相关图表和相关系数回归分析
用Excel计算相关系数和进行回归分析
例我国1988–1998年的城镇居民人均全年耐用消费品支出、人均全年可支配收入以及耐用消费品价格指数的统计资料如下表所示。
试建立城镇居民人均全年耐用消费品支
出关于可支配收入和耐用消费品价格指数的回归模型,并进行回归分析。
人均耐用消费品支
(元)人均全年可支配收入
(元)
耐用消费品价格指数
(1987年=100)
资料来源:《中国统计年鉴》
一、计算相关系数
步骤一:输入数据。
打开Excel工作簿,将样本观测值输入到A2:C12单元格中。
步骤二:计算相关系数。
1. 选择“工具”下拉菜单的“数据分析”选项;
2. 在分析工具中选择“相关系数”;
3. 当出现“相关系数”对话框后,
⑴在“输入区域”中键入A2:C12;
⑵在“输出选项”中选择输出区域(这里我们选择“新工作薄”);
⑶单击“确定”按钮,得下面的相关矩阵表。
相关矩阵
二、回归分析
我们继续说明如何利用Excel进行回归分析。
1. 选择“工具”下拉菜单的“数据分析”选项;
2. 在分析工具中选择“回归”;
3. 当出现对话框后,
⑴在“Y值输入区域”方框中键入A2:A12;
⑵在“X值输入区域”方框中键入B2:C12;
⑶在“输出选项”中选择输出区域(这里我们选择“新工作薄”);
⑷单击“确定”按钮,得到的结果如下表所示:
从表中得到的主要结果有:
复相关系数:,
判定系数:,
估计的回归方程为:
根据括号内的统计量的值可知:对有显著影响,而对没有显著影响。
根据统计量的值可知:回归方程是显著的。
第九章 相关分析
第九章 相关分析
( y y)2
=
( y yc )2
+
( yc y)2
由此可以推导出:
( y yc ) ( y y) ( yc y)
2 2
2
2
Lyy (a bx a b x) Lyy b ( x x)
2 2
Lyy b Lxx
表明两变量完全不相关。 (4)当计算相关系数的原始数据较多(如50项以 上)时,认为相关系数在0.3以下为无相关, 0.3以上为有相关;0.3-0.5为低度相关;0.5-0.8 为显著相关;0.8以上为高度相关。
9
第九章 相关分析
相关系数计算分析例题
生产费用
序 月产量 号 1 1.2 2 2.0 3 3.1 4 3.8 5 5.0 6 6.1 7 7.2 8 8.0 ∑ 36.4
2 2
x n y y
2
2
0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节
回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。 二、回 归 的 种 类 按自变量的个数分 按回归线的形态分 一元回归 多元回归 线性回归 非线性回归
Lxx x b b y Lyy
y br r x
Lyy L21 xx
第九章 相关分析
五 回归分析与相关分析的特点
1、回归分析必须区分自变量和因变量,而相关 分析不必区分。 2、回归分析的两个变量一个是自变量,一个是 因变量,通过给定自变量的值来推算因变量 的可能值;而相关分析的两个变量都是随机 变量。 3、回归分析中对于因果关系不甚明确的两个变量, 可以建立两个回归方程;而相关分析只能计算 出一个相关系数。 4、一种回归方程只能做一种推算,即只能给出自 变量的值来推算因变量的值,不能逆推。
统计学06第六章相关与回归分析
-5.3339 -21.2729 -20.0669
0.02111209 -58.5559
0.0675121 -201.421
2019/11/7
第六章 相关与回归分析
20
2.2 相关系数的特征及判别标准
解法 1
n x y
Lxx
L yy
Lxy
2
xx
2
y y
xx
3559.59
22
2.2 相关系数的特征及判别标准
解法 2
n x y x2 y2 x y
10 6470 5.813 4814300 3.446609 3559.59
r
10 3559.59 6471 5.813
10 4814300 64702 10 3.446609 5.8132
第六章 相关与回归分析
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
计量。可以证明,样本相
y y
10 6470 5.813 628210 0.0675121 -201.421
r
201 .421
628210 0 .0675121
0 .978051034 0.9781
2019/11/7
第六章 相关与回归分析
21
2.2 相关系数的特征及判别标准
x
280 320 390 530 650 670 790 880 910 1050
相关和回归的数学模型区别和联系
相关和回归的数学模型区别和联系在统计学和数据分析领域,相关和回归是两种常用的数学模型,用以揭示变量之间的关系。
本文将详细阐述相关和回归的数学模型的区别与联系,帮助读者更好地理解这两种模型的应用场景和特点。
一、相关和回归的数学模型概述1.相关分析相关分析是指衡量两个变量之间线性关系紧密程度的统计分析方法。
