最新第3章 工程随机数学基础习题_答案

合集下载

工程数学练习题及答案

工程数学练习题及答案

工程数学练习题及答案一、单项选择题(每题2分,共10分)1. 极限的概念中,函数在某点的极限值是该点的()。

A. 函数值B. 函数值的极限C. 函数值的近似值D. 函数值的导数2. 以下哪个函数是偶函数?()A. f(x) = x^2 + 1B. f(x) = x^3 - xC. f(x) = x^2 - x + 1D. f(x) = x^3 + x^23. 积分中的基本定理指出,函数的定积分等于()。

A. 被积函数的原函数在积分区间的差值B. 被积函数的原函数在积分区间的和值C. 被积函数的导数在积分区间的差值D. 被积函数的导数在积分区间的和值4. 以下哪个级数是发散的?()A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1/2 + 1/4 + 1/6 + 1/8 + ...D. 1 + 1/3 + 1/5 + 1/7 + ...5. 矩阵A的行列式为0,这意味着矩阵A()。

A. 可逆B. 不可逆C. 行向量线性相关D. 列向量线性无关二、填空题(每题3分,共15分)6. 函数f(x) = 2x^3 - 3x^2 + 1的导数为_________。

7. 函数f(x) = e^x的不定积分为_________。

8. 函数f(x) = sin(x)的原函数为_________。

9. 函数f(x) = x^2在区间[0, 1]上的定积分为_________。

10. 矩阵A = [1, 2; 3, 4]的行列式为_________。

三、解答题(每题10分,共20分)11. 计算极限lim(x->0) [sin(x)/x],并说明其意义。

12. 证明函数f(x) = x^2在区间[-1, 1]上是凹函数,并求其最小值。

四、证明题(每题15分,共30分)13. 证明:对于任意实数x和y,有|f(x) - f(y)| ≤ M|x - y|,其中M为常数,f(x)为连续函数。

《工程数学(本)》作业解答(三)

《工程数学(本)》作业解答(三)

工程数学(本)作业解答(三)(一)单项选择题(每小题2分,共16分)⒈为两个事件,则()成立.A. B.C. D.答案:B⒉如果()成立,则事件与互为对立事件.A. B.C. 且D. 与互为对立事件答案:C⒊袋中有5个黑球,3个白球,一次随机地摸出4个球,其中恰有3个白球的概率为().A. B. C. D.答案:A⒋10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为().A. B. C. D.答案:D⒌同时掷3枚均匀硬币,恰好有2枚正面向上的概率为().A. 0.5B. 0.25C. 0.125D. 0.375答案:D⒍已知,则()成立.A. B.C. D.答案:B⒎对于事件,命题()是正确的.A. 如果互不相容,则互不相容B. 如果,则C. 如果对立,则对立D. 如果相容,则相容答案:D⒏某随机试验每次试验的成功率为,则在3次重复试验中至少失败1次的概率为().A. B.C. D.答案:B(二)填空题(每小题2分,共18分)⒈从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数,则这个三位数是偶数的概率为.答案:2 5⒉从个数字中有返回地任取个数(,且个数字互不相同),则取到的个数字中有重复数字的概率为.答案:(1)(1) 1rn n n rn--+ -⒊有甲、乙、丙三个人,每个人都等可能地被分配到四个房间中的任一间内,则三个人分配在同一间房间的概率为,三个人分配在不同房间的概率为.答案:13, 168⒋已知,则当事件互不相容时,,.答案:0.8,0.3⒌为两个事件,且,则.答案:()P A⒍已知,则.答案:1p-⒎若事件相互独立,且,则.答案:p q pq+-⒏若互不相容,且,则,若相互独立,且,则.答案:0,()P B9.已知,则当事件相互独立时,,.答案:0.65,0.3(三)解答题(第1、2、3小题各6分,其余题目各8分,共66分)⒈设A,B为两个事件,试用文字表示下列各个事件的含义:⑴;⑵;⑶;⑷;⑸;⑹.解:⑴表示事件A与事件B至少有一个发生;⑵表示事件A与事件B同时发生;⑶表示事件A发生但事件B不发生;⑷A AB AB-=表示事件A发生同时事件B不发生;⑸AB A B=表示事件A不发生同时事件B也不发生;⑹AB AB A B AB+=+-表示事件A发生或事件B发生,但两事件不同时发生.⒉设为三个事件,试用的运算分别表示下列事件:⑴中至少有一个发生;⑵中只有一个发生;⑶中至多有一个发生;⑷中至少有两个发生;⑸中不多于两个发生;⑹中只有发生.解:⑴A B C;⑵ABC ABC ABC;⑶AB BC CA;⑷AB BC AC;⑸ABC;⑹ABC.⒊袋中有3个红球,2个白球,现从中随机抽取2个球,求下列事件的概率:⑴2球恰好同色;⑵2球中至少有1红球.解:⑴0.4;⑵0.9.⒋一批产品共50件,其中46件合格品,4件次品,从中任取3件,其中有次品的概率是多少? 次品不超过2件的概率是多少?解:有次品的概率为3463501CC-;次品不超过2件的概率为343501CC-.⒌设有100个圆柱圆柱形零件,其中95个长度合格,92个直径合格,87个长度直径都合格,现从中任取一件该产品,求:⑴该产品是合格品的概率;⑵若已知该产品直径合格,求该产品是合格品的概率;⑶若已知该产品长度合格,求该产品是合格品的概率.解:⑴该产品是合格品的概率为0.87;⑵已知该产品直径合格,则该产品是合格品的概率为87 92;⑶ 已知该产品长度合格,则该产品是合格品的概率为8795. ⒍加工某种零件需要两道工序,第一道工序的次品率是2%,如果第一道工序出次品则此零件为次品;如果第一道工序出正品,则由第二道工序加工,第二道工序的次品率是3%,求加工出来的零件是正品的概率. 解:加工出来的零件是正品的概率为0.970.980.9506⨯= .⒎市场供应的热水瓶中,甲厂产品占50%,乙厂产品占30%,丙厂产品占20%,甲、乙、丙厂产品的合格率分别为90%,85%,80%,求买到一个热水瓶是合格品的概率.解:买到一个热水瓶是合格品的概率为0.90.50.850.30.80.20.865⨯+⨯+⨯=.⒏一批产品中有20%的次品,进行重复抽样检查,共抽得5件样品,分别计算这5件样品中恰有3件次品和至多有3件次品的概率. 解:~(5,0.2)X B ,5件样品中恰有3件次品的概率为3325{3}0.20.80.0512P XC ==⨯⨯=;5件样品中至多有3件次品的概率为{3}1{4}{5}0.00672P X P X P X ≤=-=-== .⒐加工某种零件需要三道工序,假设第一、第二、第三道工序的次品率分别是2%,3%,5%,并假设各道工序是互不影响的,求加工出来的零件的次品率. 解:加工出来的零件的次品率为1(0.020.030.05)0.0333++= .。

高中数学人教A版必修三课时习题:第3章概率3.2.2含答案

高中数学人教A版必修三课时习题:第3章概率3.2.2含答案

3.2.2 (整数值 )随机数的产生课时目标1.认识随机数的意义及产生过程.2.会用随机模拟法预计古典概型的概率.识记强化1.随机数的定义随机数就是在必定范围内随机产生的数,获得这个范围内的每一个数的时机是等可能的.2.随机模拟方法随机模拟方法指的是用计算机或计算器模拟试验的方法,也称作蒙特卡罗方法,这样产生的随机数,称为伪随机数.课时作业一、选择题1.用随机模拟方法预计概率时,其正确程度决定于()A.产生的随机数的大小B.产生的随机数的个数C.随机数对应的结果D.产生随机数的方法答案: B2.一个小组有 6 位同学,选 1 位小组长,用随机模拟法预计甲被选的概率,下边步骤错误的选项是()①把六名同学编号1~6;②利用计算器或计算机产生 1 到 6 之间的整数随机数;③统计总试验次数N 及甲的编号出现的个数N1;N 1④计算频次 f n (A)= N ,即为甲被选的概率的近似值;N 1 1⑤ N 必定等于 6.A .②④B .①③④C .⑤D .①④ 答案: C分析:概率是频次的稳固值,频次是概率的近似值,频次不必定N 1 1等于概率, N 不必定等于 6,应选 C.3.从甲、 乙、丙三人中任选两名代表, 甲被选中的概率为 ()A. 1B. 12 32C.3 D .1 答案: C分析:这里全部的基本领件为:甲、乙;甲、丙;乙、丙,即基本领件共有三个。

甲被选中的事件有两个,按等可能事件的概率,有2P(甲)=3.4.下课此后,教室里最后还剩下 2 位男同学, 2 位女同学.如果没有 2 位同学一块儿走,则第 2 位走的是男同学的概率是 ( )11A. 2B.31 1C.4D.5答案: A分析:已知有 2 位女同学和 2 位男同学,全部走的可能次序有 (女,女,男,男 ),(女,男,女,男 ),(女,男,男,女 ),(男,男,女,女),(男,女,男,女 ),(男,女,女,男 ),因此第 2 位走的是男同3 1学的概率是 P =6=2.5.欲寄出两封信,现有两个邮箱,供选择,则两封信都投到同一邮箱的概率是 ( )1 1A. 2B. 43 3答案: A6.已知某运动员每次投篮命中的概率都为 40%.现采纳随机模拟的方法预计该运动员三次投篮恰有两次命中的概率:先由计算器产生0 到 9 之间取整数值的随机数,指定 1,2,3,4 表示命中, 5,6,7,8,9,0 表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了以下 20 组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此预计,该运动员三次投篮恰有两次命中的概率为()A .0.35 B.0.25C.0.20 D.0.15答案: B分析:由随机数可得:在20 组随机数中知足条件的只有 5 组,故该运动员三次投篮恰有两次命中的概率为0.25.二、填空题7.在利用整数随机数进行随机模拟试验中, a 到 b 之间的每个整数出现的可能性是 ________________.1答案:b-a+1分析: [a,b]中共有 b-a+1 个整数,每个整数出现的可能性相等,因此每个整数出现的可能性是1. b-a+18.一个袋中有 3 个黑球, 2个白球共5 个大小同样的球,两次摸出的球都是白球的概率为________.4答案:25分析:∵摸两次球相当于一次试验,∴获得的结果可以为分两步达成的.∵每次摸球都有 3+2=5 种方法,∴列表知全部可能结果有25 种,故共有 25 个基本领件,而每次摸出白球的方法都是 2 种,∴事件A =两次摸出的都是白球}含有4个基本领件.∴P(A)= 4 . {259.经过模拟试验,产生了 20 组随机数:68303013705574307740442278842604334609526807970657745725657659299768607191386754假如恰有三个数在1,2,3,4,5,6中,则表示恰有三次击中目标,问四次射中恰有三次中目的概率________.1答案:4分析:由意四次射中恰有三次中的随机数有 3 个数字在 1,2,3,4,5,6中,的随机数有 3013,2604,5725,6576,6754共 5 个,5 1所求的概率20=4.三、解答10.一个体育代表共有 21 名水平相当的运.从中任意抽取 11人参加某比,此中运甲必参加,写出利用随机模抽取的程.解:要求甲必参加比,上就是从节余的20 名运中抽取 10 人.(1)把除甲外的 20 名运号.(2)用算器的随机函数RANDI(1,20) ,或算机的随机函数RANDEBTWEEN(1,20) 生 10 个 1 到 20 之的整数随机数 (如有一个重复,从头生一个).(3)以上号的10 名运,就是要参的象.11.在某次中,有 6 位同学的均匀成 75 分.用 x n表示号 n(n=1,2,⋯,6)的同学所得成,且前 5 位同学的成以下:号 n12345成 x n7076727072(1)求第 6 位同学的成 x6,及 6位同学成的准差 s;(2)以前 5 位同学中,随机地2 位同学,求恰有 1 位同学成在区 (68,75)中的概率.解: (1)∵ 6 位同学的均匀成75 分,1∴6(70+76+72+70+72+x6)=75,解得 x6=90.6 位同学成的方差1s2=6×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+ (72-75)2+(90-75)2]=49,∴准差 s=7.(2)以前 5 位同学中,随机地出 2 位同学的成有: (70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72)共 10 种,恰有 1 位同学成绩在区间 (68,75)中的有:(70,76),(76,72),(76,70),(76,72),共 4 种,4所求的概率为 10=0.4,即恰有 1 位同学成绩在区间 (68,75)中的概率为 0.4.能力提高12.小明同学的 QQ 密码是由 0,1,2,3,4,5,6,7,8,9这 10 个数字中的 6 个数字构成的六位数,因为长时间未登录 QQ ,小明忘掉了密码的最后一个数字,假如小明登录QQ 时密码的最后一个数字任意选 取,则恰巧能登录的概率是 ( )A. 15B. 14101011C.102D.10答案: D分析: 只考虑最后一位数字即可,从 0 至 9 这 10 个数字中随机选择一个作为密码的最后一位数字有10 种可能,选对只有一种可能,1因此选对的概率是 10.13.栽种某种树苗,成活率是 0.9.若栽种该种树苗 5 棵,用随机模拟方法预计恰巧 4 棵成活的概率.解:利用计算器或计算机产生 0 到 9 之间取整数值的随机数, 我们用 0 代表不可活, 1 至 9 的数字代表成活,这样能够表现成活率是0.9.因为栽种 5 棵,因此每 5 个随机数作为一组,可产生 30 组随机数,以下所示:69801 66097 77124 22961 74235 31516 29747 24945 57558 65258 74130 23224 37445 44344 33315 27120 21782 58555 61017 45241 44134 92201 70362 83005 9497656173 34783 16624 30344 01117这就相当于做了30 次试验,在这些数组中,假如恰有一个 0, 则表示恰有 4 棵成活,共有 9 组这样的数, 于是我们获得栽种5 棵这9样的树苗恰有 4 棵成活的概率近似为30=30%.。

