正态分布

合集下载

正态分布

正态分布
x
x
当-x<0时 ( x ) P ( X x )
P( X x) 1 P( X x)
1 ( x ) (0 x 4.99)
当x 5时, ( x ) 1;当x 5时, ( x ) 0
P ( a X b) ( b) ( a)

令x=μ+c, x=μ-c (c>0), 分别代入f (x), 可 得 f (μ+c)=f (μ-c) 且 f (μ+c) ≤f (μ), f (μ-c)≤f (μ)
1 f ( x) e 2
( x )2 2 2
, x
当x→ ∞时,f(x) → 0, 这说明曲线 f(x)向左右伸展时,越来越 贴近x轴。即f (x)以x轴为渐近线。
将标准正态分布概率密度的图形向左(或) 右平行移动 个单位,向上伸长(或压缩)
1
图形。
个单位,即可得一般正态分布概率密度的
( x )2 2 2
1 f ( x) e 2 ( x )
,
既然标准正态分布是关于y 轴对称的,而一 般正态分布是由标准正态分布平移 个单位 得来的,故f (x)以μ为对称轴,并在x=μ处达到 最大值: 1 f ( ) 2
2
X

~N(0,1)
根据定理1,只要将一般正态分布的分布 函数转化成标准正态分布,然后查表就可解 决一般正态分布的概率计算问题.
设X ~ N ( , 2 ),Y ~ N (0,1) 其概率密度分别为:
( x ), 0 ( y ) 分布函数分别为: ( x ), 0 ( y )
P ( X a ) P (Y a
a

正态分布的概念及应用

正态分布的概念及应用
正态分布的概念及应用
• 正态分布的简介 • 正态分布的性质 • 正态分布的应用场景 • 正态分布在数据分析中的应用 • 正态分布在机器学习中的应用 • 正态分布与其他统计分布的关系
01
正态分布的简介
正态分布的定义
01
正态分布是一种连续概率分布, 描述了许多自然现象的概率分布 形态,其概率密度函数呈钟形曲 线,且具有对称性。
贝叶斯推断
正态分布在贝叶斯推断中发挥了重要作用。通过贝叶斯定理,我们可以根据先 验知识和数据更新对未知参数的估计,而正态分布可以作为先验知识的分布形 式。
核方法和支持向量机
核方法
在支持向量机(SVM)等核方法中,正态分布作为核函数的一 种形式,用于将输入空间映射到高维特征空间,从而使得线性 不可分的数据变得线性可分。
在时间序列分析中,正态分布可用于描述时间序列数据的分布特征, 并建立预测模型。
05
正态分布在机器学习中的应用
概率模型和贝叶斯推断
概率模型
正态分布是一种常用的概率分布,在贝叶斯推断中,我们常常假设某些参数服 从正态分布,以便进行统计推断。例如,在朴素贝叶斯分类器中,特征的概率 分布被假设为正态分布。
考试成绩和测试评分
考试成绩和各种测试评分也经常呈现正态分布,因为大多数人的得分集中在平均分附近, 而高分和低分的人数较少。
气温、降雨量等气候数据
气温、降雨量等自然现象数据也可以用正态分布来描述,因为它们通常遵循类似的统计规 律。
科学研究和技术开发
01 02
实验结果和测量数据
在科学实验和测量中,很多数据呈现正态分布,如放射性衰变的半衰期、 化学反应速率等。这些数据反映了物质内部微观粒子的随机运动和相互 作用。
正态分布在统计学中的地位

正态分布

正态分布

2. 一般正态分布的概率计算
对于一般正态分布的概率计算,可以应用定积分的
换元法将其转化为标准正态分布的概率计算.
定理 设X~ N(, ) ,则 X ~ N(0,1).

这样,若X~ N(, ),并记其分布函数为 F(x),则
从而
F ( x)

P{X

x}

P

X



x


P

X
1 2

5
1
2

2
0.9772
P{0

X
1.6}
P

0
1 2

X 1 2

1.6 1
2

0.3 0.5
0.3 0.5 1
0.6179 0.6915 1 0.3094
P{
解:由题意知 X ~ N (10.05,0.062 ),于是
P{
X
10.05

0.12}
P

0.12 0.06

X
10.05 0.06

0.12
0.06

2 2
22 1
2 0.9772 1 0.9544
例4 设 X ~ N(, ),求 P{ X }, P{ X 2 },
越小,图形越陡峭.
o
1 x
0.5 1 1.5
x
特别地,当 0, 1时,称 X 服从标准正态分布,
记为 X ~ N(0,1),其概率密度函数为
(x)
1
x2

