193-高频变压器设计基础知识
高频变压器设计解读
高频变压器设计解读高频变压器是现在电子变压器行业关注的热点,想来很多工程师对高频变压器的设计方法应该都挺感兴趣的,今天和大家分享高频变压器设计方法的详解,希望对大家有用。
高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。
下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。
高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。
原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。
如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。
副绕组匝数由输出电压决定。
导线截面(直径)决定于绕组的电流密度。
还要注意的是导线截面(直径)的大小还与漏感有关。
高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。
另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。
对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。
等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。
其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。
另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。
如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。
高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。
高频变压器基础理论知识
15、为什么变压器不能过负荷运行?过负荷运行是指变压器运行时超过了铭牌上规定的电流值。
过负荷分为正常过负荷和事故过负荷两种,前者是指在正常供电情况下,用户用电量增加而引起的,它往往使变压器温度升高,促使变压器绝缘老化,降低使用寿命,所以不允许变压器过负荷运行。
特殊情况下变压器短时间内的过负荷运行,也不能超过额定负荷的30%(冬季),在夏季不得超过15%。
对后者,事故过负荷与允许过的时间要求见下表。
事故过负荷允许时间16、变压器在运行中应该做哪几种测试?为了保证调压器能够正常运行,应经常进行下列几项测试;(1)温度测试。
变压器运行状态是不是正常,温度的高低是很重要的。
规程规定上层油温不得超过850C(即温升550C)。
一般变压器都装有专用温度测定装置。
(2)负荷测定。
为了提高变压器的利用率,减少电能的损失,在变压器运行中,必须测定变压器真正能承担的供电能力。
测定工作通常在每一季节用电蜂屯蚁聚时期进行,用钳形电流表直接测定。
电流值应为变压器额定电流的70~80%,超过时说明过负荷,应立即调整。
(3)电压测定。
规程要求电压变动范围应在额定电压±5%以内。
如果超过这一范围,应采用分接头进行调整,使电压达到规定范围。
一般用电压表分别测量次级线圈端电压和未端用户的端电压。
(4)绝缘电阻测定。
为了使变压器始终处于正常运行状态,必须进行绝缘电阻的测定,以防绝缘老化和发生事故。
测定时应设法使变压器停止运行,利用摇表测定变压器绝缘电阻值,要求所测电阻不低于以前所测值的70%,选用摇表时,低压线圈可采用500伏电压等级的。
17、什么是变压器的极性?在实用中有何作用?变压器极性是用来标志在同一时刻初级绕组的线圈端头与次级绕组的线圈端头彼此电位的相对关系。
因为电动势的大小与方向随时变化,所以在某一时刻,初、次级两线圈必定会出现同时为高电位的两个端头,和同时为低电位的两个端头,这种同时刻为高的对应端叫变压器的同极性端。
高频变压器设计基础知识
8
4.线圈参数:
一般用的绕组排列方式:原绕组靠近磁芯,副绕组反
馈绕组逐渐向外排列。下面推荐两种绕组排列形式:
1)如果原绕组电压高(例如220V),副绕组电压低,可
以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在
最外层的绕组排列形式,这样有利于原绕组对磁芯的
绝缘安排;
2)如果要增加原副绕组之间的耦合,可以采用一半原绕
2020/4/15
14
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类:
组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2020/4/15
9
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