工程数学基础试题及答案

工程数学基础试题及答案

工程数学基础试题及答案一、单项选择题(每题2分,共10分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于一个确定的值,这个值称为该点的极限。

以下哪个选项正确描述了极限的定义?A. 函数值在某点的值B. 函数值在某点的导数C. 函数值在某点的差分D. 函数值在某点的趋近值答案:D2. 以下哪个选项是连续函数的定义?A. 在某点可导B. 在某区间内可导C. 在某点有极限D. 在某区间内函数值无突变答案:D3. 微分中,dy/dx表示的是:A. 函数y的导数B. 函数y的积分C. 函数y的微分D. 函数y的不定积分答案:A4. 以下哪个选项是不定积分的定义?A. 函数的原函数B. 函数的导数C. 函数的微分D. 函数的极限答案:A5. 以下哪个选项是定积分的定义?A. 函数的原函数B. 函数在区间上的极限C. 函数在区间上的累积和D. 函数在区间上的导数答案:C二、填空题(每题3分,共15分)1. 函数f(x)=x^2在区间[0,1]上的定积分表示为∫_0^1 x^2 dx,其值为____。

答案:1/32. 函数f(x)=sinx的不定积分是____。

答案:-cosx + C3. 函数f(x)=e^x的导数是____。

答案:e^x4. 函数f(x)=lnx的导数是____。

答案:1/x5. 函数f(x)=x^3的二阶导数是____。

答案:6x三、计算题(每题10分,共20分)1. 计算定积分∫_0^π/2 sinx dx。

答案:12. 计算不定积分∫x^2 dx。

答案:1/3x^3 + C四、证明题(每题15分,共30分)1. 证明函数f(x)=x^3在区间(-∞, +∞)上是增函数。

答案:略2. 证明函数f(x)=e^x在区间(-∞, +∞)上是连续函数。

答案:略五、应用题(每题20分,共20分)1. 某工厂生产一种产品,其成本函数为C(x)=0.01x^2+2x+100,其中x为生产数量。

高中数学必修三习题:第三章3.1-3.1.3概率的基本性质含答案

高中数学必修三习题:第三章3.1-3.1.3概率的基本性质含答案

第三章概率3.1 随机事件的概率3.1.3 概率的基本性质A级基础巩固一、选择题1.下列各组事件中,不是互斥事件的是( )A.一个射手进行一次射击,命中环数大于8与命中环数小于6B.统计一个班级数学期中考试成绩,平均分数低于90分与平均分数高于90分C.播种菜籽100粒,发芽90粒与至少发芽80粒D.检查某种产品,合格率高于70%与合格率为70%答案:C2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,已知事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:结合对立事件可知所求事件是“2张全是移动卡”的对立事件,即至多有一张移动卡.答案:A3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A.60% B.30%C.10% D.50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.答案:D4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B ={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( )A.A⊆D B.B∩D=∅C.A∪C=D D.A∪C=B∪D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,A∪C=D=(至少有一弹击中飞机),不是必然事件;“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,B ∪D 为必然事件,所以A ∪C ≠B ∪D .答案:D5.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( ) A.15 B.25 C.35 D.45解析:记“取到语文、数学、英语、物理、化学书”分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 彼此互斥,取到理科书的概率为事件B 、D 、E 概率的和.所以P (B ∪D ∪E )=P (B )+P (D )+P (E )=15+15+15=35. 答案:C二、填空题6.在掷骰子的游戏中,向上的点数为5或6的概率为______.解析:记事件A 为“向上的点数为5”,事件B 为“向上的点数为6”,则A 与B 互斥.所以P (A ∪B )=P (A )+P (B )=16×2=13. 答案:137.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为________. 解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P (B )=1-P (A )=15. 答案:158.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.解析:“射手命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A 、B 、C 彼此互斥,故射手中靶的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不命中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.90=0.10.答案:0.10三、解答题9.某医院一天派出医生下乡医疗,派出医生人数及其概率如下表所示.(1)(2)若派出医生最多4人的概率为0.96,至少3人的概率为0.44,求y ,z 的值. 解:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x =0.56,所以x =0.3.(2)由派出医生最多4人的概率为0.96,得0.96+z =1,所以z =0.04.由派出医生至少3人的概率为0.44,得y +0.2+z =0.44,所以y =0.44-0.2-0.04=0.2.10.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是14,取到方块(事件B )的概率是14,问: (1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?解:(1)因为C =A ∪B ,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P (C )=P (A )+P (B )=12.(2)事件C 与事件D 互斥,且C ∪D 为必然事件,因此事件C 与事件D 是对立事件,P (D )=1-P (C )=12. B 级 能力提升1.从1,2,…,9中任取两数:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 解析:从1,2,…,9中任取两数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.至少有一个奇数是(1)和(3),其对立事件显然是(2).答案:C2.事件A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A -)=________. 解析:P (A )+P (B )=1-25=35, 又P (A )=2P (B ),所以P (A )=25,P (B )=15. 所以P (A -)=1-P (A )=35. 答案:353.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A 、B 、C 能答对题目的概率分别为P (A )=13,P (B )=14,P (C )=15,诸葛亮D 能答对题目的概率为P (D )=23,如果将三个臭皮匠A 、B 、C 组成一组与诸葛亮D 比赛,答对题目多者为胜方,问哪方胜?解:如果三个臭皮匠A 、B 、C 能答对的题目彼此互斥(他们能答对的题目不重复),则P (A +B +C )=P (A )+P (B )+P (C )=4760>P (D )=23,故三个臭皮匠方为胜方,即三个臭皮匠能顶上一个诸葛亮;如果三个臭皮匠A 、B 、C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.。

概率论课后习题答案第三章

概率论课后习题答案第三章

概率论课后习题答案第三章第三章概率论课后习题答案概率论是一门研究随机现象的数学学科,它在现代科学和工程领域中有着广泛的应用。

而习题则是巩固和加深对概率论知识的理解和应用的重要手段。

在第三章的习题中,我们将探讨一些与随机变量和概率分布相关的问题,并给出相应的答案和解析。

1. 设随机变量X服从参数为λ的指数分布,即X~Exp(λ),其概率密度函数为f(x) = λe^(-λx),x≥0。

求以下概率:(a) P(X > 2)(b) P(X ≤ 1)(c) P(1 ≤ X ≤ 3)答案:(a) P(X > 2) = ∫[2,∞] λe^(-λx) dx = e^(-2λ)(b) P(X ≤ 1) = ∫[0,1] λe^(-λx) dx = 1 - e^(-λ)(c) P(1 ≤ X ≤ 3) = ∫[1,3] λe^(-λx) dx = e^(-λ) - e^(-3λ)解析:根据指数分布的性质,我们可以利用概率密度函数求解概率。

对于(a),我们计算X大于2的概率,即求解X在区间[2,∞]上的概率密度函数的积分。

对于(b),我们计算X小于等于1的概率,即求解X在区间[0,1]上的概率密度函数的积分。

对于(c),我们计算X在1到3之间的概率,即求解X在区间[1,3]上的概率密度函数的积分。

2. 设随机变量X服从参数为μ和σ^2的正态分布,即X~N(μ,σ^2),其概率密度函数为f(x) = (1/(σ√(2π))) * e^(-(x-μ)^2/(2σ^2)),-∞<x<∞。

求以下概率:(a) P(X > μ)(b) P(X ≤ μ)(c) P(μ-σ ≤ X ≤ μ+σ)答案:(a) P(X > μ) = 1 - P(X ≤μ) = 1 - 0.5 = 0.5(b) P(X ≤ μ) = 0.5(c) P(μ-σ ≤ X ≤ μ+σ) = P(X ≤ μ+σ) - P(X ≤ μ-σ) = 0.6827 - 0.3173 =0.3654解析:对于正态分布,我们可以利用概率密度函数求解概率。

2022工程数学Ⅲ知识要点(带答案)

2022工程数学Ⅲ知识要点(带答案)

