用遗传算法优化BP神经网络的Matlab编程实例

合集下载

BP神经网络matlab实例(简单而经典)

BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化%premnmx Preprocesses data so that minimum is -1 and maximum is 1.net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络%minmax returns the Rx2 matrix PR of minimum and maximum values for each row of P. net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);% tramnmx TRAMNMX transforms the network input set using% minimum and maximum values that were previously% computed by PREMNMX. This function needs to be%used when a network has been trained using data normalized%by PREMNMX. All subsequent inputs to the network need to%be transformed using the same normalization.anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';% Postprocesses data which has been preprocessed by PREMNMX. POSTMNMX postprocesses %the network training% set which was preprocessed by PREMNMX. It converts% the data back into unnormalized units.1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)R⨯维矩阵。

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码

基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。

1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。

(完整版)BP神经网络matlab实例(简单而经典).doc

(完整版)BP神经网络matlab实例(简单而经典).doc

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); % 原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP 网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM 算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn);anew=postmnmx(anewn,mint,maxt); %对 BP 网络进行仿真%还原数据y=anew';1、 BP 网络构建(1)生成 BP 网络net newff ( PR,[ S1 S2...SNl],{ TF1 TF 2...TFNl }, BTF , BLF , PF ) PR :由R 维的输入样本最小最大值构成的R 2 维矩阵。

[ S1 S2...SNl] :各层的神经元个数。

{TF 1 TF 2...TFNl } :各层的神经元传递函数。

BTF :训练用函数的名称。

(2)网络训练[ net,tr ,Y, E, Pf , Af ] train (net, P, T , Pi , Ai ,VV , TV )(3)网络仿真[Y, Pf , Af , E, perf ] sim(net, P, Pi , Ai ,T ){'tansig','purelin'},'trainrp'BP 网络的训练函数训练方法梯度下降法有动量的梯度下降法自适应 lr 梯度下降法自适应 lr 动量梯度下降法弹性梯度下降法训练函数traingd traingdm traingda traingdx trainrpFletcher-Reeves 共轭梯度法traincgf Ploak-Ribiere 共轭梯度法traincgpPowell-Beale 共轭梯度法traincgb 量化共轭梯度法trainscg 拟牛顿算法trainbfg 一步正割算法trainoss Levenberg-Marquardt trainlmBP 网络训练参数训练参数net.trainParam.epochsnet.trainParam.goal net.trainParam.lrnet.trainParam.max_fail net.trainParam.min_grad net.trainParam.show net.trainParam.timenet.trainParam.mc net.trainParam.lr_inc 参数介绍最大训练次数(缺省为10)训练要求精度(缺省为0)学习率(缺省为0.01 )最大失败次数(缺省为5)最小梯度要求(缺省为1e-10)显示训练迭代过程( NaN 表示不显示,缺省为 25)最大训练时间(缺省为inf )动量因子(缺省0.9)学习率lr增长比(缺省为1.05)训练函数traingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingd 、traingdm 、traingda 、traingdx 、 trainrp 、 traincgf 、traincgp 、traincgb 、trainscg、trainbfg 、 trainoss、 trainlmtraingdm 、 traingdx traingda 、traingdxnet.trainParam.lr_dec 学习率 lr 下降比(缺省为 0.7) traingda 、 traingdxnet.trainParam.max_perf_inc 表现函数增加最大比(缺省traingda 、 traingdx为 1.04)net.trainParam.delt_inc 权值变化增加量(缺省为trainrp1.2)net.trainParam.delt_dec 权值变化减小量(缺省为trainrp0.5)net.trainParam.delt0 初始权值变化(缺省为 0.07) trainrpnet.trainParam.deltamax 权值变化最大值(缺省为trainrp50.0)net.trainParam.searchFcn 一维线性搜索方法(缺省为traincgf 、traincgp 、traincgb 、srchcha)trainbfg 、 trainossnet.trainParam.sigma 因为二次求导对权值调整的trainscg影响参数(缺省值 5.0e-5)mbda Hessian 矩阵不确定性调节trainscg参数(缺省为 5.0e-7)net.trainParam.men_reduc 控制计算机内存/ 速度的参trainlm量,内存较大设为1,否则设为 2(缺省为 1)net.trainParam.mu 的初始值(缺省为0.001) trainlmnet.trainParam.mu_dec 的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc 的增长率(缺省为10)trainlmnet.trainParam.mu_max 的最大值(缺省为1e10)trainlm2、 BP 网络举例举例 1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用 minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)BP 神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

