第一章流体流动
化工原理—第一章流体流动
化工原理—第一章流体流动流体流动是化工工程中的重要内容之一,是指在一定的条件下,流体沿特定的路径进行移动的现象。
流体流动在化工工程中有着广泛的应用,例如在管道输送、搅拌、混合、分离等过程中都会涉及到流体的流动。
流体流动的研究内容主要包括流体的运动规律、流体的运动特性以及流体流动对设备和工艺的影响等方面。
在化工原理中,主要关注的是流体的运动规律和运动特性,以便更好地了解流体的性质和行为。
在理解流体流动性质前,首先需要了解流体分子的间隙结构。
一般来说,液体的分子之间距离较小,存在着较强的分子间吸引力,因此液体的分子有较强的凝聚力,可以形成一定的表面张力。
而气体的分子之间距离较大,分子间的相互作用力比较弱,因此气体的分子呈现无规则的运动状态。
流体流动有两种基本形式,即连续流动和非连续流动。
连续流动是指流体在管道或通道内以连续的形式流动,比较常见的有层流和湍流两种形式。
层流是指流体在管道中以层层相叠的方式流动,流速和流向都比较均匀,流线呈现平行或近似平行的形式。
层流特点是流动稳定,流速变化不大,并且流体分子之间相互滑动。
而湍流是指流体在管道中以旋转、交换和混合的方式流动,流速和流向变化较大,流线呈现随机分布的形式。
湍流特点是流动动荡,能量损失较大,并且流体分子之间会发生相互的碰撞。
流体流动的运动规律受到多种因素的影响,其中包括流体的黏度、密度、流速、管道尺寸、摩擦力等。
黏度是流体流动中的一个重要参数,它反映了流体内部分子之间相互作用的强度。
密度是流体流动中的另一个重要参数,它反映了单位体积内流体分子的数量。
流速是指流体单位时间内通过其中一横截面的体积。
流体流动对设备和工艺的影响也十分重要。
例如在管道输送过程中,流体的流速和流体动能的传递与损失会影响到输送效果和能耗;在搅拌过程中,流体的流动对传质和传热起着重要作用;在分离过程中,流体的流动会影响到分离设备的设计和操作。
因此,对流体流动的研究和掌握对于化工工程的设计和操作都具有重要意义。
化工原理-1章流体流动
yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池
水
煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。
化工原理第一章 流体流动
例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
第一章流体流动
第一章流体流动液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小。
流体流动的原理及其流动规律主要应用于这几个方面:1、流体的输送;2、压强、流速和流量的测量;3、为强化设备提供适宜的流动条件。
在研究流体流动时,常将流体视为由无数分子集团所组成的连续介质。
第一节流体静力学基本方程式1-1-1 流体的密度单位体积流体具有的质量称为流体的密度,其表达式为:对于一定质量的理想气体:某状态下理想气体的密度可按下式进行计算:空气平均分子量的计算:M=32×0.21+28×0.78+40×0.01=28.9629 (g/mol)1-1-2 流体的静压强法定单位制中,压强的单位是Pa,称为帕斯卡。
1atm 1.033kgf/cm2760mmHg 10.33mH2O 1.0133bar 1.0133×105 Pa工程上常将1kgf/cm2近似作为1个大气压,称为1工程大气压。
1at1kgf/cm2735.6mmHg10mH2O 0.9807bar9.807×105 PaP(表)=P(绝)-P(大)P(真)=P(大)-P(绝)=-P(表)1-1-3 流体静力学基本方程式描述静止流体内部压力(压强)变化规律的数学表达式称为流体静力学基本方程式。
对于不可压缩流体,常数;静止、连续的同一液体内,处于同一水平面上各点的压强相等(连通器)。