正态分布

正态分布
y (x)
密度函数
(x)
1 2
x
2
e
2
专用符 号
分布函数
( x)

x
1 2

x
2

e
2
dx
专用符 号
标准正态分布的性质
分布函数
( x ) P{ X x}
( x)
( x)

x
1 2

t
2

e
2
dt
x
( x) 1 ( x)
一般正态分布的标准化
定理
x 如果 X ~ N ( , ), 则 F ( x)
2
概率计算 若 X ~ N ( , 2 )
b a P (a X b)
a P( X a) 1
决定了图形的中心位置,
的陡峭程度.
决定了图形中峰
正态分布的分布函数
f (x) 1 2
(x ) 2
2 2
e

y
1
1 2
F ( x)
x
1 2

( x ) 2
2
2

e
dx
F(x)

x
计算概率?
P a X b F b F a
由 x 的单调性可得
k 18 2.5 0.91

k 20.275
正态分布的实际应用
某单位招聘155人,按考试成绩录用,共有526 人报名,假设报名者的考试成绩 X ~ N ( , 2 ) 已知90分以上的12人,60分以下的83人,若从高 分到低分依次录取,某人成绩为78分,问此人能否被 录取? 分析

正态分布

正态分布

三. 特征
1. 是单峰曲线,x=μ 2. 以均数μ为中心左右对称 3. 有2个参数,μ:位置参数, σ:变异度参数 σ越大,数据越分散,曲线越平坦。 特别地 N(0,1)称为标准正态分布 (z分布、u分布)
四.正态曲线下面积的分布规律
通过对密度函数积分我们可以知道正态曲线下, 横轴上所夹的面积为1,标准正态分布下1.96~1.96部分的面积为0.95 (可以通过积分 求得)。也就是说|u|>1.96的面积为0.05,对 任意的x,-x~x区间面积为多少呢?统计学家 已将此编制成了正态分布界值表,不过表中 的面积是指p(u<x), 也记作φ(x)。
3. 正态分布是许多统计方法的理论 基础,如后面要讲的t检验、方差分析、 相关回归等,t分布、二项分布、 Poisson分布的极限分布也是正态分布。
4.估计频数分布
例 出生体重低于2500克为低体重儿。若 由某项研究得某地婴儿出生体重均数为 3200克,标准差为350克,估计该地当 年低体重儿所占的比例。2. 源自计医学正常值范围x u s
例 120名健康成年男性农民舒张压的均数 为10.1kPa,标准差为0.93kPa,求舒张 压的95%双侧正常值范围。 ±1.96s =10.1±1.96×0.93 即 8.28~11.92 kPa 95%参考范围(reference range)或正常 范围(normal range)仅仅告知95%健 康者的测定值在此范围之内,并非告知 凡在此范围之内皆健康,也非告知凡在 此范围之外皆不健康,所以不可将之作 为诊断标准。
以上讨论的是标准正态分布,对一般的正 态分布,某指标x~N(μ,σ2),则 u=(x-μ)/σ~N(0,1) 即-1.96<u<1.96的面积为0.95 μ-1.96σ<x<μ+1.96σ的面积为0.95

什么是正态分布

什么是正态分布

什么是正态分布正态分布,又称高斯分布,是在统计学和概率论中非常重要的一种连续概率分布。

它是由德国数学家卡尔·弗里德里希·高斯提出的,常用于描述自然界中的许多现象,如身高、智商、测量误差等。

正态分布具有对称的钟形曲线,其特性使得它在统计推断、假设检验等领域起着至关重要的作用。

正态分布的定义正态分布是一个由均值μ(mu)和标准差σ(sigma)两个参数所决定的概率密度函数。

其数学表达式为:在这个公式中,( f(x) ) 是随机变量 ( X ) 的概率密度函数( ) 是均值,代表分布的中心位置( ) 是标准差,用于描述数据的离散程度( e ) 是自然对数的底数,约等于2.71828通过上述公式可以看出,当 ( x = ) 时,( f(x) )达到最大值;而随着 ( x ) 离开均值,概率密度逐渐减小。

正态分布的特性正态分布有几个重要特性,使其在研究中无处不在。

1. 对称性正态分布是关于均值 ( ) 对称的。

这意味着如果你将正态分布函数沿其均值向两侧折叠,左侧和右侧的形状完全一致。

这一特性使得很多统计方法可以简化计算,并提高了分析的效率。

2. 68-95-99.7法则这一法则描述了数据集中不同标准差范围内的数据比例:约68%的数据点落在均值±1个标准差内约95%的数据点落在均值±2个标准差内约99.7%的数据点落在均值±3个标准差内这一规律为理解异常值、识别数据分布特点提供了直观的依据。

