SPSS 第五章 相关分析和回归分析
spss中相关与回归分析
定义变量:血红蛋白,贫血体征→Variables
20:41
16
建立数据文件:血红蛋 白的等级相关分析.sav.
定义变量 输入数据
开始分析
ቤተ መጻሕፍቲ ባይዱ
analyze →Correlate →Bivariate
定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
20:41
34
主要结果
b Model Summary
Model 1
R .930a
R Sq uare .865
Adjusted R Sq uare .848
Std. Error of the Estimate 1.8528
a. Predictors: (Constant), 身 高 ( cm) b. Dependent Variable: 体 重 ( kg )
表 4 慢性支气管炎患者各年龄组疗效观察结果 疗效 年龄(岁) 11~ 20~ 30~ 40~ 50~ 合计 治愈 35 32 17 15 10 109 显效 1 8 13 10 11 43 好转 1 9 12 8 23 53 无效 3 2 2 2 5 14 合计 40 51 44 35 49 219
17
20:41
主要结果
Correlations 血 红 蛋 白 含 量 ( g/dl) 1.000 . 10 -.741* .014 10 贫 血 体 征 -.741* .014 10 1.000 . 10
Spearman's rho
血 红 蛋 白 含 量 ( g/dl)
SPSS的相关分析和线性回归分析
• 如果两变量的正相关性较强,它们秩的变化具有同步性,于
是
n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影
数据统计分析软件SPSS的应用(五)——相关分析与回归分析
数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS的应用(五)——相关分析与回归分析数据统计分析软件SPSS是目前应用广泛且非常强大的数据分析工具之一。
在前几篇文章中,我们介绍了SPSS的基本操作和一些常用的统计方法。
本篇文章将继续介绍SPSS中的相关分析与回归分析,这些方法是数据分析中非常重要且常用的。
一、相关分析相关分析是一种用于确定变量之间关系的统计方法。
SPSS提供了多种相关分析方法,如皮尔逊相关、斯皮尔曼相关等。
在进行相关分析之前,我们首先需要收集相应的数据,并确保数据符合正态分布的假设。
下面以皮尔逊相关为例,介绍SPSS 中的相关分析的步骤。
1. 打开SPSS软件并导入数据。
可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备相关分析的变量。
选择菜单栏中的“Analyze”选项,然后选择“Correlate”子菜单中的“Bivariate”。
在弹出的对话框中,选择要进行相关分析的变量,并将它们添加到相应的框中。
3. 进行相关分析。
点击“OK”按钮后,SPSS会自动计算所选变量之间的相关系数,并将结果输出到分析结果窗口。
4. 解读相关分析结果。
SPSS会给出相关系数的值以及显著性水平。
相关系数的取值范围为-1到1,其中-1表示完全负相关,1表示完全正相关,0表示没有相关关系。
显著性水平一般取0.05,如果相关系数的显著性水平低于设定的显著性水平,则可以认为两个变量之间存在相关关系。
二、回归分析回归分析是一种用于探索因果关系的统计方法,广泛应用于预测和解释变量之间的关系。
SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。
下面以简单线性回归为例,介绍SPSS中的回归分析的步骤。
1. 打开SPSS软件并导入数据。
同样可以通过菜单栏中的“File”选项来导入数据文件,或者使用快捷键“Ctrl + O”。
2. 准备回归分析的变量。
相关与回归分析spss课件
表 2 10 名正常成年男性的血浆清蛋白含量及血红蛋白含量检测结果
编号
1 2 3 4 5
血浆清蛋 白含量(x)
35.5 36.5 38.5 37.5 36.5
血红蛋白含 量(y)
119.5 120.5 127.5 126.5 120.5
编号
6 7 8 9 10
血浆清蛋 白含量(x)
35.4 34.5 34.2 34.6 33.5
定义变量:身高, 体重→Variables
*
8
建立数据文件:身高体重的 相关分析.sav.