压强差的大小可用一定高度的液体柱表示(必需标注为何种液体)。
1-1-4 流体静力学基本方程式的应用一、压强与压强差的测量以流体静力学基本方程式为依据的测压仪器统称为液柱压差计,可用来测量流体的压强或压强差。
1、U型管压差计2、倾斜液柱压差计(斜管压差计)3、微差压差计二、液位的测量三、液封高度的计算第二节流体在管内流动反映流体流动规律的有连续性方程式与柏努利方程式。
1-2-1 流量与流速单位时间内流过管道任一截面的流体量,称为流量。
第一章-流体`流动
⊿ p~ R 一 一 对 应
U型测压管
•指示液与被测流体 物化学反应且不互溶; •密度大于流体密度
pA
A
h R
p1 p A gh p2 pa i gR
1
2
p A pa i gR gh A点的表压 p A pa i gR gh
第 二 节
流 体 静 力 解:(1) pA = p1 + ρH2O g(1.2 - R) 学 p1 = p2 = p3 = pa + ρHg g R 基 pA = pa + ρHg g R + ρH2O g(1.2 - R) 本 方 = pa + ( ρHg - ρH2O) g R + ρH2O g×1.2 程 = 1.279×105N/m2 式 (2) pA = [(1.279×105 ÷ 1.013×105) -1] ×1.033 = 0.271kgf/cm2
— 连续性假定
第 一 节 概 论
从微观上,流体是由大量的彼此之间有一定间隙 的单个分子所组成的,并且各单个分子作着随机的、混 乱的运动,如果以单个分子作为考察对象,那么流体将 是一种不连续的介质,所需处理的运动将是一种随机的 运动,问题将是非常复杂的。 但是,在研究流动规律时,人们感兴趣的不是单 个分子的微观运动,而是流体宏观的机械运动。
内能 流体所含的能量包括 动能
机械能
势能
位能 压能
○压能(静压能、压强能以及弹簧的势能等)
● 流体流动时存在着三种机械能(即动能、 位能和压能)之间的相互转换。
第 一 节 概 论
● 流体粘性所造成的剪力是一种内摩擦力, 它将消耗部分机械能使之转化为热能(即 内能)。输送机械提供能量补偿。 ● 气体在流动过程中因压强的变化而发生 体积变化时,存在着内能与机械能之间的 相互转换。
化工原理第一章 流体流动
§1.3 流体流动的基本方程
质量守恒 三大守恒定律 动量守恒 能量守恒
§1.3.1 基本概念
一.稳态流动与非稳态流动 流动参数都不随时间而变化,就称这种流动为稳态流 动。否则就称为非稳态流动。 本课程介绍的均为稳态流动。
§1.3.1 基本概念
二、流速和流量
kg s 质量流量,用WS表示, 流量 3 体积流量,用 V 表示, m s S
=0 的流体
位能 J/kg
动能 静压能 J/kg J/kg
流体出 2 2
实际流体流动时:
2 2 u1 p1 u2 p gz1 we gz2 2 wf 2 2
摩擦损失 J/kg 永远为正
流体入 ------机械能衡算方程(柏努利方程) 1
z2
有效轴功率J/kg
z1 1
二、 液体的密度
液体的密度基本上不随压强而变化,随温度略有改变。 获得方法:(1)纯液体查物性数据手册
(2)液体混合物用公式计算:
液体混合物:
1
m
xwA
A
xwB
B
xwn
n
三、气体的密度
气体是可压缩流体,其值随温度和压强而变,因此 必须标明其状态。当温度不太低,压强不太高,可当作理
想气体处理。
理想气体密度获得方法: (1)查物性数据手册 (2)公式计算: 或
注:下标0表示标准状态。
对于混合气体,也可用平均摩尔质量Mm代替M。
混合气体的密度,在忽略混合前后质量变化条件下, 可用下式估算(以1 m3混合气体为计算基准):
m A x VA B x VB n x Vn
2
2
气体
第一章 流体流动
气体密度 一般温度不太低,压强不太高时气体可按理想气 体考虑,所以理想气体密度可由理想气体状态方程 导出: T0 p M pM m