3. 中心极限定理中心极限定理表明,在一定条件下,不同的独立随机变量之和趋向于正态分布,无论这些变量本身的分布是什么。

这意味着当你对大量独立同分布的随机变量取样时,其总和或平均值会呈现出近似正态分布,这一特性是统计推断的重要基础。

4. 单峰性正态分布是单峰的,即它只有一个峰值,这个峰值就是均值( μ )。

在这个峰值附近,概率密度最大的地方,随着离均值越远,数据点稀疏程度迅速增加。

正态分布完整ppt课件

正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。

正态分布

正态分布

正态分布normal distribution正态分布一种概率分布。

正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。

服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。

它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。

当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。

C.F.高斯在研究测量误差时从另一个角度导出了它。

P.S.拉普拉斯和高斯研究了它的性质。

生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。

例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。

一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。

从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。

附:这种分布的概率密度函数为:(如右图)正态分布公式正态分布1.正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。

正态分布

正态分布

[µ − 3σ , µ + 3σ ] 区间内. 区间内.
这在统计学上称作“ σ 准则” 这在统计学上称作“3 准则” .
看一个应用正态分布的例子: 看一个应用正态分布的例子
例 公共汽车车门的高度是按男子与车门顶头 以下来设计的.设男子身高X~ 碰头机会在 0.01 以下来设计的.设男子身高 ~ N(170,62),问车门高度应如何确定? 问车门高度应如何确定? ( , ),问车门高度应如何确定 解 设车门高度为h cm,按设计要求 设车门高度为 ,

设 X ~ N(0, 1), P(X ≤ b) = 0.9515, P(X ≤ a) = 0.04947, 求 a, b.
解: Φ(b) = 0.9515 >1/2, 所以 b > 0, 反查表得: Φ(1.66) = 0.9515, 故 b = 1.66
而 Φ(a) = 0.0495 < 1/2, 所以 a < 0, Φ(−a) = 0.9505, 反查表得: Φ(1.65) = 0.9505, 故 a = − 1.65
例 设 X ~ N(0, 1), P(X>−1.96) ,
求 P(|X|<1.96)
解: P(X>−1.96) = 1− Φ(−1.96) = 1−(1− Φ(1.96)) = Φ(1.96) = 0.975 (查表得) P(|X|<1.96) = 2 Φ(1.96)−1 = 2 ×0.975−1 = 0.95
标准正态分布的上 α分位点 设 X ~ N ( 0,1) ,若数 zα满足条件
P{ X > zα} = α , 0 < α < 1 ⇒ P{ X < − zα } = α
则称点 zα 为标准正态分布的上 α分位点 标准正态分布的上 分位点.

正态分布

正态分布

正态分布(Normal distribution)随机变量的概率分布随机变量的类型(数理统计)连续型变量:变量在某一实区间内任意取值;离散型变量:变量只能取有限个数或可列个数。

应用统计分为:数值变量和分类变量,对应于定量资料和定性资料(含等级资料)。

描述随机变量的两个函数●概率密度函数用f(X)表示,对于离散型变量f(X)是变量取X值的概率,常用P(X)表示。

●分布函数变量取小于等于X值所占的比例,显然:有()0F X≥'()()F X f X=()()xF X f X dX-∞=⎰正态分布正态分布(normal distribution ),也称高斯分布(Gaussian dist.),是最常见、最重要的一种连续型分布。

若一个随机变量的概率密度函数为则称这种分布为正态分布。

式中,π为圆周率;e 为自然对数的底。

其中的参数µ是均数,σ是标准差,正态分布可记为X ~Ν(µ,σ)。

正态分布的分布函数为:de Moivre(德)首先提出正态分布的概率曲线具有下述特点(1)正态分布只有一个高峰,高峰的位置在X=μ处。

(2)分布以均数为中心,中间高,两头低,左右完全对称的钟型曲线。

(3)正态分布的两个参数(μ和σ)分别决定了分布的位置和形状。

其中μ是位置参数,σ是形状参数。

当σ恒定时,μ愈大,正态曲线向右移动;反之,μ愈小,正态曲线向左移动。

若μ恒定,σ愈大(数据愈离散),正态曲线显得愈“矮胖”;反之,σ愈小(数据愈集中),正态曲线显得愈“瘦高”。

(5)对任一正态变量X 进行如下线性变换则u 一定服从于均数为零,标准差为1的正态分布,记为u ~N (0,1),称为标准正态分布(standard normal distribution ),其密度函数u 被称为标准正态变量或标准正态离差(standard normal deviate )。

