2018年江苏省高考数学试卷
2018年高考真题——数学(江苏卷)+Word版含解析
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018年江苏高考数学试题及答案
13.已知 是定义在R上且周期为3的函数,当 时, .若函数 在区间 上有10个零点(互不相同),则实数 的取值范围是▲.
14.若△ 的内角满足 ,则 的最小值是▲.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
绝密★启用前
2018年普通高等学校招生全国统一考试(江苏卷)
数学Ⅰ
参考公式:
圆柱的侧面积公式: ,其中 是圆柱底面的周长, 为母线长.
圆柱的体积公式: ,其中 是圆柱的底面积, 为高.
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.
1.已知集合A={ }, ,则 ▲.
【考点】频率分布直方图.
7.在各项均为正数的等比数列 中, ,则 的值是▲.
8.设甲、乙两个圆柱的底面分别为 , ,体积分别为 , ,若它们的侧面积相等,且 ,则 的值是▲.
9.在平面直角坐标系 中,直线 被圆 截得的弦长为▲.
10.已知函数 若对于任意 ,都有 成立,则实数 的取值范围是▲.
11.在平面直角坐标系 中,若曲线 (a,b为常数)过点 ,且该曲线在点P处的切线与直线 平行,则 的值是▲.
15.(本小题满分14分)
已知 , .
(1)求 的值;
(2)求 的值.
16.(本小题满分14分)
如图,在三棱锥 中, ,E,F分别为棱 的中点.已知 ,
求证: (1)直线 平面 ;
(2)平面 平面 .
17.(本小题满分14分)
如图,在平面直角坐标系 中, 分别是椭圆 的左、右焦点,顶点 的坐标为 ,连结 并延长交椭圆于点A,过点A作 轴的垂线交椭圆于另一点C,连结 .
2018年江苏省高考数学试卷(含解析版)
2018年江苏省高考数学试卷(含解析版)2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分。
请将答案填写在答题卡相应位置上。
1.(5分)已知集合A={1.2.8},B={-1.1.6.8},则A∩B={1.8}。
2.(5分)若复数z满足i•z=1+2i(其中i是虚数单位),则z的实部为-2.3.(5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为74.4.4.(5分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为20.5.(5分)函数f(x)=√(3-x)的定义域为(-∞。
3]。
6.(5分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为3/10.7.(5分)已知函数y=sin(2x+φ)(-π/4≤x≤π/4),则φ的值为π/6.8.(5分)在平面直角坐标系xOy中,若双曲线x²/a²-y²/b²=1(a>b>0)的右焦点F(c,0)到一条渐近线的距离为1,则其离心率的值为c/a。
9.(5分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)=|x|,则f(f(15))的值为1.10.(5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为8.11.(5分)若函数f(x)=2x³-ax²+1(a∈R)在(-∞,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为4.12.(5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D。
若D的横坐标为4/3,则C的坐标为(7/3,14/3)。
13.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为3.14.(5分)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}。
2018年江苏省高考数学试卷及解析
2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.(5.00分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.(5.00分)函数f(x)=的定义域为.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.17.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.214.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.3(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16.00分)如图,在平面直角坐标系xOy中,椭圆C 过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB 的面积为,求直线l的方程.19.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在4x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.5B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin (﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内6作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).72018年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B={1,8} .【分析】直接利用交集运算得答案.【解答】解:∵A={0,1,2,8},B={﹣1,1,6,8},∴A∩B={0,1,2,8}∩{﹣1,1,6,8}={1,8},故答案为:{1,8}.【点评】本题考查交集及其运算,是基础的计算题.2.(5.00分)若复数z满足i•z=1+2i,其中i是虚数单位,则z的实部为2.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由i•z=1+2i,得z=,8∴z的实部为2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【分析】根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为×(89+89+90+91+91)=90.故答案为:90.【点评】本题考查了利用茎叶图计算平均数的问题,是基础题.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.9【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.【点评】本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法.5.(5.00分)函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:≥1,10解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).【点评】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为0.3.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,11故选中的2人都是女同学的概率P==0.3,故答案为:0.3【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【分析】根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k ∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.【点评】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.128.(5.00分)在平面直角坐标系xOy 中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线=1(a>0,b>0)的右焦点F (c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f (x)=,则f(f(15))的值为.【分析】根据函数的周期性,进行转化求解即可.13【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f ()=cos ()=cos =,即f(f(15))=,故答案为:【点评】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,14多面体的中心为顶点的多面体的体积为:2×=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x ﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x (3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x ∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零15点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x >,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f ()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D .若=0,则点A的横坐标为3.16【分析】设A(a,2a),a>0,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D 的坐标,结合=0求得a值得答案.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C (,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.【点评】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c 的最小值为9.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【解答】解:由题意得acsin120°=asin60°+csin60°,17即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.【点评】本题主要考查基本不等式的应用,利用1的代换结合基本不等式是解决本题的关键.14.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为27.【分析】采用列举法,验证n=26,n=27即可.【解答】解:利用列举法可得:当n=26时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,2,4,8,16,32.S26=,a27=43,⇒12a27=516,不符合题意.当n=27时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},18所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,43,2,4,8,16,32.S27==546,a28=45⇒12a28=540,符合题意,故答案为:27.【点评】本题考查了集合、数列的求和,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【分析】(1)由⇒AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,19由AB1⊥B1C1⇒AB1⊥BC⇒AB1⊥面A1BC,⇒平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【分析】(1)由已知结合平方关系求得sinα,cosα的值,再由倍角公式得cos2α的值;(2)由(1)求得tan2α,再由cos(α+β)=﹣求得tan(α+β),利用tan(α20﹣β)=tan[2α﹣(α+β)],展开两角差的正切求解.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;21(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【分析】(1)根据图形计算矩形ABCD和△CDP的面积,求出sinθ的取值范围;(2)根据题意求出年总产值y的解析式,构造函数f(θ),利用导数求f(θ)的最大值,即可得出θ为何值时年总产值最大.=(40sinθ+10)•80cosθ【解答】解:(1)S矩形ABCD=800(4sinθcosθ+cosθ),S△CDP =•80cosθ(40﹣40sinθ)=1600(cosθ﹣cosθsinθ),当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时sinθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,22则y=3200t(4sinθcosθ+cosθ)+4800t(cosθ﹣cosθsinθ)=8000t(sinθcosθ+cosθ),其中sinθ∈[,1);设f(θ)=sinθcosθ+cosθ,则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈[,1)时,f′(θ)<0,f(θ)单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.答:(1)S=800(4sinθcosθ+cosθ),矩形ABCDS△CDP=1600(cosθ﹣cosθsinθ),sinθ∈[,1);θ=时总产值y最大.【点评】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是中档题.2318.(16.00分)如图,在平面直角坐标系xOy中,椭圆C 过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB 的面积为,求直线l的方程.【分析】(1)由题意可得.,又a2﹣b2=c2=3,解得a=2,b=1即可.(2)①可设直线l的方程为y=kx+m,(k<0,m>0).可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,解得k=﹣,m=3.即可②设A(x1,y1),B(x2,y2),联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,24O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.即可【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2﹣b2=c2=3,解得a=2,b=1.∴椭圆C 的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l 的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,25可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P 的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k <﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.2619.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【分析】(1)根据“S点”的定义解两个方程,判断方程是否有解即可;(2)根据“S点”的定义解两个方程即可;(3)分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S 点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x )得=2ax,得x=,f ()=﹣=g ()=﹣lna2,得a=;27(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),假设b>0,得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.【点评】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;28(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【分析】(1)根据等比数列和等差数列的通项公式,解不等式组即可;(2)根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d ≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1•q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1•q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d ≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,29下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m 时,﹣==,当1<q ≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m 时,=≤(1﹣)=f ()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].