v
RT
0
Tp 0
0 22.4 ,kg / m
3
混合气体密度
ρm= ρ1y1+ ρ2y2+ …+ ρnyn
MT0 p 22.4Tp 0
式 y1、y2……yn——气体混合物各组分的体积分数 ρ1、 ρ2、…、 ρn—气体混合物中各组分的密度,kg/m3; ρm——气体混合物的平均密度,kg/m3;
2.2 流体静力学基本方程的应用
1、压力的测量 (1) U型管压差计 构造: U型玻璃管内盛指示液A 指示液:指示液A(蓝色)与被测液B(白)互不相溶,且ρA>ρB 原理:图中a、b两点在相连通的同一静止流体内,并且在 同一水平面上,故a、b两点静压力相等,pa=pb。 对a、b两点分别由静力学基本方程,可得 pa= p1+ρB· g(Z+R) pb= p2+ρB· gZ+ρAgR
三、流体的研究方法
连续介质假说:流体由无数个连续的质点组
成。﹠质点的运动过程是连 续的 质点:由许多个分子组成的微团,其尺寸比 容器小的多,比分子自由程大的多。 (宏观尺寸非常小,微观尺寸又足够大)
四、流体的物理性质
◆密度ρ 单位体积流体的质量,称为流体的密度,其表 m 达式为
V
式中 ρ——流体的密度,kg/m3; m——流体的质量,kg; V——流体的体积,m3。 流体的密度除取决于自身的物性外,还与其温 度和压力有关。液体的密度随压力变化很小,可 忽略不计,但随温度稍有改变;气体的密度随温 度和压力变化较大。
pA=p0+ ρgz pB=p0+ ρi gR 又∵ pA=pB
化工原理第一章流体流动课件
流体静力学基本方程
STEP 02
STEP 01
流体静力学基本方程是流 体静压强与其密度和重力 加速度的关系式。
STEP 03
该方程是流体静力学中的 基础方程,对于理解流体 静力学中的各种现象非常 重要。
该方程可以用来计算流体 的静压强、流体的密度和 重力加速度之间的关系。
静压力对流体的作用力
流体在静压力作用下会产生压缩或膨 胀,这与其弹性有关。
Part
04
流体流动的阻力
流动阻力的产生与分类
流动阻力
流体在管道中流动时,由于流体内部及 流体与管壁之间的摩擦而产生的阻力。
VS
阻力分类
直管阻力和局部阻力。直管阻力是流体在 管道中流动时,由于流体的粘性和管壁的 粗糙度引起的摩擦阻力;局部阻力则是流 体流经管路中的阀门、弯头等局部结构时 ,由于流体的方向和速度发生急剧变化而 引起的阻力。
流体微团的运动分析
流体微团的定义
流体微团是指流体中无限接近的、密合在一起的若干分子组成的微小团体。
流体微团的运动分析
通过对流体微团的运动分析,可以研究流体的宏观运动规律,如速度场、加速 度、角速度等。这些参数对于理解流体动力学的基本原理和工程应用非常重要 。
牛顿粘性定律及流体的分类
牛顿粘性定律的定义
绝对压力
以完全真空为零点测量的 压力,单位为帕斯卡(Pa )。
表压
以当地大气压为基准测量 的压力,单位也为帕斯卡 (Pa)。
真空度
与大气压相比的压力差值 ,单位为帕斯卡(Pa)。
流体静压强分布规律
流体静压强大小与流体的 密度、重力加速度和高度 有关。
在重力场中,流体静压强 随高度增加而减小。
在同一高度上,不同流体 的静压强不同。
流体流动
流体流动规律是本课程的重要基础,因为: ①流体的输送 需要研究流体的流动规律以 便进行管路的设计、输送机械的选择及所 需功率的计算。 ②压强、流速及流量的测 量 为了了解和控制生产过程,需要对管路 或设备内的压强、流量及流速等一系列的 参数进行测量,而测量仪表的操作原理多 以流体的静止或流动规律为依据。 ③为强 化设备提供适宜的流动条件 化工生产中的 传热、传质过程都是在流体流动的情况下 进行的。
qm Au w u A A
由于气体的体积与温度、压力有关, 当温度、压力变化时,气体的体积流量 及流速亦随之改变,但其质量流量及质 量流速是不变的。