2020/4/15
13
磁芯材料的选择应注意的问题:
1、软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点, 而被广泛应用于开关电源中。 2、软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列, 锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz 以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体 的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感 绕组、抗干扰磁珠、共用天线匹配器等。 3、在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用 途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为 高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为 4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等 多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。
高频变压器的设计
组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2020/7/15
8
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
2020/7/15
2
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/7/15
3
2020/7/15
4
3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是 受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工 作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作 模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面 积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
2020/7/15
1
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。
高频变压器培训教材
高频变压器培训教材一、变压器基础知识1.变压器的定义:变压器是一种利用电磁感应原理将交流电压、电流转换成另一数值电压、电流的电气设备。
2.变压器的组成:包括铁芯、绕组、绝缘材料等部分。
二、电磁感应原理1.法拉第电磁感应定律:当一个导线在磁场中做切割磁感线运动时,会在导线中产生感应电动势。
2.变压器的工作原理:基于电磁感应原理,通过改变铁芯中的磁通量,在绕组中产生感应电动势和电流。
三、变压器设计原理1.变压器的设计目标:实现电压、电流、阻抗的转换,满足特定应用需求。
2.变压器的设计参数:包括输入输出电压、电流,阻抗匹配,效率等。
四、绕组设计及制作方法1.绕组材料选择:根据工作频率、电流大小等因素选择合适的导线材料。
2.绕组结构:单层绕组、多层绕组、纠结绕组等。
3.绕组制作工艺:包括绕线、绝缘处理、引出线制作等步骤。
五、磁芯选择及设计原则1.磁芯材料:根据工作频率、磁通密度等因素选择合适的磁芯材料。
2.磁芯结构:包括E型、I型、罐型等结构。
3.磁芯设计原则:保证磁通量最大化,减小损耗,提高效率。
六、绝缘处理与安全操作规程1.绝缘材料选择:选择合适的绝缘材料,保证变压器正常工作且安全可靠。
2.绝缘处理方法:浸渍绝缘漆、绕包绝缘材料等。
3.安全操作规程:包括操作流程、注意事项、异常情况处理等。
七、性能测试与评估方法1.性能测试项目:包括电压比测试、电流比测试、绝缘电阻测试等。
2.评估方法:通过对比实验数据与设计目标,评估变压器的性能指标。
八、常见故障及维护方法1.常见故障:包括绕组短路、磁芯松动、绝缘损坏等。
2.维护方法:定期检查、清洁、紧固各部件,及时更换损坏的部件。
九、应用案例及设计实例1.应用案例:列举高频变压器在不同领域的应用案例,如通信、电力电子等。
2.设计实例:提供高频变压器设计实例,包括参数设定、结构选择等详细信息。
高频变压器知识
