 12、“三违”指的是哪“三违”?答:违章指挥、违章作业、违犯劳动纪律。 13、安全上要做到“四无”指的是哪“四无”?答:个人无违章,班组无轻伤,区队无 重伤,矿无死亡。 14、伤亡事故按事故程度分为几类?答:轻伤、重伤、死亡。 15、每个生产矿井必须至少有几个能行人的通到地面的安全出口?各个安全出口距离不得 小于多少米?答:2个,30米。 16、井下每一个水平到上一个水平和各个采区都必须至少有几个便于行人的安全出口并与 通达地面的安全出口相连接。未建成几个安全出口的水平或采区严禁生产?答:2个,2个。 17、井巷交岔点必须设置什么?答:必须设置路标,标明所在地点,指明通往安全出口 的方向。井下工作人员必须熟悉往安全出口的路线。 18、对于通达地面的安全出口和2个水平之间的安全出口,倾角等于或小于多少度时必须 设置什么?并根据倾角大小和实际需要设置什么?答:倾角等于或小于4 5度时必须设置人 行道,并根据倾角大小和实际需要设置扶手,台阶或梯道,倾角大于45度时必须设置梯道 间或梯子间。斜井梯道间必须分段错开设置,每段斜长不得大于10 m;主井梯子间中的梯 子角度不得大于8 0度,相邻2个平台的垂直距离不得大于8 m。 19、巷道净断面必须满足行人、运输、通风和安全设施及设备安装、检修、施工的需要, 并符合哪些要求?答:(一)主要运输巷和主要回风巷的净高自轨面起不得低于2 m,架线 电机车运输巷的净高必须符合本规程第三百五十六条和第三百五十七条的有关要求。(二)采区(包括盘区,以下各条同)内的上山、下山和平巷的净高不得低于2 m,薄煤层内的不 得低于1 8 m。采煤工作面运输巷,回风巷及采区内的溜煤眼等的净断面或净高,由煤矿企业统一规定。巷道净断面的设计必须按支护最大允许变形后的断面计算。

浅谈井下供电系统的漏电保护

浅谈井下供电系统的漏电保护 摘要:煤矿井下供电电网发生漏电会严重威胁安全生产。本文首先简要分析了漏电的危害和井下漏电保护的基本要求,然后介绍了几种单一漏电保护方案,最后在此基础上介绍了一种漏电综合保护方案。 关键词:井下供电;漏电保护;单一保护方;综合保护方案 abstract: coal mine underground power grid electricity will happen serious threat the safety in production. this paper firstly analyzes the leakage harm and the basic requirements of underground leakage protection, then introduces several single leakage protection scheme, then based on this, advances a leakage comprehensive protection scheme. keywords: dhps; leakage protection; single protection party; comprehensive protection scheme 中图分类号:u665.12文献标识码:a 文章编号: 保护接地、漏电保护、过流保护,称为煤矿井下电气网络的3 大保护。漏电保护可以在设备或线路漏电时,通过保护装置的检测机构获得异常信号,经中间机构转换和传递,然后促使执行机构动作,自动切断电源而起到保护作用。 一、井下低压电网发生漏电的危害 煤矿井下低压电网大部分在采区,环境恶劣,工作人员和生产

煤矿井下安全供电教案

华烨煤矿井下安全供电 第一节煤矿供电系统 一、煤矿电源线路 煤矿电源线路是指由区域变电所引到煤矿变电所的输电线路。 煤矿属于一类负荷用电,所以煤矿电源线路应保证对煤矿的可靠供电,《煤矿安全规程》的规定,每一矿井应有两回电源线路,当任一回路因发生故障停止供电时,另一个回路仍能担负矿井的全部负荷。 二、煤矿供电系统 由矿井有多级变电所(地面变电所,井下中央变电所,采区变电所)的变压器,配电装臵,供电线路及用电负荷组成。 三、煤矿供电的电压等级 地面供电35kV、10kV、6kV、380V。 井下供电采用中性点不接地的供电系统,6kV、660V (380V)127V。 第二节矿用电气设备 一、矿用电气设备的类型及选用 (一)矿用电气设备的类型 矿用电气设备分为两大类,即:矿用一般型电气设备和矿用防爆型电气设备两种,而矿用防爆电气设备又分为9种类型。 1、矿用一般型电气设备 矿用一般型电气设备是一种煤矿井下用的非防爆型一

般型电气设备,它只能用于低瓦斯矿井的井底车场,总进风巷和主要进风巷。这种设备是按照国家标准GB12175-90《矿用一般型电气设备》制造的。 对矿用一般型电气设备的基本要求是:外壳坚固、封闭,能防止从外部直接触及带电部分;防滴、防潮性能好;有电缆引入装臵,并能防止电缆扭转、拔脱和损伤;开关手柄和门盖之间有联锁装臵等。 矿用一般型电气设备外壳的明显处,均有清晰的永久性凸纹标志“KY”。 2、矿用防爆型电气设备 矿用防爆型电气设备是按照国家标准GB3836〃1-2000《爆炸性气体环境用电气设备》系列国家标准制造的。该标准规定防爆型电气设备为Ⅰ类和Ⅱ类,其中Ⅰ类为煤矿井下用电气设备。 防爆电气设备的类型、级别和组别连同防爆设备的总标志“Ex”一起,构成防爆标志。在防爆型电气设备的明显处,均有清晰的永久性凸纹标志“Ex”。煤矿用隔爆型电气设备防爆标志为“ExdI”。 矿用防爆型电气设备,根据不同的防爆要求可分为9种类型,其基本要求和标志符号见表3-1。 表3-1矿用防爆电气设备—览表