3.管道直径的估算:以d表示管道的内径
qv qv qv ∵ u 2 2 A 4d 0.785d
qv ∴ d 0.785u
上式仅适用于重力场中静止的不可压缩流体。 但对于气体,若压强变化不大,密度可近似取平均 值而视为常数,则上式亦适用。
静止流体内部静压强仅与垂直位置有关,而与水 平位置无关。水越深压强越大,天空越高气压越低。
p= p0+ρgh
①当p0 一定,任一点压力p∝ρ、h,∴在 同一液体内,同一水平面上的各点压力相等, 为等压面。等压面:静止的,连续的同种流 体内处于同一水平面上的各点压强处处相等。
1
m
i 1
n
wi
i
0.2 0.3 0.5 0.001236 700 760 900
m 809kg / m
3
(2)忽略混合时的体积效应,
m 700 0.2 760 0.3 900 0.5 m 818kg / m 3 V 1
三 、流体静力学基本方程式
测量气体时, ∵
0 0
第一章 流体流动
wn
n
i 1
n
wi
i
wi为混合物中各组分的质量分数, ρ i为构成液体 混合物的各组分密度
第一节 流体的基本物理量
例1-1 已知乙醇水溶液中各组分的质量分数为乙醇0.6,水 0.4。试求该溶液在293K时的密度。 解:已知w1=0.6,w2=0.4;293K时乙醇的密度ρ1为789 kg/m3,水的密度为ρ2998.2 kg/m3
2
0.93 (m / s )
第一节 流体的基本物理量
例 1-6 某厂精馏塔进料量为50000kg/h,该料液的性质 与水相近,其密度为960kg/m3,试选择进料管的管径。 解:
50000/ 3600 qv 0.0145 ( m 3 / h) 960
qm
因为料液与水接近,选取流速μ=1.8 m/s,则:
解:已知 p0 760mmHg 1.013105 Pa
2
H O 1000kg / m 3 , Hg 13600 kg / m 3
h 1m, R 0.2m 水平面A - A ' , 根据流体静力学原理, p A p A p0 由静力学基本方程可得 : p A p H 2O gh Hg gR
800 0.7 h 0.6 1.16(m) 1000
第二节 流体静力学
一、流体静力学基本方程式的应用
1.压力的测量 正U形管压差计 要求:指示液与被测流体不互溶,不起化学反应, 密度要大于被测液体
பைடு நூலகம்
测量方法:U形管两端与被测两点直接相连。
第二节 流体静力学
A、A’处的压强分别为:
p p0 h g
第一章流体流动
压强的基准:
绝对压强——以绝对真空(零压)为基准测得 表 压——以大气压强为基准测得(高于大气压) 真 空 度——以大气压强为基准测得(低于大气压) 表 压=绝对压强-大气压强 P表=P绝-P大 P真=P大-P绝 P绝=P大-P真 P绝=P大+P表
真 空 度=大气压强-绝对压 绝对压力=大气压-真空度 =大气压+表压
推而广之即: uA =常数 若为不可压缩流体则: uA =常数 上两式即为连续性方程式。
[例] 在定态流动系统中,水连续地从粗管流入细管。 粗管内径为细管的两倍,求细管内水的流速是粗管内的 若干倍。 解:以下标1及2分别表示粗管和细管。不可压缩流体 的连续性方程式为: u 1A 1 = u 2A 2
第一章 第一节
四、流体静力学基本方程式的应用
(一)压力测量
1、U型管差压计 如图1-4所示 压差(p1-p2)与R的关系根据流体静力学基本方程式 进行推导。 a,a’是等压点,即Pa=Pa’ Pa=P1+ ρBg(m+R) Pa’=P2+ ρBg(Z+m)+ ρAgR
所以:P1+ ρBg(m+R)=P2+ ρBg(Z+m)+ ρAgR
目的: ① 恒定设备内的压力, 防止超压;
气
气 液
p
水
溢流
0 安全液封 h0 0
② 防止气体外泄; 水封 液封高度计算:
0
p
0 h.0
p h0 g
水
气体
煤气柜