【点评】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的30运算能力,综合性较强,难度较大.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.【分析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断△COB是等边三角形,BC的长.【解答】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,,所以BO=OC=2,,所以,31所以∠COP=60°,所以△COB为等边三角形,所以BC=BO=2.【点评】本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.【分析】(1)矩阵A=,求出det(A)=1≠0,A可逆,然后求解A的逆矩阵A﹣1.(2)设P(x,y),通过•=,求出=,即可得到点P的坐标.【解答】解:(1)矩阵A=,det(A)=2×2﹣1×3=1≠0,所以A可逆,从而:A的逆矩阵A﹣1=.(2)设P(x,y),则•=,所以=A﹣1=,32因此点P的坐标为(3,﹣1).【点评】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,直线l的方程为ρsin (﹣θ)=2,曲线C的方程为ρ=4cosθ,求直线l被曲线C截得的弦长.【分析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.【解答】解:∵曲线C的方程为ρ=4cosθ,∴ρ2=4ρcosθ,⇒x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin (﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x ﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.33D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【分析】根据柯西不等式进行证明即可.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为4【点评】本题主要考查不等式的证明,利用柯西不等式是解决本题的关键.,【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.34【分析】设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O﹣xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,可得sinθ=|cos|=,即可得直线CC1与平面AQC1所成角的正弦值.【解答】解:如图,在正三棱柱ABC﹣A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{}为基底,建立空间直角坐标系O﹣xyz,35∵AB=AA1=2,A(0,﹣1,0),B (,0,0),C(0,1,0),A1(0,﹣1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,∴,.|cos|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q ()∴,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,﹣1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos|==,36∴直线CC1与平面AQC1所成角的正弦值为.【点评】本题考查了向量法求空间角,属于中档题.26.设n∈N*,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).【分析】(1)由题意直接求得f3(2)的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得f4(2)的值;(2)对一般的n(n≥4)的情形,可知逆序数为0的排列只有一个,逆序数为137的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排为计算f n+1(2)=f n(2)+f n(1)列,n+1在新排列中的位置只能是最后三个位置,可得f n+1+f n(0)=f n(2)+n,则当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2),则f n(2)(n≥5)的表达式可求.【解答】解:(1)记μ(abc)为排列abc得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排为计算f n+1列,n+1在新排列中的位置只能是最后三个位置.因此,f n(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.+1当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)38﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.【点评】本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.39。
2018高考真题__数学(江苏卷)+含解析
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018年高考真题——数学(江苏卷)+Word版含解析
2018年高考真题——数学(江苏卷)+Word版含解析【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018江苏高考数学试卷含答案(校正精确版)
2018江苏一、填空题1.已知集合A ={0,1,2,8},B ={-1,1,6,8},那么A ∩B =. 【解析】由题设和交集的定义可知,A ∩B ={1,8}.2.若复数z 满足i •z =1+2i ,其中i 是虚数单位,则z 的实部为. 【解析】因为i •z =1+2i =i(-i +2),则z =2-i ,则z 的实部为2.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为90. 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为.【解析】由伪代码可得I =3,S =2;I =5,S =4;I =7,S =8;因7>6,故结束循环,输出S =8. 5.函数f (x )=log 2x -1的定义域为.【解析】要使函数f (x )有意义,则log 2x -1≥0,即x ≥2,则函数f (x )的定义域是[2,+∞).6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.已知函数y =sin(2x +φ)(-π2<φ<π2)的图象关于直线x =π3对称,则φ的值是.【解析】由函数y =sin(2x +φ) (-π2<φ<π2)的图象关于直线x =π3对称,得sin(2π3+φ)=±1,因-π2<φ<π2,故π6<2π3+φ<7π6,则2π3+φ=π2,φ=-π6.8.在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为32c ,则其离心率的值是.【解析】不妨设双曲线的一条渐近线方程为y =b a x ,即bx -ay =0,故|bc |a 2+b 2=b =32c ,故b 2=c 2-a 2=34c 2,得c =2a ,故双曲线的离心率e =ca=2.9.函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为.【解析】因函数f (x )满足f (x +4)=f (x )(x ∈R ),故函数f (x )的最小正周期是4.因在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,故f (f (15))=f (f (-1))=f (12)=cos π4=22.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,故该多面体的体积为13×(2)2×1×2=43.11.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为. 【解析】f ′(x )=2x (3x -a )(a ∈R ),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1,故此时f (x )在(0,+∞)内无零点,不满足题意.当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得,0<x <a 3,则f (x )在(0,a3)上单调递减,在(a 3,+∞)上单调递增,又f (x )在(0,+∞)内有且只有一个零点,故f (a 3)=1-a 327=0得,a =3,故f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,故f (x )在[-1,1]上的最大值与最小值的和为-3.12.在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为.【解析】因AB →·CD →=0,故AB ⊥CD ,又点C 为AB 的中点,故∠BAD =45°.设直线l 的倾斜角为θ,直线AB 的斜率为k ,则tan θ=2,k =tan(θ+π4)=-3.又B (5,0),故直线AB 的方程为y =-3(x-5),又A 为直线l :y =2x 上在第一象限内的点,联立直线AB 与直线l 的方程,得x =3,y =6,故点A 的横坐标为3.13.在ΔABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =2π3,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为. 【解析】因∠ABC =120°,∠ABC 的平分线交AC 于点D ,故∠ABD =∠CBD =60°,由三角形的面积公式可得12ac sin 120°=12a ×1×sin 60°+12c ×1×sin 60°,化简得ac =a +c ,又a >0,c >0,故1a +1c =1,则4a +c =(4a +c )·(1a +1c )=5+c a +4ac ≥5+2c a ·4ac=9,当且仅当c =2a 时取等号,故4a +c 的最小值为9.14.已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为. 【解析】所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;…;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体ABCD -A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面A 1B 1C ; 平面ABB 1A 1⊥平面A 1BC .【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因AB 不在平面A 1B 1C 内,A 1B 1⊆平面A 1B 1C ,故AB ∥平面A 1B 1C . (2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又AA 1=AB ,故四边形ABB 1A 1为菱形,故AB 1⊥A 1B .又AB 1⊥B 1C 1,BC ∥B 1C 1,故AB 1⊥BC .又A 1B ∩BC =B ,A 1B ⊆平面A 1BC ,BC ⊆平面A 1BC ,故AB 1⊥平面A 1BC .因AB 1⊆平面ABB 1A 1,故平面ABB 1A 1⊥平面A 1BC . 16.(本小题满分14分)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.【解析】(1)因tan α=43,tan α=sin αcos α,故sin α=43cos α.因sin 2α+cos 2α=1,故cos 2α=925,故cos2α=2cos 2α-1=-725.(2)因α,β为锐角,故α+β∈(0,π).又cos(α+β)=-55,故sin(α+β)=1-cos 2(α+β)=255,故tan(α+β)=-2.因tan α=43,故tan 2α=2tan α1-tan 2α=-247,故tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4∶3,求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【解析】(1)如图,设PO 的延长线交MN 于点H ,则PH ⊥MN ,故OH =10.过O 作OE ⊥BC 于点E ,则OE ∥MN ,故∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40-40sin θ)=1 600(cos θ-sin θcos θ).过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,连接OG ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD ,故sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1 600( cos θ-sin θcos θ)平方米,sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1 600(cos θ-sin θcos θ)=8 000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2),则f ′(θ)=cos 2θ-sin 2θ-sin θ=-(2sin 2θ+sin θ-1)=-(2sin θ-1)(sin θ+1).令f ′(θ)=0得,θ=π6,当θ∈(θ0,π6)时,f ′(θ)>0,故f (θ)为增函数;当θ∈(π6,π2)时,f ′(θ)<0,故f (θ)为减函数,因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点(3,12),焦点F 1(-3,0),F 2(3,0),圆O 的直径为F 1F 2.(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .(1)若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;(2)直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为267,求直线l 的方程.【解析】(Ⅰ)因椭圆C 的焦点为F 1(-3,0),F 2(3,0),故可设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b>0).又点(3,12)在椭圆C 上,故⎩⎪⎨⎪⎧3a 2+14b 2=1,a 2-b 2=3,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.,故椭圆C 的方程为x 24+y 2=1.因圆O 的直径为F 1F 2,故其方程为x 2+y 2=3.(Ⅱ)(1)设直线l 与圆O 相切于P (x 0,y 0)(x 0>0,y 0>0),则x 20+y 20=3,故直线l 的方程为y =-x 0y 0(x -x 0)+y 0,即y =-x 0y 0x +3y 0.由⎩⎨⎧x 24+y 2=1,y =-x 0y 0x +3y消去y ,得(4x 20+y 20)x 2-24x 0x +36-4y 20=0(*),因直线l 与椭圆C 有且只有一个公共点,故Δ=(-24x 0)2-4(4x 20+y 20)(36-4y 20)=48y 20(x 20-2)=0.因x 0>0,y 0>0,故x 0=2,y 0=1.故点P 的坐标为(2,1).(2)因△OAB 的面积为267,故12AB ·OP =267,从而AB =427.设A (x 1,y 1),B (x 2,y 2),由(*)得x 1,2=24x 0±48y 20(x 20-2)2(4x 20+y 20),故AB 2=(x 1-x 2)2+(y 1-y 2)2=⎝⎛⎭⎫1+x 20y 20·48y 20(x 20-2)(4x 20+y 20)2.因x 20+y 20=3,故AB 2=16(x 20-2)(x 20+1)2=3249,即2x 40-45x 20+100=0,解得x 20=52满足(*)式的Δ>0,x 20=20舍去,则y 20=12,故P 的坐标为⎝⎛⎭⎫102,22. 综上,直线l 的方程为y =-5x +32.19.(本小题满分16分)记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”. (1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值.(3)已知函数f (x )=-x 2+a ,e ()xb g x x=.对任意a >0,判断是否存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”,并说明理由.19.【解析】(1)证明 函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎪⎨⎪⎧x =x 2+2x -2,1=2x +2,此方程组无解,因此,f (x )与g (x )不存在“S 点”.