热泵在余热回收中的应用汇总.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的主要原因,不仅造成能量和水(或电)的浪费,同时
也严重地(热)污染了大气。火力发电厂冷凝热排空, 是我国乃至世界普遍存在的问题,是浪费,也是无奈。 然而,随着热泵技术的发展,特别是大型高温水源热泵 的问世,使得发电机组冷凝热回收将成为可能。
设计思想
2对热泵的技术要求
电厂冷凝热品位低,必须用热泵提取之;冷凝热量

供冷期:92天
节能1073088GJ,节标准煤(按锅炉平均运行 效率60%估算)6.1万吨;节水32.2万吨。

合计:年节能2834352GJ,节标准煤(按锅炉 平均运行效率60%估算)16.1万吨;节水 85.05万吨。
3.2环境效益分析
wk.baidu.com
供暖期
每年少排灰渣6.6万吨,烟尘238吨,二氧化硫
3002吨,氮氧化物1422吨,二氧化碳25.4万吨。
前普遍采用的方法是通过水冷或空冷冷凝蒸汽,冷凝 热排入大气。

冷凝热回收 由于冷凝热属于低品位热源,难以利用,除低真空
的背压机组外,极少回收。
1.2火(热)电厂与热负荷的基本情况

我国集中供热随着城镇化的建设发展迅速,2009年全
国集中供热面积已经达到35.6亿平方米。北方地区集
中供热热源日显不足,现有的热电联产供热能力有限, 在许多城市不得不新建大型区域锅炉房(热源厂)作 为集中供热热源。热源缺口较大。

正在集中供热的热电机组以及可资利用的火电机组的
冷凝热未被利用,冷凝热仍然通过空冷岛或凉水塔排
空,火(热)电机组,包括单机容量在300MW以上的 大型火电机组仍然在低效率高能耗的状态下运行。
1.3设计思想
1用热泵技术回收电厂冷凝热
火力发电厂冷凝热通过凉水塔或空冷岛排入大气,
形成巨大的冷端损失,是火力发电厂能源使用效率低下
3热源构成及功能 利用水源热泵吸收汽机排汽中的冷凝热,离心式热
泵将集中供热50℃的回水加热到60℃以上,吸收式热泵
将60℃的回水加热到90℃以上,再用换热器将水温提高 到热网供水温度,对城市集中供热。 热泵对电厂冷却水制冷,回收冷凝热,冷却水无需 在冷却塔冷却,可减少能耗、水耗及其它运行费用。 热泵对热用户制热,冬季供暖,夏季供冷,四季提 供生活热水。
105°C 抽汽 92°C 进汽 汽水换热器 供热循环泵 63°C 水水换热器 45°C 53°C 凝水冷却水 加压泵 排汽 吸收热泵 凝汽器 凝水 冷却循环泵 回水加压泵 离心热泵 热用户 自来水 4°C 洗浴 热水箱 洗浴 50°C 供暖 水水换热器 50°C 80°C
45°C
40°C
60°C
55°C

供冷期
工况排入大气的可回收冷凝热占50%以上,为发电耗热的1.5倍
以上;供热工况可回收冷凝热约为发电耗热的 0.7-1.3倍。
火(热)电厂冷凝热的特点
火力发电厂各项损失参考值[*]如表1所示,其中汽轮机排气热损失
(冷端损失)巨大。
现代火力发电厂各项损失参考值(%) 电厂初参数 项目 锅炉热损失 管道热损失 汽轮机机械损失 发电机损失 汽轮机排气热损失 中参数 高参数 超高参数 超临界参数 表1

◆ ◆ ◆ ◆ 概述 设计方案

冷凝热回收效益分析 冷凝热回收前景预测

小结
第一部分:概

1. 火(热)电厂冷凝热的特点与现状处理方法 2. 火(热)电厂与热负荷的基本情况 3. 设计思想
1.1.1火(热)电厂冷凝热的特点
经汽机作功后的蒸汽(排汽)冷凝(放热)成凝结水再经回 热后进入锅炉,锅炉产生的蒸汽在汽机中作功,在这个热媒的 循环过程中,需要放出大量的冷凝热。冷凝热的主要特点如下: ◆品位低。排汽压力:水冷,4-8kPa;空冷,15kPa。冷凝 温度:水冷,29-41.5℃;空冷,54℃。 ◆量大、集中。平均发电耗热约占总输入的32%左右。纯凝汽
第二部分:方案设计
方案一 冬季供暖集中供热系统1 方案二 冬季供暖集中供热系统2 方案三 冬季供暖及洗浴集中供热系统
方案四 冬季供暖夏季供冷四季洗浴集中供热系统
方案一 冬季供暖集中供热系统1
105°C 抽汽 90°C 进汽 汽水换热器 水水换热器 汽机 凝水 排汽 凝汽器 供热循环泵 凝水 冷却循环泵 吸收热泵 60°C 热用户 105°C 80°C
55°C
图1 方案一
图1 方案1
方案二 冬季供暖集中供热系统2
105°C 抽汽 105°C 92°C 进汽 汽水换热器 63°C 汽机 凝水 排汽 凝汽器 凝水 离心热泵 吸收热泵 水水换热器 热用户 70°C
53°C 供热循环泵
50°C
图2 方案二
冷却循环泵
图2 方案2
方案三 冬季供暖及洗浴集中供热系统
热用户
汽机
图3 方案三
图3 方案3
方案四 夏季供冷及洗浴集中供热系统
105°C 抽汽 进汽 92°C 汽水换热器 供热循环泵 63°C 洗浴 45°C 水水换热器 45°C 53°C 凝水冷却水 加压泵 排汽 吸收热泵 凝汽器 凝水 冷却循环泵 洗浴 热水箱 回水加压泵 离心热泵 54°C
9°C
供冷 吸收冷水机组 37°C 冷却塔 31°C 自来水
大、集中,在电厂内或电厂附近一般难以找到足够的稳 定的热用户,必须远距离集中供热,用大型高温水大温 差水源热泵吸收冷凝热。以充分利用冷凝热和提高系统 的经济性为目标合理配置热泵机组。吸收式热泵工作在
高温段,离心式热泵工作在低温段,吸收式和离心式热
泵平均制热能效比COP分别在1.7和6以上 。
设计思想
11 1 1 1 61.5
10 1 0.5 0.5 57.5
9 0.5 0.5 0.5 52.5
8 0.5 0.5 0.5 50.5
*热工手册 任泽霈等 主编 机械工业出版社 2002年11月第一版
1.1.2火(热)电厂冷凝热现状处理方法

冷凝热排空(丢弃)
热电厂做功后的蒸汽需要冷凝成水回到锅炉。目
汽机
冷用户 17°C
图4 方案4
图4 方案四
第三部分:冷凝热回收效益分析
举例说明,某电厂装机容量2x35+1x60MW 冷凝热回收135MW;日节水3500吨。 • 节能节水分析 • 环境效益分析 • 经济效益分析
• 能效分析
3.1节能节水分析

供暖期:151天 节能1761264GJ,节标准煤(按锅炉平均运行 效率60%估算)10万吨;节水52.85万吨。
相关文档
最新文档