定义变量
输入数据
开始分析
绘制散点图
假定满足双变量正态分 布:analyze →Correlate →Bivariate
定义变量:身高, 体重→Variables
选择统计量: Correlation Coefficients →Pearson
开始分析
analyze →Correlate →Bivariate
定义变量:血 红蛋白,贫血 体征 →Variables
选择统计量: Correlation Coefficients →Spearman
*
17
主要结果
Corre lations
血 红蛋 白含 量 ( g/dl)贫 血 体 征 Spearman's血 rh红 o 蛋 白 含 量 (Cgo/drrle)lation Coeffic1ie.0n0t0 -.741*
b.Dependent Var iable: 体 重 ( kg)
Sig. .000a
对总体回归 模型检验的F
值
对总体回归 模型检验的
P值
*
36
主要结果
相关分析和回归分析SPSS实现
相关分析与回归分析一、试验目标与要求本试验项目的目的是学习并使用SPSS软件进行相关分析与回归分析;具体包括:(1)皮尔逊pearson简单相关系数的计算与分析(2)学会在SPSS上实现一元及多元回归模型的计算与检验..(3)学会回归模型的散点图与样本方程图形..(4)学会对所计算结果进行统计分析说明..(5)要求试验前;了解回归分析的如下内容..参数α、β的估计回归模型的检验方法:回归系数β的显着性检验t-检验;回归方程显着性检验F-检验..二、试验原理1.相关分析的统计学原理相关分析使用某个指标来表明现象之间相互依存关系的密切程度..用来测度简单线性相关关系的系数是Pearson简单相关系数..2.回归分析的统计学原理相关关系不等于因果关系;要明确因果关系必须借助于回归分析..回归分析是研究两个变量或多个变量之间因果关系的统计方法..其基本思想是;在相关分析的基础上;对具有相关关系的两个或多个变量之间数量变化的一般关系进行测定;确立一个合适的数据模型;以便从一个已知量推断另一个未知量..回归分析的主要任务就是根据样本数据估计参数;建立回归模型;对参数与模型进行检验与判断;并进行预测等..线性回归数学模型如下:在模型中;回归系数是未知的;可以在已有样本的基础上;使用最小二乘法对回归系数进行估计;得到如下的样本回归函数:回归模型中的参数估计出来之后;还必须对其进行检验..如果通过检验发现模型有缺陷;则必须回到模型的设定阶段或参数估计阶段;重新选择被解释变量与解释变量及其函数形式;或者对数据进行加工整理之后再次估计参数..回归模型的检验包括一级检验与二级检验..一级检验又叫统计学检验;它是利用统计学的抽样理论来检验样本回归方程的可靠性;具体又可以分为拟与优度评价与显着性检验;二级检验又称为经济计量学检验;它是对线性回归模型的假定条件能否得到满足进行检验;具体包括序列相关检验、异方差检验等..三、试验演示内容与步骤1.连续变量简单相关系数的计算与分析在上市公司财务分析中;常常利用资产收益率、净资产收益率、每股净收益与托宾Q值4个指标来衡量公司经营绩效..本试验利用SPSS对这4个指标的相关性进行检验..操作步骤与过程:打开数据文件“上市公司财务数据连续变量相关分析.sav”;依次选择“分析→相关→双变量”打开对话框如图;将待分析的4个指标移入右边的变量列表框内..其他均可选择默认项;单击ok提交系统运行..图5.1 Bivariate Correlations对话框结果分析:表给出了Pearson简单相关系数;相关检验t统计量对应的p值..相关系数右上角有两个星号表示相关系数在0.01的显着性水平下显着..从表中可以看出;每股收益、净资产收益率与总资产收益率3个指标之间的相关系数都在0.8以上;对应的p值都接近0;表示3个指标具有较强的正相关关系;而托宾Q值与其他3个变量之间的相关性较弱..表5.1 Pearson简单相关分析Correlations每股收益率净资产收益率资产收益率托宾Q值每股收益率PearsonCorrelation1.877.824-.073Sig.2-tailed..000.000.199N315315315315净资产收益率Pearson.8771.808-.001 CorrelationSig..000..000.983 2-tailedN315315315315资产收益率Pearson.824.8081.011 CorrelationSig..000.000..849 2-tailedN315315315315托宾Q值Pearson-.073-.001.0111 CorrelationSig..199.983.849.2-tailedN315315315315 Correlation is significant at the 0.01 level 2-tailed.2.一元线性回归分析实例分析:家庭住房支出与年收入的回归模型在这个例子里;考虑家庭年收入对住房支出的影响;建立的模型如下:其中;yi是住房支出;xi是年收入线性回归分析的基本步骤及结果分析:1绘制散点图打开数据文件;选择图形-旧对话框-散点/点状;如图5.2所示..图5.2 散点图对话框选择简单分布;单击定义;打开子对话框;选择X变量与Y变量;如图5.3所示..单击ok提交系统运行;结果见图5.4所示..图5.3 Simple Scatterplot 子对话框从图上可直观地看出住房支出与年收入之间存在线性相关关系..图5.4 散点图2简单相关分析选择分析—>相关—>双变量;打开对话框;将变量“住房支出”与“年收入”移入variables列表框;点击ok运行;结果如表5.2所示..表5.2 住房支出与年收入相关系数表CorrelationsCorrelation is significant at the 0.01 level 2-tailed.从表中可得到两变量之间的皮尔逊相关系数为0.966;双尾检验概率p值尾0.000<0.05;故变量之间显着相关..根据住房支出与年收入之间的散点图与相关分析显示;住房支出与年收入之间存在显着的正相关关系..在此前提下进一步进行回归分析;建立一元线性回归方程..3 线性回归分析步骤1:选择菜单“分析—>回归—>线性”;打开Linear Regression 对话框..将变量住房支出y移入Dependent列表框中;将年收入x移入Independents列表框中..在Method 框中选择Enter 选项;表示所选自变量全部进入回归模型..图5.5 Linear Regresssion对话框步骤2:单击Statistics按钮;如图在Statistics子对话框..该对话框中设置要输出的统计量..这里选中估计、模型拟合度复选框..图5.6 Statistics子对话框估计:输出有关回归系数的统计量;包括回归系数、回归系数的标准差、标准化的回归系数、t统计量及其对应的p值等..置信区间:输出每个回归系数的95%的置信度估计区间..