MATLAB程序代码--BP神经网络的设计实例

MATLAB程序代码--BP神经网络的设计实例

MATLAB程序代码--BP神经网络的设计实例例1 采用动量梯度下降算法训练 BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2,3,1;-1,1,5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingd m')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1} layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3; pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用xx正则化算法提高 BP 网络的推广能力。

遗传算法及遗传算法优化BP神经网络实现代码

遗传算法及遗传算法优化BP神经网络实现代码

遗传算法开放分类:编程、程序、数学、计算机、算法目录• 遗传算法定义• 遗传算法特点• 遗传算法的应用• 遗传算法的现状• 遗传算法的一般算法• 遗传算法实例遗传算法定义[编辑本段]遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan 大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

遗传算法特点[编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。

BP神经网络MATLAB编程代码

BP神经网络MATLAB编程代码

BP神经网络的设计MATLAB编程例1 采用动量梯度下降算法训练 BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。

BP神经网络MATLAB编程代码

BP神经网络MATLAB编程代码

BP神经网络的设计MATLAB编程例1 采用动量梯度下降算法训练 BP 网络。

训练样本定义如下:输入矢量为p =[-1 -2 3 1-1 1 5 -3]目标矢量为 t = [-1 -1 1 1]解:本例的 MATLAB 程序如下:close allclearecho onclc% NEWFF——生成一个新的前向神经网络% TRAIN——对 BP 神经网络进行训练% SIM——对 BP 神经网络进行仿真pause% 敲任意键开始clc% 定义训练样本% P 为输入矢量P=[-1, -2, 3, 1; -1, 1, 5, -3];% T 为目标矢量T=[-1, -1, 1, 1];pause;clc% 创建一个新的前向神经网络net=newff(minmax(P),[3,1],{'tansig','purelin'},'traingdm')% 当前输入层权值和阈值inputWeights=net.IW{1,1}inputbias=net.b{1}% 当前网络层权值和阈值layerWeights=net.LW{2,1}layerbias=net.b{2}pauseclc% 设置训练参数net.trainParam.show = 50;net.trainParam.lr = 0.05;net.trainParam.mc = 0.9;net.trainParam.epochs = 1000;net.trainParam.goal = 1e-3;pauseclc% 调用 TRAINGDM 算法训练 BP 网络[net,tr]=train(net,P,T);pauseclc% 对 BP 网络进行仿真A = sim(net,P)% 计算仿真误差E = T - AMSE=mse(E)pauseclcecho off例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。

BP神经网络MATLAB实例

BP神经网络MATLAB实例
clc
% NEWFF——生成一个新的前向神经网络
% TRAIN——对 BP 神经网络进行训练
% SIM——对 BP 神经网络进行仿真
pause
% 敲任意键开始
clc
% 定义训练样本
% P 为输入矢量
P=[-1, -2, 3, 1; -1, 1, 5, -3];
inputbias=net.b{1}
% 当前网络层权值和阈值
layerWeights=net.LW{2,1}
layerbias=net.b{2}
pause
clc
% 设置训练参数
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
pause;
clc
echo off
下面给出了网络的某次训练结果,可见,当训练至第 136 步时,训练提前停止,此时的网络误差为 0.0102565。给出了训练后的仿真数据拟合曲线,效果是相当满意的。
[net,tr]=train(net,P,T,[],[],val);
clc
elseif(choice==2)
echo on
clc
% 采用贝叶斯正则化算法 TRAINBR
net.trainFcn='trainbr';
pause
clc
% 对 BP 网络进行仿真
A = sim(net,P)
% 计算仿真误差
E = T - A
MSE=mse(E)
pause
clc
echo off
例2 采用贝叶斯正则化算法提高 BP 网络的推广能力。在本例中,我们采用两种训练方法,即 L-M 优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练 BP 网络,使其能够拟合某一附加有白噪声的正弦样本数据。其中,样本数据可以采用如下MATLAB 语句生成:

