最新如何认识ADC参数中“精确度”与“分辨率”的不同

合集下载

ADC部分分析

ADC部分分析
③ 转换时间
① 分辨率
Least Significant Bit 最低有效位
ADC的分辨率是指ADC的输出数码变化一个LSB 时,输入模拟量的“最小变化量”。当输入模拟
量的变化比这个“最小变化量”再小时,则不能
引起输出数字量的变化。显然ADC的分辨率是对 微小变化模拟量的分辨能力。
分辨率主要由ADC的位数(指输出数字量的位数) 决定,也与输入满量程有一定关系。
也可直接用输出的位数来表示分辨率。
② 精度(误差)指标
(a) 量化误差(理想与实际的最大误差;理想情况下输出=输入)
ADC的量化误差是一种固有误差,也称作舍入误差。
D(N=3)
理想的
D(N=3)
理想的
111
第 110
标准量化值(1LSB)
一 101 1LSB
实际的
种 100
ADC011
010
111 110
实际的 理想的
图中011到100的模拟输 出差值大约为-0.75LSB (这里1LSB=1/8FS), 故与理想的1LSB差值相 差了1.75LSB,显然微分 线性误差大于1LSB了!
D(n=3 )
③ 建立时间
通常指输入数码从全0变化到满度值 (即全1)时,其输出相应由最小值变到
终值所需的时间。(可指达到终值附近一 定误差范围内如±1/2LSB)
黑色-输入信号;红色-输出信号 4个主要参数
量化误差为±1/2LSB
最后 一段 不计
(b) 零误差
零误差也称偏移误差, 指的是输出零数码的 非零平均模拟输入值。
ADC的零误差通常是 由内部放大器、比较 器的零点偏移造成。 011
010
其大小可用LSB或满 量程的百分数表示。

ADC参数解释

ADC参数解释

ADC参数解释1.分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2.转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

3.量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4.偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5.满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6.微分非线性(Differential nonlinearity,DNL)ADC相邻两刻度之间最大的差异。

7.积分非线性(Integral nonlinearity,INL)表示了ADC器件在所有的数值点上对应的模拟值和真实值之间误差最大的那一点的误差值,也就是输出数值偏离线性最大的距离。

8.总谐波失真(Total Harmonic Distotortion缩写THD)。

ADC的选择,首先看精度和速度,然后看输入通道数,输出的接口如SPI或者并行的,差分还是单端输入的,输入范围是多少。

解密模数转换器(ADC)分辨率和采样率

解密模数转换器(ADC)分辨率和采样率

解密模数转换器(ADC)分辨率和采样率分辨率和采样率是选择(模数转换器)((ADC)) 时要考虑的两个重要因素。

为了充分理解这些,必须在一定程度上理解量化和奈奎斯特准则等概念。

在选择模数转换器((AD)C) 的过程中要考虑的两个最重要的特性可能是分辨率和采样率。

在进行任何选择之前,应仔细考虑这两个因素。

它们将影响选择过程中的一切,从价格到所需模数转换器的底层架构。

为了为特定应用正确确定正确的分辨率和正确的采样率,应该对这些特性有一个合理的了解。

下面是与模数转换相关的术语的一些数学描述。

数学很重要,但它所代表的概念更重要。

如果您能忍受数学并理解所介绍的概念,您将能够缩小适合您应用的ADC 的数量,并且选择将变得容易得多。

量化(Quan(ti)sation)模数转换器将连续(信号)(电压或(电流))转换为由离散逻辑电平表示的数字序列。

术语量化是指将大量值转换为较小值集或离散值集的过程。

在数学上,ADC 可以被描述为量化具有大域的函数以产生具有较小域的函数。

上面的等式在数学上描述了模数转换过程。

在这里,我们将输入电压V in描述为一系列位b N-1 ...b 0。

在这个公式中,2 N 代表量化级别的数量。

直观的是,更多的量化级别会导致原始(模拟)信号的更精确的数字表示。

例如,如果我们可以用1024 个量化级别而不是256 个级别来表示信号,我们就提高了ADC 的精度,因为每个量化级别代表一个更小的幅度范围。

(Vr)ef 表示可以成功转换为精确数字表示的最大输入电压。

因此,重要的是V ref 大于或等于V in的最大值。

但是请记住,比V in值大得多的值将导致表示原始信号的量化级别更少。

例如,如果我们知道我们的信号永远不会增加到 2.4 V 以上,那么使用5 V 的电压参考将是低效的,因为超过一半的量化电平将被使用。

量化误差(Quantisation Error)量化误差是一个术语,用于描述原始信号与信号的离散表示之间的差异。

ADC和DAC主要技术指标简介

ADC和DAC主要技术指标简介

2、AD转换器的主要技术指标1)分辨率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的比值.分辩率又称精度,通常以数字信号的位数来表示。

2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需要的时间的倒数.积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔.为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率.因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的.常用单位是Ksps和Msps,表示每秒采样千/百万次(kilo/Million Samples per Second)3)量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD 的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB.4)偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小. 5)满刻度误差(Full Scale Error)满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity)实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差.其它指标有:绝对精度(Absolute Accuracy),相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distortion缩写THD)和积分非线性。