此性质在实际工作中极为重要,给应用工作者提供了极大的方便。

《正态分布》ppt课件

《正态分布》ppt课件
《正态分布》ppt课件
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。

正态分布简介

正态分布简介

正态分布
一:正态分布的概念和和图形
正态分布的概率密度函数为:
(-∞< X <+
∞) 式中,有4个常数,μ 为总体均数,σ 为总体标准差,π为圆周率,e 为自然
,π,e 为固定常数,仅X 为变量,代表图形上横轴的数值,f(X)为纵轴数
分布曲线。

正态分布曲线是一簇曲线。

二:正态分布图的特点
1 对称的钟型(在均数处最高) 2两侧逐渐下降 3两端在无穷远处与横轴无限接近。

三:正态分布的特征
特征一 正态分布是一单峰分布,高峰位置在均数X= μ 处。

特征二 正态分布以均数为中心,左右完全对称。

特征三 正态分布取决于两个参数,即均数μ 和标准差σ μμ
μ 变小,曲线沿横轴向左移动。

σ
示数据的离散程度,若σσ 。

特征四 有些指标不服从正态分布,但通过适当变换后服从正态分布,如对数正态分布。

特征五 正态分布曲线下的面积分布是有规律的。

无论σ
μ,
①正态密度函数曲线与横轴间的面积恒等于1或100%;
②正态分布是对称分布。

其对称轴为直线X=μX>μX<μ等,各占50%;
四:标准正态分布
将正态分布变量作标准化变换,就得到均数为0,标准差为1的标准正态分布 标准化变换公式: 正态分布的概率密度函数方程就简化为标准正态分布的概率密度函数方程:
,(-∞< u <+∞) 22
()21()2X f X e μσσπ--= f σμ
-=X u 2221)(u e u -=π
ϕ。

正态分布

正态分布

(1)曲线在x轴的上方,与x轴不相交.
(2)曲线是单峰的,它关于直线x=μ对称.
(3)曲线在x=μ处达到峰值(最高点)
σ
1 2π
(4)曲线与x轴之间的面积为1
方差相等、均数不等的正态分布图示
σ=0.5
μ=0 μ= -1
μ= 1Βιβλιοθήκη 若 固定,随值的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
均数相等、方差不等的正态分布图示
b
P(a X b) a , (x)dx
2.正态分布的定义:
如果对于任何实数 a<b,随机变量X满足:
b
P(a X b) a , (x)dx
则称为X 的正态分布. 正态分布由参数μ、σ唯一确定. 正态分布记作N( μ,σ2).其图象称为正态曲线.
如果随机变量X服从正态分布, 则记作 X~ N( μ,σ2)
(6)当μ一定时,曲线的形状由σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中.
例3、把一个正态曲线a沿着横轴方向向右移动2个单 位,得到新的一条曲线b。下列说法中不正确的是
( C)
A.曲线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等;
• 对称区域面积相等。
S(-x1, -x2)
S(x1,x2)=S(-x2,-x1)
-x1 -x2
x2 x1
4、特殊区间的概率:
若X~N (, 2 ),则对于任何实数a>0,概率
a
P( a x ≤ a) , ( x)dx a
为如图中的阴影部分的面积,对于固定的 和 而言,该面 积 的随概着率越 大的,减即少X而集变中大在。这周说围明概率越越小大, 落。在区间 ( a, a]

正态分布

正态分布

μ= - 2
μ=0
μ=2
σ=1时,μ变化时曲线变化的情况
正态分布的两个参数对曲线的影响
σ=1
σ =1.5 σ =2
μ= 0 μ=0时,σ变化时曲线变化的情况
正态概率密度曲线下的面积
正态曲线下面积分布规律
正态概率密度曲线下面积分布规律
(μ-1.96σ, μ+1.96σ) 占曲线下总面积的95% 即在该区间内包含95%的观察值; 此区间观察值出现的概率为95%
异常 正常 单侧下限
例如:肺活量
正常 异常 单侧上限
例如:血铅含量
异常
正常
异常
双侧下限 双侧上限
例如:白细胞计数
如何选定适当的百分界限?
制定医学参考值范围的方法 ➢ 正态分布法 ➢ 百分位数法
正态分布法
适用: 指标服从正态分布或近似正态分布 公式:
双侧95%参考值范围:X 1.96S 单侧95%参考值范围: X 1.64S (上限)
某市120名9岁男孩肺活量(L)的频数分布
n=1000, 组距细分
n→∞
1. 正态分布的概念
正态分布曲线呈对称分布,在均数处最高, 两侧不断降低,逐渐与横轴接近,但不会和 横轴相交的钟形曲线
若指标或变量 X 的频率(或频率密度)曲线逼 近数学上的正态分布曲线,则称该指标服从 正态分布。
2. 正态分布的特征
正态分布与参考值范围
正态分布的概念和特征(normal distribution) 标准正态分布 (standard normal distribution) 正态分布的应用(参考值范围)
一、正态分布概念和特征
频率(%)
25


