美国MOOG伺服阀,伺服阀的工作原理及作用

合集下载

美国MOOG伺服阀,伺服阀的工作原理及作用

美国MOOG伺服阀,伺服阀的工作原理及作用

美国MOOG伺服阀,伺服阀的工作原理及作用1、电液伺服阀主要用于电液伺服自动控制系统,其作用是将小功率的电信号转换为大功率的液压输出,经过液压执行机构来完成机械设备的自动化控制. SupeSite/X-Space官方站y Q d:E p p.P伺服阀是一种经过改动输入信号。

依据输入信号的方式不同,分为电液伺服阀和机液伺服阀。

SupeSite/X-Space官方站(R w _ }/i-A电液伺服阀既是电液转换元件,又是功率放大元件,它的作用是将小功率的电信号输入转换为大功率的液压能(压力和流量)输出,完成执行元件的位移、速度、加速度及力控制。

+C6S c {(p a0液压泵的输出压力是指液压泵在实践工作时输出油液的压力,即泵工作时的出口压力,通常称为工作压力,其大小取决于负载。

SupeSite/X-Space官方站Y \ h+I r2k L电液伺服阀通常由电气—机械转换安装、液压放大器和反应(均衡)机构三局部组成。

反应战争衡机构使电液伺服阀输出的流量或压力取得与输入电信号成比例的特性。

压力的稳定通常采用压力控制阀,比方溢流阀等。

2.细致材料:典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功用可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

美国威格士VICKERS柱塞泵由于气体的可紧缩性,使气缸或气马达等执行元件的运动速度不只取决于气体流量。

还取决于执行元件的负载大小。

因而准确地控制气体流量常常是不用要的。

单纯的压力式或流量式比例/伺服阀应用不多,常常是压力和流量分离在一同应用更为普遍。

电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。

但随着近年来低价的电子集成电路和各种检测器件的大量呈现,在1电---气比例/伺服阀中越来越多地采用了电反应办法,这也大大进步了比例/伺服阀的性能。

电---气比例/伺服阀可采用的反应控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。

MOOG_DDV阀_资料(中文)

MOOG_DDV阀_资料(中文)

MOOGMOOG(穆格)DDV伺服阀MOOG(穆格)D633、D634系列伺服阀是MOOG公司最新研制成功的新型电液伺服阀,目前已由MOOG GmbH(德国)公司进行批量生产。

它是一种直接驱动式伺服阀,简称DDV(Direct Drive Servo Valve的缩写),油口与安装尺寸D633按NG6(Cetop 3),D634按NG10(Cetop 5),用集成电路实现阀芯位置的闭环控制,阀芯的驱动装置是永磁直线力马达。

对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在两个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产生力的不足之处。

阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此D633、D634系列伺服阀无需配套电子装置就能对其进行控制。

D633、D634系列伺服阀是MOOG公司对其经久考验,盛名于世的双喷嘴力反馈两级伺服阀的发展与补充,和传统的MOOG30、31、32、34、35、E760等系列伺服阀相比,其最大的区别在于D633、D634系列伺服阀从结构上取消了喷嘴一挡板前置级、用大功率的直线力马达替代了小功率的力矩马达,用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置—力反馈杆与弹簧管,从而简化了结构,提高了可靠性,大大地降低了制造成本,却保持了带喷挡前置级的两级伺服阀的基本性能与技术指标。