2212 ⎝知识点三:逆矩阵逆矩阵的定义:求抽象矩阵的逆矩阵:设(n E r ⇔()r A n ⇔<⇔逆矩阵的计算,矩阵方程求解:伴随矩阵法:11A A A-=()1,rE A -(三阶及以上矩阵)1X A B -=111)A λ--=()22A E A E -=∴+3A是阶可逆方阵,)若矩阵112 A⎛=⎝(11 01 00a() ,A E⎝→⎛*1*3,(2) 3 T A B A A B AA A -=∴==123A =已知122A =122A =(10,11A ⎫⎪⎭nα线性相关2,nα线性无关两个向量对应分量成比例,则其构成的向量组线性相关向量的个数大于向量的维数的向量组必线性相关()7,5,3T=0系数矩阵的秩n ,则方程组0非零解(填“有”或“无”). AXb 系数矩阵的秩()(,)A r A b n ,则方程组AX b(填“无解”、“有唯一解”或“有无穷多解”).333+000x x x =+===有非零解 1 .1()(),100,⎛= ⎛→ ⎝= A b R A b ()13 = ⎝∴=A R A()3,0.2B 盒中有10个球,其中有X =0}=C ()0,4XR ,则:正态分布的概率正态分布及其性质:()()222,,,N kX C N k C k μσμσ++则()()221112221,,,,N X N X μσμσ(1N μμ+正态分布的概率()2,,N μσ则()b P a X b ⎛<<=Φ ⎝时,()x Φ-标准正态分布函数.练习题: 1) ()14XN ,,() 14 {0.5XN P X ∴-<≤,,)()()221210,1,10,2,X N X N X 1 .()()()(()(()(221211212120,1,10,2,23129,4022923121402314∴-+-=-=-+==-+=其中 X N X N X X X N E E X X E D X X D)已知某同学的英语成绩试中至少有一次及格的概率,假设各次测试是相互独立的((){}((){{}{}()()({}(65,1016010.57527560333,0.69151011∴≥=-Φ->>=Φ∴≥=--设表示次考试中及格的次数,则B XN P X X P X F Y P Y 以下来设计的,问车门的高度至少应为多少?(65,10XN (170,16N()(() {1 f x f P X E X +∞-∞=∴≤=⎰由~(3),X P )设随机变量~(X f x )设随机变量()()1429N Y N ,,,,则E (2D X Y -+()()()()()()()(()()(14291,4,2 232 234XN Y N E X D X E Y E X Y E X E Y D X Y D X D ∴===-+=--+=+,,,,已知随机变量X 的概率密度函数为(1)2 ()X F f x F ∴==的分布函数为,,n X 是来自总体的简单随机样本,若()=,X D μ(2,XN μσ,n X 是来自总体的简单随机样本,则(,N nσμ1(nii Xμ=-∑练习题: ()21,3N 一个未知参数的矩估计:由,,n X 是来自总体μ是总体均值的矩估计量,估计量的评选标准:θ∧,则称为(2,μσN )21,3X μ∧=(_____有效性最差()21123,,=,,XN μσμμμμ∧∴都是无偏估计量,其中)若随机变量(1,2R θ-()(()1,+33+2ˆ2XU E E X X θθθθ-∴==,由,得(2,N μσ/2X u n ασ±/2(X t n α±-(,N μσn σ⎫⎪⎭. 2(,N μσ某课程的命题初衷,其成绩2(,)N μσ 74 95 81 43 62 52 78 74 67()2222(,1=120.95N ξμσσσμ∴当未知时的20.90μσ未知时的2(,N μσ2u α⎫⎬⎭.2(,N μσ()2~1n χ-)显著性检验中,显著性水平()20 0.05/X S nσαμ∴=-=未知,检验统计量为由00.05μα∴=未知,检验统计量为其拒绝域为由()2,1N μ: σ已知 0.025 1.96u ==1.96 ∴接受。

新高中数学苏教版必修三同步练习:3.1.1随机现象(含答案解析)

新高中数学苏教版必修三同步练习:3.1.1随机现象(含答案解析)

数学·必修 3( 苏教版 )第3章 概率3. 1 随机事件及其概率3. 1.1随机现象基 础 巩 固1.以下试验能构成事件的是()A .掷一次硬币B .射击一次D .摸彩票中头奖答案: D2.下边事件是必定事件的有 ( )①假如 a ,b ∈ R ,那么 a ·b = b ·a ;②某人买彩票中头奖;③ 3+ 5> 10.A .①B .②C .③D .①②答案: A3.一次掷出一分,二分,伍分的硬币各一枚,则该现象的所有结果有________种.分析:这些结果为 (1++,5 +++, 5)(1 +,2,5 ++,5 ++,2,5)(1,2 +,, 2 )(1 , 2 )(1 ,2 )(1 5)(1 ,2, 5+)(1 ,2, 5),此中 1+, 2+ , 5+均表示正面.答案: 84.判断以下现象是必定现象仍是随机现象.(1) 掷一枚质地平均的骰子的点数;(2) 行人在十字路口看到的交通讯号灯的颜色;(3) 在 10 个同类产品中,有 8 个正品、 2 个次品,从中随意抽出2 个查验的结果;(4) 三角形的内角和为 180°;(5)2018年世界杯足球赛,德国队夺冠;(6)2015年高考甲同学数学成绩125 分.分析: (1)掷一枚质地平均的骰子其点数有可能出现1~ 6 点,不可以确立,所以是随机现象.(2) 行人在十字路口看到交通讯号灯的颜色有可能是红色,有可能是黄色,也有可能是绿色,故是随机现象.(3) 抽出的 2 个产品中有可能所有是正品,也有可能是一个正品一个次品,还有可能是两个次品,故此现象为随机现象.(4)三角形的内角和必定是 180°,是确立的,故是必定现象.(5)2018 年世界杯足球赛哪个队夺冠,不可以确立,是随机现象.(6)甲同学高考数学能否获得 125 分,不可以确立,是随机现象.5.指出以下现象是必定现象仍是随机现象.(1)三个球所有放入两个盒子且每盒不空,此中一个盒子有一个以上的球;(2)函数 y= a x(a>0 且 a≠ 1)在定义域上是增函数;(3) 圆 (x- a)2+ (y- b)2= r2内的点坐标可使不等式(x- a)2+ (y- b)2<r2建立;(4)会合 {1 , 2,3, 4, 5} 的子集共有 32 个.分析: (1)若一个盒子中有 1 个,则另一个盒子中有 2 个,故是必定现象.(2)若 0<a<1,则函数 y=a x在定义域上是减函数,故为随机现象.(3)圆内的点的坐标必定使不等式建立,故为必定现象.(4) 含 5 个元素的会合的子集有25= 32 个,是必定现象.6.以下现象中,随机现象有哪些?(1)某体操运动员参加下周举行的运动会;(2) 同时掷两颗骰子,都出现 6 点;(3)某人购置足球彩票中奖;(4)若 x 为实数,则 x2+ 1≥1;(5)下周一广东北部地域的温差为10 ℃ .分析: (4)是必定现象,(1)、 (2)、 (3)、 (5) 是随机现象.故随机现象有(1)(2)(3)(5) .能力升级7.判断以下现象是随机现象仍是必定现象.现象 1:某人明日起床的时间(正确的 );现象 2: 12∶ 10 在学生餐厅就餐的学生人数;现象3:在必定温度和稳固电压U 下 (直流电),导体内的电流强度I=U(RR为导体的电阻 );现象 4:函数 y= 2x与函数 y= x2的图象有 3 个交点.分析:现象1、现象 2 为随机现象,现象3、现象 4 为必定现象.8.指出以下现象是必定现象、随机现象,仍是不行能现象.(1)当 x=1 时, lg x =0.(2)已知 A ={1, 2,3} , B={3 ,4},则 BA.(3)当α≠β时, sin α ≠ sin β .(4)从全副扑克牌中抽出黑桃 A.(5)长度为 2、 3、 4 的三条线段可构成一个三角形.(6)在标号为 1, 2, 3,, 10 的十个杯子中,任选用一个杯子是 3 号杯子.(7)一骑自行车的人,骑车至某十字路口,碰到“红灯”.(8)中国国际象棋队参加奥林匹克集体赛首场竞赛获胜.(9)异乡遇故知.(10)光芒在平均媒质中发生折射现象.分析: (1)由对数性质: 1 的对数是零,于是知x= 1 时, lg x = 0 必定建立.(2)由于 4∈ B, 4?A ,所以 B 必定不是 A 的子集,也就不是 A 的真子集.(3)当α=30°时,β= 60°,α ≠ β, sin α ≠ sin β;当α= 30°,β= 150°时,α≠ β, sin α= sin β .所以当α≠β时, sin α ≠ sin β可能出现也可能不出现.(4)从全副扑克牌中任抽一张可能是黑桃A ,也可能是其他 53 张牌中的某一张.(5)由 2+ 3>4 知这三条线段必定能够构成一个三角形.(6) 从 10 个杯子中任取一个,有10 种可能.(7)路口有“红灯”、“黄灯”、“绿灯”三种颜色的信号灯,某人骑车至路口碰到的灯的颜色也就有三种可能.(8)集体赛获胜、战平、失败都有可能,是随机的.(9) 两位好朋友在没有商定的状况下客乡相遇,是人生的一大好事,可见,“异乡遇故知”是可能发生也可能不会发生的.(10)光芒在平均媒质中是沿直线流传的,不行能发生折射现象.答案: (1)(5) 是必定现象, (2)(10) 是不行能现象,(3)(4)(6)(7)(8)(9) 是随机现象.9.指出以下试验的结果:(1)先后掷两枚质地平均的硬币的结果;(2)某人射击一次命中的环数;(3) 从会合 A = {a , b,c, d} 中任取两个元素构成的 A 的子集;(4)语文、数学书各一本放进三个抽屉.分析: (1)结果:正面,正面;正面,反面;反面,正面;反面,反面;(2)结果:0环,1环,2环,3环,4环,5环,6环,7环,8环,9环,10环;(3)结果: {a ,b} , {a , c} , {a ,d} , {b , c} , {b ,d} , {c , d} .(4)结果:语数、语数、语数、数语、数语、数语、语、数、语、数、语、数 .10.以下随机事件中,一次试验各指什么?它们各有几次试验?(1)一天中,从上海开往南京的 3 列航班,所有正点抵达;(2)抛 50 次质地平均的硬币,硬币落地时有26 次正面向上;(3)箱中有 a 个正品, b 个次品,从箱中随机连续抽取 3 次,每次取 1 个,拿出后不放回,拿出的 3 个所有是正品.分析: (1)一架飞机开出,就是一次试验,共有 3 次试验.(2)抛一次硬币,就是一次试验,共有50次试验.(3)抽取一次产品,就是一次试验,共有 3 次试验.3. 1.2随机事件的概率。

