半导体器件物理重要知识点PPT课件

合集下载

半导体器件物理教案课件

半导体器件物理教案课件

半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。

《半导体物理学》课件

《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。

半导体器件物理PPT课件

半导体器件物理PPT课件

11
练习 假使面心结构的原子是刚性的小球,且面中心原子与 面顶点四个角落的原子紧密接触,试算出这些原子占此面 心立方单胞的空间比率。

12
例1-2 硅(Si)在300K时的晶格常数为5.43Å。请计算出每立方厘米体 积中硅原子数及常温下的硅原子密度。(硅的摩尔质量为 28.09g/mol)

13
29
●允带
允许电子存在的一系列准 连续的能量状态
● 禁带
禁止电子存在的一系列能 量状态
● 满带
被电子填充满的一系列准 连续的能量状态 满带不导电
● 空带
没有电子填充的一系列准 连续的能量状态 空带也不导电
图1-5 金刚石结构价电子能带图(绝对零度)
30
●导带
有电子能够参与导电的能带, 但半导体材料价电子形成的高 能级能带通常称为导带。
电子不仅可以围绕自身原子核旋转,而且可以转到另一个原子周围,即 同一个电子可以被多个原子共有,电子不再完全局限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。
27
共有化运动
由于晶体中原子的周期性 排列而使电子不再为单个 原子所有的现象,称为电 子共有化。
在晶体中,不但外层价电 子的轨道有交叠,内层电 子的轨道也可能有交叠, 它们都会形成共有化运动;
杂质来源
一)制备半导体的原材料纯度不够高; 二)半导体单晶制备过程中及器件制造过程中的沾污; 三)为了半导体的性质而人为地掺入某种化学元素的原子。
40
金刚石结构的特点
原子只占晶胞体积的34%,还有66%是空隙, 这些空隙通常称为间隙位置。
杂质的填充方式
一)杂质原子位于晶格 间隙式杂质 原子间的间隙位置, 间隙式杂质/填充;

半导体物理学ppt课件

半导体物理学ppt课件
在电场
②当电流密度一定时, dEF/dx与载流子浓
度成反比 ③上述讨论也适用于电子子系及空穴子系
(用准费米能级取代费米能级):
J =n
dEF dx
J =p
dEF dx
35
36
★ 正向偏压下的p-n结
①势垒: ♦ 外电压主要降落
于势垒区 ♦ 加正向偏压V, 势
垒高度下降为 e(VD-V),
荷区的产生—复合作用。 P型区和N型区的电阻率都足够低,外加电压全部降落
在过渡区上。
57
准中性区的载流子运动情况
稳态时, 假设GL=0
0

DN
d 2np dx2

n p
n
......x

xp

0

DP
d 2pn dx2
边界条件:

pn
p
......x

xn
图6.4
欧姆接触边界
以及工作温度
24
③接触电势差:
♦ pn结的势垒高度—eVD 接触电势差—VD
♦ 对非简并半导体,饱和电离近似,接触 电势为:
VD

kT e
ln nn0 np0

kT e
ln
NDNA ni2
♦ VD与二边掺杂有关,
与Eg有关
25
电势
图6-8
电子势能(能带)
26
④平衡p-n结的载流子浓度分布: ♦ 当电势零点取x=-xp处,则有: EC (x) EC qV (x)
52
53
54
理想二极管方程
PN结正偏时
55
理想二极管方程
PN结反偏时