第一章 第一节
• 如本题附图所示,某厂为了控制乙炔发生炉a内的压强不超过 10.7×103Pa(表压),需在炉外装有安全液封(又称水封)装置,其 作用是当炉内压强超过规定值时,气体就从液封b中排山。试求此 炉的安全液封管应插入槽内水面下的深度h。 解:当炉内压强超过规定值时,气体将由液封管排出, 故先按炉内允许的最高压强计算液封管插入槽内水面
化工原理 第一章 流体流动
连续性方程式(质量守恒)
柏努利方程式(能量守恒) 这是两个非常重要的方程式,请大家注意。
28
1.2.1 流量与流速 一、流量
1、体积流量qv :单位时间内流经管道任意截面的流体体积, m3/s或m3/h。 2、质量流量qm :单位时间内流经管道任意截面的流体质量, kg/s或kg/h。
二、流速
1、平均流速u :单位时间内流体在流动方向上所流经的距离, m/s。 2、质量流速w :单位时间内流经管道单位截面积的流体质量, kg/(m2· s)。
p1 p2 Rg( A C )
26
上式的(ρ A - ρ C)是两种指示液的密度差,不是指示 液与被测流体的密度差。 扩大室的内径与U形管内径之比应大于10。这样,扩大 室的截面积比U形管的截面积大很多,即使U形管内指示液 A的液面差R很大,两扩大室内的指示液C的液面变化仍很微 小,可以认为维持等高。
15
二、压力的表示方法
1)表压 = 绝对压力 - 大气压力 2)真空度 = 大气压力 - 绝对压力
16
静压力的特性
流体压力与作用面垂直,并指向该作用面; 任意界面两侧所受压力,大小相等、方向相反; 作用于任意点不同方向上的压力在数值上均相同。
17
一、静力学基本方程 P2 = P0 + ρ gh 推导 二、静力学基本方程的应用 1. 压力及压差的测量
第一章 流体流动
1
① 研究流体流动问题的重要性
流体流动与输送是最普遍的化工单元操作
之一;
研究流体流动问题也是研究其它化工单元
操作的重要基础。
4
② 连续介质假定 假定流体是由无数内部紧密相连、彼此间没有
间隙的流体质点(或微团)所组成的连续介质。
化工原理第一章 流体流动-学习要点
1.3 流体动力学 ( Fluid dynamics )
1.3.3 伯努利方程 ( Bernoulli equation ) 机械能的形式
位能: 流体在重力场中, 位能: 流体在重力场中,相对于基准水平面所具有的能量 动能: 动能: 流体由于流动所具有的能量 静压能:流体由于克服静压强流动所具有的能量 静压能: 能量损失: 能量损失:流体克服流动阻力损失的机械能 外加功:流体输送机械向流体传递的能量 外加功:
ε r :=
1
2ε 18.7 ) = 1.74 − 2 ⋅ lg( + d Re λ λ
Re :=
−3
0.005 × 10
−3
ε r = 2.857 × 10
1.1 流体性质 ( Properties of fluid )
1.1.2 压强 ( pressure )
表 压=绝对压力-大气压力 绝对压力真空度= 真空度=-表压强 真空度=大气压力真空度=大气压力-绝对压力 压强表:读数为表压强, 压强表:读数为表压强,用于被测体系绝对压强高于环境 大气压 真空表:读数为真空度, 真空表:读数为真空度,用于被测体系绝对压强低于环境 大气压 说明:(1)表压于当地大气压强有关 说明:(1)表压于当地大气压强有关 (2)绝压、表压、真空度, (2)绝压、表压、真空度,一定要标注 绝压 (3)压力相除运算时, (3)压力相除运算时,一定要用绝压 压力相除运算时 压力加减运算时,都可以,但要统一并注明 压力加减运算时,都可以,
1.4 流体流动现象 ( Fluid-flow phenomena )
1.4.1 流动类型 (The types of fluid flow)
Re = duρ
µ
Reynolds number is a dimensionless group .