遗传算法优化BP神经网络权值和阈值的通用

遗传算法优化BP神经网络权值和阈值的通用
for i=1:S2,
B2(i,1)=x((R*S1+S1*S2+S1)+i);
end
% 计算S1与S2层的输出
A1=tansig(W1*P,B1);
A2=purelin(W2*A1,B2);
% 计算误差平方和
SE=sumsqr(T-A2);
val=1/SE; % 遗传算法的适应值
figure(2)
plot(trace(:,1),trace(:,3),'r-');
hold on
plot(trace(:,1),trace(:,2),'b-');
xlabel('Generation');
ylabel('Fittness');
%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络
net.trainParam.epochs=50;
net.trainParam.goal=0.001;
%训练网络
net=train(net,XX,YY);
程序二:适应值函数
function [sol, val] = gabpEval(sol,options)
% val - the fittness of this individual
%--------------------------------------------------------------------------
%数据归一化预处理
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
%创建网络
net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');

遗传算法matlab代码

遗传算法matlab代码

function youhuafunD=code;N=50; % Tunablemaxgen=50; % Tunablecrossrate=0.5; %Tunablemuterate=0.08; %Tunablegeneration=1;num = length(D);fatherrand=randint(num,N,3);score = zeros(maxgen,N);while generation<=maxgenind=randperm(N-2)+2; % 随机配对交叉A=fatherrand(:,ind(1:(N-2)/2));B=fatherrand(:,ind((N-2)/2+1:end));% 多点交叉rnd=rand(num,(N-2)/2);ind=rnd tmp=A(ind);A(ind)=B(ind);B(ind)=tmp;% % 两点交叉% for kk=1:(N-2)/2% rndtmp=randint(1,1,num)+1;% tmp=A(1:rndtmp,kk);% A(1:rndtmp,kk)=B(1:rndtmp,kk);% B(1:rndtmp,kk)=tmp;% endfatherrand=[fatherrand(:,1:2),A,B];% 变异rnd=rand(num,N);ind=rnd [m,n]=size(ind);tmp=randint(m,n,2)+1;tmp(:,1:2)=0;fatherrand=tmp+fatherrand;fatherrand=mod(fatherrand,3);% fatherrand(ind)=tmp;%评价、选择scoreN=scorefun(fatherrand,D);% 求得N个个体的评价函数score(generation,:)=scoreN;[scoreSort,scoreind]=sort(scoreN);sumscore=cumsum(scoreSort);sumscore=sumscore./sumscore(end);childind(1:2)=scoreind(end-1:end);for k=3:Ntmprnd=rand;tmpind=tmprnd difind=[0,diff(t mpind)];if ~any(difind)difind(1)=1;endchildind(k)=scoreind(logical(difind));endfatherrand=fatherrand(:,childind);generation=generation+1;end% scoremaxV=max(score,[],2);minV=11*300-maxV;plot(minV,'*');title('各代的目标函数值');F4=D(:,4);FF4=F4-fatherrand(:,1);FF4=max(FF4,1);D(:,5)=FF4;save DData Dfunction D=codeload youhua.mat% properties F2 and F3F1=A(:,1);F2=A(:,2);F3=A(:,3);if (max(F2)>1450)||(min(F2)<=900)error('DATA property F2 exceed it''s range(900,1450]')end% get group property F1 of data, according to F2 value F4=zeros(size(F1));for ite=11:-1:1index=find(F2<=900+ite*50);F4(index)=ite;endD=[F1,F2,F3,F4];function ScoreN=scorefun(fatherrand,D)F3=D(:,3);F4=D(:,4);N=size(fatherrand,2);FF4=F4*ones(1,N);FF4rnd=FF4-fatherrand;FF4rnd=max(FF4rnd,1);ScoreN=ones(1,N)*300*11;% 这里有待优化for k=1:NFF4k=FF4rnd(:,k);for ite=1:11F0index=find(FF4k==ite);if ~isempty(F0index)tmpMat=F3(F0index);tmpSco=sum(tmpMat);ScoreBin(ite)=mod(tmpSco,300);endendScorek(k)=sum(ScoreBin);endScoreN=ScoreN-Scorek;遗传算法实例:% 下面举例说明遗传算法 %% 求下列函数的最大值 %% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。