MOOG DDV伺服阀的特点1.在位置、速度、压力以及力电液伺服系统中可用二位二通、三位三通或三位四通的方式进行工作。

2.安装形式与尺寸符合DIN24340和cetop3与6。

3.无液压前置级。

4.停电、电缆损坏、或者紧急停车情况下伺服阀均能自行回中,无需外力推动。

5.动态性能指标与供油压无关。

6.防水性为IP65(DIN40050)级。

7.低的滞环,高的分辨率。

8.具有极性接反保护功能与超压保护功能。

伺服阀的工作原理及应用

伺服阀的工作原理及应用

伺服阀的工作原理及应用伺服阀是一种利用电磁力来控制液压流量的装置,广泛应用于机械工程、航空航天、汽车工业以及其他液压系统中。

它通过调节流体流量来控制执行器的位置和速度,从而实现对系统的精确控制。

本文将介绍伺服阀的工作原理及其在各个领域的应用。

首先,让我们来了解伺服阀的工作原理。

伺服阀由阀芯、阀座、电磁铁以及定向阀组成。

当电磁铁通电时,产生的电磁力会使阀芯与阀座分离,从而打开流体通道。

通过改变电磁铁的通电状态,可以控制阀芯的位置,从而调节流体的流量。

伺服阀的工作原理与一个负反馈控制系统类似。

当执行器达到设定的位置或速度时,反馈信号将被传送回来,通过比较反馈信号与设定值,控制系统将相应地调整电磁铁的通电状态,使阀芯位置逐渐接近设定值。

这种闭环控制系统可以实现高度精确的位置和速度控制。

接下来,我们来看一下伺服阀的应用领域。

伺服阀被广泛应用于需要精确控制位置和速度的系统中。

在机械工程中,伺服阀被用于控制工业机械、机器人以及其他自动化设备。

例如,在自动化生产线上,伺服阀被用于控制机械臂的位置和运动速度,从而实现高效的生产。

在航空航天领域,伺服阀被用于控制飞机的液压系统。

它们能够精确地控制飞行器的操作和动力系统,包括起落架、襟翼和刹车系统。

由于伺服阀能够快速响应和高度精确的控制,它们在飞机的操纵系统中起到了至关重要的作用。

在汽车工业中,伺服阀被广泛应用于汽车刹车系统和液压悬挂系统。

伺服阀能够根据司机的踏板操作精确地控制刹车力度,从而提供安全和可靠的刹车体验。

在液压悬挂系统中,伺服阀能够实现对车身的主动控制,提供更平稳的行驶和更舒适的乘坐体验。

此外,伺服阀还被应用于医疗设备、舞台设备和工程机械等领域。

在医疗设备中,伺服阀被用于控制手术机器人的精确运动,提供高度精确的手术操作和治疗。

在舞台设备中,伺服阀被用于控制灯光和音响设备,实现精确的舞台效果。

在工程机械中,伺服阀被用于控制挖掘机、起重机和压力机等设备,提供高效、安全的工作。

moog伺服阀

moog伺服阀

喷嘴挡板伺服阀工作原理
电液伺服阀的组成
由力矩马达和液压放大器组成。 力矩马达组成
由一对永久磁铁1、导磁体2和 4、衔铁3、线圈5和内部悬置挡板 7的弹簧管6等组成 。 液压放大器组成 置放大器 前置放大级是一个双 喷嘴挡板阀,它主要由挡板7 喷嘴 8节流孔10和滤油器11组成。 功率放大器 功率放大级主要由 滑阀9和挡板下部 的反馈杆组 成。
MOOG伺服阀概述
三级阀,喷嘴挡板前置级D791、D792 插装阀DSHR、SE3 机械反馈伺服阀(不集成控制器) 72、78、79-100、79-200、G631、G761
MOOG伺服阀概述
综合来说,moog伺服阀从原理上可以分 为喷嘴挡板前置级伺服阀、射流管前置 级和直接驱动式电液伺服阀三类
直接驱动式电液伺服阀
DDV633电反馈直动阀的结构
集成式 伺服阀 控制器
LVDT位 移传感器
滑阀
驱动 部分
直接驱动式电液伺服阀
力马达工作原理
射流管伺服阀பைடு நூலகம்作原理
射流管伺服阀工作原理
射流管伺服阀工作原理
谢谢!
喷嘴挡板伺服阀工作原理
前置放大级工作原理
压力油经滤油器和节 流孔流到滑阀左、右两端 油腔和两喷嘴腔,由喷嘴 喷出,经阀芯中部流回油箱 力矩马达无输出信号时, 挡板不动,滑阀两端压力相 等。当矩马达有信号输出时,挡板偏转,两喷嘴与挡板之间 的间隙不等,致使滑阀两端压力不等,推动阀芯移动。
功率放大级工作原理
当前置放大级有压差信号 使滑阀阀芯移动时,主油路 被接通。滑阀位移后的开度 正比于力矩马达的输入电流, 则阀的输出流量和输入电流 成正比;当输入电流反向时, 输出流量也反向。滑阀移动 同时,挡板下端的小球亦随 同移动,使挡板弹簧片产生 弹性反力,阻止滑阀继续移动;挡板变形又使它在两喷嘴间的 位移量减小,实现了反馈。当滑阀上的液压作用力和挡板弹性 反力平衡时,滑阀便保持在这一开度上不再移动。