协方差矩阵:输出解释变量的相关系数矩阵与协差阵..模型拟合度:输出可决系数、调整的可决系数、回归方程的标准误差、回归方程F检验的方差分析..步骤3:单击绘制按钮;在Plots子对话框中的标准化残差图选项栏中选中正态概率图复选框;以便对残差的正态性进行分析..图5.7 plots子对话框步骤4:单击保存按钮;在Save子对话框中残差选项栏中选中未标准化复选框;这样可以在数据文件中生成一个变量名尾res_1 的残差变量;以便对残差进行进一步分析..图5.8 Save子对话框其余保持Spss默认选项..在主对话框中单击ok按钮;执行线性回归命令;其结果如下:表5.3给出了回归模型的拟与优度R Square、调整的拟与优度Adjusted R Square、估计标准差Std. Error of the Estimate以及Durbin-Watson统计量..从结果来看;回归的可决系数与调整的可决系数分别为0.934与0.93;即住房支出的90%以上的变动都可以被该模型所解释;拟与优度较高..表5.4给出了回归模型的方差分析表;可以看到;F统计量为252.722;对应的p值为0;所以;拒绝模型整体不显着的原假设;即该模型的整体是显着的..表5.5给出了回归系数、回归系数的标准差、标准化的回归系数值以及各个回归系数的显着性t检验..从表中可以看到无论是常数项还是解释变量x;其t统计量对应的p值都小于显着性水平0.05;因此;在0.05的显着性水平下都通过了t检验..变量x的回归系数为0.237;即年收入每增加1千美元;住房支出就增加0.237千美元..表5.3 回归模型拟与优度评价及Durbin-Watson检验结果Model Summaryba Predictors: Constant;年收入千美元b Dependent Variable:住房支出千美元表5.4 方差分析表ANOVAba Predictors: Constant; 年收入千美元b Dependent Variable: 住房支出千美元表5.5 回归系数估计及其显着性检验Coefficientsaa Dependent Variable: 住房支出千美元为了判断随机扰动项是否服从正态分布;观察图5.9所示的标准化残差的P-P图;可以发现;各观测的散点基本上都分布在对角线上;据此可以初步判断残差服从正态分布..为了判断随机扰动项是否存在异方差;根据被解释变量y与解释变量x的散点图;如图5.4所示;从图中可以看到;随着解释变量x的增大;被解释变量的波动幅度明显增大;说明随机扰动项可能存在比较严重的异方差问题;应该利用加权最小二乘法等方法对模型进行修正..图5.9 标准化残差的P-P图四、备择试验现有1987~2003年湖南省全社会固定资产投资总额NINV与GDP两个指标的年度数据;见下表..试研究全社会固定资产投资总额与GDP的数量关系;并建立全社会固定资产投资总额与GDP之间的线性回归方程..。
04-SPSS相关分析和回归分析-51页精选文档
8.2.2 相关系数
利用相关系数进行变量间线性关系的分析通常需 要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间
R>0表示两变量存在正的线性相关关系;r<0表示两变 量存在负的线性相关关系
R=1表示两变量存在完全正相关;r=-1表示两变量存 在完全负相关;r=0表示两变量不相关
• 相关分析用于描述两个变量间关系的密切程度,其特点是
变量不分主次,被置于同等的地位。
• 在Analyze的下拉菜单Correlate命令项中有三个相关分 析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。 Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间 进行相似性分析,一般不单独使用,而作为聚类分析和因 子分析等的预分析。
|r|>0.8表示两变量有较强的线性关系; |r|<0.3表示 两变量之间的线性关系较弱
第二,对样本来自的两总体是否存在显著的线性 关系进行推断。
对不同类型的变量应采用不同的相关系数来度量,常用 的相关系数主要有Pearson简单相关系数、Spearman等
级相关系数和Kendall 相关系数等。
4.在Test of Significance框中选择输出偏相关 检验的双尾概率p值或单尾概率p值。
SPSS相关分析与回归分析专题课件
SPSS相关分析与回归分析专题课件
线性回归
相关分析 与
回归分析
回归分析一般步骤: •确定回归方程中的解释变量(自变量)和
被解释变量(因变量) •确定回归模型 •建立回归方程 •对回归方程进行各种检验 •利用回归方程进行预测
SPSS相关分析与回归分析专题课件
线性回归
线性回归模型
相关分析 与
回归分析
研究者把非确定性关系称为相关关系。
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
三.相关分析的特点和应用
相关关系是普遍存在的,函数关系仅是相关关系的特 例。 1.相关关系的类型
相关关系多种多样,归纳起来大致有以下6种: 强正相关关系,其特点是一变量X增加,导致另一变量
Y明显增加,说明X是影响Y的主要因素。 弱正相关关系,其特点是一变量X增加,导致另一变量
所以,相关分析的意义和目的在于: (1)在统计学中有理论与实践意义 (2)对相关关系的存在性给出判断
( 3 ) 对相关关系的强度给出度量和分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
二、相关分析的概念
变量之间的关系分为确定性关系和非确定性关系。 确定性关系:当一个变量值(自变量)确定后,另一个 变量值(因变量)也就完全确定了,确定性关系往往可以 表示成一个函数的形式,比如圆的面积和半径的关系: S=πr² 非确定性关系:给定了一个变量值后,另一个变量值可 以在一定范围内变化,例如家庭的消费支出和家庭收入的 关系。
回归分析
SPSS相关分析与回归分析专题课件
相关分析 与
回归分析
(1)案例处理摘要。“案例处理摘要”表格给出了数 据使用的基本情况。主要是对有无缺失值的统计信息, 可见本例的11个案例没有缺失,全部用于分析。 (2)近似矩阵。“近似矩阵”表格给出的是各变量之 间的相似矩阵,图中以线框标注了相关系数较大的几对 变量。它们在进一步的分析中应重点关注,或者直接对 其进行适当的预处理(例如变量约减)
spass教程第五章相关分析和回归分析ppt课件
5.1 下表为青海一月平均气温与海拔高度及纬度的数
据,试分析一月平均气温与海拔高度和纬度的偏相关 系数〔由于第三个变量纬度(海拔)的存在所起的作用, 能够会影响纬度(海拔)与一月平均温度之间的真实关 系〕。
测站 昂欠 清水河 玛多 共和 铁卜加 茫崖 托勒 伍道梁 察尔汗 吉迈 尖扎 西宁
一月气温
曲线回归
检验结果和系数
MODEL: MOD_3.
