高考数学第一轮单元复习课件

合集下载

2023新高考数学一轮复习创新课件 第1章 第1讲 集合

2023新高考数学一轮复习创新课件 第1章 第1讲 集合

7.(∁UA)∩(∁UB)=∁U(A∪B),(∁UA)∪(∁UB)=∁U(A∩B). 8.如图所示,用集合A,B表示图中Ⅰ,Ⅱ,Ⅲ,Ⅳ四个部分所表示 的集合分别是A∩B,A∩(∁UB),B∩(∁UA),∁U(A∪B).
9.用card(A)表示有限集合A中元素的个数.对任意两个有限集合A, B,有card(A∪B)=card(A)+card(B)-card(A∩B).
存在元素x∈B,且x∉A
20 _____A__B__或__B___A_______
表示 关系
文字语言
符号语言
任何一个集合是它本身的子集
A⊆A
结论
若A是B的子集,B是C的子集,则A A⊆B,B⊆C⇒ 21 _A_⊆__C__
是C的子集
空集是 22 _任__何___集合的子集,是 23 __任__何__非__空____集合的真子集
∅⊆A ∅ B(B≠∅)
3.集合的基本运算 并集
交集
补集
图形
符号
A∪B= 24 _{_x_|_x∈__A__,__ A∩B= 25 _{_x_|_x_∈__A_,__
_或__x_∈__B__}__
_且__x_∈__B_}__
∁UA= 26 __{_x_|x_∈__U_,___ _且__x_∉__A_}_
A.0
B.2
C.-2
D.1
解析 由题意得,当a=1时,P={1},当a≠1时,P={1,a};当b= -1时,Q={-1},当b≠-1时,Q={-1,b},因为P=Q,所以当且仅 当a=-1,b=1时,符合题意,故a-b=-2.故选C.
解析 答案
(3) 已 知 集 合 A = {x|(x + 1)(x - 6)≤0} , B = {x|m - 1≤x≤2m + 1} . 若 B⊆A,则实数m的取值范围为________.

高考数学一轮复习第一章第二讲充分条件与必要条件课件

高考数学一轮复习第一章第二讲充分条件与必要条件课件

p⇒q且q p
p是q的必要不充分条件
p q且q⇒p
p是q的充要条件
p⇔q
p是q的既不充分也不必要条件
p q且q p
2.充分条件与必要条件的两个特征
(1)对称性:若 p 是 q 的充分条件,则 q 是 p 的必要条件,即 “p⇒q”则“q⇐ p”.
(2)传递性:若 p 是 q 的充分(必要)条件,q 是 r 的充分(必要) 条件,则 p 是 r 的充分(必要)条件,即“p⇒q 且 q⇒r”,则“p⇒r” (“p⇐ q 且 q⇐ r”,则“p⇐ r”).
第二讲 充分条件与必要条件
1.理解必要条件的含义,理解性质定理与必要条件的关系. 2.理解充分条件的含义,理解判定定理与充分条件的关系. 3.理解充要条件的含义,理解数学定义与充要条件的关系.
1.充分条件、必要条件与充要条件的概念
若p⇒q,则p是q的充分条件,q是p的必要条件
p是q的充分不必要条件
答案:[0,3]
【考法全练】
1.(考向 1)(2023 年潮南区开学)已知复数 z1=4-7i,z2=m+
2i(m∈R),zz21在复平面内所对应的点位于第三象限的一个充分不必 要条件是( )
பைடு நூலகம்
A.m<-2
B.m<-87
C.-87<m<27
D.m<27
解析:根据题意,得zz12=m4-+72ii=4m6-5 14+8+657mi,故在复平
C 相交”的充分不必要条件.故选 A. 答案:A
答案:A
2.(2023 年高州市二模)已知直线 l:y=kx 与圆 C:(x-2)2+
(y-1)2=1,则“0<k< 33”是“直线 l 与圆 C 相交”的(

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第1章 第1讲集合的概念与运算-2021版高三数学(新高考)一轮复习课件共45张PPT