:onion 作成作成:一:常见不良与分析:变压器、电感常见不良 序号 异常项 异常点1.承认书内附资料不清晰.2.承认书内附资料不完整.3.承认书内附资料与实物不符.(一)资料4.承认书内容不完整.5.承认书内容错误.6.版本有升级,但实物仍为旧版.7.送样供应商与指定供应商不符.1.未贴标签.2.标签内容错误.3.PIN脚有黑色脏污.4.PIN脚有凡立水.5.PIN脚空焊.6.PIN脚焊点超高,造成实装浮高.7.PIN脚焊点大,易造成PIN间短路.(二) 外观8.PIN脚歪斜.9.PIN脚套管未套到位.10.PIN脚未依要求剪除.11.本体沾有锡珠、锡渣.12.本体沾有废铜线.13.绕线外露.14.磁芯有断裂.15.BN有破损.(三)结构尺寸1.本体高度超标.2.本体长度超标3.飞线长度不符合要求.4.PIN脚长度超标.5.PIN脚排距次尺寸不符合要求(未整脚).1.感量不符合要求.2.漏感超标.3.Q值偏低.4.耐压不良.(四)电气性能5耐压噪声大.6.带载不良.7.空载电压跳.8.整机试验出现死机.9.EMI测试NG.(五)工艺1工艺有变更,实物仍为旧工艺.2.未依绕线方式(疏、密绕)要求绕线.3.未依绕线顺序(从初级绕到次级或从次级绕到初级)要求绕线.4.未依绕线方向(有的绕组要求反绕)要求绕线.5.绕线松散、杂乱.6.要求双线并绕,实物为分开绕制.7.要求2P或多P并绕,实物未依要求绕制.8.绕制层数不符合要求.9.起、收线错误.10.次级要求飞线,实物没有飞线.11.匝数不符合要求.12.线径错误.13.层间绝缘不符合要求.14.磁芯底部包胶带工艺不符合要求.15.内屏蔽铜箔有重叠.16.内屏蔽铜箔头尾相距太宽(有8.6mm).17.铜箔宽度不符合要求.18.屏蔽铜箔未背胶.19.铜箔背胶不均匀.20.铜箔背胶有刮伤露铜.21.内铜箔头尾未包胶绝缘.22.屏蔽绕组线头未固定.23.屏蔽脚位接错.24未装评蔽铁夹.25.包挡墙胶带位置错误.26.挡墙胶带有缺口.27.抽头引出位置错误.28.抽头引出未套套管.29.BN未开槽.30.标示用的套管未固定.31.进出线未点胶固定.32.磁芯间、磁芯与BN未点胶固定.以上是在承认变压器、电感时发现的品质异常。
变压器基础知识和设计概要
变压器基础知识及设计概要1、变压器的作用。
用于进行交流电压、电流和阻抗变换,同时担负信号源的功率传输。
(广义的变压器还包括电感器,其作用是传送功率、抑制纹波。
)2、变压器的组成。
由铁心(或磁芯)和线圈绕组组成。
有两个以上绕组时,接信号源的称初级绕组,其余的称次级绕组。
3、常用变压器的分类。
电源变压器(50Hz )、音频变压器(20–20000Hz )、高频变压器(20–100000Hz 以上)、脉冲变压器(波形一般为单极性矩形脉冲波)、隔离变压器。
4、电源变压器的特性参数。
4、1 工作频率。
频率直接影响变压器的铁心损耗,应根据使用频率设计和运用,即称工作频率。
4、2 额定功率。
在规定的频率、电压、负载功率下变压器可以长期工作,而不超过规定温升的输出功率。
4、3 额定电压。
变压器线圈上所允许施加的电压,工作时不得超过规定值。
4、4 电压比。
变压器初级电压和次级电压的比值,分空载电压比和负载电压比。
4、5 空载电流。
变压器次级开路时,初级的电流值。
空载电流由磁化电流和铁损电流组成,但主要是磁化电流。
(空载电流是设计信号专用灯丝电源变压器时的主要参数)。
4、6 空载损耗。
次级开路时,在初级测得的功率损耗 。
主要是铁损,其次是铜损。
4、7 效率。
次级功率与初级功率比值的百分比。
变压器的额定功率愈大,效率愈高。
4、8 绝缘电阻。
表示变压器各线圈之间、各线圈与铁心之间的绝缘性能,它与所使用的绝缘材料性能、环境温度、湿度有关。
5、音频和高频变压器的特性参数。
5、1 频率响应。
变压器次级输出电压随工作频率变化的特性。
5、2 通频带。
如果变压器的输入电压保持不变,设中间频率的输出电压为0U ,当输出电压下降到0.7070U 时的频率范围,称为变压器的通频带。
5、3 初、次级阻抗比。
当变压器初、次级阻抗匹配时,输入阻抗与输出阻抗的比值。
此时变压器工作在最佳状态,传输效率最高。
6、变压器的设计。
变压器的设计方法有多种,许多技术书籍和资料都有介绍,也可以从网上查询、下载。
变压器设计基本知识
变压器设计基本知识一、开关电源变压器是开关型功率变换器中的核心部件,其作用有三:磁能转换、电压变换和绝缘隔离。
在开关晶体管的开关作用下,将直流电转变成方波施加于开关电源变压器上,经开关电源变压器的电磁转换,将输入功率传递到负载,输出所需要的电压。
由于开关变压器的工作频率很高,因此它的体积和重量比工频变压器大为缩小,同时变压器的分布参数亦不能忽略。
开关变压器的性能好坏,不仅影响变压器本身的发热和效率等,而且还会影响到开关电源的技术性能和可靠性。
所以在设计制作时,对磁心材料的选择,磁心与线圈的结构,绕制工艺等都要有周密考虑。
开关电源变压器工作于高频状态,分布参数的影响不能忽略,这些分布参数有漏感、分布电容和电流在导体中流动的趋肤效应。
一般根据开关电源电路设计的要求提出漏感和分布电容限定值,在变压器的线圈结构设计中实现,而趋肤效应影响则作为选择导线规格大小的条件之一。
设计变压器时,应当预先知道电路拓扑、工作频率、输入和输出电压、输出功率或输出电流以及环境条件。