3、DA转换器DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。

大多数DA转换器由电阻阵列和N个电流开关(或电压开关)构成。

adc的参数

adc的参数

adc的参数1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2) 转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并 行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百 万次(kilo / Million Samples per Second)。

3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1 个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。

AD的选择,首先看精度和速度,然后看是几路的,什么输出的比如SPI或者并行的,差分还是单端输入的,输入范围是多少,这些都是选AD需要考虑的。

DA 呢,主要是精度和输出,比如是电压输出啊,4-20mA电流输出啊,等等。

adc评估

adc评估

adc评估ADC是模拟数字转换器的缩写,是一种将模拟信号转换成数字信号的设备。

它可以将连续的模拟信号转换成离散的数字信号,以便于数字系统的处理和分析。

ADC的评估主要考虑其转换性能、特性和适用性等方面。

首先,ADC的转换性能是评估的重要指标之一。

转换性能包括分辨率、采样率、非线性误差和噪声等参数。

分辨率是指ADC可以区分的最小电压或电流的变化量,通常以位数(比特)表示。

较高的分辨率意味着更准确的转换结果。

采样率是指ADC每秒可以进行的采样次数,通常以Hz表示。

较高的采样率意味着更高的信号还原能力。

非线性误差是指ADC输出与输入信号之间的误差,常见的非线性误差有DNL和INL。

噪声是指在转换过程中引入的干扰信号,例如量化噪声、时钟抖动等。

评估一款ADC的转换性能需要进行实际测试,比较其结果与理论性能指标的吻合度。

其次,ADC的特性也需要进行评估。

特性包括电源电压、功耗、工作温度范围等。

电源电压是指ADC工作所需的电源电压范围,通常以V表示。

功耗是指ADC在工作过程中所消耗的能量,高功耗会造成能源的浪费。

工作温度范围是指ADC能够正常工作的环境温度范围,较宽的工作温度范围意味着更高的适用性。

最后,ADC的适用性是针对特定应用而言的。

不同的应用有不同的要求,例如音频处理、测量和控制系统等。

评估一款ADC的适用性需要考虑其输入范围、采样精度、接口等因素。

输入范围是指ADC可以处理的输入电压或电流范围,通常以V表示。

采样精度是指ADC将模拟信号转换成数字信号的精度,通常以比特表示。

接口是指ADC与其他电子器件之间的通信接口,常见的接口有SPI、I2C和UART等。

总之,ADC的评估涉及到转换性能、特性和适用性等方面的考量。

通过对这些指标的评估,可以选择适合特定应用的ADC设备,并保证其在实际应用中能够具有良好的性能和可靠性。

ADC转换芯片的分辨率(扫盲)

ADC转换芯片的分辨率(扫盲)

ADC转换芯片的分辨率(扫盲)今天给大家简单介绍一下ADC器件的常识。

ADC,模数转换器,功能是把模拟电压转换成数字量。

概念听的模糊,说点实际的吧:把你要测的电压那条线,连接到ADC的用来测试电压的引脚上,ADC模块就会检测到这个电压,并且自动转换成一个数字,我们读出这个数字,然后知道这个数字和电压的对应关系,就可以知道现在的电压是多大了。

有些单片机内部有ADC模块,在单片机外部引出测试用的ADC 引脚。

有些单片机内部没有ADC模块,可以用单独的ADC芯片,单独的ADC芯片一般留有与单片机通信的接口,常见的是8位并口、I2C 口、SPI口。

单片机通过通信接口与外部ADC模块连接读取ADC芯片的转化值。

分辨率不管是单片机内部的ADC,还是独立的ADC芯片,都有一个分辨率指标。

一般的分辨率有8位、10位、12位、16位、24位。

先要知道,位就是bit,就是计算机界是最小的单位,8个位是1个字节。

8位数字,最大值就是255,范围从0~255。

10位数字,最大值就是1023,范围从0~1023。

12位数字,最大值就是4095,范围从0~4095。

14位数字,最大值就是16383,范围从0~16383。

16位数字,最大值就是65535,范围从0~65535。

24位数字,最大值就是16777215,范围从0~16777215。

为什么“位”可以表示分辨率?假设一个我们要测一个0~5V的电压信号。

用8位分辨率的ADC测,输入电压是0V时,得到的数字是0,输入电压是5V时,得到的数字是255。

用12位分辨率的ADC测,输入电压是0V时,得到的数字是0,输入电压是5V时,得到的数字是4095。

8位的ADC,得到的数字每增加1,实际上电压增加5/256=0.0195V。

16位的ADC,得到的数字每增加1,实际上电压增加5/4096=0.0012V。

假设,现在要测一个0.015V的电压,8位的ADC得到的数字,就是1,当你得到1的时候,只能认为是1*5/256=0.0195V的电压。

ADC的参数解析

ADC的参数解析

adc的参数1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n 的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。