继电保护定值整定计算公式大全(最新)

继电保护定值整定计算公式大全 1、负荷计算(移变选择): cos de N ca wm k P S ?∑= (4-1) 式中 S ca --一组用电设备的计算负荷,kVA ; ∑P N --具有相同需用系数K de 的一组用电设备额定功率之和,kW 。 综采工作面用电设备的需用系数K de 可按下式计算 N de P P k ∑+=max 6 .04.0 (4-2) 式中 P max --最大一台电动机额定功率,kW ; wm ?cos --一组用电设备的加权平均功率因数 2、高压电缆选择: (1)向一台移动变电站供电时,取变电站一次侧额定电流,即 N N N ca U S I I 13 1310?= = (4-13) 式中 N S —移动变电站额定容量,kV ?A ; N U 1—移动变电站一次侧额定电压,V ; N I 1—移动变电站一次侧额定电流,A 。 (2)向两台移动变电站供电时,最大长时负荷电流ca I 为两台移动变电站一次侧额定电流之和,即 3 1112ca N N I I I =+= (4-14) (3)向3台及以上移动变电站供电时,最大长时负荷电流ca I 为 3 ca I = (4-15) 式中 ca I —最大长时负荷电流,A ; N P ∑—由移动变电站供电的各用电设备额定容量总和,kW ;

N U —移动变电站一次侧额定电压,V ; sc K —变压器的变比; wm ?cos 、η wm —加权平均功率因数和加权平均效率。 (4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一个采区供电的电缆,应取采区最大电流;而对并列运行的电缆线路,则应按一路故障情况加以考虑。 3、 低压电缆主芯线截面的选择 1)按长时最大工作电流选择电缆主截面 (1)流过电缆的实际工作电流计算 ① 支线。所谓支线是指1条电缆控制1台电动机。流过电缆的长时最大工作电流即为电动机的额定电流。 N N N N N ca U P I I η?cos 3103?= = (4-19) 式中 ca I —长时最大工作电流,A ; N I —电动机的额定电流,A ; N U —电动机的额定电压,V ; N P —电动机的额定功率,kW ; N ?cos —电动机功率因数; N η—电动机的额定效率。 ② 干线。干线是指控制2台及以上电动机的总电缆。 向2台电动机供电时,长时最大工作电流ca I ,取2台电动机额定电流之和,即 21N N ca I I I += (4-20) 向三台及以上电动机供电的电缆,长时最大工作电流ca I ,用下式计算 wm N N de ca U P K I ?cos 3103?∑= (4-21) 式中 ca I —干线电缆长时最大工作电流,A ; N P ∑—由干线所带电动机额定功率之和,kW ; N U —额定电压,V ;

矿井低压漏电保护研究

矿井低压漏电保护研究 漏电保护是煤矿井下三大重要保护之一,对人身安全和设备的稳定运行起到至关重要的作用。在中性点不接地系统中,单相漏地占绝大多数,尽管它不破坏系统的对称性,但非漏电相对地电压会增加为原来的倍,若不及时处理,极易发展成两相短路,造成更大危害。本文针对矿井低压漏电保护进行研究。 标签:低压漏电动作保护 0引言 低压漏电保护的主要作用是:防止人身触电;不间断地监视井下采区低压电网的绝缘状态,以便及时采取措施,防止其绝缘进一步恶化;减少漏电电流引起瓦斯、煤尘爆炸的危险,防止因漏电电流引爆电雷管,防止短路电流所产生的电弧烧穿隔爆型电气设备的外壳,或使其外壳的温度升高超过危险值,引起瓦斯、煤尘爆炸;预防电缆和电气设备因漏电引起的相间短路故障;选择性漏电保护装置的使用;将会缩短漏电的停电范围,并便于寻找漏电故障,及时排除,从而缩短了漏电停电时间。为了防止电网触电及由此造成的危害,以及人触及带电体时造成的触电事故,《煤矿安全规程》规定:低压馈电线上必须装设漏电保护装置或有选择性的漏电保护装置。它可以在设备或线路漏电时,通过保护装置的检测机构获得异常信号,经中间机构转换和传递,然后促使执行机构动作,自动切断电源而起到保护作用。 1井下低压漏电保护动作分析 根据我国井下低压电网的运行情况,一般认为对低压配电网漏电保护实行三级保护,级数再增加将没有使用意义。实行分级保护的目的是从人身、设备安全和正常用电的角度出发,既要保证能可靠动作,切断电源,又要把这种动作跳闸造成的停电限制在最小范围内。常用的漏电保护装置多为附加直流电源式保护和零序电流保护装置。总保护处安装附加直流电源保护,无论系统发生对称性漏电还是非对称性漏电,保护均能可靠性动作;分支出口处安装零序电流保护作为横向选择性保护的主保护:而漏电闭锁则设置在磁力启动其中,作为最后一级保护,但它在运行中发生漏电情况下却是不动作的,仅仅是作为设备启动前的绝缘检测。 2井下低压漏电保护存在的问题 目前很多矿井仍然普遍使用检漏继电器和漏电保护单元组成的漏电保护系统,其中零序电压不仅与漏电电阻有关,而且与系统容抗、电网电压有很大关系,由于受系统电压和系统电容的影响,其动作时间误差很大。尽管当时已经调整好分馈和总馈之间的动作关系,但是随着电缆的不断延伸,系统电容也跟着发生变化,当支路漏电时,常常会出现分路开关没有动作,而总开关已经跳闸的误动现象。