moog伺服阀中文样本

moog伺服阀中文样本

moog伺服阀中文样本近年来,工业领域的电气设备飞速发展,各种高性能控制器、传感器、电机等被广泛应用于机械、航空、轨道交通、化工等领域。

而在这些设备中,伺服阀作为一种高性能调节元件,具有很强的动态响应能力和精准的流量调节能力,在国内外市场上也备受青睐。

而本文就是主要介绍moog伺服阀中文样本。

1. moog伺服阀是什么?moog伺服阀是一种高精度的电子液压控制阀门,可以通过电信号控制流体通路的开闭,从而实现对液压系统的精准控制。

moog伺服阀结构简单、性能稳定、响应速度快,广泛应用于工业、机械、冶金、航空、轨道交通等领域。

2. moog伺服阀的特点(1)高精度:moog伺服阀可以在高达1毫秒的时间窗口内完成对系统的反馈、控制和补偿,具有极高的控制准确性。

(2)高速度:moog伺服阀响应速度快,同样可以在1毫秒的时间内完成控制操作,适用于高速液压系统的控制。

(3)多功能:moog伺服阀具有多种控制方式和控制策略,可以满足不同应用场合的需求。

(4)质量稳定:moog伺服阀的设计采用了成熟的理论和技术,采用高品质材料和先进工艺制造,保证了产品的质量稳定和寿命长。

(5)适应性强:moog伺服阀具有良好的环境适应性和抗干扰性能,适合各种恶劣工作环境。

3. moog伺服阀的应用moog伺服阀被广泛应用于各种液压控制系统中,如工业、机械、冶金、航空、轨道交通等领域。

其中主要应用于液压伺服系统,如机床、注塑机、液压动力头、液压马达等该领域。

同时,moog伺服阀也被应用于一些特殊领域,如航空航天、核工业、海洋工程等。

4. moog伺服阀的选型moog伺服阀的选型需要考虑多个因素,如液压系统的工作压力、精度要求、流量要求等,同时也需要考虑系统的工作环境和可靠性要求等。

在选型时,可以参考moog伺服阀中文样本和其它资料进行比较和评估,选择最适合自身需求的产品。

5. 结论Moog伺服阀是一种具有高精度、高速度、多功能、适应性强等特点的液压控制阀门,广泛应用于各种液压系统中。

MOOG穆格伺服阀的工作原理_4

MOOG穆格伺服阀的工作原理_4

MOOG穆格伺服阀的工作原理1.采用干式力矩电机和两级液压放大器结构。

2.先导级是一个低摩擦的双喷嘴挡板阀。

3.阀芯驱动力大。

4.安装尺寸符合ISO4401标准(外部控油口不符合ISO4401标准)5.坚固耐用的设计。

6.高分辨率和低迟滞。

7.所有的数据都在工厂进行了调整。

8.可以选择第五个油口来独立控制先导阀。

9.先导阀碟形滤油器可现场更换。

MOOG穆格伺服阀两级电液伺服阀工作原理向力矩电机线圈输入一个电流指令信号,会产生电磁力作用在衔铁两端,带动弹簧管内的挡板偏转。

挡板的偏转会降低某个喷嘴的流量,进而改变与这个喷嘴连通的阀芯一侧的压力,推动阀芯向一侧移动。

MOOG伺服阀电液伺服阀可用作三通和四通节流流量控制阀,用作四通阀时控制性能更好。

该系列阀门是一种高性能的两级电液伺服阀,在额定压降7Mpa的情况下,额定流量为5L/min~75L/min。

MOOG伺服阀阀芯的位移打开供油口(P)与一个控制油口之间的通道,连通回油口(T)与另一个控制油口之间的油路。

同时,阀芯的位移也在弹簧杆上产生作用力,对衔铁挡板组件形成恢复力矩。

当恢复扭矩与由于力矩电机的电磁力作用在电枢挡板上的扭矩平衡时,挡板回到零位,滑阀芯在这种平衡状态下保持打开位置,直到给定的输入信号发生变化。

MOOG伺服阀阀门的特点;1.采用干式力矩电机和两级液压放大器结构。

2.先导级是一个低摩擦的双喷嘴挡板阀。

3.阀芯驱动力大。

4.安装尺寸符合ISO4401标准(外部控油口不符合ISO4401标准)5.坚固耐用的设计。

6.高分辨率和低迟滞。

7.所有的数据都在工厂进行了调整。

8.可以选择第五个油口来独立控制先导阀。

9.先导阀碟形滤油器可现场更换。

该阀适用于位置、速度和力(或压力)的伺服控制系统,具有较高的动态响应。

MOOG穆格伺服阀的工作原理_5

MOOG穆格伺服阀的工作原理_5

MOOG穆格伺服阀的工作原理MOOG伺服阀是MOOG公司研发的电液伺服控制中的关键元件,它是一种接受模拟电信号后,相应输出调制的流量和压力的液压控制阀;具有动态响应快、控制精度高、使用寿命长等优点,已广泛应用于航空、航天、舰船、冶金、化工等领域的电液伺服控制系统中。

那么下面也来了解下美国穆格伺服的工作原理和功能特点。

MOOG伺服阀原理典型的伺服阀由永磁力矩马达、喷嘴、档板、阀芯、阀套和控制腔组成。

当输入线圈通入电流时,档板向右移动,使右边喷嘴的节流作用加强,流量减少,右侧背压上升;同时使左边喷嘴节流作用减小,流量增加,左侧背压下降。

阀芯两端的作用力失去平衡, 阀芯遂向左移动。

高压油从S流向C2,送到负载。

负载回油通过C1流过回油口,进入油箱。

阀芯的位移量与力矩马达的输入电流成正比,作用在阀芯上的液压力与弹簧力相平衡,因此在平衡状态下力矩马达的差动电流与阀芯的位移成正比。

如果输入的电流反向,则流量也反向。

伺服阀主要用在电气液压伺服系统中作为执行元件(见液压伺服系统)。

在伺服系统中,液压执行机构同电气及气动执行机构相比,具有快速性好、单位重量输出功率大、传动平稳、抗干扰能力强等特点。

另一方面,在伺服系统中传递信号和校正特性时多用电气元件。

因此,现代高性能的伺服系统也都采用电液方式,伺服阀就是这种系统的必需元件。

伺服阀结构比较复杂,造价高,对油的质量和清洁度要求高。

新型的伺服阀正试图克服这些缺点,例如利用电致伸缩元件的伺服阀,使结构大为简化。

另一个方向是研制特殊的工作油(如电气粘性油)。

这种工作油能在电磁的作用下改变粘性系数。

利用这一性质就可通过电信号直接控制油流。

MOOG伺服控制器功能特点·通用的易理解的参数名称按照用户友好方式进行组织·控制电路非常合理的设计和布局极大的提高了功能性和灵活性·集成了电源 - 为使 DS2000 成为自含独立伺服驱动器,我们已在内嵌式电源中集成了以下控制和监测电路:·驱动配置 - 可通过内置键盘和显示器或通过 PC 配置驱动。

MOOG伺服阀结构及工作原理

MOOG伺服阀结构及工作原理

MOOG伺服阀结构及工作原理MOOG伺服阀是电液转换元件,它能把微小的电气信号转换成大功率的液压输出。

其性能的优劣对电液调节系统的影响很大,因此,它是电液调节系统的核心和关键。

为了能够正确使用电液调节系统,必须了解MOOG伺服阀的工作原理。

1MOOG伺服阀的分类1)按液压放大级数可分为单级MOOG伺服阀,两级MOOG伺服阀,三级MOOG伺服阀。

2)按液压前置级的结构形式,可分为单喷嘴挡板式,双喷嘴挡板式,滑阀式,射流管式和偏转板射流式。

3)按反馈形式可分为位置反馈式,负载压力反馈式,负载流量反馈式,电反馈式。

4)按电机械转换装置可分为动铁式和动圈式。

5)按输出量形式分为流量伺服阀和压力控制伺服阀。

2MOOG伺服阀结构及工作原理(以双喷嘴挡板为例)双喷嘴挡板式力反馈二级MOOG伺服阀由电磁和液压两部分组成。

电磁部分是永磁式力矩马达,由永久磁铁,导磁体,衔铁,控制线圈和弹簧管组成。

液压部分是结构对称的二级液压放大器,前置级是双喷嘴挡板阀,功率级是四通滑阀。

画法通过反馈杆与衔铁挡板组件相连。

力矩马达把输入的电信号(电流)转换为力矩输出。

无信号时,衔铁有弹簧管支撑在上下导磁体的中间位置,永久磁铁在四个气隙中产生的极化磁通是相同的力矩马达无力矩输出。

此时,挡板处于两个喷嘴的中间位置,喷嘴两侧的压力相等,滑阀处于中间位置,阀无液压输出;若有信号时控制线圈产生磁通,其大小和方向由信号电流决定,磁铁两极所受的力不一样,于是,在磁铁上产生磁转矩(如逆时针),使衔铁绕弹簧管中心逆时针方向偏转,使挡板向右偏移,喷嘴挡板的右侧间隙减小而左侧间隙增大,则右侧压力大于左侧压力,从而推动滑阀左移。