半导体器件物理ppt 共62页

半导体器件物理ppt 共62页


N
A
WE
显示三段掺杂区域的杂质浓度,发射
区的掺杂浓度远比集电区大,基区的
浓度比发射区低,但高于集电区浓度
。图4.3(c)表示耗尽区的电场强度分
E
布情况。图(d)是晶体管的能带图,
它只是将热平衡状态下的p-n结能带
直接延伸,应用到两个相邻的耦合p
+-n结与n-p结。各区域中EF保持水平 。
EC EF
如 图 为 一 p-n-p 双 极 型 晶 体 管 的透视图,其制造过程是以p型半 导体为衬底,利用热扩散的原理 在p型衬底上形成一n型区域,再 在此n型区域上以热扩散形成一高 浓度的p+型区域,接着以金属覆 盖p+、n以及下方的p型区域形成 欧姆接触。
天津工业大学
现代半导体器件物理
双极型晶体管及相关器件 3
双极型晶体管工作在放大模式
IE
发射区
P
V EB
基区
n
IB
集电区
P V BC
IC
输出
图 (a) 为 工 作 在 放 大 模 式 下 的 共 基组态p-n-p型晶体管,即基极被输 入与输出电路所共用,图(b)与图(c) 表示偏压状态下空间电荷密度与电场
强度分布的情形,与热平衡状态下比
较,射基结的耗尽区宽度变窄,而集 基结耗尽区变宽。图(d)是晶体管工 作在放大模式下的能带图,射基结为 正向偏压,因此空穴由p+发射区注 入基区,而电子由基区注入发射区。
流往基区的电子电流。
发射区 (P)
}I EP
I En
基区 (n) I BB
}
IB
空穴电流 和空穴流
图 4.5
集电区 (P)
}I CP
IC
ICn

半导体器件物理课件四

半导体器件物理课件四

02 半导体器件的基本概念
半导体的定义和特性
半导体:导电性 能介于导体和绝 缘体之间的材料
半导体的特性: 具有可调节的导 电性,可以通过 掺杂、光照、温 度等外部因素改
变其导电性能
半导体的分类: 分为N型半导体 和P型半导体, N型半导体中的 电子是主要的载 流子,P型半导 体中的空穴是主
要的载流子
军事装备:如雷达、导弹、 电子战等
集成电路的应用
计算机: CPU、内 存、存储 设备等
通信设备: 手机、基 站、路由 器等
家电:电 视、冰箱、 洗衣机等
汽车电子: 发动机控 制、安全 系统、导 航系统等
医疗设备: 心电图仪、 CT扫描仪、 超声波诊 断仪等
航空航天: 卫星、火 箭、飞机 等
太阳能电池的应用
半导体材料的选择和处理
半导体材料的选择:根据器件性能和成本要求选择合适的半导体材料
半导体材料的处理:对半导体材料进行清洗、抛光、腐蚀等处理,以获得所需的半导体 表面
半导体材料的掺杂:通过掺杂工艺将杂质引入半导体材料中,以改变其电学性质
半导体材料的热处理:对半导体材料进行热处理,以改善其电学性质和机械性能
半导体光电器件:如光电二极管、光电三极管等,用于光电转换、光电检测等应用
半导体器件的应用领域
汽车电子:如汽车导航、汽 车音响等
通信设备:如基站、路由器 等
电子设备:如手机、电脑、 电视等
医疗设备:如医疗仪器、医 疗电子设备等 航空航天:如卫星、火箭等
军事领域:如雷达、导弹等
03 半导体器件的基本原理
半导体器件物理课件 四
PPT,a click to unlimited possibilities
汇报人:PPT

《半导体器件物理》课件

《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性

《半导体物理基础》课件

《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响

物理半导体器件物理PPT课件

物理半导体器件物理PPT课件

部分 插图为串联的电容器
C / Co
1.0
10Hz
0.8
102 Hz
Si SiO2
0.6
NA d
1.451016 200nm
cm3103
Hz
104 Hz 105 Hz
20 10
0
10
20
V /V
(b) C V图的频率效应
图 5.7
第15页/共71页
MOS二极管
例2:一理想MOS二极管的NA=1017cm-3且d=5nm,试计算其C-V曲线中的 最小电容值.SiO2的相对介电常数为3.9。
Co V
Co d Cj
VT
Cmin
0
V /V
(a) 高频MOS C-V图,虚线显示其近似
部分 插图为串联的电容器
对于n型衬底,只需变更相对应符号与标志后(如将Qp换成Qn),得图到5.7 类似的表达式.与p型衬底相比:
(1)电容-电压特性具有相同的外观,彼此成镜面对称, (2) p型衬底的 VT > 0, n型衬底的VT < 0 .
当 np = NA 时,开始产生强反型; 当 np > NA 时,处于强反型。
EC Ei
Qm
EF
发生强反型后:
V 0 EF
EV
0
V 0
(1) 反型层的宽度 xi ≈ 1nm ~ 10nm,且xi<<W(;b) 耗尽时EF
(2) 随V的增加,能带稍微增加弯曲程度,np急剧
增大,而W不再增大,达到最大值;
(a) M(aO)SM二O极S二管极的管透的视透图视图
(b)) MMOOSS二二极极管管的的剖剖面图面图
当金属板相对于欧姆接图图触55. .为11 正偏压时,V>0; 当金属板相对于欧姆接触为负偏压时,V<0.