常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。
相关分析主要用于描述两个变量之间的相关性,但不能确定变量间的因果关系。
2.回归分析回归分析是指研究一个或多个自变量(解释变量)与一个因变量(响应变量)之间线性或非线性关系的方法。
根据自变量的个数,回归分析可分为一元回归和多元回归。
回归分析可以用于预测因变量的值,并分析自变量对因变量的影响程度。
二、相关和回归的数学模型区别1.目的性区别相关分析的目的是衡量两个变量之间的线性关系程度,但不能判断因果关系;回归分析的目的则是建立变量间的预测模型,分析自变量对因变量的影响程度,并预测因变量的值。
2.数学表达区别相关分析通常使用相关系数(如皮尔逊相关系数)来表示两个变量之间的线性关系程度;回归分析则使用回归方程(如线性回归方程)来描述自变量与因变量之间的关系。
3.结果解释区别相关分析的结果是一个介于-1和1之间的数值,表示两个变量之间的线性相关程度;回归分析的结果是一组回归系数,表示自变量对因变量的影响程度。
三、相关和回归的数学模型联系1.研究对象相同相关分析和回归分析都是研究两个或多个变量之间关系的统计分析方法,可以揭示变量间的相互作用。
2.数据类型相似相关分析和回归分析通常应用于数值型数据,且都需要满足一定的数据分布特征,如正态分布、线性关系等。
3.相互补充在实际应用中,相关分析和回归分析可以相互补充。
通过相关分析,我们可以初步判断变量间是否存在线性关系,进而决定是否采用回归分析建立预测模型。
四、总结相关和回归的数学模型在研究变量关系方面有着广泛的应用。
数据分析中的相关系数与回归分析
数据分析中的相关系数与回归分析数据分析是一门重要的学科,它通过收集、整理和分析数据来揭示数据背后的信息和规律。
在数据分析的过程中,相关系数和回归分析是两个常用的分析方法。
本文将介绍相关系数和回归分析的概念、计算方法以及应用场景。
一、相关系数相关系数用于衡量两个变量之间的相关性强度。
在数据分析中,我们经常会遇到多个变量之间的相互影响关系。
相关系数可以帮助我们了解这些变量之间的联系程度,从而更好地进行数据分析和决策。
计算相关系数的常用方法是皮尔逊相关系数(Pearson correlation coefficient)。
该系数的取值范围在-1到1之间,取值接近1表示两个变量呈正相关关系,取值接近-1表示两个变量呈负相关关系,取值接近0表示两个变量之间没有线性相关关系。
相关系数的计算可以使用公式:![相关系数](相关系数.png)其中,n表示样本容量,X和Y分别表示两个变量的观测值,X的均值为μX,Y的均值为μY。
通过计算协方差和标准差,可以得到两个变量之间的相关系数。
相关系数在许多领域有着广泛的应用。
例如,在金融领域,相关系数可以用于衡量不同投资品之间的相关性,从而帮助投资者构建更加稳健和多样化的投资组合。
在医学研究中,相关系数可以用于分析药物疗效和副作用之间的关系。
在市场调研中,相关系数可以用于评估产品销售和广告投放之间的关联性。
二、回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以帮助我们了解一个或多个自变量对因变量的影响程度,并进行预测和推断。
回归分析的常用方法包括线性回归、多项式回归、逻辑回归等。
在这些方法中,线性回归是最常用的一种。
线性回归通过建立一个线性方程来描述自变量和因变量之间的关系。
例如,当只有一个自变量和一个因变量时,线性回归可以表示为:![线性回归](线性回归.png)其中,Y表示因变量,X表示自变量,β0和β1表示回归系数,ε表示误差项。
回归分析的目标是通过拟合找到最佳的回归系数,使得拟合值尽可能接近实际观测值。
报告中的相关系数和回归分析
报告中的相关系数和回归分析相关系数和回归分析是统计学中常用的分析方法,用于研究变量之间的关系和预测变量的值。
在社会科学、经济学、医学等领域都有广泛的应用。
本文将围绕这一主题展开,论述相关系数和回归分析的基本概念、计算方法、应用场景以及局限性。
一、相关系数的概念和计算方法相关系数用来衡量两个变量之间的相关程度,常用的有皮尔逊相关系数和斯皮尔曼排名相关系数。
皮尔逊相关系数适用于两个连续变量,其取值范围为-1到1,正值表示正相关,负值表示负相关,绝对值越大表示相关程度越强。
斯皮尔曼排名相关系数则适用于两个有序变量或者对于连续变量不满足正态分布的情况,其取值范围为-1到1,含义与皮尔逊相关系数类似。
二、回归分析的概念和基本原理回归分析用于研究自变量与因变量之间的关系,并建立数学模型进行预测或者解释。
简单线性回归适用于自变量和因变量均为连续变量的情况,通过最小二乘法估计回归方程的系数。
多元线性回归则适用于自变量包含多个的情况,通过最小二乘法估计回归方程中各个自变量的系数来建立模型。
三、相关系数与回归分析的应用场景相关系数和回归分析在各个领域都有广泛的应用。
在社会科学中,可以用来探究教育和收入、人口和犯罪率等之间的关系。
在经济学中,可以用来研究需求和价格、利率和投资等之间的联系。
在医学研究中,可以用来分析疾病与遗传、环境因素之间的关联性。