20

正态分布

正态分布

当x<0时 Φ(−x) = 1− Φ( x) 时
若 X~N(0,1), ~
P(a < X < b) = Φ(b) − Φ(a) X −µ 2 若 X ~ N(µ,σ ), Y = ~N(0,1) σ a−µ b−µ ≤Y ≤ ) P(a < X < b)= P( σ σ b−µ a−µ = Φ( ) − Φ( ) σ σ
目 录 前一页 后一页 退 出
标准正态分布 的正态分布称为标准正态分布. µ = 0,σ = 1的正态分布称为标准正态分布. 表示: 其密度函数和分布函数常用ϕ(x)和 Φ(x)表示:
1 ϕ(x) = e 2π −∞ < x < ∞
ϕ ( x)
x2 − 2
,
1 Φ( x) = 2π
∫e
t2 x − 2 −∞
查表可知 z0.025 =1.96 z0.005 =2. 575
ϕ (x )
注:
z1-α = −zα ,
α
z0.95 = -1.645
z0.995 = -2. 575
z1−α
目 录
0
前一页 后一页
zα x
退 出
第二章 随机变量及其分布
§4连续型随机变量的概率密度
小结: 小结: 1 连续型随机变量的密度函数的定义和性质。 连续型随机变量的密度函数的定义和性质。 定义和性质 特别是
Φ( x )
dt
标准正态分布N(0,1) 标准正态分布 标准正态分布的重要性在于, 标准正态分布的重要性在于,任何一个 一般的正态分布都可以通过线性变换转化为 标准正态分布. 标准正态分布.
定理1 定理 设
Y X ~ N(µ,σ ) , 则Y =

什么是正态分布

什么是正态分布

什么是正态分布正态分布(Normal Distribution),又称高斯分布(Gaussian Distribution),是概率论和统计学中最重要的概率分布之一。

它在自然界和社会科学中广泛应用,被认为是一种非常常见的分布模式。

正态分布的特点是呈钟形曲线,对称分布于均值周围。

其概率密度函数可以用以下公式表示:f(x) = (1 / (σ * √(2π))) * e^(-((x-μ)^2) / (2σ^2))其中,f(x)表示随机变量X的概率密度函数,x表示随机变量的取值,μ表示均值,σ表示标准差,π表示圆周率,e表示自然对数的底。

正态分布的均值和标准差决定了曲线的位置和形状。

均值决定了曲线的中心位置,标准差决定了曲线的宽度。

当均值为0,标准差为1时,曲线称为标准正态分布。

正态分布具有许多重要的性质和应用。

以下是正态分布的几个重要特点:1. 对称性:正态分布是对称的,均值处于曲线的中心位置,两侧的概率密度相等。

2. 峰度:正态分布的峰度较高,曲线较陡峭,尾部较平缓。

3. 独立性:正态分布的随机变量之间是相互独立的。

4. 中心极限定理:当样本容量足够大时,样本均值的分布接近正态分布。

正态分布在实际应用中具有广泛的应用。

以下是几个常见的应用场景:1. 自然科学:正态分布常用于描述测量误差、实验数据、物理量的分布等。

2. 社会科学:正态分布常用于描述人口统计数据、心理测量数据、考试成绩等。

3. 金融领域:正态分布常用于描述股票价格、利率、风险收益等。

4. 质量控制:正态分布常用于描述产品尺寸、重量、强度等的分布。

5. 生物学:正态分布常用于描述身高、体重、血压等生物特征的分布。

正态分布的应用不仅限于上述领域,还广泛应用于工程、经济学、环境科学等各个领域。

总之,正态分布是一种重要的概率分布,具有对称性、峰度高、独立性等特点。

它在自然界和社会科学中广泛应用,用于描述各种随机变量的分布。

了解正态分布的特点和应用,对于理解和分析实际问题具有重要意义。

正态分布

正态分布

正态分布正态分布(normal distribution)又名高斯分佈(Gaussian distribution),是一個在數學、物理及工程等領域都非常重要的概率分佈,在統計學的許多方面有著重大的影響力。