井下电器设备的漏电保护

【摘要】井下觉的漏电故障可分为集中性漏电和分散性漏电两种。集中性漏电是指电网的某一处或某一点发生漏电,而其他部分对地绝缘仍正常。分散性漏电是指某条线路的整体绝缘水平均降低到安全值以下。 【关键词】井下电器;漏电;保护 1 造成漏电故障的原因 1.1 电气设备长期超负荷运行造成绝缘老化,导致漏电 1.2 电缆受到挤、压、砸、过度弯曲、铁器划伤针刺,出现裂口和缝隙后,长期受潮气的侵蚀造成绝缘损坏或导电芯线外露 1.3 导线连接接头不牢固、有毛刺、防松措施差或无防松措施等,会造成接头脱落、接头松动,使相线与金属外壳直接搭接,或由于接头处发热使绝缘损坏而造成漏电 1.4 电气设备因绝缘受潮或进水,造成绝缘老化,从而导致漏电。例如,长期浸泡在水中的电缆、接线盒进水等 1.5 操作电气设备时,由于弧光放电造成一相接地,而导致漏电 1.6 维修电气设备时,将工具和材料等导电体遗留在设备内部,造成一相线接金属外壳 1.7 维修电气设备时,由于停、送电操作错误,带电作业,造成人身触电而发生漏电 1.8 移动频繁的电气设备,电缆反复弯曲使芯线部分折断,刺破电缆绝缘与接地芯线接触而造成漏电 1.9 在电气设备内增加其他部件,使带电导体与外壳之间的电气间隙或爬由距离小于安全值时,造成对外壳放电 导致电网漏电故障造成的危害主要有漏电电流产生的电火花,当其火花能量达到最小点燃能量(0.28mj)时,如果漏电点的瓦斯浓度也在爆炸浓度范围内,即能引起瓦斯、煤尘爆炸;当人身触及一相漏电导体或漏电的设备外壳时,如果流过人身的漏电电流大于极限安全电流30ma?s时,可能造成人员触电伤亡;如果超过50ma,可能扩大成相间短路,造成更严重的危害。 2 预防漏电故障的措施 2.1 严禁电气设备及电缆长期过负荷运行 2.2 导线连接要固定、无毛刺,防松装置要完好,接线方式要正确 2.3 维修电气设备时要按规程操作,检修结束要认真检查,严禁将工具和材料等导体遗留在电气设备中 2.4 避免电缆、电气设备浸泡在水中,防止电缆受挤压、碰撞、过度弯曲、划伤、刺伤等机械损伤 2.5 不在电气设备中增加额外部件,若必须设置时,要符合有关规定的要求 2.6 设置保护接地装置 2.7 设置漏电保护装置 漏电保护装置应能连续监测电网的绝缘状态,并且只监视电网对地的绝缘电阻值,而不反映其电容的大小。当电网绝缘电阻降低到规定值时,快速切断供电电源。当电网的绝缘电阻对称下降或不对称下降时,其动作电阻值不变。其动作的电阻值不应受电源电压波动的影响,并具有自检功能。漏电保护装置检测电路的电阻应足够大,不应降低电网对地的阻抗,不增加人身触电的危险。漏电保护装置必须灵敏可靠,既不能拒动,也不能误动。漏电保护装置应能对电网对地电容电流进行补偿,减小人体触电电流。漏电保护装置在电网送电之前应能对电网的绝缘状态进行监测,一旦发现漏电,将电源开关闭锁。漏电保护装置动作应有选择性,以缩小停电范围。将漏电保护装置与屏蔽电缆配合使用,当相线绝缘损坏发生漏电时,由于通过屏蔽层接地,而屏蔽层外部又有绝缘外护套保护,因此,在漏电火花还未外露