四、相关系数与回归分析的优点和局限性相关系数和回归分析具有一定的优点,例如简单易懂、计算方法明确,能够为研究者提供相关关系的定量度量。
但是也存在一些局限性,例如相关系数只能揭示变量之间的线性关系,无法反映非线性关系;回归分析的模型假设常常需要满足一定的前提条件,而实际数据常常存在违背这些假设的情况。
五、相关系数与回归分析的注意事项在进行相关系数和回归分析时,需要注意选取适当的样本和变量,避免样本选择偏差和自变量的多重共线性问题。
同时还需要注意解释分析结果时避免过度解读,避免将关联性误解为因果性。
统计学原理第八章相关与回归分析
关关系的种类和关系的紧密程度; 3.对相关系数进行显著性检验。
回归分析的内容
• 1. 建立反映变量间依存关系的数学模型 即回归方程;
• 2.对回归方程进行显著性检验; • 3.用回归过程进行预测。
回归分析和相关分析的主要区别
4.相关系数的绝对值越接近于1,表示相关 程度越强;越接近于0,表示相关程度越 弱。具体标准为:
R 的绝对值:0.3以下 微弱相关;
0.3-0.5 低度相关;
0.5-0.8 显著相关;
0.8以上 高度相关。
以上结论必须建立在对相关系数的显著性 检验基础之上。
三、相关系数的显著性检验
显著性检验的具体步骤:
资料:
销售量 500
(公斤)
价格 10
(元)
相关表
700 9
900 7
600 9
1000 800 89
1200 6
销售量 500
(公斤)
价格 10
(元)
600 9
700 9
800 9
900 7
1000 8
1200 6
相关图(散点图)
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
一、一元线性回归方程
❖ 只涉及一个自变量的回归
❖ 因变量y与自变量x之间为线性关系
➢ 被预测或被解释的变量称为因变量,用y表示
➢ 用来预测或用来解释因变量的一个或多个变量称为
自变量,用x表示
❖ 因变量与自变量之间的关系用一个线性方 程来表示
一元线性回归模型
❖ 一元线性回归模型可表示为
相关分析与回归分析
什么是回归分析?
(regression analysis)
1. 重点考察考察一个特定的变量(因变量), 而把其他变量(自变量)看作是影响这一变 量的因素,并通过适当的数学模型将变量 间的关系表达出来
当假定其他变量不变,其中两个变量的相关 关系。
厦门大学嘉庚学院
用散点图观察变量之间的相关关系
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
不相关
相关系数
●总体相关系数
对于所研究的总体,表示两个相互联系变量相关 程度
的总体相关系数为:
总体相关系数反映总体两个变量X和Y的线性相关 程度。 特点:对于特定的总体来说,X和Y的数值是既定 的,总体相关系数是客观存在的特定数值。
2. 利用样本数据建立模型的估计方程 3. 对模型进行显著性检验 4. 进而通过一个或几个自变量的取值来估计
或预测因变量的取值
2008年8月
回归模型的类型
回归模型
一元回归
多元回归
线性回归 非线性回归 线性回归 非线性回归
2008年8月
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
厦门大学嘉庚学院
相关分析
一、变量间的相互关系
◆确定性的函数关系 Y=f (X)
◆不确定性的统计关系—相关关系
Y= f(X)+u (u为随机变量)
◆没有关系
35 30
变量间关系的图形描述 坐标图(散点图)
Y
25
相关性分析的五种方法
相关性分析的五种⽅法相关分析(Analysis of Correlation)是⽹站分析中经常使⽤的分析⽅法之⼀。
通过对不同特征或数据间的关系进⾏分析,发现业务运营中的关键影响及驱动因素。
并对业务的发展进⾏预测。
本篇⽂章将介绍5种常⽤的分析⽅法。
在开始介绍相关分析之前,需要特别说明的是相关关系不等于因果关系。
相关分析的⽅法很多,初级的⽅法可以快速发现数据之间的关系,如正相关,负相关或不相关。
中级的⽅法可以对数据间关系的强弱进⾏度量,如完全相关,不完全相关等。
⾼级的⽅法可以将数据间的关系转化为模型,并通过模型对未来的业务发展进⾏预测。
下⾯我们以⼀组⼴告的成本数据和曝光量数据对每⼀种相关分析⽅法进⾏介绍。
以下是每⽇⼴告曝光量和费⽤成本的数据,每⼀⾏代表⼀天中的花费和获得的⼴告曝光数量。
凭经验判断,这两组数据间应该存在联系,但仅通过这两组数据我们⽆法证明这种关系真实存在,也⽆法对这种关系的强度进⾏度量。
因此我们希望通过相关分析来找出这两组数据之间的关系,并对这种关系进度度量。
1,图表相关分析(折线图及散点图)第⼀种相关分析⽅法是将数据进⾏可视化处理,简单的说就是绘制图表。
单纯从数据的⾓度很难发现其中的趋势和联系,⽽将数据点绘制成图表后趋势和联系就会变的清晰起来。
对于有明显时间维度的数据,我们选择使⽤折线图。
为了更清晰的对⽐这两组数据的变化和趋势,我们使⽤双坐标轴折线图,其中主坐标轴⽤来绘制⼴告曝光量数据,次坐标轴⽤来绘制费⽤成本的数据。