(2)函数f (x )=ax 2-1,g (x )=ln x ,则f ′(x )=2ax ,g′(x )=1x.设x 0为f (x )与g (x )的“S 点”,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 20=1,(*),得ln x 0=-12,即x 0=e -12,则a =12⎝⎛⎭⎫e -122=e 2.当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”.因此,a 的值为e 2.(3)对任意a >0,设h (x )=x 3-3x 2-ax +a .因h (0)=a >0,h (1)=-2<0,且h (x )的图象是不间断的,故存在x 0∈(0,1),使得h (x 0)=0,令()302e 1x x b x =-,则b >0.函数f (x )=-x 2+a ,()e x b g x x =,则f ′(x )=-2x ,.由f (x )=g (x )且f ′(x )=g ′(x ),得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1x x x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**),此时,x 0满足方程组(**),即x 0是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S点”.20.(本小题满分16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q =2,若 |a n -b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围; (2)若a 1=b 1>0,m ∈N *,q ∈(1,m2],证明:存在d ∈R ,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示).【解析】(1)由条件知:a n =(n -1)d ,b n =2n -1,因为|a n -b n |≤b 1对n =1,2,3,4均成立,即|(n -1)d -2n -1|≤1对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得73≤d ≤52,因此,d 的取值范围为[73,52].(2)由条件知:a n =b 1+(n -1)d ,b n =b 1q n -1.若存在d ,使得|a n -b n |≤b 1(n =2,3,…,m +1)成立,即|b 1+(n -1)d -b 1q n -1|≤b 1(n =2,3,…,m +1),即当n =2,3,…,m +1时,d 满足q n -1-2n -1b 1≤d ≤q n -1n -1b 1.因q ∈(1,m2],则1<qn -1≤q m≤2,从而q n -1-2n -1b 1≤0,q n -in -1b 1>0,对n =2,3,…,m +1均成立.故取d =0时,|a n -b n |≤b 1对n =2,3,…,m +1均成立.下面讨论数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大项和数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小项(n =2,3,…,m +1). ①当2≤n ≤m 时,q n -2n -q n -1-2n -1=nq n -q n -nq n -1+2n (n -1)=n (q n -q n -1)-q n +2n (n -1),当1<q ≤21m 时,有q n ≤q m ≤2,从而n (q n -qn -1)-q n +2>0.因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1-2n -1单调递增,故()()2e 1x b x g x x -'=数列⎩⎨⎧⎭⎬⎫q n -1-2n -1的最大项为q m -2m .②设f (x )=2x (1-x ),当x >0时,f ′(x )=(ln 2-1-x ln 2)2x <0,所以f (x )单调递减,从而f (x )<f (0)=1.当2≤n ≤m 时,q nn q n -1n -1=q (n -1)n ≤21n ⎝⎛⎭⎫1-1n =f ⎝⎛⎭⎫1n <1,因此,当2≤n ≤m +1时,数列⎩⎨⎧⎭⎬⎫q n -1n -1单调递减,故数列⎩⎨⎧⎭⎬⎫q n -1n -1的最小项为q m m .因此,d 的取值范围为⎣⎡⎦⎤b 1(q m -2)m ,b 1q m m . 数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC = BC 的长. 【解析】连结OC ,因为PC 与圆O 相切,故PC ⊥.又因为23PC =2OC =,故224OP PC OC =+=.又因为2OB =,从而B 为Rt OCP △斜边的中点,故2BC =.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2.(1)求A 的逆矩阵A -1;(2)若点P 在矩阵A 对应的变换作用下得到点P ′(3,1),求点P 的坐标. 【解析】1)因为A =⎣⎢⎡⎦⎥⎤2 312,det(A )=2×2-1×3=1≠0,故A 可逆,从而A -1=⎣⎢⎡⎦⎥⎤ 2 -3-1 2. (2)设P (x ,y ),则⎣⎢⎡⎦⎥⎤231 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤31,故⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤ 3-1,因此,点P 的坐标为(3,-1). C .[选修4—4:坐标系与参数方程](本小题满分10分) 在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为ρ=4cos θ,故曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为ρsin ⎝⎛⎭⎫π6-θ=2,则直线l 过A (4,0),倾斜角为π6,故A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连接OB .因为OA 为直径,从而∠OBA =π2,故AB =4cos π6=23.因此,直线l 被曲线C 截得的弦长为23.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求x 2+y 2+z 2的最小值. 【解析】由柯西不等式,得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2.因x +2y +2z =6,故x 2+y 2+z 2≥4,当且仅当x 1=y 2=z 2时,不等式取等号,此时x =23,y =43,z =43,故x 2+y 2+z 2的最小值为4.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【解析】如图,在正三棱柱ABC -A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,连接OB ,OO 1.则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB .以{OB →,OC →,OO 1→}为基底,建立如图所示的空间直角坐标系O -xyz .因AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P ⎝⎛⎭⎫32,-12,2,从而BP →=⎝⎛⎭⎫-32,-12,2,AC 1→=(0,2,2),故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →|·|AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q ⎝⎛⎭⎫32,12,0,因此AQ →=⎝⎛⎭⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的一个法向量,则⎩⎪⎨⎪⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→|·|n |=25×2=55,所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.(本小题满分10分)设n ∈N *,对1,2,…,n 的一个排列i 1i 2…i n ,如果当s <t 时,有i s >i t ,则称(i s ,i t )是排列i 1i 2…i n 的一个逆序,排列i 1i 2…i n 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n (k )为1,2,…,n 的所有排列中逆序数为k 的全部排列的个数. (1)求f 3(2),f 4(2)的值;(2)求f n (2)(n ≥5)的表达式(用n 表示).【解析】(1)记τ(abc )为排列abc 的逆序数,对1,2,3的所有排列,有τ(123)=0,τ(132)=1,τ(213)=1,τ(231)=2,τ(312)=2,τ(321)=3,故f 3(0)=1,f 3(1)=f 3(2)=2.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f 4(2)=f 3(2)+f 3(1)+f 3(0)=5.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,故f n (0)=1.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,故f n (1)=n -1.为计算f n +1(2),当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,f n +1(2)=f n (2)+f n (1)+f n (0)=f n (2)+n .当n ≥5时,f n (2)=[f n (2)-f n -1(2)]+[f n -1(2)-f n -2(2)]+…+[f 5(2)-f 4(2)]+f 4(2)=(n -1)+(n -2)+…+4+f 4(2)=n 2-n -22.因此,当n ≥5时,f n (2)=n 2-n -22.。
2018年高考数学江苏卷(含答案与解析)
数学试卷 第1页(共42页) 数学试卷 第2页(共42页)绝密★启用前江苏省2018年普通高等学校招生全国统一考试数 学本试卷共160分.考试时长120分钟.参考公式:锥形的体积公式13V Sh =,其中S 是椎体的底面积,h 是椎体的高。
一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .2.若复数z 满足i 12i z =+,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()f x =的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数ππsin(2)()22y x ϕϕ=+-<<的图象关于直线π3x =对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线22221(0)x y a b a b-=>>0,的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是 . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,()cos (2)2102x x f x x x π⎧⎪⎪=⎨⎪+⎪⎩0<≤,(-2<≤),,则((15))f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,点(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .13.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,120ABC ∠=,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .14.已知集合{21,}A x x n n ==-∈*N ,{2,}n B x x n ==∈*N .将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共42页) 数学试卷 第4页(共42页)二、解答题:本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知α,β为锐角,4tan 3α=,cos()αβ+=.(Ⅰ)求cos2α的值; (Ⅱ)求tan()αβ-的值.数学试卷 第5页(共42页) 数学试卷 第6页(共42页)17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求点A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(Ⅰ)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (Ⅱ)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点1(F,2F ,圆O 的直径为12F F .(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △,求直线l 的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共42页) 数学试卷 第8页(共42页)19.(本小题满分16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(Ⅰ)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (Ⅱ)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(Ⅲ)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (Ⅱ)若110a b =>,m ∈*N,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).数学试卷 第9页(共42页) 数学试卷 第10页(共42页)数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题). 本卷满分40分,考试时间为30分钟.21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。
2018年高考数学江苏卷-答案解析
江苏省2018年普通高等学校招生全国统一考试数学答案解析一、填空题1.【答案】{1,8}【解析】观察两个集合即可求解。
【考点】集合的交集运算2.【答案】2【解析】2i (i)i i i 12i a b a b a b +=+=-=+,故2,1,2i a b z ==-=-.【考点】复数的运算 3.【答案】90【解析】8989909191905++++= 【考点】茎叶图,数据的平均数4.【答案】8【解析】代入程序前11I S =⎧⎨=⎩符合6I <, 第一次代入后32I S =⎧⎨=⎩,符合6I <,继续代入; 第二次代入后54I S =⎧⎨=⎩,符合6I <,继续代入, 第三次代入后78I S =⎧⎨=⎩,不符合6I <,输出结果8S =,故最后输出S 的值为8.【考点】伪代码5.【答案】[2,)+∞【解析】2log 100x x -⎧⎨>⎩≥,解之得2x ≥,即[2,)+∞. 【考点】函数的定义域,对数函数6.【答案】310【解析】假设3名女生为,,a b c ,男生为,d e ,恰好选中2名女生的情况有:选a 和b ,a 和c ,b 和c 三种。
总情况有a 和b ,a 和c ,a 和d ,a 和e ,b 和c ,b 和d ,b 和e ,c 和d ,c 和e ,d 和e 这10种,两者相比即为答案310【考点】古典概型7.【答案】:6π- 【解析】函数的对称轴为+k 2ππ+()2k k ππ∈Z , 故把3x π=代入得2,326k k πππϕπϕπ+=+=-+ 因为22ππϕ-<<,所以0,6k πϕ==-.【考点】正弦函数的图像和性质8.【答案】2 【解析】由题意画图可知,渐近线b y x a=与坐标轴的夹角为60。
故22224b c a b a a ==+=,故2c e a==. 【考点】双曲线的几何性质9.【答案】2【解析】因为(4)()f x f x +=,函数的周期为4, 所以11(15)(1),(1)122f f f =--=-+=∴1((15))cos 242ff f f π⎛⎫===⎪⎝⎭.【考点】分段函数,函数的性质,函数值的求解10.【答案】4 3【解析】平面ABCD为底面边长,高为1的正四棱锥,141233⨯⨯=.【考点】空间几何体的结构,体积的计算11.【答案】3-【解析】3221()212f x x ax a xx=-+⇒=+令'322312()2,()20231g x x g x x xx x=+=->⇒-+在(0,1)上单调递减,在(1,)+∞上单调递增∵有唯一零点∴32(1)213()231a g f x x x==+=⇒=-+求导可知在[1,1]-上,min max()(1)4,()(0)1f x f f x f=-=-==∴min max()()3f x f x+=-【考点】函数零点,导数在函数性质中的应用12.【答案】3【解析】∵AB为直径∴AD BD⊥∴BD即B到直线l的距离。
2018年江苏高考数学试题及答案
注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。
本卷满分为 160 分,考试时间为 120 分钟。
考试结束后,请将本试卷和答题卡一片交回。