工程数学基础教程课后习题答案

工程数学基础教程课后习题答案

.工程数学基础习题解答习 题 一A一、判断题1.√;,2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.√;10.×.二、填空题1.;C C A B2.111(){1,2,3,4},(){,,},(){,,},(){1,4},(){2,3};f f a b e f A a b e f B f b --=====D R3.满;4.2sup =E ,3inf -=E ; 5.0; 6.0; 7. n ; 8.Y .B1.证 ()y f A B ∀∈⋂,x A B ∃∈⋂使得)(x f y =.由x A B ∈⋂,得x A ∈,且x B ∈故()()y f x f A =∈且()y f B ∈,即()()y f A f B ∈⋂,因此()()()f A B f A f B ⋂⊂⋂.当f 是单射时,只需证明()()()f A f B f A B ⋂⊂⋂即可: ()()(),y f A f B f ∀∈⋂⊂R f 由是单射知,().(),(),1X y f x y f A y f B x ∃=∈∈∈使得且,,()(),x A x B x A B y f x f A B ∴∈∈∈⋂=∈⋂且即从而故()()()f A f B f A B ⋂⊂⋂.是可能的,例如,2:,[2, 0],[1, 3],[1, 0].f xx A B A B =-=-⋂=-取则()([1,0])[0, 1], f A B f ⋂=-=于是而[][]()()0, 4[0, 9]0, 4.f A f B ⋂=⋂=从而有 .2. 证(1)n ∀∈,有)2 ,2(12 ,12][-⊂-+-n n ,故 ∞=-⊂-+-1)2 ,2(12 12][n n ,n .另一方面,)2 ,2(-∈∀x ,k ∃∈,使][12 ,12k k x -+-∈,故 ∞=-+-∈1][12 12n n ,n x ,于是⊂-)2 ,2( ∞=-+-1][12 12n n,n .因此, ∞=-+-=-1][12 ,12)2 ,2(n nn .(2)n ∀∈,有)12 ,12(]2 ,2[n n +--⊂-,故 ∞=+--⊂-1)12 ,12(]2 ,2[n n n .另一方面,对任意]2 ,2[-∉x ,即2>x ,k ∃∈,使得212>+>kx ,即)12 ,12(k k x +--∉,从而 ∞=+--∉1)12 ,12(n n n x ,故 ∞=-⊂+--1]2,2[)12 ,12(n n n .因此,∞=+--=-1)12,12(]2,2[n nn . 3. sup ,sup ,sup ,.A A A μμμμ''===证设且要证唯一只需证明即可sup ,,,sup ,,;.inf .A A A A A μμμμμμμμμμ'''=≤=''≤= 因为是最小上界而是的上界故又因为是最小上界而是的上界故因此 类似地可以证明是唯一的 4. 证 设{}D Y αα∈是线性空间X 的一族子空间,要证D Y X αα∈⋂也是的线性子空间.显然D Y αα∈⋂≠∅,z 只需证明.D Y X αα∈⋂对的线性运算是封闭的事实上,,Dx y Y αα∈∀∈⋂及,λ∀∈,从而对每一个D ∈α,有,x y Y α∈,故x y Y α+∈,x Y αλ∈.于是,D x y Y αα∈+∈⋂,D x Y ααλ∈∈⋂.因此,DY αα∈⋂是X 的线性子空间. 5. ,,,W f g W λ∀∈∀∈证显然包含零多项式故非空;又及,有()(0)()(0)(0)(0)(0)(0)[(0)(0)][(0)(0)]000,f g f g f g f g f f g g '''''+++=+++=+++=+=即;()(0)()(0)(0)(0)[(0)(0)]00,.f g W f f f f f f f W λλλλλλλ'''+∈+=+=+==∈即[0, 1].n W P 所以,是的线性子空间1111021121001121 [0, 1],(),()2.(0)(0)0,0,,()(1).n n n n n n n n n n n f W P f x a x a x a x a f x na x a x a f f a a a a f x a x a x a x a x -----'∀∈⊂=++++=+++'+=+==-=++++-设则由得即故23(1,,,,),dim .n x x x x W W n -=由上可知,是的一个基故6. 1(1),(0)0.()0,0.T T T x T T x -⇒===“”:因为是线性的故有于是,若则由存在知是单射,从而有 1T T -⇐“”:要证存在,只需证明是单射:121212121212,,((),()()()0,0,,.x x X T x T x T x x T x T x x x x x T ∀∈=-=-=-==当)即时由条件得即故是单射 1112121211221122(2),,,,,s.t.,,(),().y y Y x x X y Tx y Tx x T y x T y λλ--∀∈∀∈∃∈====及即于是有1111111221122112211221122(+)[()()][()]()(),T y y T T x T x T T x x x x T y T y λλλλλλλλλλ-----=+=+=+=+1:.T Y X -→故是线性的7. 2222:,.B A σ⨯⨯→解首先验证是线性的然后求其在即下的矩阵221212,,,,X X k k σ⨯∀∈∀∈由的定义,有 10010000,,,0001001()B ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦1122011221012021122(+)(+)+()+(),k X k X A k X k X k A X k A X k X k X σσσ===2222:.σ⨯⨯→故是线性的1112212210010000,,,00001001E E E E B ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦关键是求基元的像在基下的坐标:()()()11111221221110000000,00,Tab acd cE aE E cE E E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()12111221221201000000,00,Tab a cd c E E aE E cE E a c σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()21111221222100010000,00,T ab bcd d E bE E dE E E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即()()()2211122122200001000,00,Tab b cd d E E bE E dE E b d σσ⎡⎤⎡⎤⎡⎤===+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即 0000.0000aba b A c d c d ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎣⎦习 题 二A一、判断题1.√;2.×;3.√;4.√;5.×;6.√;7.×;8.×;9.√;10.√;11.×;12.×.二、填空题1.x ;2.n ;3.2,(1),i,i λλλλ-+-;4. 1,1λλ-+;5.200004014⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;6.200020012⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;7.O ; 8.O ;9.1λ-;10.6.三、单项选择题1.(d);2. (b);3. (b);4. (d);5. (a).B1.解(1)E A λ-()[]−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----=-+212]3,2[]2,1[020012201200120012λλλλλλλ ()[]()[]()[]()[]222311322132232)2(00)2(10001020)2(10201-⋅+-⋅-⋅--⋅+−−→−⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-----λλλλλλλλ ()[]⎥⎥⎦⎤⎢⎢⎣⎡-−−→−⎥⎥⎦⎤⎢⎢⎣⎡---⋅3123)2(11)2(00010001λλ, 3123()()1, ()(2).d d d λλλλ∴===-(2)E A λ-[][]()[]−−→−⎥⎥⎦⎤⎢⎢⎣⎡------−−→−⎥⎥⎦⎤⎢⎢⎣⎡------=+-λλλλλλλ13123,1111111111111()[][]3211222311111011010011012λλλλλλλλλλ+⋅-⎡⎤⎣⎦+----⎡⎤⎡⎤⎢⎥⎢⎥+--−−−→+−−−→⎢⎥⎢⎥⎢⎥⎢⎥-------⎣⎦⎣⎦[]()[]⎥⎥⎦⎤⎢⎢⎣⎡-++−−−→−⎥⎥⎦⎤⎢⎢⎣⎡-++---⋅-+)2)(1(11)2)(1(0001011117312λλλλλλλλ, 1()1d λ∴=,1)(2+=λλd ,)2)(1()(3-+=λλλd .(3)E A λ-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---=52340100010012345100010001λλλλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---→542300100100012λλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++--→543200100010001232λλλλλλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++→5432111234λλλλ, 12()()()1d d d λλλ∴===,5432)(2344++++=λλλλλd .(4)[]1,2310013004100140071211721761671E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=−−→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦ ()[]()()()21122314162131113001000021000(1)0004210(4)210611106111λλλλλλλλλλλλλλ+-+⎡⎤⎣⎦-+-⎡⎤⎣⎦+⋅-⎡⎤⎣⎦⋅-⎡⎤⎣⎦--⎡⎤⎡⎤⎢⎥⎢⎥-+-⎢⎥⎢⎥−−−−→−−−−→⎢⎥⎢⎥-----+--⎢⎥⎢⎥--⎣⎦⎣⎦[]()2243232100010000(1)000(1)000621062106101010(1)0λλλλλλλλ+⋅⎡⎤⎣⎦+⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥−−−→−−−−→⎢⎥⎢⎥------⎢⎥⎢⎥---⎣⎦⎣⎦()()()2421[4()][24(1)]10[246][41][342]2210001000(1)0(1)0000010********(1)(1)0100101010λλλλλλ-⋅-⋅-+⋅-⋅-+⋅-⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−−→⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦[][]242,4(2)3,4[32]1041000100(1)010001110(1)λλλ-+⋅⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥−−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 123()()()1d d d λλλ∴===,44)1()(-=λλd .2. 解 (1)∵4det ()(2)A λλ=-+,∴44)2()(+=λλD ,又∵01021210100≠-=++λλ,∴1)(3=λD ,从而1)()(21==λλD D .于是不变因子为1)()()(321===λλλd d d ,44)2()(+=λλd ;初等因子组为4)2(+λ. (2)2210010010010()00000()000()B λαλαλαλαλλαλαλαλα++⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥≅≅⎢⎥⎢⎥+-+⎢⎥⎢⎥+-+⎣⎦⎣⎦⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++≅22)()(11αλαλ, 故不变因子为 1)()(21==λλd d ,23)()(αλλ+=d ,24)()(αλλ+=d ; 初等因子组为 22)(,)(αλαλ++.(3)显然313()1,det ()(1)()D C D λλλλ==+=,而2(1)(5)08(1)adj ()3(1)(1)6(1)2(1)0(1)(3)C λλλλλλλλλλ+++⎡⎤⎢⎥=+++⎢⎥⎢⎥-++-⎣⎦, ∴1)(2+=λλD .因此2321)1()(,1)(,1)(+=+==λλλλλd d d ; 初等因子组:2)1(,1++λλ.(4)由第1题(4)知1)()()(321===λλλd d d ,44)1()(+=λλd .也可这样解:由行列式的Laplace 展开定理得43121det ()(1)411D λλλλλλ----=⋅=-+,故44)1()(-=λλD ;又)(λD 的左下角的三阶子式372471672170142+-=---+λλλλ与)(4λD 是互质的,所以1)(3=λD ,从而1)()(12==λλD D .因此44321)1()(,1)()(,1)(-====λλλλλd d d d ;初等因子组:4)1(-λ.3.解(1)∵12020(1)(1)(2)211E A λλλλλλλ---=-=+--+,∴1~12A J ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(2)∵E A λ-611123034371230343104252373-+-+-=-++-+-=--+--=λλλλλλλλλλλλ 611123036411022-+-+++----=λλλλλλλ)i )(i )(1(123+--=-+-=λλλλλλ,∴~A J ⎥⎥⎦⎤⎢⎢⎣⎡-=i i 1. (3)∵[]1,231001300410014007121172117616171E A λλλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥++⎢⎥⎢⎥-=→⎢⎥⎢⎥--------⎢⎥⎢⎥⎣⎦⎣⎦[][][])1(12)1(13)6(14+⋅+-⋅+⋅+−−−→−λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------λλλλλλλλλλ2222)1()1(0100000)1(000011160124000)1(00031⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→22)1()1(11λλ, ∴初等因子组为2)1(-λ,2)1(-λ,于是⎥⎦⎤⎢⎣⎡=11011J ,⎥⎦⎤⎢⎣⎡=11012J ,故12111111JJ J ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (4)0001001E A λλλλ⎡⎤⎢⎥-⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎣⎦,()det()n nD E A λλλ=-=,又有一个1-n 阶子式0)1(1111≠-=----n λλλ,∴1)()(11===-λλD D n ,故1)()()(121====-λλλn d d d ,n n d λλ=)(;初等因子组为n λ,所以010~110A J ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. (事实上,A 本身就是一个Jordan 块)4.解(1)由第1题(2)知1)(1+=λλϕ,2)2)(1()(22--=-+=λλλλλϕ,所以12100~002011CA C C -⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦. (2)由第1题(3)知5432)(234++++=λλλλλϕ,故B 的有理标准是0005100401030012C -⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦.5.解 由J 立即可知A 的初等因子组为2)1(-λ,2-λ,2)2(-λ,于是不变因子为1)()()(321===λλλd d d ,()24-=λλd ,225)2()1()(--=λλλd .即2)(1-=λλϕ,412136)(2342+-+-=λλλλλϕ,故200000000401001200101300016C ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦.6.解 (1)744744()481099418418f E A λλλλλλλλλ----=-=-+=++++2)9)(9(71490847+-=++--=λλλλλ.因为2441644(9)(9)4171 4114117411A E A E O ---⎡⎤⎡⎤⎢⎥⎢⎥-+=---=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦,所以最小多项式为)9)(9()(+-=λλλm .(2)32310()det()0132(2)(1)23D E B λλλλλλλλλ-=-=-=--=-+--,∵有一个二阶子式01101≠=--λ,∴1)()(21==λλD D .因此,23)1)(2()()(+-==λλλλd m . (3)对E C λ-施行初等变换得其Smith 标准形23()diag(1, 1, 1,(3),(3))S λλλ=--,∴35)3()()(-==λλλd m .7.