同时,使反馈杆产生弹性形变,对衔铁挡板组件产生一个顺时针方向的反转矩。

当作用在衔铁挡板组件上的电磁转矩、弹簧管反转矩反馈杆反转矩等诸力矩达到平衡时,滑阀停止移动,取得一个平衡位置,并有相应的流量输出。

滑阀位移,挡板位移,力矩马达输出力矩都与输出的电信号(电流)成比例变化。

穆格伺服阀工作原理

穆格伺服阀工作原理

穆格伺服阀工作原理穆格伺服阀(MooVg servo valve)是一种常用于液压系统中的控制元件,它能够根据输入信号调节液压流量和压力,实现对液压执行元件的精确控制。

穆格伺服阀工作原理基于先进的电液控制技术,具有灵敏、可靠、高精度的特点,广泛应用于航空、航天、机床、冶金、船舶等领域。

穆格伺服阀由驱动部分和阀芯部分组成。

驱动部分由电磁线圈、电流放大器和反馈电路组成,负责接收输入信号并将其转化为电流信号。

阀芯部分由阀芯、弹簧、定位器和阀套等组件组成,负责控制液压流量和压力。

穆格伺服阀的工作原理如下:当输入信号通过电磁线圈时,线圈内产生电磁力,将阀芯向某一方向推动或拉动。

阀芯的位置变化会改变阀芯与阀套之间的开口面积,从而调节液压流量。

同时,阀芯的位置变化也会改变弹簧的压缩程度,进而改变阀芯与定位器之间的相对位置,从而调节阀芯的稳定位置。

当输入信号发生变化时,电磁线圈内产生的电磁力也会随之变化,进而改变阀芯的位置。

通过反馈电路的作用,驱动部分会根据阀芯位置的变化调整输出电流信号,以使阀芯达到稳定工作状态。

这样,穆格伺服阀就能够根据输入信号实现对液压流量和压力的精确控制。

穆格伺服阀的工作过程可以分为四个阶段:启动、稳定、调整和停止。

在启动阶段,输入信号引起电磁线圈内的电磁力增加,推动阀芯开始运动。

随着阀芯运动,流量增大,压力逐渐上升,直到达到设定值。

在稳定阶段,输入信号保持不变,阀芯与阀套之间的开口面积和液压流量保持稳定。

在调整阶段,输入信号发生变化,阀芯位置随之变化,调节液压流量和压力。

在停止阶段,输入信号消失,电磁线圈内的电磁力减小,阀芯回到初始位置,流量和压力恢复到初始状态。

穆格伺服阀的工作原理基于电磁力和液压力的相互作用,需要精确的电流控制和阀芯设计才能实现高精度的控制效果。

同时,穆格伺服阀还需要考虑液压系统的动态响应特性,以保证系统的稳定性和可靠性。

因此,在应用穆格伺服阀时,需要综合考虑各种因素,如输入信号的频率、幅值、稳定性要求,以及液压系统的工作压力、流量等参数。

moog伺服阀j761-003原理

moog伺服阀j761-003原理

MOOG伺服阀J761-003原理……MOOG办事处美国穆格MOOGJ761-003,J761-003系列直动式伺服阀型号:D633,D634系列生产厂家:MOOG 产品说明:高性能直动式伺服阀,由线性力马达直接驱动阀芯运,阀内带有电子放大器对阀芯位置进行闭环控制。

直动式设计避免了先导级的泄漏损失,且动态响应与系统工作压力无关。

安装底面符合ISO4401标准。

频率响应:70HZ阶跃响应:15ms流量控制:3.8-100l/min(1-26gpm)最大工作压力:31.5Mpa该阀适应于金属压制设备,例如剪板机,折弯机,弯管机,木材压机.另外我司优势提供意大利atos阿托斯全系列!备有常规阀现货期待您的来电咨询MOOG伺服阀J761-003原理……MOOG办事处MOOG伺服阀J761-003原理……MOOG办事处格公司(MOOG)是全球电液伺服元件及伺服系统设计及制造领域的领导者,由电液伺服阀的发明者William C. Moog于1951年创立。

产品广泛应用于飞机、卫星、航天飞机、火箭以及各种工业自动化设备。

在工业领域,注塑设备及吹塑设备的伺服控制是我们的重要研究领域之一。

MOOG 是最早进入全电动注塑行业的专业控制厂商之一,向合作伙伴提供DBS、DBM、DS2000 系列驱动器FASTACT 系列电机。

DS2000 驱动器和FAS T 交流伺服电机具有以下一些特点:驱动器可接受三相,50HZ,65到506V间的任意电压;可设定控制交流伺服电机或异步电机;电流环可根据伺服电机特点配置,并按DC BUS变化自动调节,同时提供B.E.M.F 补偿以及相位自校正功能;速度环内集成了三种数字滤波器,动态性能良好,等等MOOG伺服阀原理J761-003&MOOG办事处MOOG伺服阀J761-003 现货供应!常用系列:D634系列,J761系列,G761系列, D791系列;D792系列,D661系列;D662系列;D663系列;D664系列;D665系列;D633系列等MOOG品牌最早起源于航空航天军事工业领域伺服阀及系统制造,主要经营伺服阀,伺服控制器,电动缸,伺服电机,伺服控制软件,行业应用领域广泛,涉及钢铁冶金,电力电站系统,注塑吹塑成型,材料试验,汽车测试仿真系统,航空测试仿真系统等,MOOG伺服阀J761-003/J761-004稳定可靠全部采用进口低飘移、高稳定度的运算放大器,使控制系统能长期、可靠、稳定地工作。