同时还应当知道所设计的变压器允许多大损耗。
总是以满足最坏情况设计变压器,保证设计的变压器在规定的任何情况下都能满意工作。
这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压Vin、输出电压Vout、每路输出的功率Pout、效率η、开关频率fs(或周期T)、线路主开关管的耐压Vmos。
同时,在变压器的设计制作中还有一些工艺问题需要注意。
二、设计开关电源变压器主要考虑以下方面问题:(1)选择高频变压器磁芯、胶芯的时候,需评估该件的80%承受功率是否可以满足所需要求。
(2)原材料评估,磁芯、胶芯、铜线、胶带、套管等材料需选择通用容易采购,材料的特性、绝缘性能、耐温、安规标准、ROHS等选择需合理标准化。
(3)磁芯,高频变压器中使用的是软磁材料。
磁性材料的性能是决定开关变压器性能的重要因素,选择适合的磁性材料是开关变压器设计制作的关键。
开关变压器通常工作在几十KHz以上的频率,它要求磁性材料在工作频率下功耗尽可能小,此外,还要求磁性材料和饱和磁感应强度高,温度稳定性好。
如何设计高频变压器
如何设计高频变压器随着现代电子技术的不断发展和应用,高频变压器在电子设备中扮演着重要的角色。
它是一种将交流电能从一种电压转换为另一种电压的装置。
本文将介绍如何设计高频变压器,包括选材、线圈设计等方面。
1. 选材在设计高频变压器时,选材是十分重要的一环。
首先,需要选择合适的铁芯材料。
铁芯材料的选择应考虑其磁导率、饱和磁感应强度和磁滞损耗等因素。
常见的铁芯材料有硅钢片、铁氧体等。
硅钢片具有低磁滞和低损耗的特点,适用于高频变压器。
其次,选用合适的绝缘材料,以确保电流不会产生泄露。
2. 线圈设计线圈是高频变压器中十分重要且复杂的组成部分。
在线圈设计时,需要考虑以下几个方面。
2.1 匝数计算高频变压器的输出电压与输入电压之间的比值取决于线圈匝数的比值。
因此,首先需要计算出所需的匝数比例。
匝数的选择也要考虑线圈的尺寸和结构。
2.2 线径选择线径的选择对线圈的电流承载能力和电阻有着重要影响。
通常情况下,高频变压器要求线圈电阻较小,因此选择较细的线径有利于减小电阻。
2.3 绝缘设计由于高频变压器在工作时会产生较高的电压,因此对线圈的绝缘设计尤为重要。
合适的绝缘材料和合理的绝缘结构可以确保线圈工作安全可靠。
3. 磁路设计磁路设计是高频变压器设计过程中的关键环节。
合理的磁路设计可以提高能量传输效率和减少能量损耗。
3.1 磁路长度磁路长度的选择对变压器磁感应强度和损耗有着重要影响。
通常情况下,较短的磁路长度有利于提高磁通密度和减小损耗。
3.2 磁路饱和磁路的饱和状态会导致能量损耗和变压器效率的降低。
因此,在设计过程中应合理选择铁芯的截面积和材料以避免饱和。
4. 温度控制高频变压器在工作过程中会产生一定的热量,因此需要进行有效的温度控制。
合适的散热设计和温度监测可以确保变压器的稳定工作。
综上所述,设计高频变压器需要考虑各种因素,包括选材、线圈设计、磁路设计和温度控制等。
只有综合考虑这些因素,并根据具体应用需求加以调整,才能得到高性能和高效率的高频变压器。
高频变压器设计
高频变压器设计
设计高频变压器需要考虑以下几个方面:
1. 选择合适的磁性材料:高频变压器需要使用高效的磁性材料,如铁氧体材料或软磁合金材料。
这些材料能够有效地吸收和传导高频电磁场。
2. 选择合适的线圈和绕组设计:高频变压器的线圈和绕组需要采用低电阻、低损耗的材料,并且绕组需要紧密结合,以减小电流的涡流损耗。
3. 根据设计要求确定变压器的参数:根据设计要求,确定变压器的输入电压、输出电压、功率等参数,以及变压器的工作频率,从而确定变压器的结构和尺寸。
4. 进行磁路设计:根据变压器的磁路特性,设计合适的磁路结构,包括铁芯的形状和尺寸,以及绕组的位置和布局。
5. 进行磁路和电路的仿真和优化:使用电磁仿真软件,对变压器的磁路和电路进行仿真和优化,以改善变压器的性能。
6. 进行变压器的制造和组装:根据设计要求,制造和组装变压器,包括绕线、绝缘、封装等步骤。
同时,对制造过程进行严格的控制和测试,以保证变压器的质量和性能。
7. 进行变压器的测试和调试:对制造好的变压器进行测试和调试,包括输出电压和功率的测试,以及变压器的效率和稳定性等性能的评估。
总之,设计高频变压器需要综合考虑磁性材料、线圈和绕组、磁路结构、电路仿真和优化等多个因素,以满足设计要求并提高变压器的性能。
高频变压器设计基础知识
高频变压器设计基础知识高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。
在高频链的硬件电路设计中,高频变压器是重要的一环。
设计高频变压器首先应该从磁芯开始。
开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。
磁芯矫顽力低,磁滞面积小,则铁耗也少。
高的电阻率,则涡流小,铁耗小。
铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。
高频变压器的设计通常采用两种方法:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。
单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。
单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。
在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。
高频变压器培训教材ppt课件
4
二、高频变压器特性及用途
一.变压器的种类与用途: 1.电源变压器:主要用于电压变换,通常为降压变压器,以适应电 子设备低压电源的要求,依铁芯形状的不同分: 1.1迭片式变压器:工艺简单,价格便宜,用于电视机.收录机…. 1.2卷绕式变压器:工艺复杂,价格高,用于要求较高的电子设备中. 2.脉冲变压器:主要用于工作电流,电压的的非正脉冲状态,铁芯 须用高频整体磁芯,若用钢片铁芯,则易形成涡流而无法正常 工作. 3.低频变压器:结构与电源变压器相类似,主要用于阻抗变换,工 作于音频范围(30HZ~20KHZ) 4.中频和高频变压器:中频与高频变压器在频率上没有明显的 区分界限,而从结构与外形及用途上有如下特征. 中频变压器:一般固定在金属屏蔽壳内,避免外界电磁干扰,主 要用于阻抗变换和调频的作用.
3
变压器之工作原理
3.两种性能的变压器及兩绕组之间的关系:
变压器兩组线圈圈數分别为N1和N2,N1为初级,N2 为次级.在初级线圈上加一交流电压,在次级线圈兩端就 会产生感应电动势.当N2>N1时,其感应电动势要比初级 所加的电压还要高,这种变压器称为升压变压器:当 N2<N1时,其感应电动势低于初级电压,这种变压器称为 降压变压器.初级次级电压和线圈圈數间具有下列关系: V2 N2 --- = --- = n V1 N1 式中n称为电压比(圈數比).当n<1时,则N1>N2, V1>V2,该变压器为降压变压器.反之则为升压变压器.变 压器的表示图如下:
8.1特性: 价格低 电流大 损耗小 8.2用途: 扼流线圈EMI/RFI虑波,广泛应用于各类开辟电源,控制电路及电子 设备等.
10
高频变压器特性及用途
9.工字型电感:
9.1特性: 储能高 损耗小 价格低 9.2用途: 隔波清除,RF虑波,输出扼流圈,EMI/RFI虑波,广泛应用于计算器,显 示器,彩电及各种电子设备等.
高频变压器设计 (2)
高频变压器设计引言高频变压器是在高频电路中广泛使用的一种电子元件,它能够将电能从一个电路传递到另一个电路,同时改变电压的大小。
高频变压器在电力转换、通信设备、医疗设备等领域具有重要的应用价值。
本文将介绍高频变压器的基本概念、工作原理和设计要点。
基本概念变压器的定义变压器是一种互感器,它是由两个或多个线圈(即初级线圈和次级线圈)共享同一个磁场而构成。
通过改变初级线圈与次级线圈的匝数比,可以实现输入电压和输出电压之间的变换。
高频变压器的特点高频变压器与低频变压器相比,具有以下特点: 1. 工作频率高:高频变压器的工作频率通常在几十kHz至上百MHz之间,远高于50Hz的低频变压器。
2. 体积小:由于高频变压器的工作频率高,变压器的尺寸可以大大缩小,适用于紧凑型电子设备的应用。
3. 能量损耗大:由于高频变压器的工作频率高,导致变压器在传递电能过程中会发生更多的损耗,需要合理设计以降低能量损失。
4. 绝缘要求高:高频变压器中由于电磁感应作用,会产生高峰值的电压,对变压器的绝缘要求较高。
工作原理高频变压器的工作原理与低频变压器类似,都是基于电磁感应原理。
当交流电流通过初级线圈时,会在铁芯内产生一个交变磁场。
这个交变磁场通过铁芯传递到次级线圈中,从而诱导出次级线圈中的交流电流。
设计要点1. 确定变压器的需求在设计高频变压器之前,首先需要确定变压器的输入电压、输出电压和功率等需求。
根据这些需求来选择合适的铁芯材料和线圈匝数比。
2. 选择合适的铁芯材料铁芯材料在高频变压器设计中起着至关重要的作用。
常见的铁芯材料有铁氧体、磁性不良合金等。
选择合适的铁芯材料可以降低能量损耗,提高变压器的效率。
3. 计算线圈匝数比线圈匝数比的确定对于高频变压器的设计也是非常重要的。
通过合理的线圈匝数比,可以实现输入电压和输出电压之间的变换。
4. 考虑绝缘问题由于高频变压器中存在较高峰值的电压,对于绝缘性能的要求也较高。
合理的绝缘设计可以确保变压器的安全性和稳定性。
变压器基础知识ppt课件
•
(3)摇测时应记录当时变压器的油温及外温;
•
(4)不许在摇测时用手摸带电导体或拆接摇表线,
• 摇测后应将变压器绕组放电,防止触电;
• (5)摇测项目:对三绕组变压器应测量一次对二,三次及地,二次对 一、三次及地,三次对一、二次及地的绝缘电阻;
• (6)在潮湿或污染地区应加屏蔽线。
24
• 变压器着火怎么办?