Independent: 年降水量 Dependent Mth Rsq d.f. F Sigf b0 b1 b2 b3 海拔高度 LIN .462 10 8.60 .015 -780.60 2.0951 海拔高度 LOG .484 10 9.39 .012 -10241 1672.91 海拔高度 INV .477 10 9.13 .013 2504.03 -1.E+06 海拔高度 QUA .506 9 4.60 .042 -2676.6 6.9415 -.0029 海拔高度 CUB .559 8 3.39 .074 5011.03 -23.623 .0356 -2.E-05 海拔高度 COM .665 10 19.85 .001 63.4154 1.0030 海拔高度 POW .710 10 24.54 .001 6.7E-05 2.4296 海拔高度 S .719 10 25.64 .000 8.9234 -1781.4 海拔高度 GRO .665 10 19.85 .001 4.1497 .0030 海拔高度 EXP .665 10 19.85 .001 63.4154 .0030
降水量
多元非线性回归
7.6 某变量受其它两个变量的影响,其中X、Y这两 个变量对y影响的函数表达式为 Z=a+bX+cX2+dY+eY2+fXY,根据下面的数据计算 这个关系式〔不可直线化的多元非线性回归,知曲 线的方式〕 注:多元多项式回归也用此方法
SPSS直线回归与相关分析
Kendall's tau-b 计算 Kendall‘s 等级相关系数。这 是一个用于反映分类变量一致性的指标,只能在两个变量均属 于有序分类时使用。
Spearman计算Spearman相关系数,即最常用的非参数相 关分析(秩相关)
煤气户数 (万户)
25.68 25.77 25.88 27.43 29.95 33.53 37.31 41.16 45.73 50.59 58.82 65.28 71.25 73.37 76.68
卷烟销量 (百箱)
蚊香销量 打火石销量 (十万盒) (百万粒)
23.6
10.1
4.18
23.42
Байду номын сангаас
13.31
相关分析与回归模型的建立与分析
1
相关分析
在SPSS中,可以通过Analyze菜单进行相关分析(Correlate),Correlate菜单如图所示。
2
简单相关分析 两个变量之间的相关关系称简单相关关系。有两种 方法可以反映简单相关关系。一是通过散点图直观地 显示变量之间关系,二是通过相关系数准确地反映两 变量的关系程度。
例2:为了考察火柴销售量的影响因素,选择煤气户数、卷 烟销量、蚊香销量、打火石销量作为影响因素,得数据表。试 求火柴销售量与煤气户数的偏相关系数.
10
表 火柴销量及影响因素表
年份 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
火柴销售量 (万件)
23.69 24.1 22.74 17.84 18.27 20.29 22.61 26.71 31.19 30.5 29.63 29.69 29.25 31.05 32.28
SPSS5-相关与回归分析
在回归方程中包括常项 缺失值的处理方式
用均值代替缺失值
一、线性回归分析( Linear Regression)
2、一元线性回归:
示例1:教材P260数据:20章_数据1.sav
识字量对阅读能力的影响有多大?
步骤:
(1)依据散点图检验线性关系 (2)操作过程:Analyze-Regression-Linear (3)结果输出观察重点:
二、双变量相关分析(Bivariate)
示例1:大学生人格(神经质、内外向程度) 与心理健康(SCL-90总分)之间有无相关?