MOOG伺服阀的原理及故障培训

MOOG伺服阀的原理及故障培训

MOOG伺服阀的原理及故障培训一、MOOG伺服阀的工作原理1.信号输入:MOOG伺服阀接受一个电气信号作为指令输入。

该信号可以是模拟信号,也可以是数字信号。

2.电动阀芯:MOOG伺服阀内部有一个电动阀芯,该阀芯可以通过电机或电磁铁驱动。

信号输入后,阀芯会相应地移动。

3.流量调节:当阀芯移动时,阀芯与阀座之间的孔口的大小发生变化,从而控制流体通过阀口的流量大小。

阀芯的位置可以精确控制,使得流量可以按照设定的指令进行调节。

4.反馈系统:MOOG伺服阀还配备了反馈系统,用于将执行器的实际运动状态反馈给阀芯,并与输入信号进行比较,以确保输出信号与输入信号一致。

二、MOOG伺服阀的常见故障及处理方法1.阀芯卡阻:由于阀芯长期没有清洗、保养或润滑不良,可能会导致阀芯卡阻,导致伺服阀无法正常工作。

此时,应对伺服阀进行清洗、保养和润滑,并定期检查。

2.油液污染:油液中的杂质、悬浮物和水分可能会导致MOOG伺服阀内进口和出口通道的堵塞,使阀芯无法正常工作。

解决方法是定期更换和过滤油液,确保油液质量良好。

3.调节不准确:当信号输入与阀芯位置不匹配时,就会导致伺服阀的调节不准确。

此时,检查输入信号的准确性,并校准伺服阀的参数。

4.电气故障:MOOG伺服阀使用电气信号进行控制,如果电气元件损坏或接线不良,可能会导致伺服阀无法工作。

检查电气元件的连接是否正确,并修复或更换损坏部件。

5.漏油:MOOG伺服阀内部的密封件可能会因为长期使用和磨损而出现漏油现象。

及时更换损坏的密封件,保持伺服阀的正常工作。

总结:MOOG伺服阀是控制液压系统中液压动作执行器的重要元件,其工作原理是通过电气信号控制阀芯位置,调节流量实现精确控制。

常见故障包括阀芯卡阻、油液污染、调节不准确、电气故障和漏油现象。

处理这些故障的方法包括清洗、保养和润滑阀芯、更换和过滤油液、校准伺服阀参数、检查电气元件连接和更换损坏的密封件等。

穆格(Moog) G761 -761系列流量控制伺服阀说明书

穆格(Moog) G761 -761系列流量控制伺服阀说明书

为高性能两级设计的流量控制阀,结构简单、坚固,工作可靠,使用寿命长。

2021 年 9 月哪里需要最高水平的运动控制性能和设计灵活性,哪里就能看到穆格技术。

通过协作、创新以及世界级水平的技术解决方案,我们将助您攻克最艰巨的工程难关。

穆格旨在帮助您提高机器的性能,获取超乎想象的新体验。

简介 (2)产品概述 (3)工作原理 (5)技术参数 (6)G761/-761 系列伺服阀 (6)安装图 (11)安装要求 (12)电气接线 (13)背景 (14)流量计算 (14)订货信息 (15)备件及附件 (15)相关产品 (16)关于穆格 (17)订货编码 (19)本产品样本用于为具有一定专业知识的客户提供信息和参数。

为确保获得系统功能和系统的安全性,请对照此样本仔细查看产品的适用性。

文中所述产品如有任何更改,恕不另行通知。

如果有任何疑问,请与穆格公司联系。

Moog 是穆格公司及其子公司的注册商标。

除非另有说明,文中出现的所有商标均为穆格及其子公司所有。

产品概述阀的设计 带阀芯、阀套和干式力矩马达的两级伺服阀安装型式ISO 10372-04-04-0-92P、A、B 和 X 口最大工作压力• 铝制阀体:315 bar (4,500 psi)• 钢制阀体:350 bar (5,000 psi)T 口最大工作压力210 bar (3,000 psi)先导阀喷嘴挡板阀为 35 bar/每一节流边 (500 psi /每一节流边)时的额定流量Δp N 0.5 至 75 l/min (0.125 至 19.5 gpm)从 0 至 100% 行程的阶跃响应时间标准响应型: < 8 ms 高响应型: < 6 ms 超高响应型: < 4 ms在有潜在危险的环境中可以选用本质安全型和防爆型伺服阀。

特殊型号均经过 FM、ATEX、CSA、TIIS 和 IECEx标准认证。

详细信息请联系穆格获取。

文件文件名称说明备注穆格文件号目录G761/-761 系列基本信息注:请访问 /industrialCDL6642手册G761/-761CDS6673G761K/-761K 本质安全型系列CDS6769安装图G761/-761 1系列总体设计CB59420G761K/-761K 系列,2 组线圈CA33637G761/-761 系列流量控制伺服阀是可用作三通和四通节流型流量控制阀,用于四通阀时控制性能更好。

MOOG-D631型电液伺服阀的原理

MOOG-D631型电液伺服阀的原理

电液伺服阀的原理(MOOG-D631型)更新时间:2011-1-29 14:47:39 作者:admin 来源:长春创元测试设备有限公司浏览:11574 次关闭1.型号MOOG D631 –054CD631电液伺服阀外形图2. D631的结构组成图1 D631的结构组成3. 力矩马达(1)力矩马达的结构力矩马达是一种电—机械转换器,它的作用是把输入的电信号转变成力矩,使衔铁偏转,以对前置级液压部分进行控制。

衔铁转角的大小与输入的控制电流大小成正比。

如果输入控制电流的方向相反,则衔铁偏离中间位置的方向也相反。

D631电液伺服阀的力矩马达属于永磁动铁式力矩马达(如图2所示),它主要是由永久磁铁(磁钢)、导磁体(轭铁)、衔铁(和两个控制线圈)、导杆轴及弹性套座等组成的。

衔铁通过导杆由弹性套座支承在两个导磁体的中间位置,可绕导杆作微小转动,并与导磁体形成四个工作气隙(如图1所示),控制线圈在衔铁上。

图2 D631伺服阀的力矩马达外形及结构图3 D631伺服阀的衔铁组件(2)力矩马达的工作原理图4 D631伺服阀力矩马达原理图D631伺服阀力矩马达的原理如下:如图4所示,图中有两个控制线圈。

力矩马达的输入量为控制线圈中的信号电流,输出量是衔铁的转角或与衔铁相连的挡板位移。

力矩马达的两个控制线圈可以互相串联、并联,由直流放大器供电。

永久磁铁的初始励磁将导磁体磁化,一个为N极,另一个为S极。

当输入端无信号电流时,衔铁在上下导磁体的中间位置,由于力矩马达结构是对称的,永久磁铁在工作气隙中所产生的极化磁通是一样的,使衔铁两端所受的电磁吸力相同,力矩马达无转矩输出。