化工原理——第一章 流体流动
黏度在物理单位制中的导出单位,即
dyn / cm 2 dyn s
g
P(泊)
du
cm/ s
dy
cm
cm2 cm s
1cP 0.01P 0.01 dyn s
1
1 100000
N
s
1
Pa s
cm2
100
(
1 100
)
2
mபைடு நூலகம்
2
1000
即1Pa s 1000cP
流体的黏性还可用黏度μ与密度ρ的比值表示。这 个比值称为运动黏度,以ν表示即
pM
RT
注意:手册中查得的气体密度都是在一定压力与温度 下之值,若条件不同,则密度需进行换算。
三、混合物的密度
混合气体 各组分在混合前后质量不变,则有
m A xVA B xVB n xVn
xVA, xVB xVn——气体混合物中各组分的体积分率。
或
m
pM m RT
M m ——混合气体的平均摩尔质量
例如用手指头插入不同黏度的流体中,当流体大 时,手指头感受阻力大,当小时,手指头感受阻 力小。这就是人们对粘度的通俗感受。
在法定单位制中,黏度的单位为
du
Pa m
Pa • s
dy
s
m
某些常用流体的黏度,可以从本教材附录或手册中查
得,但查到的数据常用其他单位制表示,例如在手册中
黏度单位常用cP(厘泊)表示。1cP=0.01P(泊),P是
M m M A yA M B yB M n yn
yA, yB yn——气体混合物中各组分的摩尔(体积)分率。
混合液体 假设各组分在混合前后体积不变,则有
1 xwA xwB xwn
第一章 流体流动
例3 已知20℃时苯和甲苯的密度分别为879 kg/m3和
867 kg/m3,试计算含苯40%及甲苯60%(质量%)的 混合液密度。
6
例1 解: p表 ' ( pa+p真 )-pa ' 101.3+ ) 75 156.3kPa ( 130 例2 解: 混合气体平均摩尔质量
M m yi M i (0.13 44 0.76 28 0.1118) 103 28.98103 kg/mol
1
管路中流体没有增加和漏失
的情况下:
2
qm1 qm2
1u1 A1 2 u2 A2
1
2
推广至任意截面
qm 1u1 A1 2u2 A2 uA 常数
——连续性方程
28
不可压缩性流体,ρ 常 数
qv u1 A1 u2 A2 uA 常数
10
第一章、流体流动
3、压力用柱高表示:
p p0 h g
11
三、流体静力学基本方程式的应用
1、静压强的计算(举例): 例题 流力(周谟仁)p19 2-2
例4、容重为γa和γb的两种液体,装在如图所示的容
器中。已知:γb=9.807KN/m2、大气压强 Pa=98.07 KN/m2,其它尺寸如图,求γa和PA。
(2)
式(2)即为以重量流体为基准的机械能衡算式。
z ——位压头
u2 ——动压头 2g p ——静压头 g
总压头
36
五
实际流体机械能衡算式
2 2 1
'
p2,u2
p1,u1
z2
1
'z10来自We'
37
第1章:流体流动
R1 R
sin
R1 R
sin
34
河北工业大学化工原理教研室
1.2.5 静力学基本方程式的应用
河北工业大学化工原理教研室
35
1.2.5 静力学基本方程式的应用
3.液封 如图,为了控制器内气体 压力不超过给定的数值,常常 使用安全液封装置(或称水封 装置)。其目的是确保设备的 安全,若气体压力超过给定值, 气体则从液封装置排出。
河北工业大学化工原理教研室
31
1.2.5 静力学基本方程式的应用
1. U形管压差计 可测量流体中某点的压力 亦可测量两点之间的压力差 在正U形管中要求指示 剂密度大于工作介质密度 在倒U形管中,则反 之(通常用空气)。
河北工业大学化工原理教研室
32
B
p1 p A gh1 p2 pB g (h2 R) i gR
河北工业大学化工原理教研室
4
1.1.2 流体的密度
流体的密度:流体空间某点上单位体积流体的质量。流体由质点组成, 密度是位置(x,y,z)和时间θ的函数。单位:kg/m3
表达式:
m V
△V→0时,流体某点的密度。
m Δ V 0 V
lim
常用流体的密度,可由有关书刊或手册中查得, 本书附录中列出某些常见得气体和液体的密度, 可供做习题时查用。
h2
A
h1
p1 p2
整理得:
( p A ghA ) ( pB ghB ) Rg ( i )
' ' p A pB Rg ( i )
1
2
思考:如果B端圆管直径扩大到A端的两倍,R=?