AD的选择,首先看精度和速度,然后看是几路的,什么输出的比如SPI或者并行的,差分还是单端输入的,输入范围是多少,这些都是选AD需要考虑的。

DA呢,主要是精度和输出,比如是电压输出啊,4-20mA电流输出啊,等等。

ADC选型指南范文

ADC选型指南范文

ADC选型指南范文ADC(模数转换器)是将模拟电信号转换为数字数据的一种设备,广泛应用于工业自动化、仪器仪表、通信系统等领域。

在选择适合的ADC时,需要考虑以下几个关键因素:分辨率、采样率、信噪比、失真、功耗和接口类型等。

本篇文章将从这些方面为您介绍ADC选型的指南。

首先,分辨率是ADC的一个重要参数,表示数字输出的位数。

较高的分辨率可以提供更精确的测量结果。

一般来说,14位或16位的ADC具有较高的分辨率,但价格也相对较高。

对于一般的应用场景,10位或12位的ADC已经足够满足需求。

其次,采样率是ADC的另一个重要参数,表示每秒钟转换的模拟样本数。

较高的采样率可以提供更精确的信号重建,尤其是对于高频信号。

采样率的选择应根据系统的需求来确定,一般来说,20kHz至100kHz的采样率已经能够满足大部分应用需求。

信噪比(SNR)是衡量ADC性能的关键指标之一,表示信号与噪声的比例。

较高的信噪比可以提供更清晰的信号,减少测量误差。

在工业环境中,可能存在较高的干扰和噪声,因此选择具有较高信噪比的ADC非常重要。

一般来说,大于70dB的信噪比已经可以满足大部分应用场景。

失真是ADC性能的另一个重要参数,表示输入信号与输出信号之间的差异。

常见的失真包括谐波失真和非线性失真。

较低的失真可以提供更准确的信号重建,从而减少测量误差。

选择具有较低失真的ADC可以提高测量精度。

功耗是选择ADC时需要考虑的另一个因素,尤其是在移动和便携设备中。

较低的功耗可以延长电池寿命,并减少系统的发热。

一般来说,功耗在几十毫瓦或更低的ADC可以满足多数应用需求。

最后,接口类型是选择ADC时需要考虑的另一个因素。

常见的接口类型包括SPI、I2C和并行接口等。

根据系统的需要选择适合的接口类型可以简化系统设计和集成。

综上所述,选择适合的ADC时需要考虑分辨率、采样率、信噪比、失真、功耗和接口类型等因素。

根据实际需求确定每个因素的权重,并寻找具有合适性能和价格的ADC。

ADC和DAC主要技术指标简介

ADC和DAC主要技术指标简介

2、AD转换器的主要技术指标1)分辨率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需要的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是Ksps和Msps,表示每秒采样千/百万次(kilo/Million Samples per Second)3)量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD 的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差.通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4)偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差. 6)线性度(Linearity)实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

其它指标有:绝对精度(Absolute Accuracy),相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distortion缩写THD)和积分非线性.3、DA转换器DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类.大多数DA转换器由电阻阵列和N个电流开关(或电压开关)构成.按数字输入值切换开关,产生比例于输入的电流(或电压)。

ad参数

ad参数

电力数据采集A/D转换器的选择方案作者:时间:2008-07-17 来源:0 引言当今社会对电能质量的要求越来越高,国家还专门制定了电能质量的国家标准。

因此,电能质量的测量越来越得到电力用户的重视。

电能测量时,从电网的数据采集结果对其精度的影响起着致关重要的作用,而这其中影响最大的是把模拟信号转换为数字信号的模数转换器(ADC),往往A/D芯片的技术参数和指标就决定了整个数据采集系统的性能指标。