煤矿1140V及以下电压等级的保护配置及整定计算方法培训教案

煤矿1140V及以下电压等级的保护配 置及整定计算方法

2013年05月

煤矿1140V及以下电压等级的保护配置及 整定计算方法 一、《煤炭安全规程》中关于电气保护的相关规定 第455条井下高压电动机、动力变压器的高压控制设备,应具有短路、过负荷、接地和欠压释放保护。井下由采区变电所、移动变电站或配电点引出的馈电线上,应装设短路、过负荷和漏电保护装置。低压电动机的控制设备,应具备短路、过负荷、单相断线、漏电闭锁保护装置及远程控制装置。 第456条井下配电网路(变压器馈出线路、电动机等)均应装设过流、短路保护装置;必须用该配电网路的最大三相短路电流校验开关设备的分断能力和动、热稳定性以及电缆的热稳定性。必须正确选择熔断器的熔体。 必须用最小两相短路电流校验保护装置的可靠动作系数。保护装置必须保证配电网路中最大容量的电气设备或同时工作成组的电气设备能够起动。 第457条矿井高压电网,必须采取措施限制单相接地电容电流不超过20A。 地面变电所和井下中央变电所的高压馈电线上,必须装设有选择性的单相接地保护装置;供移动变电站的高压馈电线上,必须装设有选择性的动作于跳闸的单相接地保护装置。 井下低压馈电线上,必须装设检漏保护装置或有选择性的漏电保护装置,保证自动切断漏电的馈电线路。

每天必须对低压检漏装置的运行情况进行1次跳闸试验。 二、供电系统继电保护原理 1、继电保护的任务 ①、监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置能最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。(如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等)。 ②、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,提示值班员迅速采取措施,使之尽快恢复正常,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。反应不正常工作情况的继电保护装置允许带一定的延时动作。 ③、实现电力系统的自动化和远程操作,以及工业生产的自动控制。如:自动重合闸、备用电源自动投入、遥控、遥测等。 2、继电保护装置的组成 一般而言,整套继电保护装置由测量比较元件、逻辑判断环节和执行输出元件三部分组成。 1)测量比较部分 测量比较部分是测量通过被保护的电气元件的物理参量,并

煤矿低压电网选择性漏电保护措施

煤矿低压电网选择性漏电保护措施 绪论 漏电保护是保证煤矿井下安全供电的三大保护 ( 过流保护、 漏电保护、保护接地) 井的高之 、 低压 是防止人身触电的重要措施。一 总长度可 个年产百万吨矿电缆分布于整个矿井。 达几十甚至上百公厘与瓦斯接触机会很多而电缆一旦被砸或者被挤压容易引起漏电。当煤矿工人碰到被机械砸伤或绝缘损坏的电气设备或电缆时则会引起触电事故漏电流流入大地产生电火花有可能酿成火灾或瓦斯、煤尘爆炸。威胁人身安全。因此做好煤矿井下供电低压漏电保护是煤矿安生生产 的重要 一 环。矿井电网运行的经验证明,无论是高压还是低压, 电气故障发生机率是很高的。我国的《煤矿安全规程》规定,矿井变电所的高压馈电线上应装设选择性的检漏保护装置;井下低压馈电线上应装设带有漏电闭锁的检漏保护装置。漏电保护的目的是通过切断电源来防止人身触电伤害和漏电电流引发的电气事故。 矿井漏电保护作为一个学科分支,首次使用是在 1 93 0 年的英国,50 年代我国开始使用,随着采煤技术机械化的不断提高,对供电可靠性的依赖也越大,供电系统尤其是低压供电系统中电气故障的80%是漏电故障。目前,我国普遍使用选择性漏电保护装置,对提高矿井低压电网供电的可靠性和安全性都起着重大的作用。选择性漏电保护可以使漏电故障的停电范围缩小, 便于寻找和消除故障点,提高供电的可靠性,对安全生产有利 总之漏电保护是煤矿井下供电系统的重要保护之一。

第一章漏电的危险性及预防 漏电是指当中性点不接地系统中的一相、两相或三相对地总绝缘电阻下降到危险值以下时,若发生一相接地故障,漏电电流将很大,会造成人身触电伤亡,引煤瓦斯或煤尘,引起火灾等重大事故。 第一节人身触电及预防 当人身接触到带电导体或接触到因绝缘损坏而带电的电气设备的金属外壳时,便可能造成触电事故。煤矿井下的巷道多小,接触电气设备的机会较多,触电后摆脱也相对困难得多,因此,造成触电伤害的可能性也较大。 一、造成人身触电的危害的因素 触电对人体组织的破坏过程很复杂,造成触电危害的因素也很多,最主要的有:一是通过人体的触电电流的大小,二是作用时间的长短。研究结果表明流经人体的电流与作用时间的乘积小于50mA ? s时对人体来说是安全的。但考虑到流过故障点的电流不点燃电雷管而引燃瓦斯和煤尘。取一定的安全系数,197 5 年煤炭工业部正式确认把人体触电电流与作用时间的乘积规定为30mA?s为安全值。因此从保护人身触电安全的角度出发,