R
大学化学《化工原理-流体流动1》课件
对于Z方向微元
pA ( p dp) A gAdz dp gdz 0
不可压缩液体
const., p / gz const. p1 p2 g(z2 z1)
第一章 第二节
不可压缩流体
条件 静止
单一连续流体
结论
单一连续流体时→同一水平面静压力相等 间断、非单一流体→逐段传递压力关系
[确切标明 (表)、(绝)、(真)]
第一章 第一节
三、剪力、剪应力、粘度
流体沿固体表面流过存在速度分布
F du
A
dy
:动力粘度、粘性系数
第一章 第一节
牛顿型 非牛顿型
假塑性
塑性 涨塑性
= du
dy
=
y
du dy
= du n
dy
= du n
dy
n n
第一章 第一节
ห้องสมุดไป่ตู้ 粘度
Pa s
N / m2 m/s/m
第一章 第二节
二 、流体静力学方程的应用
1、压差计
p1 p2 (A B )gR
微差压差计
(1)D : d 10 :1
(2)
B
与
很接近
A
第一章 第二节
2、液面计
3、液封
4、液体在离心力场内的静力学平衡
p
p
r
r
第一章 第二节
N s m2
T↑ 液体 ↓, 气体 ↑
P↑ 基本不变, 基本不变
40atm以上考虑变化
第一章 第一节
混合粘度
1、不缔合混合液体
log m
xi log i
2、低压下混合气体
m
yi
化工原理 第一章 流体流动
化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。
当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。
质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。
如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。
如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。
其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。
上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。
因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13
答:在贮槽1-1¹面与2-2¹面间列柏努力方程,以1-1¹面为基准面
gz1
u12 2
P1
We
gz2
u22 2
P2
hf ,12
其中:z1=0,z2=20,P1=0(表压),P2=0.2×105Pa(表压)
u1=0m/s,u2=0m/s,d=0.1m
u=V/S=50×4/(3600×3.14×0.12)=1.769m/s
分支管路: E1 h f 01 E 2 h f 02 E0
Vs Vsa Vsb 4. 流量测量
uc
2gR( )
8
选择
1.流量增大时,流体流经转子流量计的压强差( )
A .增大
B. 减小
c
C. 不变
答案:( )
2.孔板流量计的孔流系数Co,当Re数增大时,其值( ) .
A.总在增大
B.先减小,当Re数增大到一定值时,保持为某定值;
64 / Re
湍流时:Re>4000, λ=f(Re,ε/d) 查图1-27,特别的,阻力平方区λ=f(ε/d)
7
3. 管路计算
并联管路: h fA B h f 1 h f 2
Vs Vs1 Vs2 串联管路: VS1 VS 2 VS 3 VS 常 数
hf hf1 hf2
2
p2
gZ1
u12 2
p1
We
gZ 2
u
2 2
2
p2
hf
5
Z1
u12 2g
p1
g
He
Z2
u
2 2
2g
p2
g
H
f
Z1g
u12 2
p1
We
Z2g
u 22 2
p2Βιβλιοθήκη hf3. 基本概念
a. 连续性方程的意义及推导条件 b. 柏努利方程的意义及三种能量表达式 c. 柏努利方程的使用注意事项及截面选取的原则 d. 流体流动过程中能量的相互转换
答案:( ) () ()
11
8.气体的粘度随温度的升高而(升高),水的粘度随 温度的升高而(降低 )