《半导体物理第一章》课件

《半导体物理第一章》课件

3
1.3.3 pn结的I-V特性
详细解释pn结的I-V特性曲线,包括正向和反向电流的变化。
1.4 光电应及其在太 阳能电池中的应用。
2 1.4.2 光电二极管
阐述光电二极管的原理 及其在通信和显示技术 中的应用。
3 1.4.3 光电池
讨论光电池的构造、工 作原理和应用领域。
1.5 半导体器件的制作技术
晶体生长
介绍半导体晶体生长方法和技 术,如Czochralski法和液相外 延。
晶体制备
讨论半导体晶体的切割、抛光 和清洗等制备工艺。
制作半导体器件
概述半导体器件制作的关键步 骤,包括光刻、扩散和金属沉 积等工艺。
1.6 总结与展望
1.6.1 半导体物理的应用前景
评估半导体物理在电子技术、通信和能源领域 的未来发展。
1.1 半导体材料的基本性质
半导体的定义
介绍半导体的定义,以及其与导体和绝缘体的区别。
半导体的基本性质
探讨半导体的导电性、禁带宽度、载流子等基本特性。
半导体的能带结构
解释能带理论,讨论导带与禁带之间的能量差异对电子行为的影响。
1.2 掺杂半导体
1.2.1 掺杂的概念
介绍半导体掺杂的概念,包 括n型和p 型半导体的区别。
《半导体物理第一章》 PPT课件
An engaging and comprehensive introduction to the fundamental properties of semiconductor materials and their applications in electronic devices.
1.2.2 正、负离子掺 杂
说明正、负离子掺杂对半导 体电子结构的影响。

半导体器件物理PPT课件

半导体器件物理PPT课件

3)加反偏压时 耗尽层宽度为 W W
W
P
N
VR +
能量 (E )
IR
(c )
qy 0 VR
qVR
✓N区接正电位,在远离PN结空间电荷区的中性区,EFn 及诸能级相对P区 EFp下移 qVR 。
✓在空间电荷区由于载流子耗尽,通过空间电荷区时 EFn 和 EFp不变。
✓势垒高度增加至 q(y 0 VR ) ,增高的势垒阻挡载流子通过PN结扩散,通
1)热平衡时
耗尽层宽度为 W
P
2)加正向偏压时
能量 (E )
N
W
(a )
耗尽层宽度为 W W
PN结
W
P
NV+来自能量(E )E Fn
E Fp
(b )
qy 0 EC EF
qy0 V
qV EFn
2.2加偏压的PN结
加正向偏压时
W
P
N
能量
(E )
E Fn
E Fp
qy0 V
qV EFn
V
+
(b )
3)正确画出热平衡PN 结的能带图(图2-3a、b)。
4)利用中性区电中性条件导出空间电荷区内建电势差公式:
y0
y n
y
p
VT
ln
Nd Na ni2
(2-1-7)
5)解Poisson方程求解单边突变结SCR内建电场、内建电势、内建电势差和耗
尽层宽度。
PN结
PN结
2.2加偏压的PN结
1.加偏压的PN结的能带图
(e)曝光后去掉扩散窗口 (f)腐蚀SiO2后的晶片 胶膜的晶片
PN结
引言
采用硅平面工艺制备PN结的主要工艺过程