煤矿井下供电三大保护

煤矿井下供电三大保护 据有关资料统计,在煤矿瓦斯、煤尘发生爆炸事故中,由电火花引起的事故约占50% 在煤矿发生的触电事故中,井下触电死亡人数约占64%在井下电器着火事故中,低压橡套电缆着火所占比例最大。 由于煤矿井下环境条件恶劣并且属于易燃易爆场所,故井下的负荷特征、电气设备及供电系统等都与地面有较大的差异,对安全供电与保护也提出了更高的要求。 井下电气设备的工作条件: 1、煤矿井下的空气中含有瓦斯及煤尘,在其含量达到一定量时,如果遇到电气设备或电缆电线产生电火花、电弧和局部高温时,就会燃烧或爆炸。 2、井下硐室、巷道、采掘工作面等需要安装电气设备的地方,空间都比较狭窄,因此,电气设备的体积受到一定的限制,且使人体接触电气设备、电缆的机会比较多,容易发生触电事故。 3、井下由于岩石和煤层都存在着压力,常会发生冒顶和片帮事故,使电气设备(特别是电缆)很容易受到砸、碰、挤、压而损坏。 4、井下空气比较潮湿,湿度一般在95沖上,并且机电硐室和巷道经常有滴水和淋水,使电气很容易受潮。 5、井下有些机电硐室和巷道的温度较高,而井下电气设备的散热条件较差,电气设备容易过热损坏。 &采掘工作面的电气设备移动频繁,且经常起动,使用电设备的负荷变化较大,有时会产生短时过载。 7、由于井下地质条件发生变化或在雨季期间,井下有发生突然出水事故的可能,其出水量往往为正常井下涌水量的几倍或几十倍,要求排水设备迅速开动,以保证矿井安全。 8、井下如发生全部停电事故,超过一定时间后,可能发生采区或全井被淹的重大事故。同时井下停

电停风后,还会造成瓦斯积聚,再次送电使时,可能造成瓦斯或煤尘爆炸的危险井下电气保护的类型: 1)过流保护。包括短路保护、过载(过负荷)保护、断相。 2)漏电保护。包括选择性和非选择性漏电保护、漏电闭锁。 3)接地保护。包括局部接地保护、保护接地系统。 4)电压保护。包括欠电压保护、过电压保护。 5)单相断线(断相)保护。 6)风电闭锁、瓦斯电闭锁。 7)综合保护。电动机综保和照明综保等。 其中短路保护、保护接地和漏电保护是保证煤矿井下安全供电的三大保护,它们是缺一不可的。 为了避免井下电网所造成的各种危害,《煤矿安全规程》、《煤炭工业矿井设计规范》对井下用电气设备、电压等级及管理方面等都做了具体规定,在煤矿井下供电系统中主要采取使用三大保护装置的措施。 一、过电流保护 过电流故障的危害及原因: 过电流是指流过电气设备和电缆的电流超过额定值。其故障有短路、过负荷和断相。 1.短路 短路是指电流不流经负载,而是两根或三根导线直接短接形成回路。这时电流很大,可达额定电流的几倍、几十倍,甚至更大,其危害是能够在极短的时间内烧毁电气设备,引起火灾或引起瓦斯、煤尘爆炸事故。短路电流还会产生很大的电动力,使电气设备遭到机械损坏,也会引起电网电压急剧下降,影响电网中的其他用电设备的正常工作。

浅谈井下漏电保护

浅谈井下漏电保护

井下低压电网漏电保护之我见 贾猛 (华润天能徐州煤电有限公司龙固煤矿,江苏 徐州 221613) 摘要:分析了漏电的危害和造成漏电的原因,提出预防漏电的具体措施,论述了漏电保护装置的作用,提出了对漏电保护装置的具体要求,概述了漏电保护的原理,介绍漏电保护装置日常维护内容,总结漏电故障的判断与寻找方法。 关键词:漏电原因预防查找 中图分类号:TM588 文献标识码:B The viewpoint of the electric leakage protect in low-pressure electric wire Jia Meng (Longgu coal mine,Jiangsu Tianneng group corporation,Xuzhou221613,China)Abstract: Analyzed the bane of the electric leakage with result in the reason of the electric leakage, put forward the concrete measure that prevent the electric leakage, discuss the electric leakage protect the function of the device, putting forward to protect the concrete request 2

that equip to the electric leakage, saying the protective principle in electric leakage all,introducing the electric leakage the protection equip to support the contents usually,tallying up the judgment that electric leakage break down with look for method. Key words:The electric leakage; reason; prevention; check to seek 0 前言 当电气设备或导线的绝缘损坏或人体触及一相带电体时,电源和大地形成回路,有电流流过的现象,称为漏电。 井下常见的漏电故障可分为集中性漏电和分散性漏电两类。集中性漏电是指漏电发生在电网的某一处或某一点,其余部分的对地绝缘水平仍保持正常。分散性漏电是指某条电缆或整个网络对地绝缘水平均匀下降或低于允许绝缘水平。 1 漏电的危害 漏电会给人身、设备以致矿井造成很大威胁,其危害主要有四个方面: (1)人接触到漏电设备或电缆时会造成触电伤亡事故。 (2)漏电回路中碰地碰壳的地方可能产生电火花,有可能引起瓦斯煤尘爆炸。 (3)漏电回路上各点存在电位差,若电雷管引线两端接触不同电位的两点,可能使雷管爆炸。 3