2. 答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3. 请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4. 作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5. 如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2018 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积V = 1Sh ,其中 S 是锥体的底面积, h 是锥体的高.3 一、填空题:本大题共 14 小题,每小题5 分,共计 70 分.请把答案填写在答.题.卡.相.应.位.置.上..1. 已知集合 A = {0,1, 2,8}, B = {-1,1, 6,8},那么A B = ▲ .2. 若复数 z 满足i ⋅ z =1+ 2i ,其中 i 是虚数单位,则 z 的实部为 ▲ .3. 已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出的分数的平均数为 ▲ .4. 一个算法的伪代码如图所示,执行此算法,最后输出的 S 的值为 ▲ .⎨5. 函数 f (x )= log 2 x - 1 的定义域为 ▲ .6. 某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2 名女生的概率为 ▲ .7. 已知函数 y = sin(2x + ϕ)(- π < ϕ < π) 的图象关于直线 x = π对称,则ϕ 的值是 ▲ .2 2 3x 2 y 28. 在平面直角坐标系 xOy 中,若双曲线 a 2 - b2 = 1(a > 0,b > 0) 的右焦点 F (c , 0) 到一条渐近线的距离为 3c ,则其离心率的值是 ▲ .2⎧cos πx , 0 < x ≤ 2, 9. 函数 f (x ) 满足 f (x + 4) = f (x )(x ∈ R ) ,且在区间(-2, 2] 上, f (x ) = ⎪ 2⎪| x + 1⎪⎩ 2则|, -2 < x ≤ 0,f ( f (15)) 的值为▲ .10. 如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面体的体积为 ▲ .11. 若函数 f (x ) = 2x 3 - ax 2 + 1(a ∈ R ) 在(0, +∞) 内有且只有一个零点,则 f (x ) 在[-1,1] 上的最大值与最小值的和为 ▲ .12. 在平面直角坐标系 xOy 中,A 为直线l : y = 2x 上在第一象限内的点, B (5, 0) ,以 AB 为直径的圆 C 与直线 l 交于另一点 D .若 AB ⋅ CD = 0 ,则点 A 的横坐标为 ▲ .13. 在△ABC 中,角 A , B , C 所对的边分别为a , b , c , ∠ABC = 120︒ , ∠ABC 的平分线交 AC于点 D ,且 BD =1,则4a + c 的最小值为 ▲ .14. 已知集合 A = {x | x = 2n - 1, n ∈ N *}, B = {x | x = 2n , n ∈ N *} .将A B 的所有元素从小到大依次排列构成一个数列{a n } .记 S n 为数列{a n } 的前 n 项和,则使得 S n > 12a n +1 成立的 n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分 14 分)在平行六面体 ABCD - A 1 B 1C 1 D 1 中, AA 1 = AB , AB 1 ⊥B 1C 1 .求证:(1) AB ∥平面A 1B 1C ;(2) 平面ABB 1 A 1 ⊥ 平面A 1BC .16.(本小题满分 14 分)已知α , β 为锐角, tan α = 4, cos(α + β ) = - 5 .3 5(1) 求cos 2α 的值; (2) 求tan(α - β ) 的值.17.(本小题满分 14 分)某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧 MPN (P 为此圆弧的中点)和线段 MN 构成.已知圆 O 的半径为 40 米,点 P 到 MN 的距离为 50 米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD ,大棚Ⅱ内的地块形状为△CDP ,要求 A , B 均在线段 MN 上, C , D 均在圆弧上.设 OC与 MN 所成的角为θ .(1)用θ 分别表示矩形 ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、( 3, 1 )+ b e 乙两种蔬菜的单位面积年产值之比为4 : 3 .求当θ 为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分 16 分)如图,在平面直角坐标系 xOy 中,椭圆 C 过点2,焦点F 1 (- 3, 0), F 2 ( 3, 0) ,圆 O 的直径为 F 1 F 2 .(1) 求椭圆 C 及圆 O 的方程;(2) 设直线 l 与圆 O 相切于第一象限内的点 P .①若直线 l 与椭圆 C 有且只有一个公共点,求点 P 的坐标; ②直线 l 与椭圆 C 交于 A , B 两点.若△OAB 的面积为 2 6,7求直线 l 的方程.19.(本小题满分 16 分)记 f '(x ), g '(x ) 分别为函数 f (x ), g (x ) 的导函数.若存在 x 0 ∈ R ,满足 f (x 0 ) = g (x 0 ) 且f '(x 0 ) =g '(x 0 ) ,则称 x 0 为函数 f (x ) 与 g (x ) 的一个“S 点”.(1) 证明:函数 f (x ) = x 与 g (x ) = x 2 + 2x - 2 不存在“S 点”;(2) 若函数 f (x ) = ax 2 - 1与 g (x ) = ln x 存在“S 点”,求实数 a 的值;(3) 已知函数 f (x ) = -x 2xa , g (x ) = .对任意 a > 0 ,判断是否存在b > 0 ,使函 x数 f (x ) 与 g (x ) 在区间(0, +∞) 内存在“S 点”,并说明理由. 20.(本小题满分 16 分)设{a n } 是首项为 a 1 ,公差为 d 的等差数列,{b n } 是首项为b 1 ,公比为 q 的等比数列.(1)设a 1 = 0, b 1 = 1, q = 2 ,若| a n - b n |≤ b 1 对n = 1, 2,3, 4 均成立,求 d 的取值范围;( 2 )若 a = b > 0, m ∈ N *, q ∈(1, m 2] , 证 明 : 存 在 d ∈ R ,使得 | a - b |≤ b 对11nn1n = 2, 3, , m + 1 均成立,并求d 的取值范围(用b 1, m , q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题 5 分,共计 70 分.1.{1,8} 2.2 3.90 4.85.[2,+∞)6.3107.-π68.29.2210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14 分.证明:(1)在平行六面体ABCD-A1B1C1D1 中,AB∥A1B1.因为AB ⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1 中,四边形ABB1A1 为平行四边形.又因为AA1=AB,所以四边形ABB1A1 为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B ⊂平面A1BC,BC ⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14 分.解:(1)因为tan α=4,tanα=sinα,所以sinα=4cosα.3 cosα 3因为sin2α+ cos2α= 1 ,所以cos2α=9,25因此,cos 2α= 2 c os2α-1 =-7.25(2)因为α, β为锐角,所以α+β∈(0, π) .又因为cos(α+β) =-5,所以sin(α+β) =5=2 5 ,5因此tan(α+β) =-2 .因为tan α=4,所以tan 2α=32 tanα1 - tan2α=-24,71 - cos2(α+β)因此, tan(α - β ) = tan[2α - (α + β )] =tan 2α - tan(α + β )= - 2 .1+ tan 2α tan(α + β ) 1117. 本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分 14 分. 解:(1)连结 PO 并延长交 MN 于 H ,则 PH ⊥MN ,所以 OH =10.过 O 作 OE ⊥BC 于 E ,则 OE ∥MN ,所以∠COE =θ, 故 OE =40cos θ,EC =40sin θ,则矩形 ABCD 的面积为 2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为 1×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ).2 过 N 作 GN ⊥MN ,分别交圆弧和 OE 的延长线于 G 和 K ,则 GK =KN =10. 令∠GOK =θ0,则 sin θ0= 1,θ0∈(0, π).46当 θ∈[θ0, π )时,才能作出满足条件的矩形 ABCD , 2所以 sin θ 的取值范围是[ 1,1).4 答:矩形 ABCD 的面积为 800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ 的取值范围是[ 1,1).4 (2)因为甲、乙两种蔬菜的单位面积年产值之比为 4∶3,设甲的单位面积的年产值为 4k ,乙的单位面积的年产值为 3k (k >0),则年总产值为 4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0, π). 2 设 f (θ)= sin θcos θ+cos θ,θ∈[θ0, π),2则 f ′(θ ) = cos 2 θ - sin 2 θ - sin θ = -(2sin 2 θ + sin θ -1) = -(2sin θ -1)(sin θ + 1) .令 f ′(θ )=0 ,得 θ= π,6当 θ∈(θ0, π)时, f ′(θ )>0 ,所以 f (θ)为增函数; 6 当 θ∈( π, π)时, f ′(θ )<0 ,所以 f (θ)为减函数,6 2 因此,当 θ= π时,f (θ)取到最大值.6答:当 θ= π时,能使甲、乙两种蔬菜的年总产值最大.61 2 0 0 00 0 0 00 0 0 0 0 y⎨ 18. 本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分 16 分. 解:(1)因为椭圆 C 的焦点为 F 1 (-3, 0), F 2 ( 3, 0) ,x 2 y 2 1可设椭圆 C 的方程为 a 2 + b 2 = 1(a > b > 0) .又点( 3, 2) 在椭圆 C 上,⎧3 所以⎪ a 2 + 1 4b 2 = 1, ⎧⎪a 2 = 4, ,解得⎨⎪⎩a 2 - b 2 = 3,因此,椭圆 C 的方程为 ⎨ ⎪⎩b 2x 2y 4= 1,2 = 1 .因为圆 O 的直径为 FF ,所以其方程为 x 2 + y 2 = 3 .(2)①设直线 l 与圆 O 相切于 P (x , y )(x > 0, y > 0) ,则 x 2 + y 2 = 3 ,0 0所以直线 l 的方程为 y = -x 0 (x - x ) + y ,即 y = -x 0 x +3 .⎧ x 2 + 2⎪ 4= 1, 0y 0y 0由 x 3 ,消去 y ,得 ⎪ y = - 0 x + , ⎪⎩y 0 y 0 (4x 2 + y 2 )x 2 - 24x x + 36 - 4 y 2 = 0 .(*)因为直线 l 与椭圆 C 有且只有一个公共点,所以∆ = (-24x )2 - 4(4x 2 + y 2 )(36 - 4 y 2 ) = 48 y 2 (x 2 - 2) = 0 .因为 x 0 , y 0 > 0 ,所以 x 0 = 2, y 0 = 1.因此,点 P 的坐标为( 2,1) .②因为三角形 OAB 的面积为 2 6 ,所以 1 AB ⋅ OP = 2 6 ,从而 AB = 4 2 .7 2 7 7 设 A (x 1 , y 1 ), B (x 2 , y 2 ) ,由(*)得 x 1,2 ,所以 AB 2 = (x - x )2 + ( y - y )21212x 2 48y 2 (x 2 - 2) = (1 + 0 ) ⋅ 0 0 . y 2 (4x 2+ y 2 )224x ± 48y 2 (x 2 - 2)0 0 0+ y2 0 0 0 因为 x 2 + y 2= 3 ,16(x 2 - 2) 32 所以 AB 2 = 0 = ,即2x 4 - 45x 2 + 100 = 0 , (x 2 + 1)2 49 0 0解得 x 2 = 5 (x 2 = 20 舍去),则 y 2 = 1,因此 P 的坐标为(10 , 2) . 0222 2综上,直线 l 的方程为 y = - 5x + 3 .19. 本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分 16 分.解:(1)函数 f (x )=x ,g (x )=x 2+2x -2,则 f ′(x )=1,g ′(x )=2x +2.由 f (x )=g (x )且 f ′(x )= g ′(x ),得 ⎧x = x 2 + 2x - 2 ⎨ ⎩1 = 2x + 2,此方程组无解,因此,f (x )与 g (x )不存在“S ”点.(2) 函数 (f x )= ax 2 - 1 , g (x ) = ln x ,则 f (' x )= 2ax ,g (' x )= 1.x设 x 0 为 f (x )与 g (x )的“S ”点,由 f (x 0)=g (x 0)且 f ′(x 0)=g ′(x 0),得⎧ax 2 - 1 = ln x ⎪ 0 0⎧⎪ax 2 -1 = ln x ⎨ 1 ,即⎨ 0 0 ,(*) ⎪2ax 0= ⎪2ax 2 = 1 ⎩x 0⎩ 01- 11 e 得ln x 0 = - ,即 x 0 = e2 ,则a = = . 2e- 1 - 1 22(e 2 )2当 a = 时, x 0 = e 2满足方程组(*),即 x 0 为 f (x )与 g (x )的“S ”点.20 ⎪ ⎨ 00 1 1 1因此,a 的值为 e.2(3) 对任意 a >0,设h (x ) = x 3 - 3x 2 - ax + a .因为h (0) = a > 0 ,h (1) = 1 - 3 - a + a = -2 < 0 ,且 h (x )的图象是不间断的,2x 3 所以存在 x ∈(0,1),使得h (x ) = 0 ,令b = 0 ,则 b >0.函数 f (x ) = -x 2+ a ,g (x ) =b e x,xe x 0(1 - x )则 f ′(x ) = -2x ,g ′(x ) =b e x(x -1). x 2由 f (x )=g (x )且 f ′(x )=g ′(x ),得⎧-x 2+ a ⎪ ⎨ = b e x ⎧-x 2 + a ,即⎪ 2x 3 e x = 0 ⋅ e x 0(1 - x ) x (**) ⎪-2x ⎪⎩ = b e x (x -1) x 2 ⎪-2x ⎪⎩2x 3 = 0 ⋅ e x 0(1 - x ) e x (x -1) x 2此时, x 0 满足方程组(**),即 x 0 是函数 f (x )与 g (x )在区间(0,1)内的一个“S点”.因此,对任意 a >0,存在 b >0,使函数 f (x )与 g (x )在区间(0,+∞)内存在“S 点”.20. 本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分 16 分. 解:(1)由条件知: a = (n - 1)d ,b = 2n -1 .n n因为| a n - b n |≤ b 1 对 n =1,2,3,4 均成立,即| (n - 1)d - 2n -1 |≤ 1 对 n =1,2,3,4 均成立, 即 1 ≤ 1,1 ≤ d ≤ 3,3 ≤ 2d ≤ 5,7 ≤ 3d ≤ 9,得 7 ≤ d ≤ 5.3 27 5因此,d 的取值范围为[ , ].3 2(2)由条件知: a = b + (n - 1)d , b = b q n -1 .n1n1若存在 d ,使得| a n - b n |≤ b 1 (n =2,3,···,m +1)成立,即 | b + (n - 1)d - b q n -1 |≤ b (n = 2, 3, , m + 1) ,即当n = 2, 3, , m + 1 时,d 满足 q n -1 - 2 n -1 q n -1 b 1 ≤ d ≤ n -1b 1 .因为q ∈ (1, m2],则1 < q n -1 ≤ q m ≤ 2 ,xq q n -1 - 2 从而 n -1n -1 b 1 ≤ 0 , n -1b 1 > 0 ,对n = 2, 3, , m + 1 均成立. 因此,取 d =0 时, | a n - b n |≤ b 1 对n = 2, 3, , m + 1 均成立.q n -1 - 2 q n -1下面讨论数列{ }的最大值和数列{ } 的最小值( n = 2, 3, , m + 1 ).n - 1 n -1①当2 ≤ n ≤ m 时, q n - 2 - q n -1 - 2 = nq n - q n - nq n -1 + 2 = n (q n - q n -1) - q n+ 2 ,n n -1 n (n -1) n (n -1)1当1 < q ≤ 2m 时,有q n ≤ q m ≤ 2 ,从而n (q n - q n -1 ) - q n +2 > 0 .因此,当2 ≤ n ≤ m + 1 q n -1 - 2时,数列{ }单调递增, n - 1 q n -1 - 2 故数列{ }的最大值为 n - 1 q m- 2.m ②设 f (x ) = 2x (1 - x ) ,当 x >0 时, f '(x ) = (ln 2 - 1 - x ln 2)2x < 0 ,所以 f (x ) 单调递减,从而 f (x ) <f (0)=1.q nn q (n -1) 11 1 当2 ≤ n ≤ m 时, = ≤ 2n (1 - ) = f ( ) < 1 , 因此,当q n -1 n - 1 2 ≤ n ≤ m + 1 n n nq n -1时,数列{ } 单调递减, n -1q n -1 q m故数列{ } 的最小值为 .n -1 mb (q m - 2) b q m因此,d 的取值范围为[ 1 , 1 ] .m mi n ⎢1 2 ⎥ 数学Ⅱ(附加题)21. 