证 若A 可对角化,则A 的最小多项式)(λm 无重零点,必要性得证. 若A 有一个无重零点的零化多项式)(λϕ,则因为)(deg )(deg λϕλ≤m ,故)(λm 也无重零点,由定理2.16知A 可对角化.8. 证 (1) 22A A E +=,22A A E O +-=,∴)1)(2(2)(2+-=-+=λλλλλϕ是A 的一个无重零点的零化多项式,故A 可对角化. (2)mA E =,∴1-mλ是A 的零化多项式,其零点2i ek mk πλ=(0,1,,1)k m =-是互不相同的,故A 可对角化.习 题 三A一、判断题1.√;2.√;3.√;4.√;5.√;6.√;7.√;8.×;9.√;10.×;11.√;12.√;13.×; 14.× 15.√;16.√;17.√;18.√;19.√;20.×;21.√;22√;.23.×;24.√;25.√.二、填空题1.0;2.0y ;3.()T111,,,2n;4. 12;5.Banach ;6.1;7.3;8.15,2FA A A∞==+=;9.3.三、单项选择题1.(c);2. (c);3. (b);4. (a);5. (b);6.(c).B1. 证 仅验证三角不等式,其余是显然的.设Tn ),,(1ξξ =x ,T n ),,(1ηη =y 是n中的任意两个元素.∑∑∑∑====+=+=+≤+=+n i ni ni i ni i i i i i 1111111)(y x y x ηξηξηξ;i ni i ni i i ni i ni ηξηξηξ≤≤≤≤≤≤≤≤∞+≤+≤+=+11111max max }{max max y x∞∞+=y x .2. 证 因为[],, x y C a b ∀∈及∈∀α,有(N 1) t t x x bad )( 1⎰=0≥,显然若0=x ,即0)(≡t x ,则01=x ;反之,若01=x ,即0d )( =⎰t t x ba,则由)(t x 的连续性,知0)(≡t x ,即0=x ;(N 2) 11d )(d )(x t t x t t x xba b aαααα===⎰⎰;(N 3) t t y t t x t t y t x yx bab ab ad )(d )(d )()(1⎰⎰⎰+≤+=+11y x +=;所以1 ⋅是[], C a b 上的范数.3.解121i 1i 22,max{1,i ,1i}x x x ∞=+-++===-+= 4.解1max{101,210,i 11i }max{2,3,22max{12i ,011,101i }max{4,2,1 4.A A ∞=++-++-+-+-===++-++--++-==5.证 (1)lim ,lim ,.n n n n x x X x y Y x y →∞→∞=∈=∈=设又只需证明即可 {}0lim lim lim lim lim 000,0,0,.n n n n n n n n n n n x y x y x x x y x x x y x x x y x y x y x y →∞→∞→∞→∞→∞≤-=-=-+-≤-+-=-+-=+=∴-=-==故即122lim ,1,,1,1, 1. max{,,,,1},,().n n n n n n N n n x x X N n N x x x x x x x x M x x x x n x M x ε→∞=∈=∃∈>-≤-≤-≤≤+=+∀∈≤ ()设则对使得当时,恒有从而有即取则,有故有界6.证 设x 是,()n X x X x 中任意一点是中收敛于的任一序列.()():,lim ()();:,lim ()().lim()()()(),:.n n n n n n n f X Y Y f x f x g Y Z Z g f x g f x g f x g f x g f X Z x →∞→∞→∞→=→==∴→ 由连续知在中有又由连续知在中有即在点处连续,:.x X g f X Z ∈→由的任意性知是连续映射7. 证 由于()n x 和()n y 都是X 中的Cauchy 序列,则0>∀ε,12,N N ∃∈,使得当1,N m n >时,2ε<-m n x x ; 当2,N m n >时,2ε<-m n y y .令},m ax {21N N N =,则当N n m >,时,有)()( m m n n m m n n y x y x y x y x ---≤---εεε=+<-+≤22m n m n y y x x ,这表明()n n x y -是中Cauchy 的序列,由的完备性知,数列()n n x y -收敛.100001110101010121 (1)[0, 1],0,[0, 1],()0,max ()()0,(N ).d(())d(())[0, 1],,max ()maxmax ()max ,d d (N ). ,[0,dx d ddx x x x d f C f x f x f f x f x f x f x f C f f x f x fx x f g C λλλλλλλ≤≤≤≤≤≤≤≤≤≤∀∈≠∃∈>≥≥>⋅∀∈∀∈=+=+=⋅∀∈8.证且即使得故即满足即满足01010101010d(()())1],max ()()maxd d ()dg() max ()()max d d max ()max dx x x x x f x g x f gf xg x xf x x f xg x x x f x ≤≤≤≤≤≤≤≤≤≤++=++⎡⎤≤⎡+⎤++⎢⎥⎣⎦⎣⎦≤+101010101010131d ()dg()()max maxd d d ()dg()max ()maxmax ()max ,d d (N ).,[0, 1].x x x dd x x x x d d f x x g x x x f x x f x g x f g x x C ≤≤≤≤≤≤≤≤≤≤≤≤≤≤++⎡⎤⎡⎤=+++=+⎢⎥⎢⎥⎣⎦⎣⎦⋅⋅即满足 所以是上的范数(2):D ]1 ,0[1C ]1 ,0[C →显然是线性的.因为1[0, 1]f C ∀∈,有110101d ()d ()maxmax ()max ,d d dx x t f x f x Df f x f x x≤≤≤≤≤≤=≤+=故D 是有界的. 9. 证 由于 ⋅是n n⨯上的方阵范数,故,n nA B ⨯∀∈及α∀∈,有(1)1*0AS AS -=≥,并且11*0A S AS S AS O A O --==⇔=⇔=;(2)11**A S AS O S AS A αααα--====;(3)()11111*A B S A B S S AS S BS S AS S BS -----+=+=+≤+**A B =+;(4)111*()()AB S ABS S AS S BS ---==11**S AS S BS AB --≤=;因此,* ⋅是n n⨯上的方阵范数.10. 2;F A 解 21i()det(),()0;i1f E A A λλλλρλ--=-==∴=-+H HH 21i 1i 22i 22i,(4),()4,i 1i 12i 22i 22.A A E A A A A A λλλλρλ---⎡⎤⎡⎤⎡⎤==-==-=⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦∴=11. 证 显然A λ≤.∵λ是可逆阵A 的特征值,则λ1是1A -特征值,故11A λ-≤,即11Aλ-≥. ∴11A A λ-≤≤.12.证 要证0(),x T ∈N 只需证明00.Tx =()0()(),0.lim ,,n n nn x T Tx n xx T →∞⊂=∀∈=由知于是当且是有界线性算子时有N0(lim )lim ()lim00,n n n n n Tx T x T x →∞→∞→∞====故0().x T ∈N习 题 四A一、判断题1.×;2.√;3.√;4.×;5.√;6.√;7.×;8.×.二、填空题1.2213e e 001cos x x x x ⎡⎤⎢⎥⎣⎦;2.222(1)tE t -+;3.1;4. 3e t ;5.22222222e e e e e e tt t t tt t t t ------⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; 6.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-t t t 2cos 2cos cos ;7.1; 8.3e -. B1. sin cos d (),d cos sin tt A t t tt -⎡⎤=⎢⎥--⎣⎦解 []22d d det ()cos sin 0d d A t t t t t =+=⎡⎤⎣⎦,22sin cos d ()det()sin cos 1.d cos sin t t A t t t t t t-==+=-- 2. 2213e e 0 ().01cos x x x f x ⎡⎤'=⎢⎥⎣⎦解x3. 1 1 0 0 11 10 0 0 110 0e d e d e 11 ()d d2d 11.sin d cos d 1cos1sin1t tt t t A t t t t t t t t t ⎡⎤-⎡⎤⎰⎰⎢⎥⎢⎥==⎰⎰⎰⎢⎥⎢⎥⎢⎥⎢⎥-⎰⎰⎣⎦⎣⎦解 4. 证明(1)d d d d d d ()()()()d d d d d d T T T T T f x x x x Ax Ax x Ax Ax x A t t t t t t==+=+d d d d d ()2;d d d d d T T T T T T T T x x x x x x A x A x A x A x A t t t t t=+=+=.(2)d d d d d d ()()2.d d d d d d T T T T T T T x x x x x x x x x x x x t t t t t t=+=+=5. 证(1)若lim k k A A →∞=,则2lim 0k k A A →∞-=. ∵222()T TTk k k A AA A A A -=-=-(可以证明[1]2222H T A A A A ===),∴2lim 0T Tk k A A →∞-=,即lim T Tk k A A →∞=. 同理可证lim k k A A →∞=,由上已证的结果立即可得lim H H k k A A →∞=.(2)000()lim ()lim ()NNTkT kk Tk k k N N k k k c A c A c A ∞→∞→∞=====∑∑∑0lim()Nk Tk N k c A →∞==∑ 0(lim )N k T k N k c A →∞==∑0()k Tk k c A ∞==∑ 6. 证 令()3200det()11120113E A λλλλλ--=---=-=--得A 的全部特征值均为 2. 于是13B A =的所有特征值都是32,故()213B ρ=<,因此lim k k B O →∞=.7. 证 方法一: 当0=t 时,显然成立,故设0≠t .记010100t t A t ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦. 22det()(i )(i )E A t t t λλλλ-=+=-+,t i 1=λ,t i 2-=λ.对t i 1=λ,解方程(i )0tE A x -=可得11i x ⎡⎤=⎢⎥⎣⎦;对t i 2-=λ解方程(i )0tE A x --=得21i x ⎡⎤=⎢⎥-⎣⎦.令11i i P ⎡⎤=⎢⎥-⎣⎦,则P 可逆且11/2i /21/2i /2P --⎡⎤=⎢⎥⎣⎦.所以01i 10i i 1i 111/2i /2e 0ee diag(e ,e )i i 1/2i /20e tt Attt P P ⎡⎤⎢⎥---⎣⎦--⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡+---+=----t t t t t t t t t t t t cos sin sin cos )e e (21)e e (i 21)e e (i 21)e e (21i i i i i i i i .方法二:记0110B ⎡⎤=⎢⎥-⎣⎦,21det()11E B λλλλ--==+,{}()i,i B σ=-.B 的最小多项式1)(2+=λλϕ,2)(deg =λϕ. 故设01e ()()tB a t E a t B =+.∵λt e 与λ)()(10t a t a +在()B σ上的值相等,即⎩⎨⎧=-=+-tt t a t a t a t a i 10i 10e )(i )(e )(i )(, ∴t t a t t cos 2e e )(i i 0=+=-,t t a tt sin i2e e )(i i 1=-=-.因此0110cos sin ecos sin sin cos t t t tE tB t t ⎡⎤⎢⎥-⎣⎦⎡⎤=+=⎢⎥-⎣⎦.8. 2eJordan ,e e e .e e e 2ttAtt t tt A t t t ------⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦解是块 9. 解 2214det()02(2)(1)031E A λλλλλλ----=-=----.∵(2)()A E A E O --≠,∴A 的最小多项式)1()2()(2--=λλλϕ.3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=. 由()f t λ与()T t λ在{}()1,2A σ=上的值相等,于是(1)对()e Atf At =有⎪⎩⎪⎨⎧=+=++=++tttt t a t a t a t a t a t a t a t a 2212210210e )(4)(e )(4)(2)(e )()()(,解得⎪⎩⎪⎨⎧+-=-+-=+-=t t t t t t t t t t t a t t a t t a 222221220e e e )(e 3e 4e 4)(e 2e 3e 4)(所以22100e (4e 3e 2e )010001tA t t t t ⎡⎤⎢⎥=-+⎢⎥⎢⎥⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+130020412)e 3e 4e 4(22t t t t⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+19004012164)e e e (22t t t t ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=ttt t t t t t t tt e e 3e 300e 0e 4e 4e 13e 12e 12e 222222(2)对()sin()f At At =有01201212()()()sin ()2()4()sin 2()4()cos 2a t a t a t t a t a t a t t a t a t t t ++=⎧⎪++=⎨⎪+=⎩,解得⎪⎩⎪⎨⎧+-=-+-=+-=tt t t t a t t t t t a t t t t t a 2cos 2sin sin )(2cos 32sin 4sin 4)(2cos 22sin 3sin 4)(210. ∴2012sin()()()()At a t E a t A a t A =++sin 212sin 12sin 213cos 24sin 4sin 20sin 2003sin 3sin 2sin t t t t t t t t t t t -+-+⎡⎤⎢⎥=⎢⎥⎢⎥-+⎣⎦(注)可利用(1)的结果求(2)(或cos()At ):在(1)中分别以t i 和t i -替代t 得i e tA 和i etA-,再由公式i i i i e e e e sin()(cos())2i 2tA tA tA tAAt At ---+==或即得. 10. 解 210det()01(+1)01+2E A λλλλλλ-==-()A A E O -≠且,故A 的最小多项式2()(1)φλλλ=+,3)(deg =λϕ,故设2012()()()()()f At a t E a t A a t A T At =++=,即012100010001()()010()001()012001012023f At a t a t a t -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦012021212012()()()0()()()2()0()2()()2()3()a t a t a t a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥=--+⎢⎥⎢⎥--+⎣⎦. 由()f t λ与()T t λ在A 上的谱值相等,于是(1)对()e Atf At =有001212()1()()()e ()2()e tta t a t a t a t a t a t t --=⎧⎪-+=⎨⎪-=⎩,解得012()1()22e e ()1e e t t t t a t a t t a t t ----=⎧⎪=--⎨⎪=--⎩012021212012()()()e 0()()()2()0()2()()2()3()122e e 1e e 0e e e 0e e e At t t t t t t tt t ta t a t a t a t a t a t a t a t a t a t a t a t t t t t t t -----------⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦-++-+⎡⎤⎢⎥=+-⎢⎥⎢⎥-⎣⎦. (2)对()sin()f At At =有001212()0()()()sin ()2()cos a t a t a t a t t a t a t t t =⎧⎪-+=-⎨⎪-=⎩,解得012()0()2sin cos ()sin cos a t a t t t t a t t t t =⎧⎪=-⎨⎪=-⎩.012021212012()()()sin()0()()()2()0()2()()2()3()a t a t a t At a t a t a t a t a t a t a t a t a t -⎡⎤⎢⎥∴=--+⎢⎥⎢⎥--+⎣⎦02sin cos sin cos 0sin cos cos 0cos sin cos t t t t t t t t t t t t t t t t -+-⎡⎤⎢⎥=-+-⎢⎥⎢⎥--⎣⎦11.tr 2i 332i det(e )e e e .A A +-===解12. 