若隨機變量X服從一個數學期望為μ、標準方差為σ2的高斯分佈,記為:則其概率密度函數為常態分佈的期望值μ決定了其位置,其標準差σ決定了分佈的幅度。

因其曲線呈鐘形,因此人們又經常稱之為鐘形曲線。

我們通常所說的標準常態分佈是μ = 0,σ = 1的常態分佈(見右圖中綠色曲線)。

目录[隐藏]1 概要o 1.1 歷史2 正态分布的定義o 2.1 概率密度函數o 2.2 累積分佈函數o 2.3 生成函數▪ 2.3.1 動差生成函數▪ 2.3.2 特徵函數3 性質o 3.1 標準化正態隨機變量o 3.2 矩(英文:moment)o 3.3 生成正態隨機變量o 3.4 中心極限定理o 3.5 無限可分性o 3.6 穩定性o 3.7 標準偏差4 正態測試5 相關分佈6 參量估計o 6.1 參數的極大似然估計▪ 6.1.1 概念一般化o 6.2 參數的矩估計7 常見實例o7.1 光子計數o7.2 計量誤差o7.3 生物標本的物理特性o7.4 金融變量o7.5 壽命o7.6 測試和智力分佈[编辑]概要正態分布是自然科學與行為科學中的定量現象的一個方便模型。

各種各樣的心理學測試分數和物理現象比如光子計數都被發現近似地服從常態分佈。

儘管這些現象的根本原因經常是未知的,理論上可以證明如果把許多小作用加起來看做一個變量,那麼這個變量服從正态分布(在R.N.Bracewell的Fourier transform and its application中可以找到一種簡單的證明)。

正态分布出現在許多區域統計:例如, 採樣分佈均值是近似地正態的,既使被採樣的樣本總體並不服從正态分布。

另外,常態分布信息熵在所有的已知均值及方差的分佈中最大,這使得它作為一種均值以及方差已知的分佈的自然選擇。

正态分布

正态分布

或 x Z s
23
例题:
例9-11 利用表9-1的资料计算95%参考值范围。
表9-1的资料近似服从正态分布,可以利用正
态分 布法计算95%参考值范围。
X 350.24,S 32.97
双侧95%的参考值范围:
X 1.96 S 350.24 1.96 32.97 ( 285.62 ~ 414.86) 20-29岁正常成年男子的尿酸浓度的95%参考值
25
(二) 质量控制: 随机误差 系统误差
26
判断异常的8种情况
有一个点距中心线的距离超过3个标准差(控制限以外) 在中心线的一侧连续有9个点 连续6个点稳定地增加或减少 连续14个点交替上下 连续3个点中有两个点距中心线距离超过2个标准差(警戒限 以外) 连续5个点中有4个点距中心线距离超过1个标准差 中心线一侧或两侧连续15个点距中心线距离都超出1个标准差 以内 中心线一侧或两侧连续8个点距中心线距离都超出1个标准差 范围。
的疾病和有关因素的同质人群。
一般认为至少应在 120 例以上。例数过少,
确定的参考值范围往往不够准确。
19
B.对选定的正常人进行准确的测量;
C.决定取单侧范围还是双侧范围值; 根据研究目的和专业知识确定单双侧 例:白细胞计数过低过高均异常,故双侧; 肺活量过低为异常,故单侧; 血铅、发汞含量过高为异常,故单侧。
知道面积求U值。 查附表1 得:0.10 对应的U值为-1.28
0.10
0.80
0.10
则: 80%的男孩身高集中: (116.9cm,129.2cm)
X 1.28 s
17
三、正态分布的应用 (一) 确定医学参考值范围(reference range) :

正态分布

正态分布

例1:设
X ~ N 0,1
求 P ( X 1.23); P ( X 2.08); P ( X 0.09);
P(2.15 X 5.12); P( X 1.96)
解:
P ( X 1.23) 0
P ( X 2.08) (2.08) 0.9812
P( X 0.09) 1 (0.09) (0.09) 0.5359
重要结论:设 X ~ N ( , ),则
2
X

~ N (0,1) .
P ( X b ) P ( X b ) ( b ) (1) P (2) (a X b) P (a X b) P (a X b) b a ) ( ) P (a X b) ( a (3)P ( X a ) P ( X a ) 1 ( ) (4) P( X k ) P( X k ) ( k ) ( k )
对第二种方案有X ~ N 6,2), ( 2 56 于是(X 5) 1 P X 5) 1 ( P ( ) 3 1 ( 0.5) (0.5) 0.6915
综上分析,选择第 ?
种方案