通过折线图可以发现,费⽤成本和⼴告曝光量两组数据的变化和趋势⼤致相同,从整体的⼤趋势来看,费⽤成本和⼴告曝光量两组数据都呈现增长趋势。
从规律性来看费⽤成本和⼴告曝光量数据每次的最低点都出现在同⼀天。
从细节来看,两组数据的短期趋势的变化也基本⼀致。
经过以上这些对⽐,我们可以说⼴告曝光量和费⽤成本之间有⼀些相关关系,但这种⽅法在整个分析过程和解释上过于复杂,如果换成复杂⼀点的数据或者相关度较低的数据就会出现很多问题。
用Excel进行相关性与回归分析
小值会给出样本中第K个大值和第K个小值。
第三步:单击确定,可得输出结果。
上面的结果中,平均指样本均值;标准误差 指样本平均数的标准差;中值即中位数;模 式指众数;标准偏差指样本标准差,自由度 为n-1;峰值即峰度系数;偏斜度即偏度系 数;区域实际上是极差,或全距;可以看出 与我们前面用函数计算的结果完全相同。最 大值为16,最小值为11,第三个最大值为 15,第三个最小值为13。
二、描述统计菜单项的使用
仍使用上面的例子 我们已经把数据输入到B2:B11单元格, 然后按以下步骤操作:
第一步:在工具菜单中选择数据分析选项,从其对话框中 选择描述统计,按确定后打开描述统计对话框。
第二步:在输入区域中输入$B$1:$B$11,在 输出区域中选择$F$1,其他复选框可根据需 要选定,选择汇总统计,可给出一系列描述统 计量;选择平均数置信度,会给出用样本平均 数估计总体平均数的置信区间;第K大值和第K
多 元 回 归 分 析
用Excel进行回归分析
第三步:单击确定按钮,得回归分析结果如下图所示。
回归分析工具的输出解释
Excel回归分析工具的输出结果包括3个部分: (1)回归统计表 回归统计表包括以下几部分内容: ① Multiple R (复相关系数 R ):是 R2 的平方根, 又称为相关系数,用来衡量变量x和y之间相关程 度的大小。本例中 R 为 0.6313 ,表示二者之间的 关系是正相关。 ②R Square(复测定系数R2):用来说明自变 量解释因变量变差的程度,以测定因变量y的拟 合效果。
利用EXCEL计算相关系数源自1.利用函数计算相关系数 2.用相关系数宏计算相关系数
1.利用函数计算相关系数
统计学中的相关系数与回归分析
统计学中的相关系数与回归分析统计学是一门研究数据收集、分析和解释的学科,其中包括相关系数和回归分析这两个重要的概念。
相关系数和回归分析都是用于了解变量之间的关系以及预测未来趋势的工具。
本文将介绍相关系数和回归分析的基本概念、计算方法和应用场景。
一、相关系数相关系数衡量了两个变量之间的相关程度。
它反映了两个变量的线性关系强度和方向。
常见的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼等级相关系数(Spearman's rank correlation coefficient)和切比雪夫距离(Chebyshev distance)等。
皮尔逊相关系数是最常用的相关系数之一。
它通过计算两个变量之间的协方差除以它们各自的标准差的乘积来衡量它们的线性关系。
皮尔逊相关系数的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示没有线性关系。
通过计算相关系数,我们可以判断变量之间的关系以及预测一个变量的变化情况受到其他变量的程度。
斯皮尔曼等级相关系数是一种非参数相关系数,它不要求变量服从特定的分布。
它通过将原始数据转化为等级来计算变量之间的关系。
斯皮尔曼等级相关系数的取值范围也在-1到1之间,其含义与皮尔逊相关系数类似。
切比雪夫距离是一种度量两个变量之间差异的方法,它不仅考虑了线性关系,还考虑了其他类型的关系,如非线性关系。
切比雪夫距离通常用于分类问题和模式识别领域。
二、回归分析回归分析是一种用于建立因变量和自变量之间关系的统计方法。
它通过寻找最合适的拟合曲线来描述变量之间的函数关系,并用此拟合曲线来预测未来的结果。
简单线性回归是回归分析的一种基本形式,它适用于只有一个自变量和一个因变量的情况。
简单线性回归可以用一条直线来描述变量之间的关系,其中直线的斜率表示了自变量对因变量的影响程度。
多元线性回归是回归分析的一种扩展形式。
它适用于多个自变量和一个因变量的情况。
实验五 相关分析与回归分析
实验五相关分析与回归分析A.相关分析一、实验目的(1)根据统计数据绘制散点图;(2)运用常规方法计算相关系数;(3)利用函数计算相关系数;(4)用数据分析工具求相关系数。
二、实验任务相关关系是指现象之间确实存在的,但具体关系不能确定的数量依存关系。
判断现象间的相关关系,一般先进行定性分析,再进行定量分析。
三、实验过程及结果(1)绘制散点图:第一步,选择“插入”菜单的“图表”子菜单,用鼠标单击“图表”第二步,出现“图表向导—4步骤之1—图表类型”页面选择“XY散点图”,点击“下一步”第三步,出现“图表向导—4步骤之2—图表源数据”页面填写完对话框后,点击“下一步”第四步,出现“图表向导—4步骤之3—图表选项”页面填写完对话框后,点击“下一步”第五步,出现“图表向导—4步骤之1—图表位置”页面填写完对话框后,点击“完成”即完成散点图。