煤矿供电安全检查

供电安全检查 1、对井下防爆电气设备管理的具体要求 (1)严格按《规程》选用。 (2)井下防爆电气设备管理由电气防爆检查组全面负责,集中统一管理。 (3)严把入井关。入井前必须检查“一证一标志”(产品合格证、煤矿矿用产品安全标志)及其安全性能,检查合格并签发合格证后,方可入井。 (4)加强检查、维护。井下防爆电气设备的运行、维护和修理,必须符合防爆性能的各项技术要求。失爆电气设备,必须立即处理或更换,严禁继续使用。 2.安全检查重点 (1)是否按《规程》规定使用。 (2)隔爆外壳是否完整无损,是否有裂纹和变形。 (3)隔爆外壳的紧固件、密封件、接地件是否齐全完好。 (4)隔爆面的间隙和有效宽度是否符合规定,隔爆面的粗糙度、螺纹隔爆结构的拧入深度和合扣数是否符合规定。 (5)电缆接线盒和电缆引入装置是否完好,零部件是否齐全,有无缺损,电缆连接是否牢固、可靠。电缆与密封圈之间是否包扎他物;闲置喇叭口是否用挡板封堵。 (6)连锁装置功能完整,内部电气元件、保护装置是否完好无动作可靠。

(7)隔爆型电气设备安装地点有无滴水、淋水,周围围岩是否坚固;设备放置是否与地面垂直,最大倾角是否符合规定。 三、井下低压电网保护及其安全检查重点 (一)矿井供电系统 为保证矿井供电的可靠性由2个独立的电源向矿井变电所供电。矿区供电电压等级主要由35kv专用线路供电,采用双回路供电。通常情况下,经过经济技术比较,当两种电压的技术经济指标比较结果相差不多时,宜采用电压较高的方案。 井下供电系统一般由输电电缆、中央变电所、分区变电所、采区变电所、移动变电站、采区配电点及各类电缆组成。 三、井下低压电网保护及其安全检查点 1.矿井供电必须符合的要求 (1)矿井供电应有两回路电源线路。当任一回路发生故障停止供电时,另一回路应能担负矿井负荷。年产6万吨以下的矿井采用单回路供电时,必须有备用电源;备用电源的容量必须满足通风、排水、提升等的要求。 (2)矿井两回路电源线路上都不得分接任何负荷。正常情况下,矿井电源应采用分列运行方式,一回路运行时另一回路必须带电备用。(3)10kV及其以下的矿井架空电源线路不得共杆架设。 (4)矿井电源线路上严禁装设负荷定量器。 (5)对井下各水平中央变(配)电所、主排水泵房供电的线路,不得少于两回路。当任一回路停止供电时,其余回路应能担负全部负荷。

煤矿供电三大保护

煤矿井下供电三大保护 (一)矿井低压电的电流保护 一、常见过电流故障的类型 低压电网运行中,常见的过电流故障有短路、过负荷(过载)和单相断线三种 情况。什么是短路电流? 我们首先通过一个简单的实例来说明这一问题: 在正常情况下流过导线、灯的电流为: I=V/R=220/(R1+R2+R3) =220/50.48=4.36A 如果在灯头处两根导线相互碰头等于灯泡电阻没有接入,此时流过导线的电流则为: I=V/R=220/(R2+R3) =220/2.08=105.5A 1、短路是指供电线路的相与相之间经导线直接逢接成回路。 短路时,流过供电线路的电流称为短路电流。在井下中性点不接地的供电系统中,短路分为三相、两相两种,而单相接地不属于短路,但可发展为短路。 ⑴短路故障发生的原因 ①线路与电气设备绝缘破坏。例如,绝缘老化、绝缘受潮,接线(头)工艺不合格,设备内部的电气缺陷和电缆质量低及大气过电压等。 ②受机械性破坏。例如,受到运输机械的撞击,片帮、冒顶物的砸伤,炮崩,电缆敷设半径过小等。 ③误接线、误码操作。例如,相序不同线路的并联,带电进行封装接地线与带封装接地线送电,局部检修送电等。 ④严重隐患点。例如,“鸡爪子”、“羊尾巴”处。 ⑤带电检修电气设备。 ⑥带电移挪电气设备。 ⑵短路故障的危害 短路事故是煤矿常见的恶性事故之一,它产生的电流很大,在短路点电弧的中

心温度一般在2500℃~4000℃,可在极短的时间内烧毁线路或电气设备,甚至引起火灾。在遇瓦斯、煤尘时,可以引起燃烧或爆炸.短路可使电网电压急剧下降,影响电气设备的正常工作。 2、过负荷 过负荷也称为过载,是指实际流过电气设备的电流超过其额电流,又超过了允许的过流时间。从过流和时间两个量来说,都是相对量,必须具备过流和超时这两个条件,才称为过负荷。 过负荷常烧坏井下电气设备,造成过负荷的原因有:电源电压过低;重载起动;机械性堵转和单相断相。其共同表现是:电气设备超允许时间的过电流,设备的温升超过其允许温升,有时会引起线路着火,甚至扩大为火灾或重大事故。 3、断相 供电线路或用电设备一相断开时称为断相。电动机的此种运转状态叫单相运行。 断相时产生于供电线路,有时产生于设备内部,其断相的原因有:电缆与电缆的连接、电缆与用电设备的连接不牢,松动脱落或一相虚接而烧断;熔断器有一相熔断;电缆芯线受外力作用而断开。其危害主要表同为过负荷,即电动机电流增加,转矩下降,温度升高,甚至烧毁电动机。 二、低压电网短路电流的计算 低压电网短路电流计算的目的,其一是接最大短路电流选择开关设备,使开关的遮断电流大于所保护电网发生的最大三相短路电流;其二是接保护线路最末端的两相短路电流校验其保护装置的灵敏度,从而达到保护装置的要求。 短路电流的计算,应根据井下低压电网的实际情况,力求计算过程简单,并设定一些条件。 ㈠计算低压电网短路电流的设定条件 ⑴低压共电系统的容量为无穷大时,变压器二次空载电压维持不变。 ⑵计算线路阻抗时,电缆的电阻值若小于其电抗值的三分之一,可忽略电缆的电阻。 ⑶计算低压电网短路电流可不计算高压电网阻抗。忽略开关的接触电阻和弧光电阻。 ㈡低压电网短路电流的计算 短路电流的计算,有公式法和图表法两种。图表法使用简单,但不如公式法准确。 1、公式计算法 1)利用公式计算短路电流 (1)两相短路电流的计算公式:∑∑+=2 2)2(d )()(2X R U I P