《半导体器件物理》课件

《半导体器件物理》课件

MOSFET的构造和工作原理
金属-氧化物-半导体场效应晶体管
通过施加电压控制栅极和通道之间的电荷分布,实现放大和开关功能。
三个区域
源极、栅极和漏极,通过电流控制源极和漏极之间的导电通道。
应用
MOSFET被广泛用于各种电子设备中,包括计算机芯片和功率放大器。
JFET的构造和工作原理
1 结构
由P型或N型半导体形成的通道,两个掺杂相对的端部形成控制电流的栅极。
PN结的形成和性质
1 结构
由P型半导体和N型半导体通过扩散形成 的结合层。
3 击穿电压
当施加足够的反向电压时,PN结会被击 穿,允许电流通过。
2 整流作用
PN结具有整流(仅允许电流单向通过) 的特性,可用于二极管。
4 应用
PN结广泛应用于二极管、太阳能电池和 光敏电阻等器件中。
PN结的应用:二极管
2 广泛应用
从计算机和手机到电视和汽车电子,硅晶体管和二极管的应用无处不在。
3 可靠性和效率
硅晶体管和二极管的可靠性和效率使它们成为现代电子技术的基石。
《半导体器件物理》PPT 课件
探索半导体器件物理的精彩世界!本课程将介绍半导体材料及其性质,PN结 的应用,MOSFET和JFET的工作原理,光电子学等内容。
介绍
半导体器件物理是研究半导体材料中电子行为的科学。它包括半导体材料的物理性质、PN结的形成与 应用、MOSFET和JFET的工作原理等内容。
2 电荷调控
通过控制栅极电压来控制通道中电荷的密度,进而改变电流。
3 应用
JFET用于低噪声放大器和开关等应用。
功能区和结构
结构
包括负责控制电流的基极、负 责放大电流的发射极和负责收 集电流的集电极。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
4
第三章 双极结性晶体管
Ø 理解理想双极结型晶体管的基本假设及其意义。 Ø 写出发射区、基区、集电区少子满足的扩散方程并解之求出少子分
布。 Ø 掌握正向有源模式基区输运因子公式。 Ø 掌握正向有源模式基区电子电流公式。 Ø 了解E-M方程中四个参数的物理意义 Ø 根据E-M方程写出四种模式下发射极电流和集电极电流表达式。 Ø 理解并记忆BJT四种工作模式下的少子分布边界条件 Ø 画出BJT四种工作模式下少子分布示意图。 Ø 了解缓变基区晶体管基区输运因子的计算。
电势差和耗尽层宽度。 Ø 掌握反偏压下突变结,耗尽层宽度公式。
.
1
第二章 PN结二极管
Ø 了解理想PN结基本假设及其意义。 Ø 导出长PN结和短PN结少子分布表达式。 Ø 掌握Shockley公式。 Ø 解释理想PN结反向电流的来源。 Ø 画出正、反偏压下PN结少子分布、电流分布和总电流示意图。 Ø 理解并掌握概念:正偏复合电流、反偏产生电流。 Ø 理解低偏压下复合电流占优,随着电压增加扩散电流越来越成为主
Ø 理解电流集聚效应和基区宽度调变效应。
.
5
第三章 双极结性晶体管
Ø掌握概念:频率响应、共基极截止频率、共发射极截止频率、特征频率 (带宽)、基区渡越时间 Ø导出基区渡越时间公式。 Ø解释科尔克效应。 Ø了解晶体管的开关特性。 Ø熟悉晶体管穿通机制。
.
6
第四章 金属半导体结
Ø 了解金属—半导体接触出现两个最重要的效应
Ø 导出电流-电压特性〔李查德-杜师曼方程〕。
Ø 了解MIS肖特基二极管工作原理。
Ø 掌握结型二极管相比肖特基势垒二极管的主要特点。
Ø 了解肖特基势垒二极管的主要应用。
Ø 掌握欧姆接触概念和形成欧姆接场效应晶体管与MS场效应晶体管
Ø 画出JFET的基本结构示意图 。 Ø 熟悉JFET的基本工作原理。 Ø 熟悉沟道夹断、漏电流饱和、夹断电压等概念。 Ø 掌握理想JFET的基本假设及其意义。 Ø 导出夹断前JFET的I-V特性方程。 Ø 深入理解沟道夹断和夹断电压的含义。 Ø 掌握线性区条件和I-V特性。 Ø 掌握饱和区条件和I-V特性。 Ø 掌握沟道长度调制效应。 Ø 掌握GaAs MESFET的突出特点。 Ø 掌握JFET和MESFET的主要类型。