SPSS操作:
1、绘制散点图,判定两变aphs-Scatter
2、打开Bivarite Correlations主对话框
偏相关分析的思想:控制其它变量的变化,即在剔 除其它变量影响的情况下,计算两变量之间的相 关关系。
两个变量间的线性相关关系,用偏相关系数表示。 应用条件:均为连续性变量。
Partial Correlations 对话框
分析变量
显著性检验 显示实际的显著性水平
控制变量
Options 对话框
均值及标准差 零阶相关矩阵(即:Pearson相关矩阵)
Model 1
Regression Residual Total
Sum of Squares 1845.333 899.634 2744.967
a. Predictors: (Constant), 识 字 量
b. Dependent Var iable: 阅 读 能力
ANOV Ab
df 1
28 29
解释回归平方和在总平方各中所占的比率,即解释回 归效果, r2=0.672,则表示因变量(阅读能力)的 变异中有67.2%是由自变量(识字量)而引起的。
相关分析和回归分析SPSS
人均 国民收入
1068.8 1169.2 1250.7 1429.5 1725.9 2099.5
人均 消费金额
643 690 713 803 947 1148
计算结果
•
解:根据样本相关系数的计算公式有
r
n x x n y y
2 2 2
n xy x y
回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释 变量(因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
回归分析与相关分析的区别
1. 相关分析中,变量 x 变量 y 处于平等的地位, 是对称的双向关系;回归分析中,变量 y 称为因 变量,处在被解释的地位, x 称为自变量,用于 预测因变量的变化,是一种不对称的单向关系。 2. 相关分析中所涉及的变量 x 和 y 都是随机变量 ;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量。 3. 相关分析主要描述两个变量间线性关系的密切程 度;回归分析不仅可以揭示变量 x 对变量 y 的 影响大小,还可以由回归方程进行预测和控制。
一元线性回归模型(概念要点)
对于只涉及一个自变量的简单线性回归模型可表示 为 y = b + b x +
模型中,y 是 x 的线性函数(部分)加上误差项 线性部分反映了由于 x 的变化而引起的 y 的变化 误差项 是随机变量 • 反映了除 x 和 y 之间的线性关系之外的随机因素对 y 的影响 • 是不能由 x 和 y 之间的线性关系所解释的变异性 b0 和 b1 称为模型的参数
Bivariate过程用于进行两个或多个变量间的相关分析,如为
多个变量,给出两两相关的分析结果。 Partial过程,当进行相关分析的两个变量的取值都受到其他 变量的影响时,就可以利用偏相关分析对其他变量进行控制 ,输出控制其他变量影响后的偏相关系数。 Distances过程用于对各样本点之间或各个变量之间进行相似 性分析,一般不单独使用,而作为聚类分析和因子分析等的 预分析。
SPSS数据分析教程 ——回归分析课件
回归和相关分析
• 回归分析是在相关分析的基础上,确定了变量之间的相互影响关 系之后,准确的确定出这种关系的数量方法。因此,一般情况下, 相关分析要先于回归分析进行,确定出变量间的关系是线性还是 非线性,然后应用相关的回归分析方法。在应用回归分析之前, 散点图分析是常用的探索变量之间相关性的方法。
SPSS数据分析教程 ——回归分析
• Y = ¯0 +¯1 X +² • 其中变量X为预测变量,它是可以观测和控制的;Y为因变量或响应变量,
它为随机变量; ²为随机误差。 • 通常假设²~N(0,¾2),且假设与X无关。
SPSS数据分析教程 ——回归分析
回归模型的主要问题
• 进行一元线性回归主要讨论如下问题:
(1) 利用样本数据对参数¯0, ¯1和¾2,和进行点估计,得到经验回归方程 (2) 检验模型的拟合程度,验证Y与X之间的线性相关的确存在,而不是由
用回归方程预测
• 在一定范围内,对任意给定的预测变量取值,可以利用求得的拟 合回归方程进行预测。其预测值为:
ˆ0 ˆ0ˆ1x0PSS数据分析教程 ——回归分析
简单线性回归举例
• 一家计算机服务公司需要了解其用电话进行客户服务修复的计算 机零部件的个数和其电话用的时间的关系。经过相关分析,认为 二者之间有显著的线性关系。下面我们用线性回归找到这两个变 量之间的数量关系。
• F检验的 被拒绝,H 0并不能说明所有的自变量都对因变量Y有显著 影响,我们希望从回归方程中剔除那些统计上不显著的自变量, 重新建立更为简单的线性回归方程,这就需要对每个回归系数做 显著性检验。
• 即使所有的回归系数单独检验统计上都不显著,而F检验有可能 显著,这时我们不能够说模型不显著。这时候,尤其需要仔细对 数据进行分析,可能分析的数据有问题,譬如共线性等。
《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文
《数据统计分析软件SPSS的应用(五)——相关分析与回归分析》篇一数据统计分析软件SPSS的应用(五)——相关分析与回归分析一、引言在当今的大数据时代,数据统计分析成为了科学研究、市场调研、社会统计等众多领域的重要工具。