解 此处775885050A --⎡⎤⎢⎥=---⎢⎥⎢⎥-⎣⎦,122()()()()x t x t x t x t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,321C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.因为775det()885(5)(5)(15),deg ()3,05E A λλλλλλϕλλ+--=+=-++=故设2012e ()()()()At a t E a t A a t A T At =++=.由tλe 与)(t T λ在(){5,5,15}A σ=--上的值相同,得方程组⎪⎩⎪⎨⎧=+-=+-=++--ttt t a t a t a t a t a t a t a t a t a 1521052105210e )(225)(15)( e )(25)(5)( e )(25 )(5 )(,解得 ⎪⎩⎪⎨⎧+-=-=-+=-----)e e 2(e )( )e (e )( )e 6e (3e )(1555200125510111555810t t t t t t t tt a t a t a ;于是 0121775105800e ()1()885()12014501050404025At a t a t a t --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+---+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--+-+-+-+---+--++=---------------t t tt t t t t t t t t t tt t t t t t t t t t 551555155555155515555515551555e 5e 5e 2e e 3e 24e e 2e 5e 5e 6e e 3e64e 2e e 5e 5e 4e e 3e 44e e 2101. 所以,解为 55155515551517e 9e 4e 1()e 17e 9e 6e 1017e 9e 2e t t t At t t t t t tx t C ------++⎡⎤⎢⎥==--+⎢⎥⎢⎥-+⎣⎦,即⎪⎪⎩⎪⎪⎨⎧+-=+--=++=------)e 2e 9e 17(101)()e 6e 9e 17(101)()e 49e e 17(101)(155531555215551tt t t t t t t t t x t x t x .习 题 五A一、判断题1.√;2.×;3.√;4.√;5.√;6.×;7.√;8.√;9.×;10.√;11.√;12.×;13.√;14.√ 15.√.二、填空题1.0;2.{}0;3.span A ;4.1;5.3;6.O ;7.123()1,()1,()(1)(2)d d d λλλλλλ==-=--;8.实;9.0; 10.1;11.1,a b c ===.三、单项选择题1.(d);2. (c);3. (c).B1.证 121212(1)(,,,),(,,,),(,,,),,T T T nn n n x y z ξξξηηηςςςλμ∀===∈∀∈及,有1111(I ),(),,;nnnk k k k k k k k k k k k k x y z k k k x z y z λμλξμηςλξςμηςλμ===<+>=+=+=<>+<>∑∑∑211(I ),,;n nk k k k k k k k x y k k y x ξηηξ==<>===<>∑∑231221(I ),0, ,=01,2,,,=01,2,,,00;nk k k nk kk k k x x k x x k k n k n x ξξξξ==<>=≥<>=⇔∀=⇔∀==⇔=∑∑且有有,.nk <⋅⋅>故是上的一种内积(2),,,,n nij ij ij A a B b C c λμ⨯⎡⎤⎡⎤⎡⎤∀===∈∀∈⎣⎦⎣⎦⎣⎦及,有1111111(I ),(),,;nnnnnnij ij ij ij ij ij ij i j i j i j A B C a b c a c b c A C B C λμλμλμλμ======<+>=+=+=<>+<>∑∑∑∑∑∑2111111(I ),,;nnnnnnij ij ij ij ij ij i j i j i j A B a b a b a b B A ======<>====<>∑∑∑∑∑∑2311112211(I ),0, ,0,1,2,,,00;n n n nij ij ij i j i j nnijijij i j A A a a a A A a i j n a a A O ======<>==≥<>==⇔∀===⇔=∑∑∑∑∑∑且有即,.n n⨯<⋅⋅>故是上的一种内积12211.nnij F i j A a A ==⎛⎫>== ⎪⎝⎭∑∑2. 证 右端) , ,(41>--<->++<=y x y x y x y x><+><+><+><=y y x y y x x x ,,,,(41),,,,><-><+><+><-y y x y y x x x 1(4,)4x y =<>=左端.3.证 (1)若⊥∈B x ,则B y ∈∀皆有y x ⊥,由假设B A ⊂,于是对每一个A y ∈皆有y x ⊥,即⊥∈A x ,故⊥⊥⊂A B .(2)若A x ∈,则⊥∈∀A y 皆有y x ⊥,故⊥⊥∈)(A x ,于是⊥⊥⊂)(A A .4.解 显然123.det 20,det 110,det 380,.A A A A A =>=>=>∴是实对称矩阵正定其余略.5. 证 “⇒”: 若n nA ⨯∈正定,则det det 0n A A =>,故A 非奇异.“⇐”: 若A 非奇异,则1det 0ni i A λ==≠∏,从而),,2,1(0n i i =≠λ. 又因为A 半正定,故有0≥i λ,于是),,2,1(0n i i =>λ,所以A 是正定的.6.证 先验证2A 是Hermite 矩阵.22222()()(),Hermite .H H H H H H H H H H H A A AA AA A A AA A AA A AA AA AAA A A A A ======∴是矩阵再证2A 是正定的.12222 ,,Hermite 0(1,2,,).0(1,2,,),.n i i i A n A i n A i n A λλλλλλ∈≠=>=设是的个特征值,由是矩阵且可逆知,且从而的所有特征值故是正定矩阵7. 解 (1)令3i 1i 02010E A λλλλλλ---==-=-得01=λ,22=λ,23-=λ,由此判定A不是正定的.对01=λ解方程组0Ax -=,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---000i 0100i 1i 0321ξξξ,亦即⎩⎨⎧==+ 00i 132ξξξ,得⎩⎨⎧==321i 0ξξξ. 若取13=ξ,则有10i 1x ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 对22=λ解)0A x -=可得2i 1x ⎢⎥⎢⎥⎣⎦=-.对23-=λ解()0A x -=可得⎥⎥⎦⎤⎢⎢⎣⎡--=1i 23x .由于1x ,2x ,3x 分别对应于A 的不同特征值,故彼此正交.将它们单位化,得10i 1/α⎡⎤⎢⎢⎢⎣=,2i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦=-,3i /21/2α⎡⎢⎢⎥⎢⎥⎣⎦-=-.令[]12301/,,i i /2i /21/21/2U ααα⎡-⎢==--⎢⎥⎢⎥⎢⎥⎣⎦,01/i /21/2i /21/2H U ⎡-⎢=⎢⎥⎢⎥-⎢⎥⎣⎦,则0H U AU ⎡⎤⎢⎥=⎢⎥⎢⎣.习 题 六A一、判断题1.×;2.√;3.×;4.×;5.×;6.×;7.×;8.√;9.×.二、填空题1.1122112201010-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦;2. (1)()12(1)(1)()213(1)(1)321( 3 24)41(3 30)(0,1,2,)41( 24)4k k k k k k k x x x x x k x x +++++⎧=-+⎪⎪=-++=⎨⎪⎪=-⎩;3.1()D L U --;4.Seidel,Jacobi .B1. 解(1)110000100005000.55000A-⎡⎤⎢⎥⎣⎦-=-, 3.0001A ∞=,120000A-∞=,∴cond 60002A ∞=.(2)1 1.38 2.1810.2106 2.79 4.56B -⎡⎤⎢⎥⎣⎦-=-,17.35B =,1132.00B -=,∴1cond 235.2B =.(3)12212max{,}1009910099,cond (6-3).min{,}99989998C C λλλλλλ--⎡⎤==⎢⎥--⎣⎦是实对称矩阵故见令12122019810,9999cond 39206.C λλλλλλ=--===∴==≈得 2. 解(1)对增广矩阵施行行的初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡330002121041123232300212104112522162134112得到等价的上三角方程组⎪⎩⎪⎨⎧==+-=++330212142332321x x x x x x .进行回代,得方程组的解为:12/)4( ,1)21/(21 ,13/3321323=--==--===x x x x x x .故解为(1,1,1).T x =(2)对增广矩阵施行初等行变换11034110341103421111011590115931123041715003132112314033280001319⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦得到等价的上三角方程组1242343443459313211319x x x x x x x x x ++=⎧⎪---=-⎪⎨+=⎪⎪-=-⎩.进行回代,得方程组的解:43419219/(13), (2113)/3,133x x x =--==-=2341244055(95), 433939x x x x x x =--++==--=-,故解为()5540192,,,.3939313Tx -=3. 解 首先用顺序Gauss 消去法.对增广矩阵施行初等行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1.982.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯-⨯→-65424101798.0104453.0101467.00104441.0108007.0106667.006781.0167.001.0012.0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯-⨯-⨯-⨯-⨯→-9924109774.0101762.000104441.0108007.0106667.006781.0167.001.0012.0,经回代得547.53=x ,43.722=x ,05.811-=x . 此时,620.174310Ax b -=⨯. 下面用列主元素Gauss 消去法.对增广矩阵施行初等行变换(下画横线者为主元素)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡9812.4120032001.1291.58334.016781.0167.001.0012.0 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-6744.01670.0105500.00101179.0105909.04584.009812.41200320022⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯⨯⨯→-5329.0109610.000101179.0105909.04584.009812.41200320012, 经回代得46.17,76.45,545.5123=-==x x x . 此时,289.22=-b Ax .列主元素Gauss 消去法比顺序Gauss 消去法的精度高.4. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ). 计算结果如下表:解为767354.01=x ,138410.12=x ,125368.23=x .Seidel 迭代格式与计算结果如下:()()()⎪⎪⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k );5. 解 Jacobi 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=+++30] 32[151]12[ 81 ]2432 [201)(2)(113)(3)(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ), 因为()()21113300044335110,det(),1,444481100044M E M M λλλλλρλ⎡⎤-⎢⎥⎢⎥=--=-=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦所以Jacobi 迭代格式收敛.Seidel 迭代格式为()()()⎪⎪⎩⎪⎪⎨⎧++-=+--=+--=++++++30] 32[151]12 [ 81 ]2432 [201)1(2)1(113)(3)1(112)(3)(211k k k k k k k k k x x x x x x x x x ( ,2,1,0=k ).因为系数矩阵A 对称,且123det 40,det 70,det 240,,A A A A =>=>=>从而正定故Seidel 迭代格式收敛.6. 解(1)Jacobi 迭代矩阵1111022()10111022M D L U -⎡⎤-⎢⎥⎢⎥=+=--⎢⎥⎢⎥⎣⎦;215det()()4E M λλλ-=+,1()1M ρ=>.因此,Jacobi 迭代格式发散.Seidel 迭代矩阵12111000222011111()100010222000111000222M D L U -⎡⎤⎡⎤-⎢⎥⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥=-=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥--⎣⎦⎣⎦; 221det()()2E M λλλ-=+,21()2M ρ=.因此Seidel 迭代格式收敛.(2)Jacobi 迭代矩阵1100022022010101101001220220M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦;31det()E M λλ-=,1()0M ρ=.因此, Jacobi 迭代格式收敛.Seidel 迭代矩阵2100022022110001023021000002M --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦;()22det()2E M λλλ-=-,2()21M ρ=>.因此, Seidel 迭代格式发散.*7.用追赶法解线性方程组12123233 1, 247, 259.x x x x x x x +=-⎧⎪++=⎨⎪+=⎩解 系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520142013A .31=u ,3/2/212==u l ,3/101422=⋅-=l u ,5/3/223==u l ,5/221533=⋅-=l u ;11-=y ,3/237122=-=y l y ,5/229233=-=y l y ;1/333==∴u y x ,2/)1(2322=⋅-=u x y x ,1/)1(1211-=⋅-=u x y x .即解为(1,2,1).Tx =- 8. 解 把方程组调整为⎪⎩⎪⎨⎧=+=+=++22846231312123x x x x x x x , 此时系数矩阵为312041102A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.Seidel 迭代矩阵111200033301211()000010044000111106263M D L U -⎡⎤⎡⎤--⎢⎥⎢⎥--⎡⎤⎢⎥⎢⎥⎢⎥=-=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦, 11det()(66E M λλλλ-=---+,()1M ρ=<.因此,此时Seidel 迭代格式()()()()()()()⎪⎪⎩⎪⎪⎨⎧-=-=--=++++ )2(21)8(41)26(3113111121213k k k k k k k x x x x x x x 收敛.习 题 七A一、判断题1.×;2.√;3.×;4.×.二、填空题1.1,1n +;2. 11:455;:;:33-一阶差商,,二阶差商1,三阶差商;3.16.640,0.096,16.736.B1. 解 因为0120.15,0.00,0.10,0.20.x x x x ====故取则2(0.150.10)(0.150.20)(0.15)(0.15)0.000(0.000.10)(0.000.20)(0.150.00)(0.150.20)0.0998(0.100.00)(0.100.20)(0.150.00)(0.15 f L --≈=⨯----+⨯----+0.10)0.1987(0.200.00)(0.200.10)00.074850.074510.1494.⨯--=++= 521(0.15)(0.150.00)(0.150.10)(0.150.20) 6.2510.3!R -≤---=⨯2.解 对于点76.35x =,取076x =,177x =,278x =,379x =. 作差商表于是有2(1)(76.35)(76.35)2.832670.0689(76.3576)0.00306(76.3576)(76.3577) 2.832670.024120.00070 2.85609.f N ≈=+-+--=+-=32(2)(76.35)(76.35)(76.35)0.00017(76.3576)(76.3577)(76.3578) 2.856090.00006 2.85615.f N N ≈=+---=+=3. 解 选01220.20,0.40,0.60,0.80x x x x ====.作差商表:。