.
11
第八章 半导体太阳电池和光电二极管
Ø掌握提高提高太阳电池效率的主要措施。 Ø了解光电二极管的工作原理。 Ø了解P-I-N光电二极管的工作原理的基本结构、能带图和工作原理。 Ø了解P-I-N光电二极管中。 Ø掌握概念:量子效率、响应度、响应速度。 Ø列出光电二极管与太阳电池的三个主要不同之处。
Ø 画出热平衡情况下的肖特基势垒能带图。
Ø 掌握肖特基势垒、内建电势差和空间电荷区宽度计算公式 。
Ø 画出加偏压的的肖特基势垒能带图,解释肖特基势垒二极管的整流特性。
Ø 理解界面态和镜像力对肖特基势垒高度的影响。
Ø 掌握概念:表面势、热电子、热载流子二极管、里查森常数、有效里查森
常数。
Ø 导出半导体表面载流子浓度表达式。
.
3
第三章 双极结性晶体管
➢ 了解晶体管的基本结构及其制作工艺。 ➢ 掌握四个概念:注射效率、基区输运因子、共基极电流增益、共
发射极电流增益 ➢ 了解典型BJT的基本结构和工艺过程。 ➢ 掌握BJT的四种工作模式。 ➢ 画出BJT电流分量示意图,写出各极电流及其相互关系公式。 ➢ 分别用能带图和载流子输运的观点解释BJT的放大作用。 ➢ 解释理想BJT共基极连接和共发射极连接的输出特性曲线。
要成分。
.
2
第二章 PN结二极管
Ø了解产生隧道电流的条件。 Ø画出能带图解释隧道二极管的I-V特性。 Ø了解隧道二极管的特点和局限性。 Ø掌握概念:耗尽层电容、求杂质分布、变容二极管。 Ø掌握C-V关系及其应用。 Ø概念:交流导纳 扩散电导 扩散电阻 扩散电容 等效电路 Ø了解二极管的开关特性。 Ø掌握二极管的击穿机制。
.
8
第六章 金属-氧化物-半导体场效应晶体管
Ø 了解理想MOS结构基本假设及其意义。
Ø 根据电磁场边界条件导出空间电荷与电场的关系。
Ø 掌握载流子积累、耗尽和反型和强反型的概念。
Ø 正确画出流子积累、耗尽和反型和强反型四种情况的能带图。
Ø 导出反型和强反型条件。
Ø 掌握理想MOS系统的电容—电压特性。
第二章 PN结二极管
Ø 掌握下列名词、术语和基本概念:PN结、突变结、线性缓变结、单 边突变结、空间电荷区、耗尽近似、中性区、内建电场、内建电势 差、势垒、正向注入、反向抽取、扩散近似。
Ø 分别采用费米能级和载流子漂移与扩散的观点解释PN结空间电荷区 (SCR)的形成。
Ø 正确画出热平衡和加偏压PN结的能带图。 Ø 利用中性区电中性条件导出空间电荷区内建电势差公式。 Ø 了解Poisson方程求解单边突变结结SCR内建电场、内建电势、内建
.
12
第八章 发光二极管
Ø 掌握辐射复合和非辐射复合的概念和机制。 Ø 了解LED基本结构、工作过程和特性参数,了解各种不同类型LED。 Ø 理解等电子陷阱复合,解释等电子陷阱复合能提高半导体材料的发光
效率的原因。 Ø 解释各种俄歇过程。 Ø 画出能带图说明LED的发光机制。 Ø 掌握LED外量子效率和内量子效率概念。
.
10
第八章 半导体太阳电池和光电二极管
Ø掌握概念:光生伏打效应、暗电流。 Ø理解光生电动势的产生。 Ø画出理想太阳电池等效电路图。 Ø根据电池等效电路图写出了太阳电池的I-V特性方程。 Ø了解太阳电池的I-V特性曲线,解释该曲线所包含的物理意义。 Ø画出实际太阳电池等效电路图根据等效电路图写出I-V特性方程。 Ø掌握概念:转换效率、占空因数。 Ø导出太阳电池的最大输出功率公式。 Ø了解光产生电流和收集效率。
Ø 导出耗尽层宽度和归一化MOS电容表达式。
Ø 掌握沟道电导公式。
Ø 掌握阈值电压公式。
Ø 了解在二氧化硅、二氧化硅-硅界面系统存在的电荷及其主要性质。
Ø 掌握实际阈值电压的公式及各项的意义。
Ø 导出萨支唐方程。
Ø 理解夹断条件的物理意义。
.
9
第六章 金属-氧化物-半导体场效应晶体管
Ø掌握交流小信号参数并导出线性导纳和饱和区跨导表达式。 Ø指出提高工作频率或工作速度的途径。 Ø掌握场效应晶体管的类型。
相关文档
最新文档