第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
[解析] (1)B={x|x∈A}={1,2,3}=A,故选 C.
(2)∵集合 A={x|x=sin n3π,n∈Z}={0, 23,- 23},且 B⊆A,∴集合 B 的个 数为 23=8,故选 C.
(3)解法一:(列举法),由题意知
高考一轮总复习 • 数学 • 新高考
返回导航
(2)(多选题)(2020·湖南长郡中学模拟改编)已知集合 M={y|y=x-|x|,x∈R},N
={y|y=(12)x,x∈R},则下列不正确的是(ABD )
A.M=N
B.N⊆M
C.M=∁RN
D.(∁RN)∩M=∅
(3)已知集合 A={x|x2-3x-10≤0},B={x|mx+10>0},若 A⊆B,则 m 的取值范
返回导航
(3)若 a+2=1,则 a=-1,A={1,0,1},不合题意;若(a+1)2=1,则 a=0 或-
2,当 a=0 时,A={2,1,3},当 a=-2 时,A={0,1,1},不合题意;若 a2+3a+3=1,
则 a=-1 或-2,显然都不合题意;因此 a=0,所以 2 0200=1.
∵1∉A,∴a+2≠1,∴a≠-1;(a+1)2≠1,解得 a≠0,-2;a2+3a+3≠1 解
A.(-1,1)
B.(1,2)
C.(-1,+∞)
D.(1,+∞)
[解析] 由题意得A∪B={x|x>-1},即A∪B=(-1,+∞),故选C.
第一章 集合与常用逻辑用语
高考一轮总复习 • 数学 • 新高考
返回导航
6. (2019·全国卷Ⅱ,5分)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

根据集合的运算结果求参数的值或范围的方法 (1)将集合中的运算关系转化为两个集合之间的关系.若集合中 的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若 是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取 到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.
1.设集合 A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则 A∩B
(5,6] 解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
与集合中的元素有关问题的求解思路 (1)确定集合中元素的特征,即集合是数集还是点集或其他集合. (2)看清元素的限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,但要检 验参数是否满足集合元素的互异性.
1.A∪B=A⇔B⊆A. 2.A∩B=A⇔A⊆B. 3.∁U(∁UA)=A.
4.常用结论 (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n 个,真子集有(2n -1)个,非空真子集有(2n-2)个. (2)子集的传递性:A⊆B,B⊆C⇒A⊆C. (3)∁U(A∩B)=(∁UA)∪(∁UB), ∁U(A∪B)=(∁UA)∩(∁UB).
(4)集合与集合间的基本关系 ①子集:集合A中任意一个元素都是集合B中的元素.用符号表 示为 A⊆B (或 B⊇A ). Venn图如图所示:
②真子集:集合 A⊆B,但存在元素 x∈B,且 x A.用符号表示 为:A B(或 B A).
Venn 图如图所示:
③集合相等:集合A的任何一个元素都是集合B的元素,同时集 合B的任何一个元素都是集合A的元素.用符号表示为 A=B .
1.设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x-2)·log2x=0} 的关系可表示为( )

高三高考数学第一轮复习课件三角函数复习

高三高考数学第一轮复习课件三角函数复习

]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2

(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(

A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]

D、[5,+∞﹚

2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

2024年高考数学一轮复习(新高考版)《圆的方程》课件ppt

设动点P的坐标为(x,y), 因为 M(1,0),N(2,0),且|PN|= 2|PM|, 所以 x-22+y2= 2· x-12+y2,
整理得x2+y2=2, 所以动点P的轨迹C的方程为x2+y2=2.
(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q 的轨迹方程.
(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B
=0,D2+E2-4AF>0.( √ )
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20+y20+Dx0+Ey0+
F>0.( √ )
教材改编题
1.圆心为(1,1)且过原点的圆的方程是 A.(x-1)2+(y-1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2
若过(0,0),(4,0),(4,2),
F=0,
则16+4D+F=0, 16+4+4D+2E+F=0,
F=0,
解得D=-4, E=-2,
满足 D2+E2-4F>0,
所以圆的方程为x2+y2-4x-2y=0,
即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),
F=0,
则1+1-D+E+F=0, 16+4+4D+2E+F=0,
方法二 设 AB 的中点为 D,由中点坐标公式得 D(1,0),由直角三角 形的性质知|CD|=12|AB|=2.由圆的定义知,动点 C 的轨迹是以 D(1,0) 为圆心,2 为半径的圆(由于 A,B,C 三点不共线,所以应除去与 x 轴 的交点). 所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
设圆心坐标为(a,-2a+3),则圆的半径 r= a-02+-2a+3-02