(2)用数据分析工具求相关系数。
第一步,用鼠标点击工作表中待分析数据的任一单元格。
选择“工具”菜单的“数据分析”子菜单,用鼠标双击数据分析工具中的“相关系数”选项,进入相关系数对话框。
第二步,在相关系数对话框中,在“输入区域”框中输入“B1:C15”,分组方式为逐列,选中“标志”复选框,在“输出区域”中输入D17.第三,单击“确定”按钮,即在以D17为起点的右边空白区域给出结果。
结果表明设备能力x与劳动生产率y的相关系数为0.9805,并显示x、y自身为完全正相关。
B.回归分析一、实验目的(1)利用Excel的数据处理功能,掌握回归分析的分析方法;(2)通过对一组观察值使用“最小二乘法”直线拟合,用来分析单个因变量是如何受一个或几个自变量影响的,从而建立一元或多元线性回归方程;(3)对回归分析结果进行显著性检验,进行回归预测,能对结果进行解释。
二、实验任务用“添加线性趋势线”建立一元线性回归方程三、实验过程及结果用“添加线性趋势线”建立一元线性回归方程用线性趋势线建立一元线性回归方程,主要是根据数据线性关系,插入线性趋势线加以分析整理得出方程的。
统计学中的相关分析与回归分析
统计学中的相关分析与回归分析统计学中的相关分析与回归分析是两种重要的数据分析方法。
它们帮助研究人员理解和解释变量之间的关系,并预测未来的趋势。
在本文中,我们将深入探讨相关分析和回归分析的定义、应用和原理。
第一部分:相关分析相关分析是用来衡量和评估两个或更多变量之间相互关系的统计方法。
通过相关系数来量化这种关系的强度和方向。
相关系数的取值范围在-1到+1之间,其中-1表示完全负相关,+1表示完全正相关,0表示没有相关性。
相关分析通常用于发现变量之间的线性关系。
例如,研究人员想要了解身高和体重之间的关系。
通过相关分析,他们可以确定是否存在正相关关系,即身高越高,体重越重。
相关分析还可以帮助确定不同变量对某一结果变量的影响程度。
第二部分:回归分析回归分析是一种通过建立数学模型来预测和解释变量之间关系的方法。
它可以用来预测因变量的值,并了解自变量对因变量的影响程度。
回归分析可分为简单回归和多元回归两种类型。
简单回归分析适用于只有一个自变量和一个因变量的情况。
例如,研究人员想要预测一个人的体重,他们可以使用身高作为自变量。
通过建立线性回归模型,他们可以得到身高对体重的影响,从而预测一个人的体重。
多元回归分析适用于有多个自变量和一个因变量的情况。
例如,研究人员想要了解影响一个城市房价的因素,他们可以考虑多个自变量,如房屋面积、地理位置、房龄等。
通过建立多元回归模型,他们可以确定每个因素对房价的影响程度,并进行预测。
第三部分:相关分析与回归分析的应用相关分析和回归分析在各个领域都有广泛的应用。
在医学研究中,相关分析可以帮助确定两个疾病之间的关联性,并为疾病的预防和治疗提供依据。
回归分析可以用来预测患者的生存率或疾病的发展趋势。
在经济学中,相关分析可以用来研究经济变量之间的关系,如GDP 与通货膨胀率之间的关系。
回归分析可以用来预测经济增长率,并评估政治和经济因素对经济发展的影响。
在市场营销中,相关分析可以帮助企业了解产品销售和广告投放之间的关系,并制定有效的市场推广策略。
统计学原理相关分析
二、相关分析的概念
一.相关分析就是对总体中确实具有联系的标志进行分析,其主体是对总 体中具有因果关系标志的分析。
二.现象总体的依存关系类型:
○ 因素标志是决定结果标志发展的条件,根据结果标志对因素标志的不同反应,可分两 种类型。
○ 函数关系是当因素标志的数量确定之后,结果标志的数量也随之完全确定,以y=f(x) 表现
相关系数r的性质:
r 1
0、当r 1 时,x与y为完全线性相关,它们之间存在确定
的函数关系。
r 0.3微弱相关0.3、 r 0.5低度相关
、当
0.5 r
0.8时显,著 表示相x与关0y.存8、在
着
r
一1定的高线度 性 相相关 关 , r 的
绝对值越大,越接近于1,表示x与y直线相关程度越高,
当r 反0之时越低,。表示 x与y为正相关
要求:编制以学习时间为自变量的直线回归方
03
程
计算学习时间和学习成绩直接的相关系数,并
04
解释相关的密切程度和方向(15分)
r
定义x2y: 为x 基础y
是,、按通积过x2差两y 方个法 离计 差(x算 相, 乘xn同 来)(样 反y以 映两 两y)变 变协 量 量与 之方各 间自相差平关
均值的 程度。
离
差
x公式:(xnx)2、x的标准差y
(y y)2、y标准差 n
即r (xx)(y y)或r (xx)(y y)
①、单变量分组相关表
自变量分组并 计算次数,而 对应的因变量 不分组,只计 算其平均值。
单变量分组相 关表的特点: 使冗长的资料 简化,能够更 清晰地反映出 两变量之间相 关关系。
、双变量分组 相关表:
第5章 回归分析ppt课件
关系,但这种关系是不完 全确定的随机关系,即当 一个(或一组)变量每取一 个值时,相应的另一个变 量可能有多个不同值与之 对应 。
.