煤矿井下高压漏电保护整定说明

煤矿井下高压漏电保护整定说明 关于高压漏电保护定值整定说明 ZBT-11保护器中配置了两段式零序过流(漏电)保护,并且可以带方向。 两段保护主要是为了实现先告警后跳闸。漏电告警可以用很小的定值和延时用于告警,漏电保护可以设以较大的定值,并且设置投跳闸。 1.接地电流的特征 高压系统的漏电电流主要是电缆的容性电流,漏电电流的大小与接地时的运行方式和接地阻抗有关。非故障线路零序电流之和等于接地线路的电容电流。 在没有消弧线圈的情况下,非故障线路的零序电流超前零序电压90°(方向由母线流向线路),故障线路的零序电流滞后零序电压90°(方向由线路流向母线)。但对联络线路来说,零序电流方向和大小都会随接地点的不同会有所不同。 在有消弧线圈的情况下,如果运行在欠补的状态下,如果补偿以后的接地电流大于接地线路本身的电容电流,方向由线路流向母线,故障线路零序电流将减少。如果补偿以后的接地电流小于接地线路的电容电流,故障线路零序电流不但大小变化,方向也变为由母线流向线路。此时零序功率方向是随着补偿度的变化而变化。 如果运行在过补的情况下,接地线路与非接地线路电容电流方向相同,因此不接地系统中已无法用零序功率方向来区分接地线路和非接地线路。 2.电缆线路的电容电流 下面是两组电缆线路的容性电流的经验数据: 油浸纸绝缘电力电缆每公里电缆的容性电流经验数据 额定电压 电缆芯线截面/ mm2 16 25 35 50 70 95 120 150 185 240 300 6kV 0.37 0.46 0.52 0.59 0.71 0.82 0.89 1.10 1.20 1.30 1.50 10kV 0.52 0.62 0.69 0.77 0.90 1.00 1.10 1.30 1.40 1.60 1.80 交联聚乙烯绝缘电力电缆每公里电缆的容性电流经验数据 额定电压 电缆芯线截面/ mm2 10 16 25 35 50 70 95 120 150 185 240 300 6kV 0.58 0.65 0.72 0.79 0.89 0.96 1.03 1.13 1.23 1.37

井下远端漏电试验安全技术措施

编号:TY12- 淮沪煤电有限公司丁集煤矿 井下远端漏电试验安全技术措施 施工地点: 施工单位: 编制:

审核: 编制日期: 丁集矿远端漏电试验安全技术措施 1、施工概况 煤矿井下低压供电系统中馈电开关漏电保护,为使其使用正常,动作灵敏可靠,保证供电安全。依据《煤矿安全规程》规定,每月至少对漏电保护进行一次远方人工漏电试验,因我矿是高瓦斯、双突出矿井,为保证试验安全,特编制本措施: 2、施工前准备 2.1、施工单位在施工前一天的调度会上审批远端漏电试验申请报告。 2.2、试验电阻(127V用2千欧、10W电阻,660V用11千欧、10W 电阻,1140V用20千欧、10W电阻)及1.5平方电缆; 2.3、穿戴合格的工作服、绝缘手套、绝缘靴,并使用试验合格的试电笔与必要的工器具; 2.4、试验人员必须是具有井下电钳工资格证,熟悉矿井供电系统,熟练掌握远方漏电试验操作方法的专业人员; 2.5、试验人员必须掌握电气防灭火和触电事故处理方法;

2.6、试验人员要携带一只干粉灭火器; 2.7、电管队现场统一指挥,施工单位现场负责人必须具有5年以上的电气事故处理经验及远漏电试验经验; 2.8、验前电管员准备好供电系统图,以便于现场校核; 2.9、该措施必须贯彻到所有参加试验的人员; 3、施工组织 施工时间:2013年月日时至月日时 单位负责人: 现场负责人: 参与施工人员:井下电工两名,电管员一名 4、施工步骤 4.1、试验人员在远方人工漏电试验前,应对馈电开关或照明综保检漏保护运行情况进行一次全面检查试验,包括: (1)、防爆性能检查,杜绝失爆; (2)、试验前务必检查局部接地极和辅助接地极应安设良好,符合要求; (3)、对上级馈电开关用试验按钮对漏电保护进行一次跳闸试验,正常跳闸后方可进行远端人工漏电试验。 (4)、检查各处导线绝缘有无破损,各处接头,接点接触是否良好,有无松动脱落或烧坏现象。 (5)、内部元件,熔断器、三相电抗器、指示灯及馈电开关的线圈有无损坏。 (6)、试验前要检查开关的漏电试验电阻是否合格;