当有信号电流时,控制线圈产生控制磁通,其大小与方向由信号电流决定。

最终,在合成磁通的作用下,衔铁绕导杆产生一定方向和角度的偏转,当各转矩平衡时,衔铁停止转动。

如果信号电流反向,则电磁转矩也反向。

由上述原理可知,力矩马达产生的电磁转矩,其大小与信号电流大小成比例,其方向也由信号电流的方向决定。

MOOG穆格伺服阀的工作原理

MOOG穆格伺服阀的工作原理

MOOG穆格伺服阀的工作原理穆格伺服阀的维修保护:1.在条件许可的情况下,应定期检查工作液的污染度。

2.应建立新油是“脏油"的概念,如果在油箱中注入10%以上的新油液,即应换上冲洗板,启动油源,清洗24小时以上,然后更换或清洗滤油器,再卸下冲洗板,换上伺服阀。

一般情况下,长时间经滤器连续使用的液压油往往比较干净。

因此,在系统无渗漏的情况下应减少无谓的加油次数,避免再次污染系统。

3.系统换油时,在注入新油前应*清洗油箱,换上冲洗板,通过5~10μm的滤油器向油箱注入新油。

启动油源,冲洗24小时以上,然后更换或清洗滤器,完成管路、油箱的再次清洗。

4.伺服阀在使用过程中出现堵塞等故障现象,不具备专业知识及设备的使用者不得擅自分解伺服阀,用户可按说明书的规定更换滤器。

如故障还无法排除,应返回生产单位进行修理、排障、调整。

5.如条件许可,伺服阀需定期返回生产单位清洗、调整。

6.使用条件好的油源,油质保持相对较好的,可以较长时间不换油,这对系统可靠运行是有好处的。

7.切忌让铁磁物质长期与马达壳体相接触,防止马达跑磁,跑磁严重时伺服阀甚至不能工作,轻则影响伺服阀零位和输出。

8.除非外部有机械调零装置,否则不要自己擅拆伺服阀去调零。

因为伺服阀是精密液压元件,调试离不开实验台,离不开工装夹具。

9.伺服阀本身带有保护滤器,更换滤器的方法接受厂方的指导。

10.伺服阀的装卸,增加了一次油源受污染的时候,所以千万要注意干净,这是重要的保养要求。

美国MOOG伺服阀的故障、原因及排除:美国MOOG伺服阀的故障常常在电液伺服系统调试或工作不正常情况下发现的。

所以这里有时是系统问题包括放大器、反馈机构、执行机构等故障,有时确是伺服阀问题。

所以首先要搞清楚是系统问题、还是伺服阀问题。

解决这疑问的常用办法是:一、有条件的将阀卸下,上实验台复测一下即可。

二、大多数情况无此条件,这时一个简单的办法是将系统开环,备用独立直流电源、经万用表再给伺服阀供正负不同量值电流,从阀的输出情况来判断阀是否有毛病,是什么毛病。

moog伺服阀工作原理

moog伺服阀工作原理

moog伺服阀工作原理
Moog伺服阀是一种控制设备,可通过精确控制液压流量和压力来实现机器或系统的运动控制。

伺服阀的工作原理是基于一种称为离心结构的流体动力学原理。

当液体进入伺服阀时,它会通过一个相对旋转的阀芯和阀座(或称为阀门)进行控制。

阀芯上的控制口和阀座上的孔隙共同决定了通过伺服阀的液体流量和压力。

在正常工作情况下,液体将通过阀芯的控制口和阀座上的孔隙流过,并且在通过这些通道时会产生一定的阻力。

通过调整控制口和孔隙的大小,可以改变流体通过伺服阀的速度和压力。

当液压系统需要进行动作控制时,控制信号将输入到伺服阀的阀芯上。

这个控制信号可以是电信号,也可以是压力信号,取决于伺服阀的类型。

当控制信号施加在阀芯上时,它会使阀芯相对阀座旋转或移动,从而改变阀芯和阀座之间的相对位置。

这个相对位置的变化将会改变控制口和孔隙的开度,从而改变液体通过伺服阀的流量和压力。

通过精确调整控制信号的大小和频率,可以实现精确的运动控制。

例如,如果液压系统需要进行一个快速且精确的移动,那么可以增大控制信号的大小和频率,以便迅速打开控制口和孔隙,从而增加液体流量和压力,从而加速机器或系统的运动。

反之,如果需要进行一个缓慢和精细的移动,那么可以减小控制信号的大小和频率,以便减小液体流量和压力,从而降低机器或系统的运动速度。

总之,Moog伺服阀通过调整控制口和孔隙的大小来控制液体的流量和压力,从而实现精确的运动控制。

全文没有重复的标题。

美国MOOG伺服阀伺服阀的工作原理及作用

美国MOOG伺服阀伺服阀的工作原理及作用

美国MOOG‎伺服阀,伺服阀的工作‎原理及作用1、电液伺服阀主‎要用于电液伺‎服自动控制系‎统,其作用是将小‎功率的电信号‎转换为大功率‎的液压输出,经过液压执行‎机构来完成机‎械设备的自动‎化控制.伺服阀是一种‎经过改动输入‎信号。

依据输入信号‎的方式不同,分为电液伺服‎阀和机液伺服‎阀。

电液伺服阀既‎是电液转换元‎件,又是功率放大‎元件,它的作用是将‎小功率的电信‎号输入转换为‎大功率的液压‎能(压力和流量)输出,完成执行元件‎的位移、速度、加速度及力控‎制。