13 13
变量之 间关系
相关关系
因果关系 互为因果关系
共变关系
随机性依存关系
函数关系
确定性依存关系
.
1414
相关关系
(1)变量间关系不能用 函数关系精确表达;
.
21 21
4 .按相关的影响因素多少分: 单相关 复相关
偏相关
单相关(一元相关):只有一个自变量。
如: 居民的收入与储蓄额; 成本与产量
复相关(多元相关):有两个及两个以上的自变量。
如: 某种商品的需求与其价格水平以及收入水平 之间的相关关系便是一种复相关。
.
22 22
偏相关: 在某一现象与多种现象相关的场合,假定其
间的关系 ▪ 收入水平(y)与受教育程度(x)之间的关系 ▪ 父母亲身高(y)与子女身高(x)之间的关系 ▪ 身高与体重的关系
.
16 16
停下来 想一想?
下列变量之间存在相关关系吗? 1 抽烟与肺癌之间的关系 2 怀孕期妇女的饮酒量与婴儿出生体重之间的关系 3 纳税者年龄和他们交纳税款的数量之间的关系 4 采光量与植物的生产量之间的关系 5 一个人的投票倾向性与其年龄之间的关系
.
17 17
相关关系与函数关系的关系:在一定的条件下互相转化.
具有函数关系的变量,当存在观测误差和随机因素影 响时,其函数关系往往以相关的形式表现出来.
具有相关关系的变量之间的联系,如果我们对它们有 了深刻的规律性认识,并且能够把影响因变量变动的因素 全部纳入方程,这时相关关系也可转化为函数关系.
统计学基础-第八章-相关与回归分析
统计学基础第八章相关与回归分析【教学目的】1.掌握相关系数的测定和性质2。
明确相关分析与回归分析的特点3.建立回归直线方程,掌握估计标准误差的计算【教学重点】1。
相关关系、相关分析和回归分析的概念2。
相关系数计算3.回归方程的建立和依此进行估计和预测【教学难点】1.相关分析和回归分析的区别2.相关系数的计算3。
回归系数的计算4。
估计标准误的计算【教学时数】教学学时为8课时【教学内容参考】第一节相关关系一、相关关系的含义宇宙中任何现象都不是孤立地存在的,而是普遍联系和相互制约的。
这种现象间的相互联系、相互制约的关系即为相关关系。
相关关系因其依存程度的不同而表现出相关程度的差别。
有些现象间存在着严格的数据依存关系,比如,在价格不变的条件下销售额量之间的关系,圆的面积与半径之间的关系等等,均具有显著的一一对应关系。
这些关系可由数学中的函数关系来确切的描述,因而也可以认为是一种完全相关关系.有些现象间的依存关系则没有那么严格。
当一种现象的数量发生变化时,另一种现象的数量却在一定的范围内发生变化,比如身高与体重的关系就是如此。
一般来说,身高越高,体重越重,但二者之间的关系并非严格意义上的对应关系,身高1.75米的人,对应的体重会有多个数值,因为影响体重的因素不只身高而已,它还会受遗传、饮食习惯等因素的制约和影响.社会经济现象中大多存在这种非确定的相关关系。
在统计学中,这些在社会经济现象之间普遍存在的数量依存关系,都成为相关关系。
在本章,我们主要介绍那些能用函数关系来描述的具有经济统计意义的相关关系。
二、相关关系的特点1。
现象之间确实存在数量上的依存关系如果一个现象发生数量上的变化,则另一个现象也会发生数量上的变化.在相互依存的两个变量中,可以根据研究目的,把其中的一个变量确定为自变量,把另一个对应变量确定为因变量。
例如,把身高作为自变量,则体重就是因变量.2。
现象之间数量上的关系是不确定的相关关系的全称是统计相关关系,它属于变量之间的一种不完全确定的关系。
相关分析和回归分析有什么区别
相关分析和回归分析有什么区别在统计学和数据分析的领域中,相关分析和回归分析是两个常用的方法,它们都用于研究变量之间的关系,但在目的、方法和结果解释等方面存在着明显的区别。
首先,从目的上来看,相关分析主要是为了衡量两个或多个变量之间线性关系的强度和方向。
它并不关心变量之间的因果关系,只是简单地描述变量之间的关联程度。
例如,我们想了解身高和体重之间的关系,相关分析可以告诉我们它们之间的关联是紧密还是松散,是正相关(即身高增加体重也增加)还是负相关(身高增加体重反而减少)。
而回归分析则更进一步,它不仅要确定变量之间的关系,还试图建立一个数学模型来预测因变量的值。
这里就涉及到了因果关系的探讨,虽然在很多情况下,回归分析所确定的因果关系也并非绝对的,但它的目的在于找到自变量对因变量的影响程度,从而能够根据给定的自变量值来预测因变量的值。
比如,我们想知道教育程度如何影响收入水平,通过回归分析,就可以建立一个方程,根据一个人的教育年限来预测他可能的收入。
其次,在方法上,相关分析通常使用相关系数来衡量变量之间的关系。
最常见的相关系数是皮尔逊相关系数(Pearson correlation coefficient),其取值范围在-1 到 1 之间。
-1 表示完全的负相关,1 表示完全的正相关,0 则表示没有线性相关关系。