本文就电能测量ADC的选择作了综述。

1 A/D转换器的技术参数A/D转换器的技术参数反映了其性能特点,其主要的指标有以下几个:(1)分辨率:分辨率反映A/D转换器对输入微小变化响应的能力,通常用数字输出最低位(LSB)所对应的模拟输入的电平值表示。

(2)精度:精度有绝对精度和相对精度两种表示方法。

绝对误差:是指对应于一个数字量的实际模拟输入电压和理想的模拟输入电压之差的最大值,通常以数字量的最小有效位(LSB)的分数值来表示。

相对误差:是指整个转换范围内,任一数字量所对应的模拟输入量的实际值与理论值之差,用模拟电压满量程的百分比表示。

(3)转换时间:转换时间是指完成一次A/D转换所需的时间,即由发出启动转换命令信号到转换结束信号开始有效的时间间隔,其倒数称为转换速率。

例如MAX125的转换时间为3μs,其转换速率约为330多kHz。

(4)电源灵敏度:电源灵敏度是指A/D转换芯片的供电电源的电压发生变化时,产生的转换误差。

一般用电源电压变化1%时相应的模拟量变化的百分数来表示。

(5)量程:量程是指所能转换的模拟输入电压范围,分单极性、双极性两种类型。

A/D转换器实际工作时,都会引入一些误差,主要包括:静态误差、孔径误差和量化误差。

各种误差都是以最低有效位(LSB)作为计算单位。

1LSB定义为VREF/2n,定义中的VREF是指参考电压,而n则是模拟/数字转换器的分辨率。

例如,14位模拟/数字转换器的1 LSB是VREF/16 384。

ad芯片精度

ad芯片精度

ad芯片精度AD芯片是一种用于模拟信号转换为数字信号的集成电路,具有很高的精度和准确度。

在测量、信号处理、控制系统等领域广泛应用。

下面将详细介绍AD芯片的精度。

首先,AD芯片的精度是指其输出的数字信号与输入的模拟信号之间的差异程度。

一般将其表达为位数或百分比。

位数表示AD芯片能够分辨的离散步长数目,位数越高,精度越高。

百分比表示AD芯片输出的数字信号相对于输入的模拟信号的误差百分比,百分比越小,精度越高。

AD芯片的精度受到多个因素的影响。

首先,AD芯片的分辨率决定了其精度的上限。

分辨率越高,AD芯片能够识别的信号差异越小,精度越高。

其次,AD芯片的采样率影响了其对信号的采样精度。

采样率越高,AD芯片能够更准确地捕捉信号的变化。

此外,AD芯片的失调误差、非线性误差、噪声等也会对其精度造成一定的影响。

为了提高AD芯片的精度,可以采取以下措施。

首先,选择具有高分辨率和高采样率的AD芯片。

其次,注意AD芯片的失调误差和非线性误差,选择具有低失调误差和非线性误差的AD芯片。

此外,通过设计合理的模拟信号滤波和抗干扰措施,可以降低AD芯片输入信号中的噪声干扰,提高精度。

最后,校准AD芯片的参数,对于已知输入信号进行校准和调整,可以提高AD芯片的精度和准确度。

总的来说,AD芯片是一种高精度的集成电路,其精度受到多个因素的影响,包括分辨率、采样率、失调误差、非线性误差和噪声等。

通过选择合适的AD芯片、采取合理的设计和校准措施,可以提高AD芯片的精度和准确度,满足各种应用需求。

A-D转换器的分辨率和准确度之间的区别

A-D转换器的分辨率和准确度之间的区别

A/D转换器的分辨率和准确度之间的区别当笔者与使用模数(A/D)转换器的系统设计人员聊天时,他们最常问的就是:您的16位A/D转换器准确度也是16位吗?要回答这个问题,关键在于从根本上理解分辨率和准确度这两个概念之间的区别。

尽管这两个术语是截然不同的,但它们却经常被混淆或互换使用。

A/D转换器的分辨率被定义为输入信号值的最小变化,可通过一次计数改变数字输出值。

就理想的A/D转换器而言,传递函数呈阶梯状,且每个步阶宽度等于分辨率。

但使用较高分辨率(16位或16位以上)的系统时,传递函数的响应和理想的响应之间将存在较大的偏差。

这是因为由A/D转换器及驱动器电路产生的噪声可降低该转换器的分辨率。

此外,如果一种直流(DC)电压被施加到理想A/D转换器的输入端并进行了多次转换,那么数字输出应始终是同一个代码。

但在现实中,输出代码却成了多个代码,在多个位置上分布(见下图的红点群集),具体取决于系统总噪声,其它因素还包括电压参考和驱动器电路。

系统里噪声越多,数据点的群集范围会越大,反之亦然。

图1展示了一个半量程DC输入的例子。

在A/D转换器的产品说明书中,A/D转换器传递函数图上的这种输出点群集通常被表示为DC直方图。

图1的例证带来了一个有趣的问题。

如果同一种模拟输入能产生多种数字输出,那么A/D 转换器分辨率的定义是否依然适用?答案是肯定的但前提是我们要考虑到A/D转换器的量化噪声。

然而,当我们对信号链中的所有噪声和失真进行探究考量时,却发现A/D转换器的无噪声有效分辨率是由输出代码散布(Npp)状况来决定的。

无噪声分辨率= log2(2n/Npp)其中n是理想的分辨率在典型的A/D转换器产品说明书中,有效位数(ENOB)由交流(AC)参数和信噪失真比(SINAD)间接确定,可用下边的方程式计算出ENOB:ENOB =(SINAD-1.76)/6.02接下来请仔细观察:输出代码群集(图1里的绿色群集)是否不仅未以理想的输出代码为中心、反而位于A/D转换器传递曲线上的其它位置,远离红点?这个距离是数据采集系统准确度的指标。