9.假如流体的流量不变,而圆形直管的直径减少二分之一,则 因直管阻力引起的压降损失为原来的多少倍?假设为层流。
16
10.一转子流量计,当流量为10m3/h时,测定转子进出
口压差为50N/m2,现流量变为12m3/h,则进出口压差为
C.总是减小 D.不定
答案:( ) b
3.皮托管测定的流速是( )。 A.点速度B.平均速度C.最大速度
答案:( )
a
9
填空
1、流体流动过程中,影响摩擦因子λ的两个无因次数群分别为
Re 和 ε/d ,而在层流区,摩擦因子只与 Re 有关。
2、转子流量计测量流量时,当流量加大时,转子上下两截面的
压强差 不变 (增大,不变,减小),而流体的流通截面
6
三、管路计算及流量测量
1. 基本要求
a. 掌握层流和湍流阻力计算的方法
b. 掌握管路的分类及特点
c. 掌握流量测量元件的原理、特点及使用注意事项
2. 主要公式 a. 流动类型:
Re du dG 4w d
b. 阻力计算:
hf
( li le
d
)u 2 i2
其中λ ,层流时:Re<2000, λ=f(Re)
积
增大 。(增大,不变,减小)
3、流体在圆管内作层流流动时,截面上各点的平均速度u与管 中心处最大速度umax的关系为: u/umax= 0.5 。当流动 进入湍流时,u/umax随Re的增加而 增加 。(减小、不 变、增加)
10
4.用管子从高位槽放水,当管径增大一倍,则水的流量 为原流量( )倍,假定液面高度,管长,局部阻力及 摩擦系数均不变,且管路出口处的流体动能项可忽略。
l hf ,12 ( d
le
C
e)
u2 2
70 100
1.7692
(0.027
1 0.5)
74.14J / kg
0.1
2
We g
z2 z1
u22 u12 P2 P1
2
hf ,12
14
We
g
z2
z1
u22
2
u12
P2
P1
hf ,12
( )N/m2。
50
11. 等边三角形边长为a,其当量直径是( ),长方形长
2a,宽为a,当量直径是( )。
3a
3
4a
3
12
1 用泵将密度为1100kg/m3、粘度为1.2×10-3Pa·s的溶液 从贮槽送至表压为0.2×105Pa的密闭高位槽,如图所示。管子 直径为φ108×4mm、直管长度为70m、各种管件的当量长度 之 和 为 100m ( 不 包 括 进 口 阻 力 与 出 口 阻 力 ) 。 输 送 量 为 50m3/h,两槽液面恒定,其间垂直距离为20m。今采用一台效 率为65%、轴功率为7.5kw的库存离心泵,核算该泵能否完成 任务。(阻力系数λ可取0.027,进口阻力系数ξc为0.5,出口阻 力系数ξe为1)
第一章:流体流动
习题课
1
第一章流体流动复习课
一、流体静力学 二、流体动力学 三、管路计算及流量测量
2
一、流体静力学
1. 目的 a. 学会等压面的选取 b. 熟悉静力学方程,并练习其应用
2. 主要公式 流体性质:
pM
RT
du
dy
混合流体的密度,平均密度
静 力 学 方
p1
gz1
p2
gz2
U型压强计的应用及所测数值的含义
4
二、流体动力学
1. 目的及要求 a. 练习截面的选取 b. 熟悉柏努利方程并练习其应用
2. 主要公式 a.连续性方程
W S u1 A1 1 u 2 A2 2 uA 常 数
2
u1 u2
d2 d1
b.柏努利方程
gZ1
u12 2
p1
gZ2
u
2 2
静止流体内部静压能和位能可以 相互转化。
p2 p1 g z1 z2 静止流体内部压强的大小关系。
程
p p0 gh
静止流体内部任一点处的压强。
3
3. 主要概念 a. 单位制换算:主要是工程制和国际单位制换算 b. 质量守衡,能量守衡
输入+输出=积累 c. 流体流动产生阻力的原因 d. 流体粘性产生的原因及影响因素 e. 流体静力学方程的物理意义及能量之间的转换 f. 等压面的含义及条件 g. 压强计:
答案:(4 2) 5.常温下水密度为1000kg/m3,粘度为1cp,在d内=100mm管 内以3m/s速度流动,其流动类型为( ).
湍流 答案:( ) 6.20摄氏度的水通过10m长,d内=100mm的钢管,流量 Vn=10m3/h,阻力系数=0.02,压力降P=( )。
125.3N/m2答案:( ) 7.常用测定流量的流量计有( ),( ),( )。