1.标准正态分布
1)记为 X~N(0,1)
2)密度 ( x ) 函数:
(1) P ( X x ) 0.90 ,求x; (2) P ( X y ) 0.04 ,求y。 解:(1)P ( X x )
10
x 500 0.90 10
查表得 x 500 1.28
,得 x =512.8
y 500 0.04 (2)P ( X y ) 1 10 y 500 y 500 0.96 查表得 于是 1.75 10 10
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如果随机变量X服从正态分布, 则记作 X~ N( μ,σ2)
正态总体的函数表示式
f (x) ?
1
2? ?
?
e
(x? ? )2 2? 2
x?
(??
,??
)
当μ= 0,σ=1时
标准正态总体 的函数表示式
x2
f (x) ?
1
2?
?
e2
x ? (?? ,?? )
此时,? ~ ?0,1?
标准正态曲线
3.正态分布 密度函数的性质
f (x) ?
1
2? ?
?
e
(x? ? )2
2? 2
x?
(??
,??
)
y
(1)当x = μ 时,函数值为最大 .
1
x=μ
(2)f (x) 的值域为
(0,
]
2? ?
x (3) f (x) 的图象关于 =μ 对称. -3 -2 -1 0 1 2 3 x
(4)当x∈(-∞,μ] 时f (x)为增函数. 当x∈(μ,+∞) 时f (x)为减函数.
(6)当μ一定时,曲线的形状由 σ确定 . σ 越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中 .
正态曲线下的面积规律
X轴与正态曲线所夹面积恒等于 1 。 对称区域面积相等。
S(-? ,-X)
S(X,? )=S(-? ,-X)
?
正态曲线下的面积规律
? 对称区域面积相等。