分辨率与精度

分辨率与精度

分辨率与精度的区别2010-10-07 10:28:37很多人对于精度和分辨率的概念不清楚,这里我做一下总结,希望大家不要混淆。

我们搞编码器制做和销售的,经常跟“精度”与“分辨率”打交道,这个问题不是三言两语能搞得清楚的,在这里只作抛砖引玉了。

简单点说,“精度”是用来描述物理量的准确程度的,而“分辨率”是用来描述刻度划分的。

从定义上看,这两个量应该是风马牛不相及的。

(是不是有朋友感到愕然^_^)。

很多卖传感器的JS就是利用这一点来糊弄人的了。

简单做个比喻:有这么一把常见的塑料尺(中学生用的那种),它的量程是10厘米,上面有100个刻度,最小能读出1毫米的有效值。

那么我们就说这把尺子的分辨率是1毫米,或者量程的1%;而它的实际精度就不得而知了(算是0.1毫米吧)。

当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。

我们不难发现,它还有有100个刻度,它的“分辨率”还是1毫米,跟原来一样!然而,您还会认为它的精度还是原来的0.1毫米么?(这个例子是引用网上的,个人觉得比喻的很形象!)所以在这里利用这个例子帮大家把这两个概念理一下,以后大家就可以理直气壮的说精度和分辨率了,而不是将精度理解为分辨率。

呵呵,希望对大家有用!^_^加工精度是加工后零件表面的实际尺寸、形状、位置三种几何参数与图纸要求的理想几何参数的符合程度。

理想的几何参数,对尺寸而言,就是平均尺寸;对表面几何形状而言,就是绝对的圆、圆柱、平面、锥面和直线等;对表面之间的相互位置而言,就是绝对的平行、垂直、同轴、对称等。

零件实际几何参数与理想几何参数的偏离数值称为加工误差。

加工精度与加工误差都是评价加工表面几何参数的术语。

加工精度用公差等级衡量,等级值越小,其精度越高;加工误差用数值表示,数值越大,其误差越大。

加工精度高,就是加工误差小,反之亦然。

任何加工方法所得到的实际参数都不会绝对准确,从零件的功能看,只要加工误差在零件图要求的公差范围内,就认为保证了加工精度。

ADC和DAC主要技术指标简介

ADC和DAC主要技术指标简介

ADC和DAC主要技术指标简介2、AD转换器的主要技术指标1)分辨率(Resolution)指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需要的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD 可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是Ksps和Msps,表示每秒采样千/百万次(kilo/Million Samples per Second)3)量化误差(Quantizing Error)由于AD的有限分辩率而引起的误差,即有限分辩率AD 的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4)偏移误差(Offset Error)输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5)满刻度误差(Full Scale Error)满度输出时对应的输入信号与理想输入信号值之差。

6)线性度(Linearity)实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。

其它指标有:绝对精度(Absolute Accuracy),相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distortion缩写THD)和积分非线性。