(完整版)BP神经网络matlab实例(简单而经典)

(完整版)BP神经网络matlab实例(简单而经典)

p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP 网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络=net newff PR S S SNl TF TF TFNl BTF BLF PF(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]{ 1 2...}TF TF TFNl:各层的神经元传递函数。

BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV(3)网络仿真=[,,,,] (,,,,)Y Pf Af E perf sim net P Pi Ai T{'tansig','purelin'},'trainrp'2、BP网络举例举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),T,[5,1],{'tansig','purelin'},'trainrp');net.trainParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;[net,tr]=train(net,P,T);net.iw{1,1}%隐层权值net.b{1}%隐层阈值net.lw{2,1}%输出层权值net.b{2}%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。

bp神经网络matlab实例(bp神经网络matlab实例)

bp神经网络matlab实例(bp神经网络matlab实例)

bp神经网络matlab实例(bp神经网络matlab实例)Case 1 training BP network by momentum gradient descent algorithm.Training samples are defined as follows:Input vector asP =[-1 -2 31-1 15 -3]The target vector is t = [-1 -1 1 1]Solution: the MATLAB program of this example is as follows:Close allClearEcho onCLC% NEWFF - generating a new feedforward neural network% TRAIN -- training BP neural network% SIM -- Simulation of BP neural networkPauseStart by hitting any keyCLCPercent defines training samples% P as input vectorP=[-1, -2, 3, 1; -1, 1, 5, -3];% T is the target vectorT=[-1, -1, 1, 1];Pause;CLC% create a new feedforward neural networkNet=newff (minmax (P), [3,1],{'tansig','purelin'},'traingdm')The current input layer weights and thresholds InputWeights=net.IW{1,1}Inputbias=net.b{1}The current network layer weights and thresholdsLayerWeights=net.LW{2,1}Layerbias=net.b{2}PauseCLC% set training parametersNet.trainParam.show = 50;Net.trainParam.lr = 0.05;Net.trainParam.mc = 0.9;Net.trainParam.epochs = 1000;Net.trainParam.goal = 1e-3;PauseCLC% call TRAINGDM algorithm to train BP network [net, tr]=train (net, P, T);PauseCLCSimulation of BP network by%A = sim (net, P)Calculate the simulation errorE = T - AMSE=mse (E)PauseCLCEcho offExample 2 adopts Bayesian regularization algorithm to improve the generalization ability of BP network. In this case, we used two kinds of training methods, namely L-M algorithm (trainlm) and the Bias regularization algorithm (trainbr), is used to train the BP network, so that it can fit attached to a white noise sine sample data. Among them, the sample data can be generated as follows MATLAB statements:Input vector: P = [-1:0.05:1];Target vector: randn ('seed', 78341223);T = sin (2*pi*P) +0.1*randn (size (P));Solution: the MATLAB program of this example is as follows: Close allClearEcho onCLC% NEWFF - generating a new feedforward neural network% TRAIN -- training BP neural network% SIM -- Simulation of BP neural networkPauseStart by hitting any keyCLC% define training sample vector% P as input vectorP = [-1:0.05:1];% T is the target vectorRandn ('seed', 78341223); T = sin (2*pi*P) +0.1*randn (size (P));Draw the sample data pointsPlot (P, T, +);Echo offHold on;Plot (P, sin (2*pi*P), ':');Draw sine curves without noiseEcho onCLCPauseCLC% create a new feedforward neural networkNet=newff (minmax (P), [20,1], {'tansig','purelin'});PauseCLCEcho offCLCDisp ('1. L-M optimization algorithm TRAINLM'); disp ('2. Bayesian regularization algorithm TRAINBR');Choice=input (\ "please select training algorithm (1,2): ');Figure (GCF);If (choice==1)Echo onCLC% using L-M optimization algorithm TRAINLMNet.trainFcn='trainlm';PauseCLC% set training parametersnet.trainparam.epochs = 500;net.trainparam.goal = 1e-6;NET(.NET);%重新初始化暂停中图分类号“(选择= = 2)回声中图分类号%采用贝叶斯正则化算法trainbr trainfcn = 'trainbr”网;暂停中图分类号%设置训练参数net.trainparam.epochs = 500;randn(“种子”,192736547);NET(.NET);%重新初始化暂停中图分类号结束调用相应算法训练BP网络% [净额],列车=(净额,P,T);暂停中图分类号对BP网络进行仿真%a = sim(NET,p);%计算仿真误差e = a;MSE=MSE(e)暂停中图分类号%绘制匹配结果曲线关闭所有;图(p,a,p,t,+,p,p,p(2),“,”;暂停;中图分类号回音通过采用两种不同的训练算法,我们可以得到如图1和图2所示的两种拟合结果。