【选做题】本题包括 A 、B 、C 、D 四小题,请.选.定.其.中.两.小.题.,.并.在.相.应.的.答.题.区.域.内.作.答..若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修 4—1:几何证明选讲](本小题满分 10 分)如图,圆 O 的半径为 2,AB 为圆 O 的直径,P 为 AB 延长线上一点,过 P 作圆 O 的切线,切点为 C .若 PC = 2 ,求 BC 的长.B .[选修 4—2:矩阵与变换](本小题满分 10 分)已知矩阵 A = ⎡2 3⎤ . ⎣ ⎦(1) 求 A 的逆矩阵 A -1 ;(2) 若点 P 在矩阵 A 对应的变换作用下得到点 P '(3,1) ,求点 P 的坐标.C .[选修 4—4:坐标系与参数方程](本小题满分 10 分)在极坐标系中,直线 l 的方程为 ρ sin( π- θ ) = 2 ,曲线 C 的方程为 ρ = 4 c os θ ,求直线 l6 被曲线 C 截得的弦长.D .[选修 4—5:不等式选讲](本小题满分 10 分)若 x ,y ,z 为实数,且 x +2y +2z =6,求 x 2 + y 2 + z 2 的最小值.【必做题】第 22 题、第 23 题,每题 10 分,共计 20 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分 10 分)如图,在正三棱柱 ABC -A 1B 1C 1 中,AB =AA 1=2,点 P ,Q 分别为 A 1B 1,BC 的中点.(1) 求异面直线 BP 与 AC 1 所成角的余弦值;(2) 求直线 CC 1 与平面 AQC 1 所成角的正弦值.23.(本小题满分 10 分)设 n ∈ N * ,对 1,2,···,n 的一个排列i i ,如果当 s <t 时,有i > i , 1 2 s t3则称(is , it) 是排列i1i2in的一个逆序,排列i1i2in的所有逆序的总个数称为其逆序数.例如:对1,2,3 的一个排列231,只有两个逆序(2,1),(3,1),则排列231 的逆序数为2.记fn(k ) 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求f3 (2), f4 (2) 的值;(2)求fn(2)(n 5) 的表达式(用n 表示).3 PC 2 + OC 2 3 ⎢1 2 ⎥ ⎣ ⎦1 2 y 1 y 1 -1 数学Ⅱ(附加题)参考答案21.【选做题】A .[选修 4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分 10分.证明:连结 OC .因为 PC 与圆 O 相切,所以 OC ⊥PC .又因为 PC = 2 ,OC =2,所以 OP = =4.又因为 OB =2,从而 B 为 Rt △OCP 斜边的中点,所以 BC =2.B .[选修 4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分 10 分.解:(1)因为 A = ⎡2 3⎤ , det( A ) = 2 ⨯ 2 - 1⨯ 3 = 1 ≠ 0 ,所以 A 可逆, ⎣ ⎦从而 A -1 = ⎡2 - 3⎤ . ⎢-1 2 ⎥(2)设 P (x ,y ),则⎡2 3⎤ ⎡x ⎤ = ⎡3⎤ ,所以⎡x ⎤ = A -1 ⎡3⎤ = ⎡3 ⎤ , ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦因此,点 P 的坐标为(3,–1).C .[选修 4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分 10 分.解:因为曲线 C 的极坐标方程为 ρ =4 cos θ ,所以曲线 C 的圆心为(2,0),直径为 4 的圆.因为直线 l 的极坐标方程为 ρ sin( π- θ ) = 2 ,6 则直线 l 过 A (4,0),倾斜角为 π ,6 所以 A 为直线 l 与圆 C 的一个交点.设另一个交点为 B ,则∠OAB = π.6 连结 OB ,因为 OA 为直径,从而∠OBA = π,2 所以 AB = 4 c os π= 2 .63因此,直线l 被曲线C 截得的弦长为2 .D.[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10 分.证明:由柯西不等式,得(x2+y2+z2 )(12+ 22+ 22 ) ≥ (x + 2 y + 2z)2.因为x + 2 y + 2z=6 ,所以x2+y2+z2≥ 4 ,当且仅当x=y=z时,不等式取等号,此时x =2,y =4,z =4,122所以x2+y2+z2的最小值为4.3332.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10 分.解:如图,在正三棱柱ABC−A1B1C1 中,设AC,A1C1 的中点分别为O,O1,则OB⊥ OC,OO1⊥OC,OO1⊥OB,以{OB, OC,OO1} 为基底,建立空间直角坐标系O−xyz.因为AB=AA1=2,所以A(0, -1, 0), B( 3, 0, 0), C(0,1, 0), A1(0, -1, 2), B1( 3, 0, 2), C1(0,1, 2) .(1)因为P 为A1B1 的中点,所以P(3, -1, 2) ,2 2从而BP = (-3, -1, 2), AC = (0, 2, 2) ,故| cos2 2 1=3 10.20因此,异面直线BP 与AC1 所成角的余弦值为3 10.20BP, AC1|=| BP ⋅AC1|=| -1 + 4 || BP | ⋅| AC | 5 ⨯ 2 212 5 ⨯ 2 (2) 因为 Q 为 BC 的中点,所以Q ( 1 , , 0) , 2 2因此 AQ = ( 3 , 3 , 0) , AC = (0, 2, 2), CC 2 21 1 = (0, 0, 2) . 设 n =(x ,y ,z )为平面 AQC 1 的一个法向量,则 ⎧⎪ A Q ⋅ n = 0, ⎧ 即⎪ x + 3 y = 0, ⎨ ⎪⎩ A C 1 ⋅ n = 0, ⎨ 2 2 ⎪⎩2 y + 2z = 0.不妨取n = ( 3, -1,1) ,设直线 CC 1 与平面 AQC 1 所成角为θ ,则sin θ =| cos = = 5 , 5 所以直线 CC 1 与平面 AQC 1 所成角的正弦值为 5 .523. 【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分 10 分.解:(1)记τ (abc ) 为排列 abc 的逆序数,对 1,2,3 的所有排列,有τ (123)=0 ,τ (132)=1,τ (213)=1,τ (231)=2 ,τ (312)=2 ,τ (321)=3 ,所以 f 3 (0) = 1,f 3 (1) = f 3 (2) = 2 .对 1,2,3,4 的排列,利用已有的 1,2,3 的排列,将数字 4 添加进去,4 在新排列中的位置只能是最后三个位置.因此, f 4 (2) = f 3 (2) + f 3 (1) + f 3 (0) = 5 .(2)对一般的 n (n ≥4)的情形,逆序数为 0 的排列只有一个:12…n ,所以 f n (0) = 1 .逆序数为 1 的排列只能是将排列 12…n 中的任意相邻两个数字调换位置得到的排列,所以 f n (1) = n - 1 .为计算 f n +1 (2) ,当 1,2,…,n 的排列及其逆序数确定后,将 n +1 添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此, f n +1 (2) = f n (2) + f n (1) + f n (0) = f n (2) + n .当 n ≥5 时,3 3 CC , n |= | CC 1 ⋅ n | 1| CC | ⋅| n | 1f n (2) = [ fn(2) -fn-1(2)] + [ fn-1(2) -fn-2(2)] +…+[ f5(2) -f4(2)] +f4(2)= (n -1) + (n - 2) +⋯+ 4 +f4(2) =n2-n - 2 n2-n - 2,2因此,n≥5时,fn (2) =2.。
2018年高考(江苏省)真题数学试题及答案解析
2018年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长.圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{2134}A =--,,,,{123}B =-,,,则A B = .【答案】{13}-, 2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 .【答案】213.右图是一个算法流程图,则输出的n 的值是 .【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是 . 【答案】6π 6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm .【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是 . 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 .。
(精校版)2018年江苏数学高考试题文档版(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
学科.网参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数2()log 1f x x =-的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为32c ,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面. 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos 2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.学科%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .学.科网(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()5αβ+=-,所以225sin()1cos ()5αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+. 17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()( 24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为267,所以21 267AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.学*科网19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x =-+=,,则2e (1)()2()x b x f x x g x x-=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.学@科网(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+,即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为(1,2]m q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.学.科网(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=23,OC=2,所以OP=22PC OC+=4.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==.因此,直线l 被曲线C 截得的弦长为23.D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.学&科网22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2, 所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,,2)22P -, 从而131(,,2)(0,2,222),BP AC ==--, 故111|||14|310|cos ,|20||||522BP AC BP AC BP AC ⋅-+===⋅⨯. 因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以31(,,0)22Q , 因此33(,,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即330,22220.x y y z ⎧+=⎪⎨⎪+=⎩ 不妨取(3,1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||25sin |cos |,|||552CC CC CC |θ==⋅⨯⋅==n n n , 所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.学&科网解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-. 为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018年高考江苏数学卷及答案解析
温馨提示:全屏查看效果更佳。
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需改动,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗一、填空题:本大题共14小题,每题5小分,共计70分。
请把答案填写在答题卡相应位置上。
1.已知集合==-{0,1,2,8},{1,1,6,8}A B ,那么A B ⋂=__________.2.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z z 的实部为__________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为__________.5.函数()f x =__________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率是__________.7.已知函数sin(2)()22y x ππϕϕ=+-<<的图像关于直线3x π=对称,则ϕ的值是__________.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐,则其离心率的值是__________. 9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2)-上cos ,022()1||,202x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则((15))f f 的值为__________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为__________.11.若函数32()21()f x x ax a R =-+∈在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为__________.12.在平面直角坐标系xOy 中, A 为直线:2l y x =上在第一象限内的点, ()5,0B 以AB 为直径的圆C 与直线l 交于另一点D ,若0AB CD ⋅=,则点A 的横坐标为__________. 13.在ABC ∆中,角,,A B C 所对应的边分别为,,,120,a b c ABC ABC ∠=∠o的平分线交AC 于点D ,且1BD =,则4a c +的最小值为__________.14.已知集合{}{}**|21,,|2,n A x x n n N B x x n N ==-∈==∈,将A B ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 二、解答题15.在平行四边形1111ABCD A BC D -中, 1111,AA AB AB BC =⊥1.求证: //AB 平面11A B C2.平面11ABB A ⊥平面1A BC16.已知,αβ为锐角, ()4tan ,cos 35ααβ=+=-1.求cos 2α的值。
2018年全国普通高等学校招生统一考试数学真题及答案(江苏卷)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a. 9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A 1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A 1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程. 详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018年江苏省高考数学试卷及答案(解析版)
2018年普通高等学校统一考试试题(江苏卷)
一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+
=x y 的最小正周期为 .