最新第3章 工程随机数学基础习题_答案

最新第3章 工程随机数学基础习题_答案

类似可求得:
当x>0, 0<y≤1时,有F(x,y)=2y-y2;当x>0,y>1时,有F(x,y)=1.
综上所述,
第七章 泌尿系统疾病
第一章 总 论
泌尿系统主管机体尿液的生成和排泄功能,由肾、输尿管、膀胱、尿道及有关的血管、神经等组成。肾不仅是人体主要的排泄器官,也是一个重要的内分泌器官,对维持机体内环境的稳定起相当重要的作用。本篇讨论内科范畴内常见的肾脏疾病。
-2
-1
0
-1
1/12
1/12
3/12
1/2
2/12
1/12
0
3
2/12
0
2/12
试求(1) ;(2) ;(3) 的分布律。
解:(1) 的取值有-3,-2, ,-1, ,1,2,3.设 =k.
同理易得k取其他值时的概率, 的分布律如下:
-3
-2
-1
1
2
3
p
0
0
(2) 的取值有
与(1)同理,得 得分布律:
-2
-3
(3) 的取值有-2,-1,0,1,2设k= ,有:
的分布律如下:
-2
-1
0
1
2
P
18.已知二维随机变量 的联合概率密度为
试求待定系数A; ; (其中 )。
解:
=
当z>0时
19.设 与 是两个相互独立的随机变量,其概率密度分别为:
试求 的概率密度。
解:利用公式
按函数 的定义知,仅当

时,上述积分的被积函数才不等于0,如图3-2知
P{=0,=2}+P{=1,=2}=40/56
P{≤2}=1,P{<0}=0。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

高中数学苏教必修三规范训练 第3章 随机事件及其概率22 含答案

高中数学苏教必修三规范训练 第3章 随机事件及其概率22 含答案

第2课时 古典概型(2)双基达标 (限时15分钟)1.据人口普查统计,育龄妇女生男生女是等可能的,如果允许生育二胎,则某一育龄妇女两胎均是女孩的概率是________.解析 所有的基本事件有(男,男),(男,女),(女,男),(女,女),共有4种,∴P =14. 答案 142.一个三位数的密码锁,每位上的数字都可以在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数字后,随意拨动最后一个数字,恰好能开锁的概率为________.解析 最后一个号码一共有10种可能,恰好能打开的只有1种,∴P =110. 答案 1103.有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为________.解析 在1~100中,7的倍数有14个,∴P =14100=750. 答案 7504.从编号为1到500的卡片中任取一张,抽取的卡片编号是4的倍数的概率为________.解析 500÷4=125,即1到500中恰有125个数是4的倍数,P =125500=14. 答案 145.一只袋中已知有3个黑球,2个白球,第一次摸出1个球,然后放回去,再摸第二次,则两次摸球都是白球的概率为________.解析 从5球中有放回地抽取两次,共有25种结果,其中两次都是白球的抽取结果有:2×2=4,∴P =425. 答案 4256.在不大于100的自然数中任取一个数.(1)求所取的数为偶数的概率;(2)求所取的数是3的倍数的概率;(3)求所取的数是被3除余1的数的概率.解 (1)不大于100的自然数共有n =101(个),其中偶数有m 1=51(个),∴所取的数是偶数的概率P 1=m 1n =51101.(2)在不大于100的自然数中,3的倍数分别为0,3,6,9,…,99,共有m 2=34(个),∴所取的数为3的倍数的概率P 2=m 2n =34101. (3)在不大于100的自然数中,被3除余1的数分别为1,4,7,10,…,100,共有m 3=34(个),∴所取的数是被3除余1的概率为P 3=m 3n =34101. 综合提高 (限时30分钟)7.从1,2,3,…,9共九个数字中,任取两个数字,取出数字之和为偶数的概率是________.解析 不考虑顺序,所有的基本事件数为9×82=36,和为偶数的有16种,∴P =1636=49. 答案 498.把12个人平均分成2组,每组中任意指定正副组长各1人,其中甲被指定为正组长的概率是________.解析 把12人平均分成2组有多少种分法可不考虑,甲必在其中某一组,在这组中任意指定正副组长各1人,共有6×5=30(种),其中甲为正组长的有5种,∴P =530=16. 答案 169.将一枚骰子抛掷两次,若先后出现的点数分别为b 、c ,则方程x 2+bx +c =0有相等实根的概率为________.解析 ∵方程x 2+bx +c =0有相等实根,∴Δ=b 2-4c =0,∴b 2=4c .基本事件总数为n =6×6=36,当b =4,c =4或b =2,c =1时,b 2=4c ,方程有相等实根,∴满足题意的基本事件个数为2,∴P =236=118. 答案 118 10.从数字1,2,3,4,5中,随机抽取3个数字(允许重复),组成一个三位数,其各位上的数字之和等于9的概率为________.解析 从1,2,3,4,5中,随机抽取3个数字(允许重复),可以组成5×5×5=53=125(个)不同的三位数,其中各位数字之和为9的三位数可分为以下五类:(1)由1,3,5三个数字可以组成6个不同的三位数;(2)由1,4,4三个数字可以组成3个不同的三位数;(3)由2,3,4三个数字可以组成6个不同的三位数;(4)由2,2,5三个数字可以组成3个不同的三位数;(5)由3,3,3三个数字可以组成1个不同的三位数.∴满足条件的三位数共有6+3+6+3+1=19(个).故所求的概率为19125. 答案 1912511.掷两枚均匀正方体骰子,骰子向上的面上的数字相加,所得的和作为一个基本结果,问这个基本结果有哪些?每个基本结果是否是等可能的?解 掷两枚骰子向上的面的数字分别是1,2,3,4,5,6中的一个,把两枚骰子上的数字相加后,可得如下结果:2,3,4,5,6,7,8,9,10,11,12,其中2只能由1+1得到,12只能由6+6得到,而5可以由1+4,2+3得到,7可以由1+6,2+5,3+4得到,显然每个结果的形成方式不尽相同.因此,每个基本结果出现的可能性不相同.12.2008年5月12日,四川省汶川发生大地震,全国人民纷纷伸出援助之手,白衣天使更是无私奉献.现随意安排甲、乙、丙3个医生在某医疗救助点值班3天,每人值班1天, (1)这3人值班的顺序共有多少种不同的方法?(2)其中甲在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?解 (1)3人值班的顺序所有可能的情况如图所示.由图知,所有不同的排法顺序共有6种.(2)由图知,甲在乙之前的排法有3种.(3)记“甲排在乙之前”为事件A ,则事件A 的概率是P (A )=36=12. 13.(创新拓展)有甲,乙,丙三名同学分别写了一张新年贺卡然后放在一起,现在三人均从中抽取一张.(1)求这三名同学恰好都抽到别人的贺卡的概率;(2)求这三名同学恰好都抽到自己写的贺卡的概率.解 可由树形图得出所有基本事件数为6.(1)其中恰好都抽到别人的贺卡有(乙,丙,甲),(丙,甲,乙)两种情况,故其概率为P 1=26=13. (2)恰好都抽到自己的贺卡的概率是P 2=16.。