SPSS(Statistical Package for the Social Sciences)作为一款功能强大的数据统计分析软件,被广泛应用于各类数据分析中。
本文将重点介绍SPSS 中相关分析与回归分析的应用,以帮助读者更好地理解和掌握这两种分析方法。
二、相关分析1. 相关分析的概念与目的相关分析是研究两个或多个变量之间关系密切程度的一种统计方法。
其目的是通过计算相关系数,了解变量之间的线性关系强度和方向,为后续的回归分析提供依据。
2. SPSS中的相关分析操作步骤(1)导入数据:将数据导入SPSS软件中,建立数据文件。
(2)选择分析方法:在SPSS菜单中选择“分析”->“相关”->“双变量”,进行相关分析。
(3)设置变量:在弹出的对话框中,设置需要进行相关分析的变量。
(4)计算相关系数:点击“确定”后,SPSS将自动计算两个变量之间的相关系数,并显示在结果窗口中。
3. 相关分析的注意事项(1)选择合适的相关系数:根据研究目的和数据特点,选择合适的相关系数,如Pearson相关系数、Spearman相关系数等。
(2)控制混淆变量:在进行相关分析时,要控制可能影响结果的混淆变量,以提高分析的准确性。
三、回归分析1. 回归分析的概念与目的回归分析是研究一个或多个自变量与因变量之间关系的一种预测建模方法。
其目的是通过建立自变量和因变量之间的数学模型,预测因变量的值或探究自变量对因变量的影响程度。
2. SPSS中的回归分析操作步骤(1)导入数据:同相关分析一样,将数据导入SPSS软件中。
(2)选择分析方法:在SPSS菜单中选择“分析”->“回归”->“线性”,进行回归分析。
spss第五讲回归分析PPT课件
2、用于判断误差的假定是否成立 3、检测有影响的观测值
34
残差图
(形态及判别)
残
差
0
残
残
差
差
0
0
x
(a)满意模式
x
(b)非常数方差
x
(c)模型不合适
35
二、检验正态性 标准化残差(standardized residual)
2. E(y0) 在1-置信水平下的置信区间为
yˆ0 t 2 (n 2)se
1
n
x0 x 2
n
xi x 2
i 1
式中:se为估计标准误差
29
个别值的预测区间
1. 利用估计的回归方程,对于自变量 x 的一个给定值 x0 ,求出因变量 y 的一个个别值的估计区间,这一
区间称为预测区间(prediction interval) 2. y0在1-置信水平下的预测区间为
一、变差 1、因变量 y 的取值是不同的,y 取值的这种波动称为变
差。变差来源于两个方面
由于自变量 x 的取值不同造成的 除 x 以外的其他因素(如x对y的非线性影响、测量误差等)
的影响
2、对一个具体的观测值来说,变差的大小可以通过该 实际观测值与其均值之差y y 来表示
16
误差分解图
y
(xi , yi )
32
一、检验方差齐性
残差(residual)
1、因变量的观测值与根据估计的回归方程求 出的预测值之差,用e表示
ei yi yˆi
2、反映了用估计的回归方程去预测而引起的 误差
3、可用于确定有关误差项的假定是否成立 4、用于检测有影响的观测值
数据统计分析软件SPSS的应用相关分析与回归分析
数据统计分析软件SPSS的应用相关分析与回归分析一、本文概述随着信息技术的快速发展和大数据时代的来临,数据统计分析在各个领域的应用越来越广泛。
SPSS作为一款功能强大的数据统计分析软件,其在社会科学、商业分析、医学统计等多个领域具有广泛的应用。
本文将深入探讨SPSS在相关分析与回归分析中的应用,帮助读者更好地理解和应用这一强大的工具。
本文将简要介绍SPSS软件的基本功能和特点,使读者对其有一个初步的了解。
随后,文章将重点介绍相关分析的概念、类型及其在SPSS中的实现方法,包括皮尔逊相关系数、斯皮尔曼秩相关系数等。
文章还将详细阐述回归分析的基本原理、类型及其在SPSS中的操作步骤,如线性回归分析、逻辑回归分析等。
通过本文的学习,读者将能够掌握SPSS在相关分析与回归分析中的基本应用,提高数据处理和分析的能力,为实际工作和研究提供有力支持。
文章还将提供一些实际案例,以帮助读者更好地理解和应用所学知识,提高实际操作能力。
二、SPSS软件基础SPSS,全称为Statistical Package for the Social Sciences,即“社会科学统计软件包”,是一款广泛应用于社会科学领域的数据统计分析软件。
它提供了丰富的数据分析工具,包括描述性统计、推论性统计、探索性数据分析、回归分析、因子分析、聚类分析等,能够帮助研究者轻松处理和分析数据,挖掘数据背后的深层次信息。
在使用SPSS之前,用户需要对其基本界面和常用功能有所了解。
SPSS界面友好,主要分为菜单栏、工具栏、数据视图和变量视图等部分。
菜单栏包含了大多数统计分析功能的命令,如“分析”“描述统计”“因子分析”等。
工具栏则提供了一些常用的统计分析工具的快捷方式。
数据视图是用户输入和编辑数据的地方,而变量视图则用于定义变量的属性,如变量名、变量类型、宽度、小数位数等。
在SPSS中,数据分析的核心步骤通常包括数据准备、数据分析、结果解释和报告生成。
spss相关分析与回归分析教学提纲
的云,中间的点密集,
边202沿0/6/的11 点稀少,其主要
5
★正相关 ★负相关 ★完全正相关 ★完全负相关 ★零
相关
2020/6/11
6
二 地理要素间的相关类型
按变量 多少 按质量
两个变量 两个以上
变量
直线相关(线性相关)
曲线相关(非线性相关) 复相关 偏相关
等级相关(顺序相关)
品质相关
2020/6/11
年份