归纳小结
1 正态总体函数解析式:
f (x) ?
1
e?
( x? ? )2 2? 2
2? ?
2 正态曲线
x ? (?? ,?? )
μ= -1
y σ=0.5
y
μ=0 σ=1
y μ=1 σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
正态曲线的性质
1
? ? ?? (x) ?
y
2??
μ= -1
σ=0.5
( x ? ? )2
e? 2? 2
y
μ=0
, x ? (?? ,?? )
y μ=1
σ=1
σ=2
-3 -2 -1 0 1 2 x -3 -2 -1 0 1 2 3 x -3 -2 -1 0 1 2 3 4 x
(1)曲线在 x轴的上方,与 x轴不相交 . (2)曲线是单峰的 ,它关于直线 x=μ对称. (3)曲线在 x=μ处达到峰值 (最高点) 1
b
? P(a ? X ? b) ? a ? ? ,? (x)dx
2.正态分布的定义:
如果对于任何实数 a<b, 随机变量X满足:
b
? P(a ? X ? b) ? a ? ? ,? (x)dx
则称X 服从正态分布. 正态分布由参数μ、σ唯一 确定.正态分布记作N( μ,σ2).其图象称为正态 曲线.
归纳小结
3 正态曲线的性质
(1)曲线在x轴的上方,与 x轴不相交.
(2)曲线关于直线 x=μ对称.
(3)曲线在x=μ时位于最高点 .
(4)当 x<μ时,曲线上升;当 x>μ时,曲线下降 . 并且当曲线向左、右两边无限延伸时,以轴为渐近线, 向它无限靠近 .
(5)当μ一定时,曲线的形状由 σ确定 . σ越大,曲线越“矮胖”,表示总体的分布越分散; σ越小,曲线越“瘦高”,表示总体的分布越集中 .
2.4 正态分布
你见过高尔顿板吗 ? 图2. 4 ? 1
所示的就是一块高尔顿 板示意
图.在一块木板上钉上若干 排相
互平行但相互错开的圆 柱 形小
木块,小木块之间留有适当的 空
隙作为通道 , 前面挡有一块玻璃 . 让一个小球从高尔顿板 上方的
图2.4 ? 1
通道口落下,小球在下落过 程中
与层层小木块碰撞,最后掉入高尔顿板下方 的某一球槽内.
A. f (x) ?
1
(x? ? )2
e 2? 2 , ? ,? (? ? 0)都是实数
2??
B.
f (x) ?
2?
x2 ?
e2
2?
C. f (x) ?
1
( x ? 1)2 ?
e4
2 2?
D. f (x) ?
1
x2
e2
2?
2、标准正态总体的函数为
f (x) ?
1
? x2
e 2 , x ? (?? , ?? ).
积随着? 的减少而变大。这说明 ? 越小, 落在区间
的概率越大,即X集中在 ? 周围概率越大。
(?
?
a,
?
?
a]
特别地有
x=μ P(? ? ? ? X ? ? ? ? ) ? 0.6826,
P(? ? 2? ? X ? ? ? 2? ) ? 0.9544,
P(? ? 3? ? X ? ? ? 3? ) ? 0.9974.
例2、在某次数学考试中,考生的成绩 ? 服从一个 正态分布,即 ? ~N(90,100). (1)试求考试成绩 ? 位于区间(70,110)上的概率是
多少?
(2)若这次考试共有 2000名考生,试估计考试成绩 在(80,100) 间的考生大约有多少人?
练习:1、已知一次考试共有 60名同学参加,考生的
正态曲线
4、正态曲线的性质
? ? ?? (x) ?
1
( x ? ? )2
e? 2? 2 , x ? (?? , ?? )
2??
y
y
y
μ= -1
μ=1
σ=0.5
μ=0
σ=1
σ=2
x x -3 -2 -1 0 1 2
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 4 x
具有两头低、中间高、左右对称 的基本特征
标,频可率 以画出频率分布直方 图 ?图2.4 ? 2?.
0.35 0.30 0.25 0.20 0.15 0.10 0.05
O 1 2 3 4 5 6 7 8 9 10 11 槽的编号
图 2.4 ? 2
随着重复次数的增加 , 这个频率直方图的形状
会越来越像一条钟形曲 线?图2.4 ? 3?.
y
O
1
2??
? (x?? )2
e 2? 2 x? (?? ,?? )
式中的实数μ、σ(σ>0)是参数,分别表示 总体的平均数与标准差,称f( x)为正态密度函 数, f( x) 的图象称为正态曲线
Y
a
bc
d
平均数
X
若用X表示落下的小球第 1次与高尔顿板底部接触时 的坐标,则X是一个随机变量 .X落在区间 (a,b] 的概率为 :
2?
(1)证明f(x)是偶函数;
(2)求f(x)的最大值;
(3)利用指数函数的性质说明f(x)的增减性。
3、若一个正态分布的概率函数是一个偶函数且该函
1
数的最大值等于 4 2? ,求该正态分布的概率密度函数 的解析式。
题型二、正态曲线的性质
1、把一个正态曲线 a沿着横轴方向向右移动 2个单位, 得到新的一条曲线 b。下列说法中不正确的是( )
A.曲D线b仍然是正态曲线;
B.曲线a和曲线b的最高点的纵坐标相等 ;
C.以曲线b为概率密度曲线的总体的期望比以曲线 a为 概率密度曲线的总体的期望大 2;
D.以曲线b为概率密度曲线的总体的方差比以曲线 a为 概率密度曲线的总体的方差大 2。
3、设随机变量X~N(2,9),若 P(X>c+1)=p(X<c-1),则c=____
σ 2π
(4)曲线与 x轴之间的面积为 1
正态曲线的性质
y X=μ ? ? ?? ( x) ?
σ=0.5
1
( x ? ? )2
e? 2? 2
2??
σ=1
σ=2
-3 -2 -1 0
12 3 x
(5)当 x<μ时,曲线上升 ;当x>μ时,曲线下降.并且当曲线 向左、右两边无限延伸时 ,以x轴为渐近线 ,向它无限靠近 .
题型三、求正态区间概率
练习
1、已知X~N(1.4,0.052),求X落在区间 (1.35,1.45)中的概率
2、已知正态总体的数据落在区间(-3,-1)的概 率和落在区间(3,5)的概率相等,那么这个 正态分布的均值为_____
3、在某项测量中,测量结果X服从正态分布 N(1,σ2)(σ>0),若X在区间(0,1)内取值的概 率为0.4,则X在区间(0,2)内取值的概率是 _____
如果把球槽编号 ,就可以考察到底是落在 第几号球槽 中.重复进行高尔顿板试验 ,随着试验次数的增加,掉入 各个球槽内的小球的个 数就 越来越多,堆积的高度也 会越来越高 .各个球 槽的堆积高度反映了小 球掉入各 球槽的个数多少 ?
为了更好地考察随着试 验次数的增加 ,落在在各 个球槽内的小球分布情 况,我们进一步从频率的 角度探究一下小球的分 布规律 .以球槽的编号为 横坐标,以小球落 入各个球槽内的频率值 为纵坐
成绩X~(100,5 2 ),据此估计,大约应有 57人的分
数在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (?? , ? 2) 内取值的概率
等于( D )
A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量 X~N(0,1),则P(X ? 0)= 0.5 ,
? -a ? +a
相关文档
最新文档