液压泵的输出‎压力是指液压‎泵在实践工作‎时输出油液的‎压力,即泵工作时的‎出口压力,通常称为工作‎压力,其大小取决于‎负载。

电液伺服阀通‎常由电气—机械转换安装‎、液压放大器和‎反应(均衡)机构三局部组‎成。

反应战争衡机‎构使电液伺服‎阀输出的流量‎或压力取得与‎输入电信号成‎比例的特性。

压力的稳定通‎常采用压力控‎制阀,比方溢流阀等‎。

2.细致材料:典型电---气比例阀、伺服阀的工作‎原理电---气比例阀和伺‎服阀按其功用‎可分为压力式‎和流量式两种‎。

压力式比例/伺服阀将输给‎的电信号线性‎地转换为气体‎压力;流量式比例/伺服阀将输给‎的电信号转换‎为气体流量。

美国威格士V‎I CKERS‎柱塞泵由于气‎体的可紧缩性‎,使气缸或气马‎达等执行元件‎的运动速度不‎只取决于气体‎流量。

还取决于执行‎元件的负载大‎小。

因而准确地控‎制气体流量常‎常是不用要的‎。

单纯的压力式‎或流量式比例‎/伺服阀应用不‎多,常常是压力和‎流量分离在一‎同应用更为普‎遍。

电---气比例阀和伺‎服阀主要由电‎---机械转换器和‎气动放大器组‎成。

但随着近年来‎低价的电子集‎成电路和各种‎检测器件的大‎量呈现,在1电---气比例/伺服阀中越来‎越多地采用了‎电反应办法,这也大大进步‎了比例/伺服阀的性能‎。

电---气比例/伺服阀可采用‎的反应控制方‎式,阀内就增加了‎位移或压力检‎测器件,有的还集成有‎控制放大器。

MOOG伺服阀J761-原理……MOOG办事处

MOOG伺服阀J761-原理……MOOG办事处

MOOG伺服阀J761-003原理……MOOG办事处美国穆格MOOGJ761-003,J761-003系列直动式伺服阀型号:D633,D634系列生产厂家:MOOG 产品说明:高性能直动式伺服阀,由线性力马达直接驱动阀芯运,阀内带有电子放大器对阀芯位置进行闭环控制。

直动式设计避免了先导级的泄漏损失,且动态响应与系统工作压力无关。

安装底面符合ISO4401标准。

频率响应:70HZ阶跃响应:15ms流量控制:3.8-100l/min(1-26gpm)最大工作压力:31.5Mpa该阀适应于金属压制设备,例如剪板机,折弯机,弯管机,木材压机.另外我司优势提供意大利atos阿托斯全系列!备有常规阀现货期待您的来电咨询!!!MOOG伺服阀J761-003原理……MOOG办事处MOOG伺服阀J761-003原理……MOOG办事处格公司(MOOG)是全球电液伺服元件及伺服系统设计及制造领域的领导者,由电液伺服阀的发明者William C. Moog于1951年创立。

产品广泛应用于飞机、卫星、航天飞机、火箭以及各种工业自动化设备。

在工业领域,注塑设备及吹塑设备的伺服控制是我们的重要研究领域之一。

MOOG 是最早进入全电动注塑行业的专业控制厂商之一,向合作伙伴提供DBS、DBM、DS2000 系列驱动器FASTACT 系列电机。

DS2000 驱动器和FAS T 交流伺服电机具有以下一些特点:驱动器可接受三相,50HZ,65到506V间的任意电压;可设定控制交流伺服电机或异步电机;电流环可根据伺服电机特点配置,并按DC BUS变化自动调节,同时提供 B.E.M.F 补偿以及相位自校正功能;速度环内集成了三种数字滤波器,动态性能良好,等等MOOG伺服阀原理J761-003&MOOG办事处MOOG伺服阀J761-003 现货供应!常用系列:D634系列,J761系列,G761系列, D791系列;D792系列,D661系列;D662系列;D663系列;D664系列;D665系列;D633系列等MOOG品牌最早起源于航空航天军事工业领域伺服阀及系统制造,主要经营伺服阀,伺服控制器,电动缸,伺服电机,伺服控制软件,行业应用领域广泛,涉及钢铁冶金,电力电站系统,注塑吹塑成型,材料试验,汽车测试仿真系统,航空测试仿真系统等,MOOG伺服阀J761-003/J761-004稳定可靠全部采用进口低飘移、高稳定度的运算放大器,使控制系统能长期、可靠、稳定地工作。

伺服阀的工作原理及应用

伺服阀的工作原理及应用

伺服阀的工作原理及应用1. 什么是伺服阀伺服阀是一种用于控制流体的阀门。

它通过调整阀门开口的大小,以控制流体的流量和压力。

伺服阀通常由阀体、阀门、阀芯、驱动装置和控制系统等组成。

2. 伺服阀的工作原理伺服阀的工作原理基于电磁力和流体力的相互作用。

当通过控制系统的信号传递给驱动装置时,驱动装置产生的电磁力将阀芯移动,从而改变阀门的开口大小。

改变阀门开口大小可以调节流体的流量和压力。

3. 伺服阀的应用伺服阀广泛应用于各种工业领域,特别是需要精确控制流体流量和压力的系统中。

以下是几个常见的应用领域:•液压系统控制:伺服阀可以用于控制液压系统中的流量和压力,实现对液压系统的精确控制。

•风力发电系统:在风力发电系统中,伺服阀可以用于调节液压装置的工作,控制叶片的角度和转速,以实现稳定的发电效果。

•汽车制动系统:伺服阀可以用于汽车制动系统中的液压控制,通过调节制动力的大小,实现刹车的精确控制。

•机械加工设备:伺服阀可以用于机械加工设备中的液压控制,实现对加工过程的精确控制。

•工厂自动化设备:伺服阀可以用于工厂自动化设备中的流体控制,例如机器人的运动控制、装配线的调节等。

4. 伺服阀的特点伺服阀具有以下特点:•高精度控制:伺服阀可以实现对流体流量和压力的精确调节,其控制精度通常在0.1%以内。

•快速响应:伺服阀能够迅速响应控制信号的变化,并实时调整阀门开口大小,以实现快速而准确的流体控制。

•耐高压:伺服阀通常能够承受较高的工作压力,适用于高压液体控制系统。

•可靠性高:伺服阀由于使用先进的控制技术和材料,具有较长的使用寿命和较高的可靠性。

5. 伺服阀的选择和维护选择合适的伺服阀需要考虑以下因素:•流量和压力范围:根据实际需求选择适合的流量和压力范围的伺服阀。

•控制精度:根据所需的控制精度选择合适的伺服阀。

•工作环境:考虑伺服阀工作环境的温度、液体性质等因素,选择耐高温、耐腐蚀等特殊要求的伺服阀。

维护伺服阀同样重要,以下是一些常见的维护措施:•定期检查阀门和阀芯的磨损情况,及时更换磨损的部件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国MOOG伺服阀,伺服阀的工作原理及作用
1、电液伺服阀主要用于电液伺服自动控制系统,其作用是将小功率的电信号转换为大功率的液压输出,经过液压执行机构来完成机械设备的自动化控制. SupeSite/X-Space官方站y Q d:E p p.P
伺服阀是一种经过改动输入信号。