但需要注意的是,相关系数只能反映线性关系,如果变量之间存在非线性关系,相关系数可能无法准确反映其关联程度。
回归分析则通过建立回归方程来描述变量之间的关系。
常见的回归模型有线性回归、多项式回归、逻辑回归等。
在线性回归中,我们假设因变量与自变量之间存在线性关系,通过最小二乘法等方法来估计回归系数,从而得到回归方程。
对于非线性关系,可以通过对变量进行变换或者使用专门的非线性回归模型来处理。
再者,结果的解释也有所不同。
在相关分析中,我们关注的是相关系数的大小和符号。
一个较大的绝对值表示变量之间有较强的线性关系,正号表示正相关,负号表示负相关。
第六章相关分析与回归分析
+
-
x+x0
+yy0
+
Ⅳ
-
0
x
x
第六章 相关分析与回归分析
STAT
coxv,y()0则r>0,说明x和y之间为正线性
相关;
coxv,y()0则r<0,说明x和y之间为负线性
相关;
coxv,y()0则r=0,说明x和y之间不存在线
性相关。
第六章 相关分析与回归分析
2、标准差 x 和 y 的作用
第六章 相关分222470, 64098 y26383 .48 , 7 5x7y1114.448633 STAT
r
nxyxy
nx2(x)2 ny2(y)2
1011144.486133371.785276.127
三、相关表和相关图
STAT
相关表
将某一变量x按其数值大小顺序排 列,然后再将与其相关的另一个变量y 对应值平行排列,观察x由小到大变化 时,y的变化情况。
第六章 相关分析与回归分析
八个同类工业企业的月产量与生产费用
企业编号
1 2 3 4 5 6 7 8
月产量(千吨)X
1.2 2.0 3.1 3.8 5.0 6.1 7.2 8.0
联系
STAT
(1)有函数关系的变量间,由于有测 量误差及各种随机因素的干扰,可表 现为相关关系;
(2)对具有相关关系的变量有深刻了 解之后,相关关系有可能转化为或借 助函数关系来描述。
第六章 相关分析与回归分析
• 例:判断下列关系是什么关系? • 1)物体体积随温度升高而膨胀,随压力加大而STAT
第六章 相关分析与回归分析
正相关
报告分析中的回归与相关性分析
报告分析中的回归与相关性分析引言报告分析是一种常见的数据分析方法,通过对数据进行整理和统计,为决策者提供有关问题的详细信息和见解。
在报告分析中,回归与相关性分析是两种重要的统计技术,它们可以揭示不同变量之间的关系,并帮助我们预测未来的趋势和结果。
一、回归分析的应用回归分析是通过建立一个数学模型,确定自变量与因变量之间的关系。
它被广泛应用于经济学、金融学和社会科学等领域。
1. 定量回归分析定量回归分析用于研究连续变量之间的关系。
它可以通过计算相关系数和拟合模型,揭示自变量对因变量的影响程度。
2. 定性回归分析定性回归分析适用于研究分类变量之间的关系。
例如,研究消费者购买决策与性别、年龄和教育程度之间的关系。
二、回归分析的步骤进行回归分析时,需要按照以下步骤进行:1. 收集数据:收集与研究问题相关的数据,确保数据的可靠性和准确性。
2. 数据清洗:对数据进行清洗和预处理,包括缺失值填补、异常值检测和数据转换等。
3. 描述性统计:对数据进行描述性统计,包括平均值、中位数和标准差等指标的计算。
4. 相关性分析:通过计算相关系数,判断自变量与因变量之间的相关性。
5. 模型建立:选择适当的回归模型,并拟合数据,得到回归方程。
6. 模型评价:通过统计指标如R方值和残差分析,评价模型的拟合程度和预测能力。
三、相关性分析的概念和方法相关性分析用于研究变量之间的相关关系,可以帮助我们了解变量之间的密切程度和方向。
1. 相关系数相关系数是衡量变量之间关系强度和方向的指标。
常见的相关系数包括皮尔逊相关系数、斯皮尔曼秩相关系数和判定系数等。
2. 相关图相关图是用来可视化变量之间关系的图表。
常见的相关图包括散点图、线性图和箱线图等。
四、回归与相关性分析的优缺点虽然回归和相关性分析在报告分析中被广泛使用,但它们也存在一些优缺点。
1. 优点回归分析可以帮助我们预测未来的趋势和结果,为决策者提供有价值的信息。
相关性分析可以揭示变量之间的关系,帮助我们理解问题的本质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•分析
①K= -1时,标志间的相关是负相关 ②K= +1时,标志间的相关是正相关 ③K= 0 时, 标志间不存在相关
符号系数的优点在于意义明了,计算方便,其
缺点在于掩盖了离差绝对值上的不同,指标只 能反映相关的一般趋势。
2、相关系数
定义:是按积差方法计算,同样以两变量与各
自平均值的离差为基础,通过两个离差相乘来 反映两变量之间相关程度。 公式:
2、按相关的方向分为正相关和负相关
正相关指相关关系表现为因素标志和结果标志
的数量变动方向一致。
负相关指相关关系表现为因素标志和结果标志