【答案】π
【解析】T =|2πω |=|2π2 |=π.
2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .
【答案】5
【解析】z =3-4i ,i 2=-1,| z |==5. 3.双曲线19
162
2=-y x 的两条渐近线的方程为 . 【答案】x y 4
3±= 【解析】令:091622=-y x ,得x x y 4
31692±=±=. 4.集合}1,0,1{-共有 个子集.
【答案】8
【解析】23=8.
5.右图是一个算法的流程图,则输出的n 的值是 .
【答案】3
【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4.
6
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .
【答案】2
【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=
x . 方差为:25
)9092()9088()9091()9090()9089(2
22222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .
【答案】63
20 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯.。
(完整版)2018江苏高考数学试题与答案,推荐文档
2018年普通高等学校夏季招生全国统一考试数学(江苏卷>本试题卷分为非选择题(第1题~第20题,共20题>.本卷满分为160分,考试时间为120分钟.参考公式:(1>样本数据x1,x2,…,xn 的方差2211()n i i s x x n ==-∑,其中11ni i x x n ==∑. (2>直棱柱的侧面积S =ch ,其中c 为底面周长,h 为高.(3>棱柱的体积V =Sh ,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合A ={-1,1,2,4},B ={-1,0,2},则A ∩B =________.2.函数f(x>=log5(2x +1>的单调增区间是________.3.设复数z 满足i(z +1>=-3+2i(i 为虚数单位>,则z 的实部是________.4.根据如图所示的伪代码,当输入a ,b 分别为2,3时,最后输出的m 的值为________.5.从1,2,3,4这四个数中一次随机地取两个数.则其中一个数是另一个数的两倍的概率是________.SjkbsIFcn16.某老师从星期一到星期五收到的信件数分别为10,6,8,5,6,则该组数据的方差s2=________.SjkbsIFcn17.已知tan()4x π+=2,则tan tan 2x x的值为________.8.在平面直角坐标系xOy中,过坐标原点的一条直线与函数2()f xx=的图象交于P,Q两点,则线段PQ长的最小值是________.SjkbsIFcn19.函数f(x>=Asin(ωx+φ>(A,ω,φ为常数,A>0,ω>0>的部分图象如图所示,则f(0>的值是________.SjkbsIFcn110.已知e1,e2是夹角为23π的两个单位向量,a=e1-2e2,b =ke1+e2,若a·b=0,则实数k的值为________.SjkbsIFcn111.已知实数a≠0,函数2,1,()2, 1.x a xf xx a x+<⎧⎨--≥⎩=若f(1-a>=f(1+a>,则a的值为________.12.在平面直角坐标系xOy中,已知P是函数f(x>=ex(x>0>的图象上的动点,该图象在点P处的切线l交y轴于点M.过点P作l的垂线交y轴于点N.设线段MN的中点的纵坐标为t,则t的最大值是________.SjkbsIFcn113.设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q 的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是________.SjkbsIFcn114.设集合A={(x,y>|2m≤(x-2>2+y2≤m2,x,y∈R},B ={(x,y>|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是________.SjkbsIFcn1二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A,B,C的对边分别为a,b,C.(1>若sin()6A π+=2cos A ,求A 的值; (2>若1cos 3A =,b =3c ,求sin C 的值. 16.如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.SjkbsIFcn1求证:(1>直线EF ∥平面PCD ;(2>平面BEF ⊥平面PAD .17.请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒. E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x(cm>.SjkbsIFcn1 (1>某广告商要求包装盒的侧面积S(cm2>最大,试问x 应取何值?(2>某厂商要求包装盒的容积V(cm3>最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.18.如图,在平面直角坐标系xOy 中,M ,N 分别是椭圆22=142x y 的顶点,过坐标原点的直线交椭圆于P ,A 两点,其中点P 在第一象限.过P 作x 轴的垂线,垂足为C .连结AC ,并延长交椭圆于点B .设直线PA 的斜率为k.SjkbsIFcn1(1>若直线PA 平分线段MN ,求k 的值;(2>当k =2时,求点P 到直线AB 的距离d ;(3>对任意的k >0,求证:PA ⊥PB .19.已知a ,b 是实数,函数f(x>=x3+ax ,g(x>=x2+bx ,f ′(x>和g ′(x>分别是f(x>和g(x>的导函数.若f ′(x>g ′(x>≥0在区间I 上恒成立,则称f(x>和g(x>在区间I 上单调性一致.SjkbsIFcn1(1>设a >0,若f(x>和g(x>在区间[-1,+∞>上单调性一致,求b 的取值范围;(2>设a <0且a ≠B .若f(x>和g(x>在以a ,b 为端点的开区间上单调性一致,求|a -b|的最大值.SjkbsIFcn120.设M 为部分正整数组成的集合,数列{an}的首项a1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,Sn +k +Sn -k =2(Sn +Sk>都成立.SjkbsIFcn1(1>设M ={1},a2=2,求a5的值;(2>设M ={3,4},求数列{an}的通项公式.21.A .选修4-1:几何证明选讲如图,圆O1与圆O2内切于点A ,其半径分别为r1与r2(r1>r2>.圆O1的弦AB交圆O2于点C(O1不在AB上>.求证:AB∶AC为定值.B.选修4-2:矩阵与变换已知矩阵A=1121⎡⎤⎢⎥⎣⎦,向量β=12⎡⎤⎢⎥⎣⎦,求向量α,使得A2α=β.C.选修4-4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆5cos3sinxyϕϕ=⎧⎨=⎩(φ为参数>的右焦点,且与直线423x ty t=-⎧⎨=-⎩(t为参数>平行的直线的普通方程.SjkbsIFcn1D.选修4-5:不等式选讲解不等式x+|2x-1|<3.22.如图,在正四棱柱ABCD -A1B1C1D1中,AA1=2,AB =1,点N 是BC 的中点,点M 在CC1上.设二面角A1—DN —M 的大小为θ.SjkbsIFcn1(1>当θ=90°时,求AM 的长;(2>当cos CM 的长. 23.设整数n ≥4,P(a ,b>是平面直角坐标系xOy 中的点,其中a ,b ∈{1,2,3,…,n},a >B .SjkbsIFcn1(1>记An 为满足a -b =3的点P 的个数,求An ;(2>记Bn 为满足1()3a b -是整数的点P 的个数,求Bn.参考答案1.答案:{-1,2}2.答案:(12-,+∞>3.答案:14.答案:35.答案:136.答案:1657.答案:49 8.答案:4910.答案:54. 11.答案:34- 12.答案:2e +12e1314.答案:[12,2] 15.解:(1>由题设知sin cos +cos sin 66A A ππ=2cos A .从而sinA =,cos A ≠0,所以tan A .因为0<A <π,所以A =3π.SjkbsIFcn1(2>由cos A =13,b =3c 及a2=b2+c2-2bccos A ,得a2=b2-c2.故△ABC 是直角三角形,且B =2π.所以sin C =cos A =13. 16.证明:(1>在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD .所以直线EF ∥平面PCD .(2>连结BD .因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形.因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD .SjkbsIFcn1又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .17.解:设包装盒的高为h(cm>,底面边长为a(cm>.由已知得a ,h =)x =-,0<x <30. (1>S =4ah =8x(30-x>=-8(x -15>2+1 800,所以当x =15时,S 取得最大值.(2>V =a2h =32+30x x -),V ′=(20)x -.由V ′=0得x =0(舍>或x =20.当x ∈(0,20>时,V ′>0;当x ∈(20,30>时,V ′<0.所以当x =20时,V 取得极大值,也是最大值. 此时1=2ha .即包装盒的高与底面边长的比值为12.18. 解:(1>由题设知,a =2,b M(-2,0>,N(0,,所以线段MN 中点的坐标为(-1,2->.由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以k(2>直线PA 的方程为y =2x ,代入椭圆方程得 224+=142x x ,解得23x =±,因此P(23,43>,A(23-,43->.