3、DA转换器DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。

大多数DA转换器由电阻阵列和N 个电流开关(或电压开关)构成。

深入浅出讲解ADC的各个参数和指标

深入浅出讲解ADC的各个参数和指标

深入浅出讲解ADC的各个参数和指标硬件三人行,专注于工程师在线教育。

以模拟电路课程和PCB实战课程为主,以基于stm32的算法课程和产品结构课程为辅。

满足5年以下工作经验的硬件工程师技术提升需求,适应汽车电子,工业控制,仪器仪表,小家电,智能硬件等其他嵌入式设计行业的发展。

之前我们对ADC有了一个基本的认识。

那么大家在实际应用过程中,我想,最想问并且想知道的问题就是,根据我的应用,我应该怎么选择ADC芯片,有哪些重要的指标?其实不同种类的ADC,就像各种武功秘籍。

独孤九剑的招式-快、准、狠。

映射到ADC中,如果想要采集一些频率很高,幅值较小的视频、射频信号,则需要ADC具有更高的采样频率(快),更高的精度(准),更小的误差。

电子江湖中,示波器就是这样一本至高无上的武功秘籍。

学好使用示波器,以后面对各种各样的电路异象,我们都可以将其一一拆解。

当然,像太极拳这样的以慢打快的招式,就是需要ADC在低速采样率下有更高的精度。

高精度的万用表就是利用这样的ADC进行采集。

上述设备让我们对ADC有一个基本的认知,就是采样率和精度是衡量一款ADC性能的重要指标。

那么下面我们就对其就行简单讲解,并且衍生出其他衡量ADC的重要指标。

(1)采样率。

这个理解起来应该比较容易,采样率一般是指芯片每秒采集信号的个数。

比如1KHz/s,表示1s内,这个ADC可以采集1K个点。

采样率越高,采集的点数越多,那么对信号的还原度就越高。

比如A跟B,A采集3个点,最终还原出来的波形跟原始波形相差较大,B采集了6个点,那么在还原是就越接近原始信号。

所以在这里我们要引出奈奎斯特定理。

也就是如果对原始信号进行采集。

采样率必须大于其2倍。

这样才能正常的还原出原始信号,否则会发生混叠现象。

如图C所示,原始波形完全无法恢复。

(2)分辨率。

一般ADC都说注明是8bit,16bit或者是24bit。

这里的数值也就是分辨率的意思。

分辨率是衡量ADC精度一个非常重要的指标。

精度和分辨率的区别

精度和分辨率的区别

之宇文皓月创作对于传感器的分辨率与精度的理解,可以拿千分尺为例,分辨率代表千分尺最多可以读到小数点后几位,但精度还与尺子的加工精度,丈量方法有关系。

同样的,在旋转编码器的使用中,分辨率与精度是完全分歧的两个概念。

编码器的分辨率,是指编码器可读取并输出的最小角度变更,对应的参数有:每转刻线数(line)、每转脉冲数(PPR)、最小步距(Step)、位(Bit)等。

编码器的精度,是指编码器输出的信号数据对丈量的真实角度的准确度,对应的参数是角分(′)、角秒(″)。

分辨率:线(line),就是编码器的码盘的光学刻线,如果编码器是直接方波输出的,它就是每转脉冲数(PPR)了(图1), 但如果是正余弦(sin/cos)信号输出的,是可以通过信号模拟量变更电子细分,获得更多的方波脉冲PPR输出(图2),编码器的方波输出有A相与B相,A相与B相差1/4个脉冲周期,通过上升沿与下降沿的判断,就可以获得1/4脉冲周期的变更步距(4倍频),这就是最小丈量步距(Step)了,所以,严格地讲,最小丈量步距就是编码器的分辨率。

例如,德国海德汉的ROD426的3600线编码器,方波输出,就是3600ppr,脉冲周期0.1度,通过A相B相4倍频后,可获得0.025度的丈量步距;而其海德汉提供的精度参数为18角秒(0.005度)。

分辨率数值大于精度数值。

如果是德国海德汉的 ROD486的3600线的正余弦信号输出,可进行25倍的电子细分,获得90000的脉冲(ppr),0.004度的脉冲周期,通过A/B相的四倍频,可获得0.001度最小丈量步距的分辨率,而海德汉提供的原始编码器的精度还是18角秒(0.005度),(不含细分误差)。

分辨率数值小于精度数值。

在以通讯数据输出型的编码器或绝对值编码器,其输出的分辨率是以多少“位”来表达,即2的幂次方的圆周分割度。

所以,旋转编码器的分辨率可以用“线line",每转脉冲数PPR,或“步距Step”分别来表述。

如何认识ADC参数中“精确度”与“分辨率”的不同

如何认识ADC参数中“精确度”与“分辨率”的不同

ADC制造商在数据手册中定义ADC性能的方式令人困惑,并且可能会在应用开发中导致错误的推断。

最大的困惑也许就是“分辨率”和“精确度”了——即Resolution和Accuracy,这是两个不同的参数,却经常被混用,但事实上,分辨率并不能代表精确度,反之亦然。

本文提出并解释了ADC“分辨率”和“精确度”,它们与动态范围、噪声层的关系,以及在诸如计量等应用中的含义。

ADC动态范围,精确度和分辨率动态范围被定义为系统可测量到的最小和最大信号的比例。

最大信号可为峰间值,零到峰(Zero-to-Peak)值或均方根(RMS)满量程。

其中任何一个都会给出不同值。

例如,对于一个1V正弦波来说:峰间(满量程)值=2V零到峰值=1VRMS满量程=0.707×峰值振幅=0.707×1V=0.707V最小信号通常为RMS噪声,这是在未应用信号时测量的信号的均方根值。

测量得到的RMS噪声级别将取决于测量时使用的带宽。

每当带宽翻倍,记录的噪声将增长1.41或3dB。

因此,一定要注意动态范围数字始终与某个带宽相关,而后者通常未被指定,这使记录的值变得没有意义。

器件的信噪比(SNR)和动态范围多数时候被定义为同一个值,即:动态范围=SNR =RMS满量程/RMS噪声并且经常使用dB作为单位,即动态范围(dB) =SNR(dB) =20*Log10 (RMS满量程/RMS噪声)与使用RMS满量程相反,一些制造商为了使图表看上去更漂亮,引用零到峰或峰间值,这使得最终的动态范围或SNR增加了3dB或9dB,因此我们需要仔细研究规范以避免误解。

在讨论ADC性能时,分辨率和精确度是经常被混用的两个术语。

一定要注意,分辨率并不能代表精确度,反之亦然。

ADC分辨率由数字化输入信号时所使用的比特数决定。

对于16位器件,总电压范围被表示为216 (65536)个独立的数字值或输出代码。

因此,系统可以测量的绝对最小电平表示为1比特,或ADC电压范围的1/65536。

量具中分辨率与精度的区别

量具中分辨率与精度的区别

量具中分辨率与精度的区别量具中分辨率与精度的区别“精度”是用来描述物理量的准确程度,其反应的是测量值与真实值之间的误差,而“分辨率”是用来描述刻度划分的,其反应的是数值读取过程中所能读取的最小变化值。

简比喻:一把常见的量程为10厘米的刻度尺,上面有100个刻度,最小能读出1毫米的有效值。

那么我们就说这把尺子的分辨率是1毫米,他只能1、2、3、4……100这样读值;而它的实际精度就不得而知了,因为用这把尺读出来的2毫米,我们并不知道他与真实绝对的2毫米之间的误差值。

而当我们用火来烤一下它,并且把它拉长一段,然后再考察一下它。

我们不难发现,它还有100个刻度,因而它的“分辨率”还是1毫米,跟原来一样!然而,它的精度显然已经改变了。

对于编码器来说,“分辨率”除了与刻线数有关外,还会因电气信号方面的影响而改变,它是可调的,可控的,它可以随着对信号的细分而改变,细分倍数越高,分辨率越小,但是细分倍数越高,引入加大的误差就越大。