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2020/6/112006
GDP(亿元)
1511.19 1810.54 2196.53 2770.37 3844.5 4953.35 5883.8 6537.07 7021.35 7493.84 8337.47 9195.04 10275.5 12078.15 15021.84 18516.87 22077.36
2020/6/11
式(5)—(7) 表示三个偏 相关系数, 称为一级偏 相关系数。
25
若有四个要素X1,X2,X3,X4,则有六个偏相 关系数,即r12·34,r13·24,r14·23,r23·14, r24·12,r34·12,它们称为二级偏相关系数,其 计算公式分别如下:
在式(8)中,r12·34 表示在x3和x4保持不变 的条件,x1和x2的偏相 关系数。
有达到所要求的精度。如果仍需研究二者的关系 ,可考虑降低精度,即修改显著性水平α、
2020/6/11
13
2、等级相关系数的计算公式及检验
——等级相关系数,又称顺序相关系数是将 两要素的样本值按数值的大小顺序排列位次, 以各要素样本值的位次代替实际数据而求得的 一种统计量。实际上,它是位次分析方法的数 量化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1 9.5 8 9.5 9.8 9.7 13.5 9.5 12.5 9.4 11.4 7.7 8.3 12.5 8 6.5 12.9
y 5.77539 4.38263 2.27277 3.64637 3.11833 x1 1.1 1.7 1.6 7.8 7 x2 3.9 5.2 4.8 8.2 8.4 x3 16.65 38.62 65.6 10.56 25.22 x4 15.5 36.2 61.1 9.5 22.7 x5 1.2 2.5 4.5 1.1 2.6 x6 40.75639 42.48211 55.13187 44.67465 42.4436
X2
1.9
2
2.6
2.7
2
2.4
2.3
2.2
3.3
2.3
3.6
2.1
2.5
2.4
3.2
1.9
Y
7.1
6.4
10.4
10.9
7
10
7.9
9.3
12.8
7.5
10.3
6.6
9.5
7.7
7
9.5
方程检验表
从表中可知F>F0.01(p<0.01),说明方程通过了显著性检验,说明鱼产
量依投饵量、放养量的二元线性回归达到显著水平
将0.186与 -0.875 对照; 同时再 与前面 讲的例 子对照 看有什 么不同
回归分析(一元线性回归)
5.2 一条河流流经某地区,其降水量X(mm) 和径流量Y(mm)多年观测数据如表所示。 试建立Y与X的线性回归方程,并根据降水量 预测径流量。
Y X 25 81 36 33 70 54 110 184 145 122 165 143 20 44 78 129 14 41 75 62 130 168
从表中可知,方程最多引入变量X6、X2、X5时其对应的F值大于F0.01 (p<0.01),说明方程通过了显著性检验,说明地理要素Y依地理因素 X6、X2、X5的逐步线性回归达到显著水平
系数检验表
从表中可知引入自变量变量X6、X2、X5对应的t均大于t0.01(p<0.01),说明地 理因素Y对地理要素X6、X2、X5的偏回归系数达极显著水平即通过显著性检验;而其它
曲线回归
检验结果和系数
MODEL: MOD_3.
Independent: 年降水量 Dependent Mth Rsq d.f. 海拔高度 LIN 海拔高度 LOG 海拔高度 INV 海拔高度 QUA 海拔高度 CUB 海拔高度 COM 海拔高度 POW 海拔高度 S 海拔高度 GRO 海拔高度 EXP .462 .484 .477 .506 .559 .665 .710 .719 .665 .665 10 10 10 9 8 10 10 10 10 10 F Sigf b0 b1 b2 b3
将-0.728 与-0.941 对照;同 时再与前 面讲的例 子对照看 有什么不 同
从表中可知-0.728是一月温度和海拔高度的简单相关系数;而-0.941是一 月气温与海拔高度的偏相关系数
相 关性 控制变量 -无-a 一月温度 相关性 显著性(双侧) df 纬度 相关性 显著性(双侧) df 海拔高度 相关性 显著性(双侧) df 海拔高度 一月温度 相关性 显著性(双侧) df 纬度 相关性 显著性(双侧) df a. 单元格包含零阶 (Pearson) 相关。 一月温度 1.000 . 0 -.186 .563 10 -.728 .007 10 1.000 . 0 -.875 .000 9 纬度 -.186 .563 10 1.000 . 0 -.471 .122 10 -.875 .000 9 1.000 . 0 海拔高度 -.728 .007 10 -.471 .122 10 1.000 . 0
相 关性 一月温度 Pearson 相关性 显著性(双侧) N 海拔高度 Pearson 相关性 显著性(双侧) N 纬度 Pearson 相关性 显著性(双侧) N 12 -.728** .007 12 -.186 .563 12 12 -.471 .122 12 12 一月温度 1 海拔高度 -.728** .007 12 1 纬度 -.186 .563 12 -.471 .122 12 1
海拔高度 364 442 422 284 320 314 336 465 268 397 208 226