于是C(23,0>,直线AC 的斜率为40+3=122+33,故直线AB 的方程为2=03x y --.因此,d=3. (3>解法一:将直线PA 的方程y =kx 代入22+=142x y ,解得x=记P(μ,μk>,A(-μ,-μk>.于是C(μ,0>.故直线AB 的斜率为0++k μμμ=2k ,其方程为y =2k x μ-()代入椭圆方程得(2+k2>x2-2μk2x -μ2(3k2+2>=0,解得x =22322k k μ(+)+或x =-μ.因此B(22322k k μ(+)+,322k k μ+>.SjkbsIFcn1于是直线PB 的斜率k1=32222322k kk k k μμμμ-+(+)-+=32222322k k k k k -(+)+-(+)=1k -.因此k1k =-1,所以PA ⊥PB .解法二:设P(x1,y1>,B(x2,y2>,则x1>0,x2>0,x1≠x2,A(-x1,-y1>,C(x1,0>.设直线PB ,AB 的斜率分别为k1,k2.因为C 在直线AB 上,所以k2=1110y x x -(-)-(-)=112y x =2k .SjkbsIFcn1从而k1k +1=2k1k2+1=2·2121y y x x --·2121()()y y x x ----+1 =2221222122y y x x --+1=22222211222122x y x y x x (+)-(+)- =222144x x --=0.因此k1k =-1,所以PA ⊥PB . 19.解:f ′(x>=3x2+a ,g ′(x>=2x +B .(1>由题意知f ′(x>g ′(x>≥0在[-1,+∞>上恒成立.因为a >0,故3x2+a >0,进而2x +b ≥0,即b ≥-2x 在区间[-1,+∞>上恒成立,所以b ≥2.因此b 的取值范围是[2,+∞>.SjkbsIFcn1(2>令f ′(x>=0,解得x=若b >0,由a <0得0∈(a ,b>.又因为f ′(0>g ′(0>=ab <0,所以函数f(x>和g(x>在(a ,b>上单调性不一致.因此b ≤0.SjkbsIFcn1现设b ≤0.当x ∈(-∞,0>时,g ′(x><0;当x ∈(-∞,时,f ′(x>>0.因此,当x ∈(-∞,时,f ′(x>g ′(x><0.故由题设得a≥b≥13-≤a <0,于是13-≤b ≤0.因此|a -b|≤13,且当a =13-,b =0时等号成立.SjkbsIFcn1又当a =13-,b =0时,f ′(x>g ′(x>=6x(x219->,从而当x ∈(13-,0>时f ′(x>g ′(x>>0,故函数f(x>和g(x>在(13-,0>上单调性一致.因此|a -b|的最大值为13.SjkbsIFcn120.解:(1>由题设知,当n ≥2时,Sn +1+Sn -1=2(Sn +S1>,即(Sn +1-Sn>-(Sn -Sn -1>=2S1.从而an +1-an =2a1=2.又a2=2.故当n ≥2时,an =a2+2(n -2>=2n -2.所以a5的值为8.(2>由题设知,当k ∈M ={3,4}且n >k 时,Sn +k +Sn -k =2Sn +2Sk 且Sn +1+k +Sn +1-k =2Sn +1+2Sk ,两式相减得an +1+k +an +1-k =2an +1,即an +1+k -an +1=an +1-an +1-k.所以当n ≥8时,an -6,an -3,an ,an +3,an +6成等差数列,且an -6,an -2,an +2,an +6也成等差数列.SjkbsIFcn1从而当n ≥8时,2an =an +3+an -3=an +6+an -6,(*>且an +6+an -6=an +2+an -2,所以当n ≥8时,2an =an +2+an -2,即an +2-an =an -an -2,于是当n ≥9时,an -3,an -1,an +1,an +3成等差数列,从而an +3+an -3=an +1+an -1,故由(*>式知2an =an +1+an -1,即an +1-an =an -an -1,当n ≥9时,设d =an -an -1.SjkbsIFcn1当2≤m ≤8时,m +6≥8,从而由(*>式知2am +6=am +am +12,故2am +7=am +1+am +13.SjkbsIFcn1从而2(am +7-am +6>=am +1-am +(am +13-am +12>,于是am +1-am =2d -d =D .SjkbsIFcn1因此,an +1-an =d 对任意n ≥2都成立.又由Sn +k +Sn -k -2Sn =2Sk(k ∈{3,4}>可知(Sn +k -Sn>-(Sn -Sn -k>=2Sk ,故9d =2S3且16d =2S4.解得472a d =,从而232a d =,12d a =.因此,数列{an}为等差数列.由a1=1知d =2.SjkbsIFcn1所以数列{an}的通项公式为an =2n -1.21.选做题A .选修4—1:几何证明选讲证明:连结AO1,并延长分别交两圆于点E 和点D .连结BD ,CE.因为圆O1与圆O2内切于点A ,所以点O2在AD 上.故AD ,AE 分别为圆O1,圆O2的直径.SjkbsIFcn1从而∠ABD =∠ACE =2π. 所以BD ∥CE ,于是112222r r AB AD AC AE r r ===. 所以AB ∶AC 为定值.B .选修4—2:矩阵与变换解:A2=1121⎡⎤⎢⎥⎣⎦1121⎡⎤⎢⎥⎣⎦=3243⎡⎤⎢⎥⎣⎦. 设α=x y ⎡⎤⎢⎥⎣⎦.由A2α=β,得3243⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦=12⎡⎤⎢⎥⎣⎦,从而321,43 2.x y x y +=⎧⎨+=⎩解得x =-1,y =2,所以α=12-⎡⎤⎢⎥⎣⎦.C .选修4—4:坐标系与参数方程解:由题设知,椭圆的长半轴长a =5,短半轴长b =3,从而c4,所以右焦点为(4,0>.将已知直线的参数方程化为普通方程:x -2y +2=0.SjkbsIFcn1故所求直线的斜率为12,因此其方程为1(4)2y x =-,即x -2y -4=0.D .选修4—5:不等式选讲解:原不等式可化为210(21)3x x x -≥⎧⎨+-<⎩或210(21)3x x x -<⎧⎨--<⎩解得1423x ≤<或122x -<<.所以原不等式的解集是4{|2}3x x -<<.22.解:建立如图所示的空间直角坐标系Dxyz.设CM =t(0≤t ≤2>,则各点的坐标为A(1,0,0>,A1(1,0,2>,N(12,1,0>,M(0,1,t>.所以DN u u u r =(12,1,0>,DM u u u u r =(0,1,t>,1DA u u u u r=(1,0,2>.设平面DMN 的法向量为n1=(x1,y1,z1>,则n1·DN u u u r =0,n1·DM u u u u r=0.即x1+2y1=0,y1+tz1=0,令z1=1,则y1=-t ,x1=2t.所以n1=(2t ,-t ,1>是平面DMN 的一个法向量.SjkbsIFcn1设平面A1DN 的法向量为n2=(x2,y2,z2>,则n2·1DA u u u u r=0,n2·DN u u u r=0.即x2+2z2=0,x2+2y2=0.SjkbsIFcn1令z2=1,则x2=-2,y2=1.所以n2=(-2,1,1>是平面A1DN 的一个法向量.从而n1·n 2=-5t +1.SjkbsIFcn1(1>因为θ=90°,所以n1·n 2=-5t +1=0,解得t =错误!.从而M(0,1,错误!>.所以AM(2>因为|n1|,|n2|, 所以cos 〈n1,n2〉=1212⋅n n n n. 因为〈n1,n2〉=θ或π-θ,所以=6,解得t =0或t =12.根据图形和(1>的结论可知t =12,从而CM 的长为12.23.解:(1>点P 的坐标满足条件:1≤b =a -3≤n -3,所以An =n -3.(2>设k 为正整数,记fn(k>为满足题设条件以及a -b =3k 的点P 的个数.只要讨论fn(k>≥1的情形.由1≤b =a -3k ≤n -3k 知fn(k>=n -3k ,且k ≤13n -.SjkbsIFcn1设n -1=3m +r ,其中m ∈N*,r ∈{0,1,2},则k ≤m.所以11()(3)mmn n k k B f k n k ====-∑∑3(1)(233)22m m m n m mn +--=-=将13n r m --=代入上式,化简得(1)(2)(1)66n n n r r B ---=-.所以3,631263n n n nB n n n (-)⎧⎪⎪=⎨(-)(-)⎪⎪⎩是整数,,不是整数。
2018年全国高等院校统一招生考试江苏数学试卷(含答案)
17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知
识分析和解决实际问题的能力.满分 14 分.
解:(1)连结 PO 并延长交 MN 于 H,则 PH⊥MN,所以 OH=10.
过 O 作 OE⊥BC 于 E,则 OE∥MN,所以∠COE=θ,
故 OE=40cosθ,EC=40sinθ,
并求 d 的取值范围(用 b1, m, q 表示).
数学Ⅰ试题参考答案
一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题 5 分,共计 70 分.
1.{1,8} 5.[2,+∞) 9. 2
2 13.9
2.2 6. 3
10 10. 4
3 14.27
3.90 7. π
6 11.–3
4.8 8.2 12.3
则矩形 ABCD 的面积为 2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),
△CDP 的面积为 1 ×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 2
过 N 作 GN⊥MN,分别交圆弧和 OE 的延长线于 G 和 K,则 GK=KN=10.
f
(x)
|cxos212x
,0 |, -
x 2
2, x 0,
则 f ( f (15)) 的值
为
▲.
10.如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面体的体积为 ▲ .