13
变压器铭牌数据2 额定电压U1N/U2N 在加原额绕定均组 电指上 压线的 副值额 边电定空压电载。压时原;副边副绕额边组定额的电定端压电电U压压1N,U是2单N指是位电指有源原:加边 伏(V)或千伏(kV)。
14
变压器铭牌数据3
额定电流I1N/I2N
均指线值电流。原、副边额定电流是指在额 定容量和额定电压时所长期允许通过的电流,单位 有:安(A)
9
• 为什么一般情况下变压器的高压绕组在外面,低压绕组在 里面?
• 这是因为首先,高压绕组与低压绕组之间,以及低压绕组 与铁芯柱之间都必须留有一定的绝缘间隙和散热通道(油 道),并用绝缘纸板筒隔开。绕组的电压等级和散热通道 所需要的间隙决定绝缘距离的大小。当低压绕组放在里面 靠近铁芯柱时,因它和铁芯柱之间所需的①绝缘距离比较 小,可以减少绕组的尺寸,使整个变压器的外形尺寸也同 时缩小;其次,变压器绕组套装在变压器铁心柱上,低压 绕组在内层,高压绕组套装在低压绕组外层, ②以便于 绝缘。再次, ③高压侧电流小,分接引线和分接开关的 载流部分截面小,开关接触触头也容易制造。
,应认为变压器内部有故障。
• (2)油位变化是否正常。如发现假油面应及时查明原因,处理时注意先 将重瓦斯保护改接信号回路,防止误动跳闸。
• (4)油温变化是否正常。变压器带负荷后油温应缓慢上升(上层油温高 )。
高频变压器知识简介
作成:尹小鹏一:常见不良与分析:变压器、电感常见不良以上是在承认变压器、电感时发现的品质异常。
这些异常中,大多数由于供应商的人员疏忽、理解错误、材料不良、作业方法不当等原因,但其中也有是因为开发部图纸的问题,总结如下:1.图纸版本没有升级。
图纸内容有更改,但图纸版本没有做相应的升级。
采购收到这种图纸后归档,当要做样品时,疏忽之下把更改之前的旧图纸传给供应商,因其它部门一般只看图号,不会细看内容。
采购认为此图号的图纸有给过供应商,故没有把内容有更改图号没变的新图纸传给供应商。
供应商有收到新旧两份同图号图纸,一时大意按旧图纸工艺做样品送承认。
以上导致样品的外观、结构、工艺或电性与图纸不符。
所以,如图纸内容有更改,还需做升级版本之动作(特别是涉及到结构与电性方面的).能够做到明显区分。
2. 重点工艺没有注明详细。
一些有影响到产品的工艺和结构的方面没有在图纸上标注,如:绕线的方向(顺绕或是反绕)、绕线的方式(疏绕或是密绕)、飞线进出线的位置、产品的外围尺寸、安全距离等。
如果重点没有加以说明,供应商会认为没作要求,都会以自己常规的方式去做,因为每家供应商技术水平不同,同一成品会出现多种工艺,有些供应商做的可以达到我司要求,有些则在性能、结构等某些方面却满足不了要求,因而造成品质不稳定。
如:一个变压器的高度尺寸,这个变压器装在我们的整机上空间余量很少,在图纸上没有标注这一尺寸要求,供应商很可能会选择一般的骨架,做出来的变压器实装不合适(高度太高),需重新选BN 再做,如果一开始就有标注尺寸要求并注明需用开槽BN,结果也就不一样。
所以产品设计一旦确定,则需把这些(影响到产品要求的工艺和结构的方面)标注在图纸上,让人一目了然,加以管控。
3.图纸内容错误。
同一要求标注在图纸的不同位置,但标准不统一,引起制作人员的误解,导致做错。
例如:一个变压器的结构剖面图的绕组线径与电气原理图的不一致, 剖面结构图的是错的,但制作人员则参照的刚好是剖面结构图,结果也是错的。
高频变压器的设计基础(4)
了解高频变压器设计基础(4)抑制高频变压器的音频噪声高频变压器EE或EI型磁芯之间的吸引力,能使两个磁芯发生位移;绕组电流相互间的引力或斥力,也能使线圈产生偏移。
此外,受机械振动时能导致周期性的形变。
上述因素均会使高频变压器在工作时发出音频噪声。
10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz。
为防止磁芯之间产生相对位移,通常以环氧树脂作胶合剂,将两个磁芯的3个接触面(含中心柱)进行粘接。
但这种刚性连接方式的效果并不理想。
因为这无法将音频噪声减至最低,况且胶合剂过多,磁芯在受机械应力时还容易折断。
国外最近采用一种特殊的“玻璃珠”(glass beads)胶合剂,来粘合EE、EI等类型的铁氧体磁芯,效果甚佳。
这种胶合剂是把玻璃珠和胶着物按照1:9的比例配制而成的混合物,它在100℃以上的温度环境中放置1h即可固化。