依据输入信号的方式不同,分为电液伺服阀和机液伺服阀。

SupeSite/X-Space官方站(R w _ }/i-A
电液伺服阀既是电液转换元件,又是功率放大元件,它的作用是将小功率的电信号输入转换为大功率的液压能(压力和流量)输出,完成执行元件的位移、速度、加速度及力控制。

+C6S c {(p a0液压泵的输出压力是指液压泵在实践工作时输出油液的压力,即泵工作时的出口压力,通常称为工作压力,其大小取决于负载。

SupeSite/X-Space官方站Y \ h+I r2k L
电液伺服阀通常由电气—机械转换安装、液压放大器和反应(均衡)机构三局部组成。

反应战争衡机构使电液伺服阀输出的流量或压力取得与输入电信号成比例的特性。

压力的稳定通常采用压力控制阀,比方溢流阀等。

2.细致材料:
典型电---气比例阀、伺服阀的工作原理
电---气比例阀和伺服阀按其功用可分为压力式和流量式两种。

压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。

美国威格士VICKERS柱塞泵由于气体的可紧缩性,使气缸或气马达等执行元件的运动速度不只取决于气体流量。

还取决于执行元件的负载大小。

因而准确地控制气体流量常常是不用要的。

单纯的压力式或流量式比例/伺服阀应用不多,常常是压力和流量分离在一同应用更为普遍。

电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。

但随着近年来低价的电子集成电路和各种检测器件的大量呈现,在1电---气比例/伺服阀中越
来越多地采用了电反应办法,这也大大进步了比例/伺服阀的性能。

电---气比例/伺服阀可采用的反应控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。

滑阀式电---气方向比例阀
美国穆格伺服阀,流量式四通或五通比例控制阀能够控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。

图示即为这类阀的构造原理图。

它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等同意。

位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。

控制放大器的主要作用是:
1)将位移传感器的输出信号停止放大;
2)比拟指3)令信号Ue和位移反应信号Uf,4)得到两者的差植5)U;6)将U放大,7)转换为电流信号I输出。

此外,8)为了改善比例阀的性能,9)控制放大器还含有对反应信号Uf和电压差U的处置环节。

比方状态反应控制和PID调理等。

带位置反应的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传感器的反应电压Uf=0。

若阀芯遭到某种干扰而偏离调定的零位时,美国穆格MOOG伺服阀位移传感器将输出一定的电压Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。

若指令Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推进阀芯右移。

而阀芯的右移又惹起反应电压Uf的增大,直至Uf与指令电压Ue根本相等,阀芯到达力均衡。

此时。

Ue=Uf=KfX(Kf为位移传感器增益)
上式标明阀芯位移X与输入信号Ue成正比。

若指令电压信号Ue<0,经过上式相似的反应调理过程,使阀芯左移一定间隔。

阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B 连通,A与排气口连通。

节流口启齿量随阀芯位移的增大而增大。

上述的工作原理阐明带位移反应的方向比例阀节流口启齿量与气流方向均受输入电压Ue的线性控制。

这类阀的优点是线性度好,滞回小,动态性能高。

滑阀式二级方向伺阀
下图所示为一种动圈式二级方向伺服阀。

它主要由动圈式力马达、喷嘴挡板式气动放大器、滑阀式气动放大器、反应弹簧等组成。

喷嘴档板气动放大器做前置级,滑阀式气动放大器做功率级。

这种二级方向伺服阀的工作原理是:在初始状态,左右两动圈式力马达均无电流输入,也无力输出。

在喷嘴气流作用下,两挡板使可变节流器处于全开状态,容腔3、7内压力简直与大气压相同。

滑阀阀芯被装在两侧的反应弹簧5、6推在中位,两输出口A、B与气源口P和排气口O均被隔开。

当某个动圈式马达有电流输入是(例如右侧力马达),输出与电流I成正比的推力Fm将挡板推向喷嘴,使可变节流器的流通面积减小,容腔6内的气压P6升高,升高后的P6又经过喷嘴对档板产生反推力Ff。

当Ff与Fm均衡时,P6趋于稳定,其稳定值乘以喷嘴面积Ay等于电磁力。

另一方面,美国派克PARKER 柱塞泵P6升高使阀芯两侧产生压力差,该压力差作用于阀芯断面使阀芯克制反应弹簧力左移,并使左边反应弹簧的紧缩量增加,产生附加的弹簧力Fs,方向向右,大小与阀芯位移X成正比。

当阀芯挪动到一定位置时,弹簧附加作用力与7、3容腔的压差对阀芯的作用力到达均衡,阀芯不在挪动。

此时同时存在阀芯和挡板的受力均衡方程式:
Fs=KsX=(P6-P5)Ax
Ff=P6Ay=KiI
式中KS----反应弹簧刚度
Ax----阀芯断面积
Kf----动圈式力马达的电流增益。

在上述的调理过程中,左侧的喷嘴挡板一直处于全开状态,能够以为P5=0,代入后整理上述两式可得
X=(AxKi/AyKs)*I
阀芯位移与输入电流成正比。

当另一侧动圈式马达有输入时,经过上述相似的调理过程,阀芯将向相反方向挪动一定间隔。

当阀芯左移时,气源口P与输出口A连通,B口通大气;美国穆格MOOG伺服阀阀芯右移时,P与B通,A口通大气。

阀芯位移量越大,阀口启齿量也越大。

这样就完成了对气流的活动方向和流量的控制。

这类阀采用动圈式马达,动态性能好,缺陷是构造比拟复杂。

相关文档
最新文档