而精度,更多的偏向于机械方面,一个产品生产出来后,他的精度基本已经固定(有些高精度的产品可以对信号进行补偿等来提高精度),这个数值是通过检测出来的,它与产品的做工,材料等综合性能息息相关,我们难以通过计算来得出一个具体的数值作为精度的依据,大多只能在使用的过程当中判断出精度的好坏来。

例如,对于13bit的,其码盘上的绝对位置数为:8192,则:计算出的分辨率为158角秒,也就是说,在读取数值的时候,要求数值间的跳动是158角秒,如果要读取的第一个数值是0,则第二个读取的数值要大于158,若要小于158,则我们需要选取更小的分辨率。

当要读取158这个数值的时候,由于误差的存在,并不可能得到绝对的158秒,编码器所读取出来的158秒与绝对真实158秒之间的误差,就取决于精度了。

所以说,精度,是在分辨率的基础上来谈的。

而并非越细分得到小的分辨率就越好,因为细分会引入误差和扩大误差,过度的细分将无法保证精度!需要多少倍的细分,能做到多少倍的细分,前提必须是在保证精度的基础上进行的,因为精度在使用前的不可见性而高倍细分是不负责任的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何认识A D C参数中“精确度”与“分辨率”的不同
ADC制造商在数据手册中定义ADC性能的方式令人困惑,并且可能会在应用开发中导致错误的推断。

最大的困惑也许就是“分辨率”和“精确度”了——即Resolution和Accuracy,这是两个不同的参数,却经常被混用,但事实上,分辨率并不能代表精确度,反之亦然。

本文提出并解释了ADC“分辨率”和“精确度”,它们与动态范围、噪声层的关系,以及在诸如计量等应用中的含义。

ADC动态范围,精确度和分辨率
动态范围被定义为系统可测量到的最小和最大信号的比例。

最大信号可为峰间值,零到峰(Zero-to-Peak)值或均方根(RMS)满量程。

其中任何一个都会给出不同值。

例如,对于一个1V正弦波来说:
峰间(满量程)值=2V
零到峰值=1V
RMS满量程=0.707×峰值振幅=0.707×1V=0.707V
最小信号通常为RMS噪声,这是在未应用信号时测量的信号的均方根值。

测量得到的RMS 噪声级别将取决于测量时使用的带宽。

每当带宽翻倍,记录的噪声将增长1.41或3dB。

因此,一定要注意动态范围数字始终与某个带宽相关,而后者通常未被指定,这使记录的值变得没有意义。

器件的信噪比(SNR)和动态范围多数时候被定义为同一个值,即:
动态范围= SNR = RMS满量程/RMS噪声
并且经常使用dB作为单位,即
动态范围(dB) = SNR(dB) = 20*Log10 (RMS满量程/RMS噪声)
与使用RMS满量程相反,一些制造商为了使图表看上去更漂亮,引用零到峰或峰间值,这使得最终的动态范围或SNR增加了3dB或9dB,因此我们需要仔细研究规范以避免误解。

在讨论ADC性能时,分辨率和精确度是经常被混用的两个术语。

一定要注意,分辨率并不能代表精确度,反之亦然。

ADC分辨率由数字化输入信号时所使用的比特数决定。

对于16位器件,总电压范围被表示为216 (65536)个独立的数字值或输出代码。

因此,系统可以测量的绝对最小电平表示为1比特,或ADC电压范围的1/65536。

A/D转换器的精确度是指对于给定模拟输入,实际数字输出与理论预期数字输出之间的接近度。

换而言之,转换器的精确度决定了数字输出代码中有多少个比特表示有关输入信号的有用信息。

如前所述,对于16位ADC分辨率,由于出现内部或外部误差源,实际的精确度可能远小于分辨率。

因此,举例而言,一个给定的16位ADC可能只能提供12位的精确度。

对于这种情况,4LSb(最低有效位)表示ADC中生成的随机噪声。

ADC动态范围和ADC精确度通常指相同的内容。

图 1 展示了基本的ADC测量电路。

图1:基本的ADC测量电路。

理想ADC生成一个数字输出代码,是关于模拟信号电压和电压参考输入的方程,其中
输出代码=满量程电压 × [VIN+ - VIN-] / [VREF+ - VREF-]
=满量程电压 × [VIN /VREF]
每个数字输出代码表示参考电压的一个小数值。