其作用与滚珠轴承有某种相似之处,固化后每个磁芯仍能独立地在小范围内产生形变或移位,而总体位置不变,这就对形变起到了抑制作用。
用玻璃珠胶合剂粘接的高频变压器内部。
采用这种工艺可将音频噪声降低5dB。
高频变压器的屏蔽为防止高频变压器的泄漏磁场对相邻电路造成干扰,可把一铜片环绕在变压器外部,该屏蔽带相当于短路环,能对泄漏磁场起到抑制作用,屏蔽带应与地接通。
基本知识将两个线圈靠近放在一起,当一个线圈线中的电流变化时,穿过另一线圈的磁通会发生相应的变化,从而使该线圈中出现感应电势,这就是互感现象。
变压器就是根据互感原理制成的。
按工作频率分,有高频变压器、中频变压器、低频变压器、脉冲变压器。
如收音机的磁性天线,它是高频;在收音机的中频放大级,用的是中频的,俗称“中周”;低频的种类较多,有电源变压器、输入变压器等;电视机的行输出变压器,也称“高压包”,它是一种脉冲变压器。
变压比、额定功率、温升、效率、空载电流、绝缘电阻均为其主要技术参数。
在电路中电压变换、电流变换、传递功率、阻抗匹配、或阻抗变换等用途。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/9/14
14
开关电源用铁氧体磁性材应满足以下要求: (1)具有较高的饱和磁通密度Bs和较低的剩余磁通密度Br 磁通密度Bs的高低,对于变压器和绕制结果有一定影响。从 理论上讲,Bs高,变压器绕组匝数可以减小,铜损也随之减小 在实际应用中,开关电源高频变换器的电路形式很多,对于变 压器而言,其工作形式可分为两大类:
2020/9/14
13
磁芯材料的选择应注意的问题:
1、软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点, 而被广泛应用于开关电源中。 2、软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列, 锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz 以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体 的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感 绕组、抗干扰磁珠、共用天线匹配器等。 3、在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用 途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为 高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为 4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等 多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。
2、变压器的构成以及作用: 1)电气隔离 2)储能 3)变压 4)变流
2020/9/14
1
●高频变压器设计程序: 1.磁芯材料 2.磁芯结构 3.磁芯参数 4.线圈参数 5.组装结构 6.温升校核
2020/9/14
2
1.磁芯材料 软磁铁氧体由于自身的特点在开关电源中应用很广泛。
其优点是电阻率高、交流涡流损耗小,价格便宜,易加 工成各种形状的磁芯。缺点是工作磁通密度低,磁导率 不高,磁致伸缩大,对温度变化比较敏感。选择哪一类 软磁铁氧体材料更能全面满足高频变压器的设计要求, 进行认真考虑,才可以使设计出来的变压器达到比较理 想的性能价格比。
2020/9/14
3
2.磁芯结构 选择磁芯结构时考虑的因数有:降低漏磁和漏感,
增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配 接线方便等。
漏磁和漏感与磁芯结构有直接关系。如果磁芯不需 要气隙,则尽可能采用封闭的环形和方框型结构磁芯。
2020/9/14
4
2020/9/14
5
