脑控技术是人类可敬又可怕的未来
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脑控技术是人类可敬又可怕的未来
编者:脑控技术是从人的脑波提取信号,投射到设备上进行操控的技术。而脑控的发展还刚刚起步,目前对于大脑信元的编码还在不断探索和丰富的过程中,但已经取得的脑波信号归纳编码对应控制一些外设。那麽未来会是什么样?也许除了脑波控制外设,可以在两具或多具脑控连结设备间能展开一场可以同步的脑波会议,不用言语大家就能准确的同步一个想法。那麽对大脑了解多少,请看此文。
大脑不休息
与人体其的他器官不同,大脑在人的一生中一直处在活动状态。从能量代谢的角度讲,肌肉在休息时的耗能几乎可以忽略不计,但在收缩运动时会消耗1000倍以上的能量。相反,大脑无论在工作还是休息时都要消耗大概身体总代谢量的20%。而在工作时的耗能水平只比休息时高5%。正是因为如此,休息时的大脑更应该被看成是一种独特的状态,而并不是简单的休息。圣路易斯华盛顿大学的Marcus Raichle 等人在2001年时将这种状态(resting-state)命名为默认模式(default mode),并将一些在休息状态时神经活动更高的区域组成的网络称为为默认网络(default mode network)。这一网络中的区域的神经活动在人执行特定的任务的时候反而会下降,通常认为是负责产生自发的想法以及无目的的
思考。对于大脑的休息状态,另一个重要的发现要追溯到1995年。当时在威斯康辛医学院的Bharat Biswal等人发现在完全没有运动的休息状态,大脑左右两侧运动皮层的fMRI 信号仍然会显示出很强的相关性。fMRI技术是一种无创的记录脑活动的方法,它通过测量脑血流中含氧血红蛋白和脱氧血红蛋白的比例间接地反映神经活动。这是一个非常重要的发现。因为之前虽然知道左右两侧的运动皮层在完成双手协调任务时会同时激活,但并没有人会想到人在没有动双手的时候负责控制两侧手的区域仍然会同步活动。这提示了一个大脑重要的属性。大脑中存在着自发的脑活动,而且这些自发脑活动不是杂乱无章的,而是有组织的。在接下来的一系列研究都发现,凡是已知的功能相关的脑区之间,在静息态时也都会显示出很强的相关。这一组组相互关联的区域就组成了不同的脑功能网络,比如视觉网络、运动网络和注意网络等等。这种使用静息态fMRI数据分析大脑功能网络的技术目前正日趋流行,而且是当前美国的人脑连接组项目(human connectome project)的基础技术之一。既然休息时的脑活动已经能反映大脑的网络结构,那么,大脑活动时的状态又会有什么差别呢?大脑可以大致的分为两个系统:一个是之前提到的默认网络系统;另一个是负责各种具体任务的区域的集合,通常被称为任务正网络。这两个网络的神经活动是负相关的:一个网络的活动升高,另一个网络的活动
就下降。在大脑执行具体任务时,任务正网络的活动升高,默认网络的活动下降。而在休息时,任务正网络的活动降低,默认网络的活动升高。但是,正如之前所说,从休息到任务,各个区域耗能的变化都小于5%。那么,从静息态到任务态,大脑还发生了哪些变化呢?大脑中的默认网络(黄色)和任
务正网络(蓝色) (来源Fox et al., 2005)
从区域到网络
从比较宏观的层面,大脑的可以分为很多相对模块化的区域,分别负责完成相应功能。比如,在初级视皮层有负责加工特定朝向线条功能柱,在高级视皮层有负责专门加工人脸的梭状回面孔区的,还有,嗯,负责"休息"的默认网络区域等等。但作为一个整体,大脑的各个区域之间是相互联系的。日常的心理活动以及思维推理等,更是需要整合各个脑区的信息才能够完成。这时候,所谓的大脑网络就变成了数学图论里的抽象的网络——每个脑区是一个节点,脑区之间联系是网络的边。很多理论家都认为,大脑网络是理解大脑功能的关键之一。研究大脑网络正是我所在的实验室致力解决的问题之一。在去年发表的一篇文章中,我们就试图比较大脑在休息状态和工作状态时脑网络的结构差别。如之前所述,休息状态时的脑网络已经研究的比较成熟。研究参与者只要躺在MRI机器里什么都不做,他们的脑活动就可以被记录下来并进行分析。而对于任务状态下的脑活动,我们很难让参与者
穷尽所有的任务,记录他们在各种不同任务下的脑活动。因此,我们把注意转向已经发表的文献。一个典型的脑成像研究会设计一两个任务让参与者完成,同时对比不同任务条件下大脑激活的区域。这些研究中还有一个很重要但经常被忽视的信息,那就是哪些区域会被同时激活,而哪些不会。可以想象,如果两个区域是负责相近的功能,比如一个负责加工形状一个负责加工颜色,那么他们就更可能在同一个视觉任务中被激活(或都不被激活)。而如果两个区域所负责的功能是没有关联的,那么他们在一个任务中是否被激活就没有联系。实际上,静息态下脑区之间的相关性与执行不同任务时脑区共同激活的概率之间的关联是很高的。如果两个区域在静息态的脑活动有很高相关,那么它们被同时激活的概率也更高,反之亦然。但仔细考察静息态脑网络和任务态脑网络的组织结构,就会发现一些很有意思的差别。
小世界
先扯远一点。也许你有过这种经历。你新结识一个人,聊着聊着,忽然发现你们会同时认识另外一个人。这时人们常常感慨,“世界真小啊”。这就是所谓“小世界”的来历。小世界的原理在上世纪末被揭开。而这个关键对理解大脑网络也至关重要。大脑主要是由神经元以及神经元的联系组成。神经元之间的联系是在发育过程中建立,并随着日常经验变化。可以想象,受物理结构限制,一个神经元更容易与相邻的神经
元联系。在Watts和Strogatz发表于1998年的著名文献中,这种受物理属性限制的网络被称为常规网络(下图左)。图中每个圆点代表网络的一个节点(脑区)。每个节点只与邻居节点以及邻居的邻居相连。这样的网络的好处是,邻居之间都互相认识,局部信息传递快。但缺点是,整体的信息的传递并不顺畅。如果想走过相距最远的两个节点,比如最上方和最下方的点,需要5步才能实现。另一个极端是所有的节点完全随机的连接(下图右)。这样的网络会存在相邻但不直接联系的节点,但好处是走过随机挑选两个节点的步数会大大降低。把走过任意两个节点的最小步数进行平均,就是一个很好的指标来描述整个网络信息流动的效率。Watts和Strogatz要解决的问题是如何使受物理约束的网络变成信息流动更顺畅的“小世界”。小世界网络(来源Watts & Strogatz, 1998)答案是远距连接。Watts和Strogatz随机拆掉最左侧常规网络的几条连接,然后随机加到两个相距很远的节点之间。奇妙的属性出现了。网络中任意两个节点的最小连接数会随着远距连接的增加而迅速下降。但同时,大部分相邻的节点之间还保持着很好的相互联系。远距连接或叫捷径,正是形成小世界网络的关键。小世界的网络组织对大脑网络来说也至关重要。一方面,相邻的神经元和神经区域会有更多的联系,这能保证大脑在局部形成模块化,支持各种功能,比如识别光线朝向、识别面孔等。大脑也需要远距连接,这