必须注意,ADC动态范围应当匹配将要转换的信号的最大振幅,这样才能使ADC转换精度最大化。

现在假设将要转换的信号在0V到2.5V间变化,而VREF等于3.3V,如图2所示。

图2:输入信号振幅和ADC动态范围。

16位ADC将包括216 = 65536个步骤或转换,且最低有效位(LSB)=VREF/65536=
3.3V/65536=50.35uV。

对于理想的ADC,所有代码都具有1LSB的相同宽度。

如果ADC的最大信号值为2.5V,那么意味着总共有49652次转换(2.5V/1LSB)。

对于这种情况,将有15884次转换未被使用(65536-49652=15884)。

这反应了转换后的信号精确度损失或ENOB损失(损失0.4位)。

如果ADC参考(VREF)和ADC最大信号电平之间的差异增加,那么ENOB损失或精确度损失将加剧。

例如,如果ADC最大信号电平为1.2V且VREF=3.3V,那么ENOB损失将为1.5位。

因此ADC动态范围一定要匹配最大信号振幅,以获得最高精确度。

应用示例
我们通过一些例子来说明这些参数在某些典型应用中的具体含义。

a) 数码相机
简单来说,数码相机的动态范围就是图像传感器的一个像素生成的可检测到的最亮和最暗值的范围,使用比特作为单位。

ADC的最小比特率(分辨率)由图像传感器的动态范围(精确度)决定。

举例而言,如果传感器的动态范围为1000:1(也可以称为60dB),那么ADC应当至少为10位(2^10=1,024分立电平) 才能避免信息损失。

然而,在实际中,应当将ADC往高指定为12位,以允许ADC具有一定的容错裕量。

只因为相机具有12位或16位的ADC就宣称它具有12位动态范围会令人误解,因为噪声以及用于产生这个动态范围的像素井的容量没有被考虑在内。

因此,综上所述,只有传感器本身具有足够的动态范围时上述描述才成立。

色调范围和动态范围永远也不会超过传感器的动态范围。

因此必须要清楚相机的实际动态范围。

本节内容解释了具有12位动态范围的相机并不表示相机有一个12位的ADC。

b)电阻温度计
电阻温度计(RTD)利用了某些材料在不同温度下电阻会发生可预测的变化这一原理。

电阻温度计通常使用铂制成,并且具有以下特征:
0oC时的传感器电阻=100ohm
电阻变化/ oC=0.385ohm(欧洲基本区间)
激活传感器的感应电流=1mA
温度范围= 0至500oC
注意,电阻温度计需要通过大约1mA的弱电流来确定电阻。

1°C的温度变化会引起0.385 ohm的电阻变化,因此即使一个小的电阻测量错误也会引起很大的温度测量误差。

电阻温度计需要检测到0.1oC的温度变化,这将成为系统在0至500 oC之间的LSB。

电阻在这个范围的对应变化幅度将为192.5ohm。

对于这个变化幅度,该范围下的电压将为192.5mV。

现在,动态范围=满量程电压/LSB大小
= 192.5mV/38.5uV
= 5000
要满足这一要求,13位ADC应当已经够用。

注意,由于整个RTD传感器的电压范围为100mV到292.5mV且LSB大小足够低到可由任何SAR ADC分辨,您将需要一个增益放大器来在ADC可以实际支持的范围内增大这个范围。

假设我们使用一个固定增益为17的增益放大器。

通过使用这个增益放大器,电压将从1.7V增加到4.92V。

正如前面所解释的一样[如图 2所示],在这个输出电压范围内您的ADC 将不能够得到充分利用,因此将限制动态范围。

由于我们在这个应用中最关心的是LSB大小(RTD传感器应当能够使用0.1oC的温度变化进行响应),并且假设典型ADC具有5V的满量程电压,因此您将需要一个转换器,其中ENOB(有效位数) = 1.44ln(满量程/LSB)
=1.44ln(5V/38.5uV)
≈17位(近似值)
一个Σ-Δ ADC应当能够提供这种性能。

注意,13位应用并不总是需要13位转换器。

c) 电气计量
如今,电表变得越来越复杂,并且要求在不同动态范围下获得高精确度,因为任何测量误差都会使电力公司蒙受巨大的损失。

对于动态范围为2000:1的Class1电表,必须测量的最小信号大约为0.5mV,假设ADC满量程电压为1V。

这种仪表的最大误差规格通常为针对指定动态范围测量的参数的0.1%。

目标错误=0.5mV×0.1%
=500nV。

因此,要测量的最小信号为500nV。

系统需要从1V中解析出500nV,这将要求ADC具有1V/500nV≈2×106次输出转换。

这需要使用具有21位ENOB的ADC。

需要注意的一点是通用21位ADC并不能满足这些需求,除非它具备一个良好的噪声层并能够分辨最低500nV的电压。

这个具体示例仅仅介绍了电表中的电压测量需求。

电表中的电流测量具有比电压测量更严格的需求,但是本例并没有介绍详细内容。

结束语
模数转换器(ADC)宣称具有“n”位分辨率,这常常被误解为精确度。

分辨率和精确度完全是两个概念,两者不能混用。

应该由具体的应用来确定是否允许丢失代码以及所需ADC精确度。

本文通过解释一些应用示例展示了精确度和分辨率的差别。

此外,ADC精确度不能仅仅取决于ADC性能和特性,它与围绕ADC的整个应用设计有关。

系统实际上指定了所需的真正动态范围。

作者:Mohit Arora
飞思卡尔半导体系统工程师。

相关文档
最新文档