11.若函数 f (x) 2x3 ax2 1(a R) 在 (0, ) 内有且只有一个零点,则 f (x) 在[1,1] 上的最大值与最小值 的和为 ▲ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1. 已知集合A={0,1,2,8},B={−1,1,6,8},那么A∩B=________.2. 若复数z满足i⋅z=1+2i,其中i是虚数单位,则z的实部为________.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.5. 函数f(x)=√log2x−1的定义域为________.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.7. 已知函数________=sin(2________+φ)(−π2φπ2)的图象关于直线________.8. 在平面直角坐标系xOy中,若双曲线x2a2−y2b2=1(a>0, b>0)的右焦点F(c, 0)到一条渐近线的距离为√32c,则其离心率的值为________.9. 函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(−2, 2]上,f(x)={cosπx 2,0<x ≤2,|x +12|,−2<x ≤0,则f(f(15))的值为________.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.11. 若函数f(x)=2x 3−ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f(x)在[−1,1]上的最大值与最小值的和为________.12. 在平面直角坐标系xOy 中,A 为直线l:y =2x 上在第一象限内的点,B(5, 0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →⋅CD →=0,则点A 的横坐标为________.13. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120∘,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________.14. 已知集合A ={x|x =2n −1, n ∈N ∗},B ={x|x =2n , n ∈N ∗}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n },记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体ABCD −A 1B 1C 1D 1中,AA 1=AB ,AB 1⊥B 1C 1. 求证:AB // 平面A 1B 1C ;平面ABB 1A 1⊥平面A 1BC .16. 已知α,β为锐角,tan α=43,cos (α+β)=−√55. (1)求cos 2α的值;(2)求tan (α−β)的值.17. 某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN̂(P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为△CDP ,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和△CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18. 如图,在平面直角坐标系xOy 中,椭圆C 过点(√3,12),焦点F 1(−√3, 0),F 2(√3, 0),圆O 的直径为F 1F 2.(1)求椭圆C 及圆O 的方程.(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若△OAB 的面积为2√67,求直线l 的方程.19. 记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x 0∈R ,满足f(x 0)=g(x 0)且f′(x 0)=g′(x 0),则称x 0为函数f(x)与g(x)的一个“S 点”. (1)证明:函数f(x)=x 与g(x)=x 2+2x −2不存在“S 点”;(2)若函数f(x)=ax 2−1与g(x)=ln x 存在“S 点”,求实数a 的值;(3)已知函数f(x)=−x 2+a ,g(x)=be x x.对任意a >0,判断是否存在b >0,使函数f(x)与g(x)在区间(0, +∞)内存在“S 点”,并说明理由.20. 设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列. (1)设a 1=0,b 1=1,q =2,若|a n −b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N ∗,q ∈(1, √2m],证明:存在d ∈R ,使得|a n −b n |≤b 1对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示). 数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21. 如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若PC =2√3,求BC 的长.B.[选修4-2:矩阵与变换](本小题满分10分)22. 已知矩阵A =[2312].(1)求A 的逆矩阵A −1;(2)若点P 在矩阵A 对应的变换作用下得到点P′(3, 1),求点P 的坐标. C.[选修4-4:坐标系与参数方程](本小题满分0分)23. 在极坐标系中,直线l 的方程为ρsin (π6−θ)=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24. 若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25. 如图,在正三棱柱ABC−A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26. 设n∈N∗,对1,2,……,n的一个排列i1i2……i n,如果当s<t时,有i s>i t,则称(i s, i t)是排列i1i2……i n的一个逆序,排列i1i2……i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2, 1),(3, 1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值.(2)求f n(2)(n≥5)的表达式(用n表示).参考答案与试题解析2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【答案】{1,8}2.【答案】23.【答案】904.【答案】85.【答案】[2, +∞)6.【答案】0.37.【答案】y,x,x=π3对称,则φ的值为−π68.【答案】29.【答案】√2210.【答案】4311.【答案】−312.【答案】313.【答案】914.【答案】27二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【答案】证明:平行六面体ABCD−A1B1C1D1中,AB // A1B1,因为AB⊄平面A1B1C,A1B1⊂ // 平A1B1C,所以AB//平面A1B1C;在平行六面体ABCD−A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B,又因为AB1⊥B1C1,BC//B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.16.【答案】解:(1)由{sinαcosα=43,sin2α+cos2α=1,且α为锐角,解得{sinα=45,cosα=35,∴cos2α=cos2α−sin2α=−725.(2)由(1)得,sin2α=2sinαcosα=2425,则tan2α=sin2αcos2α=−247.∵ α,β∈(0, π2),∴ α+β∈(0, π), ∴ sin (α+β)=√1−cos 2(α+β)=2√55. 则tan (α+β)=sin (α+β)cos (α+β)=−2.∴ tan (α−β)=tan [2α−(α+β)]=tan 2α−tan (α+β)1+tan 2αtan (α+β)=−211. 17. 【答案】(1)S 矩形ABCD =800(4sin θcos θ+cos θ), S △CDP =1600(cos θ−cos θsin θ), sin θ∈[14, 1);θ=π6时总产值y 最大.18. 【答案】解:(1)由题意可设椭圆方程为x 2a+y 2b =1,(a >b >0),∵ 焦点F 1(−√3, 0),F 2(√3, 0), ∴ c =√3.∵ 3a 2+14b 2=1,a 2−b 2=c 2=3, 解得a =2,b =1. ∴ 椭圆C 的方程为:x 24+y 2=1,圆O 的方程为:x 2+y 2=3.(2)①可知直线l 与圆O 相切,也与椭圆C ,且切点在第一象限, ∴ 可设直线l 的方程为y =kx +m ,(k <0, m >0).由圆心(0, 0)到直线l 的距离等于圆半径√3,可得m 21+k 2=3,即m 2=3+3k 2. 由{y =kx +m,x 2+4y 2=4,可得(4k 2+1)x 2+8kmx +4m 2−4=0, △=(8km)2−4(4k 2+1)(4m 2−4)=0, 可得m 2=4k 2+1,∴ 3k 2+3=4k 2+1,结合k <0,m >0,解得k =−√2,m =3. 将k =−√2,m =3代入{x 2+y 2=3,y =kx +m,可得x 2−2√2x +2=0,解得x =√2,y =1,故点P 的坐标为(√2,1). ②设A(x 1, y 1),B(x 2, y 2), 由{k <0,m >0,m 2=3+3k 2△>0.⇒k <−√2,联立直线与椭圆方程得(4k 2+1)x 2+8kmx +4m 2−4=0, |x 2−x 1|=√(x 1+x 2)2−4x 1x 2=4√4k 2+1−m 24k 2+1,O 到直线l 的距离d =√1+k 2,|AB|=√1+k 2|x 2−x 1|=4√4k 2+1−m 24k 2+1⋅√1+k 2, △OAB 的面积为S =12×4√4k 2+1−m 24k 2+1⋅√1+k 2×√1+k2=12×4√k 2−24k 2+1×√1+k 2×√3=2√67, 解得k =−√5(正值舍去),m =3√2.∴ y =−√5x +3√2为所求直线l 的方程. 19.【答案】解:(1)证明:f′(x)=1,g′(x)=2x +2, 则由定义得{x =x 2+2x −2,1=2x +2,得方程无解,则f(x)=x 与g(x)=x 2+2x −2不存在“S 点”. (2)f′(x)=2ax ,g′(x)=1x ,x >0, 由f′(x)=g′(x)得1x =2ax ,得x =√12a , f(√12a)=−12=g(√12a)=−12ln 2a ,得a =e2.(3)f′(x)=−2x ,g′(x)=be x (x−1)x 2,(x ≠0),由f′(x 0)=g′(x 0),得be x 0=−2x 03x 0−1>0,得0<x 0<1, 由f(x 0)=g(x 0),得−x 02+a =be x 0x 0=−2x 02x0−1,得a =x 02−2x 02x0−1,令ℎ(x)=x 2−2x 2x−1−a =−x 3+3x 2+ax−a1−x,(a >0, 0<x <1),设m(x)=−x 3+3x 2+ax −a ,(a >0, 0<x <1),则m(0)=−a <0,m(1)=2>0,得m(0)m(1)<0, 又m(x)的图象在(0, 1)上连续不断, 则m(x)在(0, 1)上有零点, 则ℎ(x)在(0, 1)上有零点,则f(x)与g(x)在区间(0, +∞)内存在“S ”点. 20.【答案】 解:(1)由题意可知|a n −b n |≤1对任意n =1,2,3,4均成立, ∵ a 1=0,q =2,∴ {|0−1|≤1|d −2|≤1|2d −4|≤1|3d −8|≤1,解得{1≤d ≤332≤d ≤5273≤d ≤3.即73≤d ≤52. 证明:(2)∵ a n =a 1+(n −1)d ,b n =b 1⋅q n−1,若存在d ∈R ,使得|a n −b n |≤b 1对n =2,3,…,m +1均成立,则|b1+(n−1)d−b1⋅q n−1|≤b1,(n=2, 3,…,m+1),即q n−1−2n−1b1≤d≤b1q n−1n−1,(n=2, 3,…,m+1),∵q∈(1, √2m],∴则1<q n−1≤q m≤2,(n=2, 3,…,m+1),∴q n−1−2n−1b1≤0,b1q n−1n−1>0,因此取d=0时,|a n−b n|≤b1对n=2,3,…,m+1均成立,下面讨论数列{q n−1−2n−1}的最大值和数列{q n−1n−1}的最小值,①当2≤n≤m时,q n−2n −q n−1−2n−1=nq n−q n−nq n−1+2n(n−1)=n(q n−q n−1)−q n+2n(n−1),当1<q≤21m时,有q n≤q m≤2,从而n(q n−q n−1)−q n+2>0,因此当2≤n≤m+1时,数列{q n−1−2n−1}单调递增,故数列{q n−1−2n−1}的最大值为q m−2m.②设f(x)=2x(1−x),当x>0时,f′(x)=(ln2−1−x ln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,q nnq n−1n−1=q(n−1)n≤21m(1−1n)=f(1n)<1,因此当2≤n≤m+1时,数列{q n−1n−1}单调递递减,故数列{q n−1n−1}的最小值为q mn,b1(qm−2)m∴d的取值范围是d∈[b1(q m−2)m , b1q mm].数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.【答案】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,PC=2√3,所以BO=OC=2,PO=√OC2+CP2=4,所以cos∠COP=12,所以∠COP=60∘,所以△COB为等边三角形,所以BC=BO=2.B.[选修4-2:矩阵与变换](本小题满分10分)22.【答案】解:(1)矩阵A =[2312],det(A)=2×2−1×3=1≠0,所以A 可逆, 从而:A 的逆矩阵A −1=[2−3−12]. (2)设P(x, y),则[2312]•[x y ]=[31],所以[x y ]=A −1[31]=[3−1], 因此点P 的坐标为(3, −1).C.[选修4-4:坐标系与参数方程](本小题满分0分)23.【答案】解:∵ 曲线C 的方程为ρ=4cos θ,∴ ρ2=4ρcos θ,⇒x 2+y 2=4x ,∴ 曲线C 是圆心为C(2, 0),半径为r =2得圆.∵ 直线l 的方程为ρsin (π6−θ)=2,∴ 12ρcos θ−√32ρsin θ=2,∴ 直线l 的普通方程为:x −√3y =4.圆心C 到直线l 的距离为d =1+3=1,∴ 直线l 被曲线C 截得的弦长为2√r 2−d 2=2√4−1=2√3.D.[选修4-5:不等式选讲](本小题满分0分)24.【答案】解:由柯西不等式得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z)2,∵ x +2y +2z =6,∴ x 2+y 2+z 2≥4是当且仅当x 1=y 2=z 2时,不等式取等号,此时x =23,y =43,z =43,∴ x 2+y 2+z 2的最小值为4【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.【答案】解:(1)如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,故以{OB →,OC →,OO 1→}为基底,建立空间直角坐标系O −xyz ,∵ AB =AA 1=2,∴ A(0, −1, 0),B(√3, 0, 0),C(0, 1, 0),A 1(0, −1, 2),B 1(√3, 0, 2),C 1(0, 1, 2).∵ 点P 为A 1B 1的中点.∴ P(√32,−12,2), ∴ BP →=(−√32,−12,2),AC 1→=(0,2,2). |cos <BP →,AC 1→>|=|BP →⋅AC 1→||BP →|⋅|AC 1→| =5×22=3√1020. ∴ 异面直线BP 与AC 1所成角的余弦值为3√1020. (2)∵ Q 为BC 的中点. ∴ Q(√32,12,0) ∴ AQ →=(√32,32,0),AC 1→=(0,2,2),CC 1→=(0,0,2),设平面AQC 1的一个法向量为n →=(x, y, z),则{AQ →⋅n →=0,AC 1→⋅n →=0, 即{√32x +32y =0,2y +2z =0.不妨取n →=(√3, −1, 1),设直线CC 1与平面AQC 1所成角的正弦值为θ,sin θ=|cos <CC 1→,n →>|=|CC 1→⋅n →||CC 1→|⋅|n →| =√5×2=√55, ∴ 直线CC 1与平面AQC 1所成角的正弦值为√55.26.【答案】解:(1)f 3(2)即1,2,3的所有排列中逆序数为2的全部排列的个数,根据题意,1,2,3的全部排列中满足要求的仅序列231与序列312,共两个,即f 3(2)=2;同理,1,2,3,4的全部排列中满足要求的仅序列1342,1423,2143,2314,3124,共五个,即f4(2)=5.(2)不妨记f n(2)=a n,考虑a n与a n−1的关系,相当于把n插入1,2,3,⋯,n−1中,显然n只能排在末尾的三个位置,①n排在最后时,有a n−1个排列符合;②n排在倒数第二个位置时,最后一位排n−1或n−2,有n−2个排列符合;③n排在倒数第三个位置时,只有1种符合;则有a n=a n−1+n−1⇒a n=(n+2)(n−3)2+2=n2−n−22.因此,f n(2)=n2−n−22(n≥5).。