纬度 32.2 33.8 35 36.3 37.1 38.4 38.9 35.3 36.8 33.8 35.9 36.6
相 关性 控制变量 -无-a 一月温度 相关性 显著性(双侧) df 海拔高度 相关性 显著性(双侧) df 纬度 相关性 显著性(双侧) df 纬度 一月温度 相关性 显著性(双侧) df 海拔高度 相关性 显著性(双侧) df a. 单元格包含零阶 (Pearson) 相关。 一月温度 1.000 . 0 -.728 .007 10 -.186 .563 10 1.000 . 0 -.941 .000 9 海拔高度 -.728 .007 10 1.000 . 0 -.471 .122 10 -.941 .000 9 1.000 . 0 纬度 -.186 .563 10 -.471 .122 10 1.000 . 0
的X1、X3、X4的偏回归系数没有通过显著性检验,所以被剔除。则所见最优(逐步)回 归方程为
Y=-11.675-0.103X6-0.362X2-0.419X5
一元非线性回归分析
7.5 下表给出山脉南侧一组测站年降水量随海拔高度变化的观测 值,试建立年降水量依海拔高度的非线性回归方程(一元非线 性回归问题)。
曲线形式
海拔高度
3000 O bserv ed Linear 2000 Logarithmic Inv erse Q uadratic 1000 C ubic C ompound Power 0 S Growth -1000 400 500 600 700 800 900 1000 1100 1200 Exponential
海拔高度 220 350 470 510 640 830 1040 1280 1440 1670 1790 1830 年降水量 480 660 691 727 831 958 982 1168 1022 987 894 832
11种曲线形式 线性:Y=b0×b1X 二次曲线:Y=b0+b1X2 复合曲线:Y=b0b1X或lnY=lnb0+Xlnb1 增长:Y=exp(b0+b1X) 拟合对数:Y=b0+b1lnX 三次(立方)模型:Y=b0+b1X+b2X2+b3X3 S: Y=exp(b0+b1X) 拟合指数方程: Y=b0+eb1X 倒数(逆模型): Y=b0+b1/X 拟合乘幂曲线: Y=b0Xb1 Logisti: Y=I/((1/u)+b0b1X)
5.1 下表为青海一月平均气温与海拔高度及纬度的数 据,试分析一月平均气温与海拔高度和纬度的偏相关 系数(因为第三个变量纬度(海拔)的存在所起的作用,可能会影响纬度(海拔)与一月平均温
度之间的真实关系)。
测站 昂欠 清水河 玛多 共和 铁卜加 茫崖 托勒 伍道梁 察尔汗 吉迈 尖扎 西宁
一月气温 -6.9 -17 -16.9 -11.3 -14.2 -12.3 -18.2 -17.3 -10.4 -13.3 -6.4 -8.6
降水量
多元非线性回归
7.6 某变量受其它两个变量的影响,其中X、Y这两 个 变 量 对 Z 影 响 的 函 数 表 达 式 为 Z=a+bX+cX2+dY+eY2+fXY,根据下面的数据计算 这个关系式(不可直线化的多元非线性回归,已知 曲线的形式
注:多元多项式回归也用此方法
Nonlinear Regression Summary Statistics Dependent Variable Z Source DF Sum of Squares Mean Square Regression 6 57582.84980 9597.14163 Residual 23 7.46820 .32470 Uncorrected Total 29 57590.31800 (Corrected Total) 28 731.25559 R squared = 1 - Residual SS / Corrected SS = .98979 Asymptotic 95 % Asymptotic Confidence Interval Parameter Estimate Std. Error Lower Upper
方程检验表
从表中可知F>F0.01(p<0.01),说明方程通过了显著性检验,说明径流 量与降水量之间存在着极显著的直线回归关系
系数检验表
从表中可知t>t0.01(p<0.01),说明方程中的回归系数通过了显著性检验, 说明径流量与降水量之间有真实的直线回归关系。
回归分析(多元线性回归)
**. 在 .01 水平(双侧)上显著相关。
从上表可知,一月气温与海拔高度和纬度的相关系数分别为-0.728和-0.186,说明一 月气温与海拔高度和纬度均呈负相关关系;进一步对照其所对应的显著性分别为 0.007<0.05和0.563>0.05,表明一月气温与海拔高度的相关性显著,而一月气温与 纬度的相关性不显著。
8.60 .015 -780.60 2.0951 9.39 .012 -10241 1672.91 9.13 .013 2504.03 -1.E+06 4.60 .042 -2676.6 6.9415 -.0029 3.39 .074 5011.03 -23.623 .0356 -2.E-05 19.85 .001 63.4154 1.0030 24.54 .001 6.7E-05 2.4296 25.64 .000 8.9234 -1781.4 19.85 .001 4.1497 .0030 19.85 .001 63.4154 .0030