高中数学必修3(北师版)第三章3.1 随机事件的概率(与最新教材完全匹配)知识点总结含同步练习题及答案

高中数学必修3(北师版)第三章3.1 随机事件的概率(与最新教材完全匹配)知识点总结含同步练习题及答案


3 . 5
某地气象局预报说,明天本市降雨的概率是 80% ,则下列解释: ①明天本地有 80% 的区域降雨,20% 的区域不降雨; ②明天本地有 80% 的时间降雨,20% 的时间不降雨; ③明天本地降雨的机率是 80% . 其中正确的是______.(填序号) 解:③ ①②不正确,因为 80% 的概率是说降雨的概率,而不是说 80% 的区域降雨或 80% 的时间降雨.
nA 为事件 A 出现 n3 Biblioteka C.频率为 6A.概率为
B.频率为
D.概率接近于频率 解:B C 选项明显错误,应该是频数为 6 .选项 D 错误,应该是“频率接近于概率”.试验的次数确定是 10 次,因此仅凭 10 次试验不能确定事件 A 发生的概率大小,由频率的定义知事件 A 发生的频率 为
3 5
不可能事件 在条件 S 下,一定不会发生的事件,叫做相对于条件 S 的不可能事件(impossible event),简称不可能事件.
确定事件 必然事件与不可能事件统称为相对于条件 S 的确定事件,简称确定事件. 随机事件 在条件 S 下可能发生也可能不发生的事件,叫做相对于条件 S 的随机事件(random event),简称随机事件. 基本事件与基本事件空间 通常用大写英文字母 A 、B 、C 、⋯ 来表示随机事件,随机事件可以简称为事件.在一次试验中,所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述, 这样的事件称为基本事件 (elementary event) ,所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母 Ω 表示. 例题: 下列事件中哪些是必然事件?哪些是不可能事件?哪些是随机事件? ①如果 x,y 均为实数,那么 x ⋅ y = y ⋅ x ; ②三张奖券只有一张中奖,任取一张奖券能中奖; ③掷骰子出现 7 点; ④某高速公路收费站 3 分钟内至少经过 8 辆车; ⑤声音在真空中传播; ⑥地球绕太阳旋转. 解:①⑥是必然事件,③⑤是不可能事件,②④是随机事件. 由实数的运算性质知①恒成立,是必然事件;⑥是自然常识,是必然事件,所以①⑥为必然事件;掷骰子不可能出现 7 点,声音不能在真空中传播,所以③⑤为不可能事件;三张奖券只有一张中奖,任 取一张可能中奖也可能不中奖,收费站 3 分钟内经过的车辆还可能少于8 辆,因此②④为随机事件. 从 a ,b ,c ,d 中任取两个字母,求该试验的基本事件空间. 解:含 a 的有 ab 、ac 、ad;不含 a ,含 b 的有 bc,bd ;不含 a 、b ,含 c 的有 cd . 所以该试验的基本事件空间 Ω = {ab, ac, ad, bc, bd, cd}. 从 A 、B 、C 、D 、E、F 这 6 名学生中选出 4 人参加数学竞赛. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出事件 “A 没被选中”所包含的基本事件. 解:(1)这个试验的基本事件空间是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)
(2)
6.已知在有一级品2件,二级品5件,次品1件的口袋中,任取其中的3件,用 表示所含的一级品件数, 表示二级品件数。试求:
(1) 的联合分布律;
(2)关于 和关于 的边缘分布律;
(3) 。
解:(1)按古典概型计算,从8件中取3件,共有 种取法。在取出的三件中,一级品有i件,二级品有j件,剩下3-i-j件为次品,且其不超过1件。
(n)(n)
1
2
3
4
0
1/10
0
0
0
1
0
4/10
2/10
1/10
2
0
0
0
2/10
4.设随机变量 的联合概率密度为
(1)确定常数k;(2)求 ;
(3)求 ;(4)求 。
(1)由概率密度的性质知:
,
即8k=1∴k=1/8;
(2)
(3)
;
(4)

5.设二维随机变量(,)的联合分布函数为:
试求(1)联合概率密度 ;(2) 。
即有
若利用公式
知仅当
时,上述积分的被积函数才不等于0,如图知
即有
20.设 的联合概率密度为 试求 的概率密度。
第3章 多
习题 3
1.设二维随机变量 只能取下列数组中的值:
(0,0),(-1,1),(-1,1/3),(2,0)。
且取这些组值的概率依次为1/6,1/3,1/12,5/12,求表示这二维随机变量的联合分布律的矩形表格。
解:
0
-1
2
0
1/6
0
5/12
1
0
1/3
0
1/3
0
1/12
0
2.一口袋中装有三个球,它们依次标有数字1,2,2。从这袋中任取一球,不放回袋中,再从袋中任取一球。设每次取球时,袋中各个球被取到的可能性相同。以 分别记第一次、第二次取得的球上标有的数字,求 的联合分布律。
0
1
0
1
2
3
p
0.7
0.3
p
0.4
0.2
0.1
0.3
试求:(1) 的联合分布律;(2) 的分布律。
解:(1)对ξ=0,1, =0,1,2,3
0
1
0
0.28
0.12
1
0.14
0.06
2
0.07
0.03
3
0.21
0.09
有:
(2) 的可能取值有0,1,2,3,4,概率如下:
分布律如下:
0
1
2
3
4
p
0.28

所以 得联合分布律如下:
0
1
2
0
0
0
1/56
1
0
5/28
5/56
2
5/28
5/14
0
3
5/28
0
0
(2)关于 的边缘分布律:
0
1
2
P
5/14
15/28
3/28
关于 的边缘分布律
0
1
2
3
P
1/56
15/56
15/56
5/28
(3)
P{<1.5,<2.5}=P{=0,=0}+P{=1,=0}+P{=0,=1}+P{=1,=1}+
-2
-1
0
-1
1/12
1/12
3/12
1/2
2/12
1/12
0
3
2/12
0
2/12
试求(1) ;(2) ;(3) 的分布律。
解:(1) 的取值有-3,-2, ,-1, ,1,2,3.设 =k.
同理易得k取其他值时的概率, 的分布律如下:
-3
-2
-1
1
2
3
p
0
0
(2) 的取值有
与(1)同理,得 得分布律:
-1
0
1
3
4
5
P
0
0
(3) 的取值有
与(1) (2)同理,易知 的分布律:
-3
-2
5
6
7
p
0
0
17.已知 , 与 独立。试确定a,b的值;并求出 的联合分布律以及 的分布律。
解:(1)易知
(2)相互独立的随机变量 与 的分布律为:
1
2
3
P
-1
-2
-3
P

因 独立易知
求出 的联合分律如下:
ξ
1
2
3
-1
-2
-3
(3) 的取值有-2,-1,0,1,2设k= ,有:
的分布律如下:
-2
-1
0
1
2
P
18.已知二维随机变量 的联合概率密度为
试求待定系数A; ; (其中 )。
解:
=
当z>0时
19.设 与 是两个相互独立的随机变量,其概率密度分别为:
试求 的概率密度。
解:利用公式
按函数 的定义知,仅当

时,上述积分的被积函数才不等于0,如图3-2知
亦即

其中G由曲线 所围成(如图3-1),即有
15.设 的联合概率密度为

(1)求待定系数k;
(2)求关于 和关于 的边缘概率密度;
(3)判定 的独立性。
解:
(1)
因为

故有

因此

(2) 和关于 的边缘概率密度计算如下:

类似地,可求得
(3)因为

故与相互独立。
16.设二维随机变量 的联合分布律为:
P{=0,=2}+P{=1,=2}=40/56
P{≤2}=1,P{<0}=0。
7.已知二维随机变量 的联合概率密度为
试确定待定系数c,并求关于 的边缘概率密度。
解:
(1)根据 解得c=
(2)关于 的边缘概率密度,有
同理
8.设二维随机变量 在区域G上服从均匀分布,其中 试求 的联合概率密度及 和 的边缘概率密度。
1
11.设二维随机变量 的联合概率密度为
试求(1)条件概率密度 ;(2) 。
解:(1)由 为在 条件下, 的条件概率密度,则先求出 为:
当 时
当y<0时
可知
(3)因有
从而得:
12.设随机变量 的概率密度为
求条件概率密度 。
解:

当0<x<1时
当-1<y<1时

13.已知相互独立的随机变量 的分布律为:
解: 为区域G的面积

9.已知 服从参数 的(0-1)分布,且在 及 下,关于 的条件分布分别如下表表示:
1
2
3
1
2
3
1/4
1/2
1/4
1/2
1/6
1/3
求二维随机变量 的联合概率分布,以及在 时关于 的条件分布。
解:因 服从参数 的(0-1)分布,有 B(1,0.6)

易知
,x取1,2,3

则二维随机变量( , )的联合概率为:
0.26
0.13
0.24
0.09
14.设 和 是两个独立的随机变量, 在[0,1]上服从均匀分布, 的概率密度为
(1)求 和 的联合概率密度;
(2)设含有a的二次方程为 试求a有实根的概率。
解:(1)因X的概率密度为
且X和Y相互独立,故(X,Y)的概率密度为
(2)a的二次方程 有实根的充要条件为判别式为
解:
1
2
1
0
1/3
2பைடு நூலகம்
1/3
1/3
3.一整数n等可能地在1,2,3,…,10十个值中取一个值,设 是能整除n的正整数的个数, 是能整除n的素数的个数(注意:1不是素数),试写出 和 联合分布律。
解:
依题意有:
n
1
2
3
4
5
6
7
8
9
10
(n)
1
2
2
3
2
4
2
4
3
4
(n)
0
1
1
1
1
2
1
1
1
2
因此=1,2,3,4;=0,1,2。由此易求得和联合分布律为:
0
1
1
1/10
3/10
2
1/5
1/10
3
1/10
1/5
在 1时,
0
1
2
1/3
1/6
3
1/6
1/3
10.在第2题中的两个随机变量 与 是否独立?当 时, 的条件分布是什么?
解:重写联合分布律如下:
1
2
1
0
1/3
1/3
2
1/3
1/3
2/3
1/3
2/3
1
因 , 和 并不独立
=1时, 条件分布如下:
1
2
P
0
相关文档
最新文档