的数量变动方向是相反的。
3、按影响因素的多少分为单相关和复相关
如果研究的是一个结果标志同某一因素标志
相关,就称单相关。
如果分析若干因素标志对结果标志的影响,
称为复相关或多元相关。
4、按相关的形式分为线性相关和非线性相关
一种现象的一个数值和另一现象相应的数值
在直角坐标系中确定为一个点,称为线性相 关。
四、相关分析的主要内容
1、确定相关关系的存在,相关关系呈现的形态 和方向,相关关系的密切程度(主要方法是绘 制相关图表和计算相关系数) 2、确定相关关系的数学表达式 3、确定因变量估计值误差的程度。
第八章 相关分析和回归分析
第一节:相关的意义、概念和种类 第二节:相关图表和相关系数 第三节:回归分析 第四节:相关分析和回归分析中 应注意的问题
第一节:相关的意义、概念和种类
一、相关分析的意义: 1、统计分析的重要课题. 2、在总体中,如果对变量x的每一个数值,相应 还有第二个变量y的数值,则各对变量的变量 值所组成的总体称为二元总体;由二个以上相 互对应的变量组成的总体,称为多元总体。 3、对二元总体应了解的问题 两变量是不是存在关系,关系的密切程度如何 如果存在关系,那么关系的具体形式是什么 怎样根据一个变量的变动来估计另一变量的变 动
3、函数关系与相关关系的联系
1、对具有相关关系的现象进行分析时,则必须 利用响应的函数关系数学表达式,来表明现象 之间的相关方程式。 2、相关关系是相关分析的研究对象,函数关系 是相关分析的工具。 例:圆的面积与半径的关系;计件工资总额与零 件数量;看书时间和学习成绩。
三、相的种类
1、按相关的程度分为完全相关、不完全相关和 不相关。 两种依存关系的标志,其中一个标志的数量变 化由另一个标志的数量变化所确定,则称完全 相关,也称函数关系。 两个标志彼此互不影响,其数量变化各自独立, 称为不相关。 两个现象之间的关系,介乎完全相关与不相关 之间称不完全相关。
三、相关系数的计算:
1、符号系数:把两个同平均值的离差数列做对称 比较。 ①如果一个数列的离差与另一个数列的离差有很 多同号,就可以认为这两标志之间存在正相关。 ②如果大多数为异号,就可以认为他们之间存在 负相关。 ③如果同号与异号大体一样,显然不存在相关。 符号系数K
C H K C H C 离差同号次数和 H 离差异号次数和
•相关系数r的性质:
①、当 r 1 时,x与y为完全线性相关,它们之 间存在确定的函数关系。 ②、当 0 r 1 时,表示x与y存在着一定的线 性相关,r的绝对值越大,越接近于1,表示x 与y直线相关程度越高,反之越低。
r 0.3 微弱相关、 0.3 r 0.5 低度相关 0.5 r 0.8 显著相关、 0.8 r 1 高度相关 当r 0时,表示x与y为正相关 当r 0时,表示x与y为负相关 当 r 0时,表示x与y不相关
x y
•协方差的意义
①显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
二、相关分析的概念
1、相关分析就是对总体中确实具有联系的标志 进行分析,其主体是对总体中具有因果关系标 志的分析。 2、现象总体的依存关系类型: 因素标志是决定结果标志发展的条件,根据结 果标志对因素标志的不同反应,可分两种类型。 函数关系是当因素标志的数量确定之后,结果 标志的数量也随之完全确定,以y=f(x)表现 相关关系是不完全确定的随机关系。因素标志 的数值,可能有若干结果标志的数值。
第二节:相关图表和相关系数
一、相关表的编制 1、编制相关表前首先要通过实际调查取得一系 列成对的标志值资料作为相关分析的原始数据。 2、相关表的分类: 简单相关表是资料未经分组的相关表,它是把 因素标志值按照从小到大的顺序并配合结果标 志值一一对应而平行排列起来的统计表。 分组相关表是在简单相关表的基础上,将原始 数据进行分组而编成的统计表。
2 xy 2 r 、 xy x y
( x x)( y y) 协方差
n
2 ( y y )
x
2 ( x x )
n
、x的标准差 y
n
2 2
、y标准差
( x x)( y y ) ( x x)( y y ) 即r 或r n ( x x) ( y y )
①单变量分组相关表
· 自变量分组并计算次数,而对应的因变量不分
组,只计算其平均值。
· 单变量分组相关表的特点:使冗长的资料简化,
能够更清晰地反映出两变量之间相关关系。 ②双变量分组相关表:
· 自变量和因变量都进行分组而制成的相关表,
这种表形似棋盘,故又称棋盘式相关表。
二、相关图的编制
1、相关图:利用直角坐标系第一象限,把自变 量置于横轴上,因变量置于纵轴上,而将两变 量相对应的变量值用坐标点形式描绘出来,用 以表明相关点分布状况的图形。 2、相关图被形象地称为相关散点图 3、因素标志分了组,结果标志表现为组平均数, 所绘制的相关图就是一条折线,这种折线又叫 相关曲线。