3.磁芯参数: 磁芯参数设计中,要特别注意工作磁通密度不只是 受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工 作方式有关。 磁通单方向变化时:ΔB=Bs-Br,既受饱和磁通 密度限制,又更主要是受损耗限制,(损耗引起温升,温升又 会影响磁通密度)。工作磁通密度Bm=0.6~0.7ΔB 开气隙可以降低Br,以增大磁通密度变化值ΔB,开气隙后,励 磁电流有所增加,但是可以减小磁芯体积。对于磁通双向工作 而言: 最大的工作磁通密度Bm,ΔB=2Bm。在双方向变化工作 模式时,还要注意由于各种原因造成励磁的正负变化的伏秒面 积不相等,而出现直流偏磁问题。可以在磁芯中加一个小气隙, 或者在电路设计时加隔直流电容。
2020/9/14
11
磁芯结构 E cores
Planar E Cores
EFD Cores ETD Cores ER Cores U Cores RM Cores EP Cores P Cores Ring Cores
变换器电路类型
反激式 正激式
推挽式
+
+
0
-
+
0
-
+
+
0
+
+
0
+
+
+
0
0
0
+
0
-
+
0
-
+
0
-
+
+
‘+’=适合; ‘0’=一般;‘-’=不
2020/9/14
12
磁芯材料的选择应注意的问题:
1、软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点, 而被广泛应用于开关电源中。 2、软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列, 锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz 以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体 的组成部分是Fe2O3,NiO,ZnO等,主要用于1MHz以上的各种调感 绕组、抗干扰磁珠、共用天线匹配器等。 3、在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用 途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为 高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为 4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等 多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。
变压器基础知识 1、变压器组成: 原边(初级primary side ) 绕组 副边绕组(次级secondary side ) 原边电感(励磁电感)--magnetizing
inductance 漏感---leakage inductance 副边开路或者短路测量原边 电感分别得励磁电感和漏感 匝数比:K=Np/Ns=V1/V2
8
4.线圈参数:
一般用的绕组排列方式:原绕组靠近磁芯,副绕组反
馈绕组逐渐向外排列。下面推荐两种绕组排列形式:
1)如果原绕组电压高(例如220V),副绕组电压低,可
以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在
最外层的绕组排列形式,这样有利于原绕组对磁芯的
绝缘安排;
2)如果要增加原副绕组之间的耦合,可以采用一半原绕
组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕
一半原绕组的排列形式,这样有利于减小漏感。
2020/9/14
9
5.组装结构:
高频电源变压器组装结构分为卧式和立式两种。如果
选用平面磁芯、片式磁芯和薄膜磁芯,都采用卧式组
装结构。
6.温升校核:
温升校核可以通过计算和样品测试进行。实验温升低
于允许温升15度以上,适当增加电流密度和减小导线
截面,如果超过允许温升,适当减小电流密度和增加
导线截面,如增加直径,窗口绕不下,要加大磁芯,
增加磁芯的散热面积。
2020/9/14
10
功率变压器根据拓扑结构分为三大类: (1)反激式变压器; (2)正激式变压器; (3)推挽式变压器(全桥/半桥变换器中的变压器) 磁芯结构适合的拓扑结构形式如下页表所示:
2020/9/14
6
2020/9/14
7
4.线圈参数: 线圈参数包括:匝数,导线截面(直径),导线形式, 绕组排列和绝缘安排。 导线截面(直径)决定于绕组的电流密度。通常取J为
2.5~4A/mm2。导线直径的选择还要考虑趋肤效应。如 必要,还要经过变压器温升校核后进行必要的调整。
2020/9/14