高考一轮数学复习课件:第一章 第一节 集合

高考一轮数学复习课件:第一章  第一节 集合

师生互动
(A ) A.{x|-1<x<3} B.{x|-1<x<1} C.{x|1<x<2} D.{x|2<x<3}
考点三
解析
自主探究
3.已知全集 U={0,1,2,3,4ቤተ መጻሕፍቲ ባይዱ, 集合 A={1,2,3},B={0,2,4},
因 为 U = {0,1,2,3,4} , A = {1,2,3},所以∁UA={0,4},所 以(∁UA)∩B={0,4},故选 A.
解析
2. 已知集合 A={x|x2-3x
自主探究
+2=0,x∈R},B={x|0 <x<5,x∈ N},则满足
B={1,2,3,4}, A={x|x2-3x+2=0}={1,2}, 由 A⊆C⊆B, ∴C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.
师生互动
条件 A⊆C⊆B 的集合 C 的个数为( D ) A.1 C.3 B. 2 D.4
考点三
集合的基本运算
1.集合的并、交、补运算
自主探究
并集:A∪B= {x|x∈A,或 x∈B} ; 交集:A∩B={x|x∈A,且 x∈B}; 补集:∁UA={x|x∈U,且 x∉A};U 为全集,∁UA 表示集合 A 相对于全
师生互动
集 U 的补集. 2.集合的运算性质 (1)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B; (2)A∩A=A,A∩∅=∅; (3)A∪A=A,A∪∅=A; (4)A∩(∁UA)= ∅ ,A∪(∁UA)=
3 性可知不满足题意;当 m=- 时,m+ 2 2
2
师生互动
1 1 1 1 ∴B=2,2,2,3,3,2,3,3 .
考点一
自主探究

高考数学一轮总复习课件:导数的概念与运算

高考数学一轮总复习课件:导数的概念与运算

(4)f(x)= 1-1 2x2;
π (5)f(x)=cos(3x2- 6 ).
【解析】 (1)∵f′(x)=(2x5+8x4-5x3+2x2+8x-5)′,
∴f′(x)=10x4+32x3-15x2+4x+8.
(2)∵f(x)=11+ -
xx+11+-
x x
=(1+ 1-xx)2+(1- 1-xx)2
π 5.设正弦函数y=sinx在x=0和x= 2 处的瞬时变化率为
k1,k2,则k1,k2的大小关系为( A )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
解析 ∵y=sinx,∴y′=(sinx)′=cosx. π
k1=cos0=1,k2=cos 2 =0,∴k1>k2.
授人以渔
题型一 导数的概念(自主学习)
(3)设切点为(x0,y0),则切线的斜率为k=x02=1, 解得x0=±1,故切点为1,53或(-1,1). 故所求切线方程为y-53=x-1或y-1=x+1. 即3x-3y+2=0或x-y+2=0.
【答案】 (1)4x-y-4=0 (2)4x-y-4=0或x-y+2=0 (3)3x-3y+2=0或x-y+2=0
状元笔记
求曲线的切线方程的两种类型 (1)在求曲线的切线方程时,注意两个“说法”:求曲线在 点P处的切线方程和求曲线过点P的切线方程,在点P处的切线, 一定是以点P为切点;过点P的切线,不确定点P在不在曲线上, 点P不一定是切点. (2)求曲线过点P(x0,y0)的切线方程的步骤为: 第一步,设出切点坐标P′(x1,f(x1));
数的平均变化率Δ Δyx的极限是否存在.
(2)利用导数定义求函数的导数时,先算函数的增量Δy,

2025届高三一轮复习数学课件(人教版新高考新教材)

2025届高三一轮复习数学课件(人教版新高考新教材)
第一章
1.1 集合
课标要求
1.通过实例,了解集合的含义,理解元素与集合的属于关系.
2.针对具体问题,能在自然语言和图形语言的基础上,用符号语言刻画集合.
3.在具体情境中,了解全集与空集的含义.
4.理解集合之间包含与相等的含义,能识别给定集合的子集.
5.理解两个集合的并集与交集的含义,能求两个集合的并集与交集.
(4){x|x≤1}={t|t≤1}.( √ )
(5)若A∩B=A∩C,则B=C.( × )
(6)直线x=1和直线y=4的交点构成的集合为{1,4}.( × )
2.(多选)若集合A={x|x≤2}, a=√3 ,则下列结论正确的是( BC )
A.a⊆A
B.{a}⊆A
C.a∈A
D.{a}∈A
因为√3<2,所以 a∈A,{a}⊆A.
集合 A⊆B,但存在元素 x∈B, A⫋B
真子集
(或 B⫌A)
且 x∉A
集合 A 的任何一个元素都是
集合
集合 B 的元素,同时集合 B 的
A=B
相等
任何一个元素都是集合 A 的
元素,即 A⊆B,且 B⊆A
问题思考
(1)什么是空集?如何表示?
一般地,我们把不含任何元素的集合叫做空集,用符号⌀表示.
(2)空集与任何集合之间有什么关系?
C.{x|4≤x<5}
1
3
B.
1
x|
3
1
x| 3
≤ x ≤ 5 ,则 M∩N=( B )
≤x<4
D.{x|0<x≤5}
如图,由交集的定义及图知
1
M∩N={x|3
≤x<4}.
第二环节