井下三大保护整定细则

目录

煤矿井下低压电网短路保护装置的整定细则 第一章一般规定 第一节短路电流的计算方法 第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:第一节短路电流的计算方法 煤矿井下低压电网短路保护装置的整定细则 煤矿井下保护接地装置的安装、检查、测定工作细则 第1条选择短路保护装置的整定电流时,需计算两相短路电流值,可按公式(1)计算:利用公式(1)计算两相短路电流时,不考虑短路电流周期分量的衰减,短路回路的接触电阻和电弧电阻也忽略不计。 若需计算三相短路电流值,可按公式(2)计算: 第2条两相短路电流还可以利用计算图(表)查出。此时可根据变压器的容量、短路点至变压器的电缆换算长度及系统电抗、高压电缆的折算长度,从表中查出。 电缆的换算长度可根据电缆的截面、实际长度,可以用公式(3)计算得出。 电缆的换算长度,是根据阻抗相等的原则将不同截面和长度的高、低压电缆换算到标准截面的长度,在380 V、660 v、1 140 V系统中,以50 mm2为标准截面;在l27 V系统中,以4mm2为标准截面。 电缆的芯线电阻值选用芯线允许温度65℃时的电阻值;电缆芯线的电抗值按0.081Ω/km计算;线路的接触电阻和电弧电阻均忽略不计。 第二节短路保护装置 第3条馈出线的电源端均需加装短路保护装置。低压电动机应具备短路、过负荷、单相断线的保护装置。 第4条当干线上的开关不能同时保护分支线路时,则应在靠近分支点处另行加装短路

保护装置。 第5条各类短路保护装置均应按本细则进行计算、整定、校验,保证灵敏可靠,不准甩掉不用,并禁止使用不合格的短路保护装置。 第二章电缆线路的短路保护 第一节电磁式过电流继电器的整定 第6条 1 200V及以下馈电开关过电流继电器的电流整定值,按下列规定选择。 1.对保护电缆干线的装置按公式(4)选择: 2.对保护电缆支线的装置按公式(5)选择: 目前某些爆磁力起动器装有限流热继电器,其电磁元件按上述原则整定,其热元件按公式(7)整定。 煤矿井下常用电动机的额定起动电流和额定电流可以从电动机的铭牌或技术资料中查出,并计算出电动机的额定起动电流近似值。对鼠笼式电动机,其近似值可用额定电流值乘以6;对于绕线型电动机,其近似值可用额定电流值乘以1.5;当选择起动电阻不精确时,起动电流可能大于计算值,在此情况下,整定值也要相应增大,但不能超过额定电流的2.5倍。在起动电动机时,如继电器动作,则应变更起动电阻,以降低起动电流值。 对于某些大容量采掘机械设备,由于位处低压电网末端,且功率较大,起动时电压损失较大,其实际起动电流要大大低于额定起动电流,若能测出其实际起动电流时,则公式(4)和公式(5)中I QN应以实际起动电流计算。 第7条按第6条规定选择出来的整定值,还应用两相短路电流值进行校验,应符合公式(6)的要求: 若线路上串联两台及以上开关时(其间无分支线路),则上一级开关的整定值,也应按下一级开关保护范围最远点的两相短路电流来校验,校验的灵敏度应满足1.2~1.5的要求,以保证双重保护的可靠性。 若经校验,两相短路电流不能游足公式(6)时,可采取以下措施: 1.加大干线或支线电缆截面。 2.设法减少低压电缆线路的长度。 3.采用相敏保护器或软起动等新技术提高灵敏度。 4.换用大容量变压器或采取变压器并联。 5.增设分段保护开关。 6.采用移动变电站或移动变压器。 第二节电子保护器的电流整定 第8条馈电开关中电子保护器的短路保护整定原则,按第6条的有关要求进行整定,按第7条原则校验,其整定范围为(3~10)I N;其过载长延时保护电流整定值按实际负载电流值整定,其整定范围为(0.4~1)I N。I N为馈电开关额定电流。 第9条电磁起动器中电子保护器的过流整定值,按公式(7)选择: 当运行中电流超过I Z值时,即视为过载,电子保护器延时动作;当运行中电流达到I Z 值的8倍及以上时即视为短路,电子保护器瞬时动作。 第10条按第9条规定选择出来的整定值,也应以两相短路电流值进行校验,应符合公式(8)的要求: 第三节熔断器熔体额定电流的选择 第11条 1 200 V及以上的电网中,熔体额定电流可按下列规定选择。 1.对保护电缆干线的装置,按公式(9)选择: 如果电动起动时电压损失较大,则起动电流比额定起动电流小得多,其所取的不熔化系

相关文档
最新文档