2024年高考数学一轮复习课件(新高考版) 第1章 §1.1 集 合

2024年高考数学一轮复习课件(新高考版)  第1章 §1.1 集 合

+1,n∈Z},则S∩T等于
A.∅
B.S
√C.T
D.Z
方法一 在集合T中,令n=k(k∈Z),则t=4n+1=2(2k)+1(k∈Z), 而集合S中,s=2n+1(n∈Z),所以必有T⊆S,所以S∩T=T. 方法二 S={…,-3,-1,1,3,5,…},T={…,-3,1,5,…},观 察可知,T⊆S,所以S∩T=T.
②若x∈M,则x2∈M.则集合M可能是
√A.{-1,1} √C.{1}
B.{-1,1,2,4} D.{1,-2,2}
由题意可知3∉M且4∉M,而-2或2与4同时出现, 所以-2∉M且2∉M, 所以满足条件的非空集合M有{-1,1},{1}.
(2)函数f(x)= x2-2x-3 的定义域为A,集合B={x|-a≤x≤4-a},若 B⊆A,则实数a的取值范围是__(-__∞__,__-__3_]_∪__[_5_,_+__∞__)__.
2024年高考数学一轮复习课件(新高考版)
第一章 集合、常用逻辑用语、不等式
§1.1 集 合
考试要求
1.了解集合的含义,了解全集、空集的含义. 2.理解元素与集合的属于关系,理解集合间的包含和相等关系. 3.会求两个集合的并集、交集与补集. 4.能用自然语言、图形语言、集合语言描述不同的具体问题,能使用Venn图

二 部 分
探究例1 (1)(2022·衡水模拟)设集合A={(x,y)|y=x},B={(x,y)|y=x2},则
集合A∩B的元素个数为
A.0
B.1
√C.2
D.3
如图,函数y=x与y=x2的图象有两个交点, 故集合A∩B有两个元素.
(2)已知集合A={1,a-2,a2-a-1},若-1∈A,则实数a的值为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h
30
第10讲 │ 要点探究
h
31
第10讲 │ 要点探究
h
32
第10讲 │ 要点探究
h
33
第10讲 │ 要点探究
h
34
第10讲 │ 要点探究
h
35
第10讲 │ 要点探究
h
36
第10讲 │ 要点探究
h
37
第10讲 │ 要点探究
h
38
第10讲 │ 要点探究
h
39
第10讲 │ 要点探究Fra bibliotek第10讲 │ 知识梳理
h
11
第10讲 │ 知识梳理
h
12
第10讲 │ 知识梳理
h
13
第10讲 │ 要点探究 要点探究
h
14
第10讲 │ 要点探究
h
15
第10讲 │ 要点探究
h
16
第10讲 │ 要点探究
h
17
第10讲 │ 要点探究
h
18
第10讲 │ 要点探究
h
19
第10讲 │ 要点探究
h
40
第10讲 │ 规律总结 规律总结
h
41
第10讲 │ 规律总结
h
42
第10讲 │ 幂函数与函数的图像
h
1
第10讲 │ 知识梳理 知识梳理
h
2
第10讲 │ 知识梳理
h
3
第10讲 │ 知识梳理
h
4
第10讲 │ 知识梳理
h
5
第10讲 │ 知识梳理
h
6
第10讲 │ 知识梳理
h
7
第10讲 │ 知识梳理
h
8
第10讲 │ 知识梳理
h
9
第10讲 │ 知识梳理
h
10
h
20
第10讲 │ 要点探究
h
21
第10讲 │ 要点探究
h
22
第10讲 │ 要点探究
h
23
第10讲 │ 要点探究
h
24
第10讲 │ 要点探究
h
25
第10讲 │ 要点探究
h
26
第10讲 │ 要点探究
h
27
第10讲 │ 要点探究
h
28
第10讲 │ 要点探究
h
29
第10讲 │ 要点探究
相关文档
最新文档