(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.

(整理)BP神经网络matlab实现和matlab工具箱使用实例.BP神经网络matlab实现和matlab工具箱使用实例经过最近一段时间的神经网络学习,终于能初步使用matlab实现BP网络仿真试验。

这里特别感谢研友sistor2004的帖子《自己编的BP算法(工具:matlab)》和研友wangleisxcc的帖子《用C++,Matlab,Fortran实现的BP算法》前者帮助我对BP算法有了更明确的认识,后者让我对matlab下BP函数的使用有了初步了解。

因为他们发的帖子都没有加注释,对我等新手阅读时有一定困难,所以我把sistor2004发的程序稍加修改后加注了详细解释,方便新手阅读。

%严格按照BP网络计算公式来设计的一个matlab程序,对BP网络进行了优化设计%yyy,即在o(k)计算公式时,当网络进入平坦区时(<0.0001)学习率加大,出来后学习率又还原%v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j); 动量项clear allclcinputNums=3; %输入层节点outputNums=3; %输出层节点hideNums=10; %隐层节点数maxcount=20000; %最大迭代次数samplenum=3; %一个计数器,无意义precision=0.001; %预设精度yyy=1.3; %yyy是帮助网络加速走出平坦区alpha=0.01; %学习率设定值a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改字串9error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间errorp=zeros(1,samplenum); %同上v=rand(inputNums,hideNums); %3*10;v初始化为一个3*10的随机归一矩阵; v表输入层到隐层的权值deltv=zeros(inputNums,hideNums); %3*10;内存空间预分配dv=zeros(inputNums,hideNums); %3*10;w=rand(hideNums,outputNums); %10*3;同Vdeltw=zeros(hideNums,outputNums);%10*3dw=zeros(hideNums,outputNums); %10*3samplelist=[0.1323,0.323,-0.132;0.321,0.2434,0.456;-0.6546,-0.3242,0.3255]; %3*3;指定输入值3*3(实为3个向量)expectlist=[0.5435,0.422,-0.642;0.1,0.562,0.5675;-0.6464,-0.756,0.11]; %3*3;期望输出值3*3(实为3个向量),有导师的监督学习count=1;while (count<=maxcount) %结束条件1迭代20000次c=1;while (c<=samplenum)for k=1:outputNumsd(k)=expectlist(c,k); %获得期望输出的向量,d(1:3)表示一个期望向量内的值endfor i=1:inputNumsx(i)=samplelist(c,i); %获得输入的向量(数据),x(1:3)表一个训练向量字串4end%Forward();for j=1:hideNumsnet=0.0;for i=1:inputNumsnet=net+x(i)*v(i,j);%输入层到隐层的加权和∑X(i)V(i)endy(j)=1/(1+exp(-net)); %输出层处理f(x)=1/(1+exp(-x))单极性sigmiod函数endfor k=1:outputNumsnet=0.0;for j=1:hideNumsnet=net+y(j)*w(j,k);endif count>=2&&error(count)-error(count+1)<=0.0001o(k)=1/(1+exp(-net)/yyy); %平坦区加大学习率else o(k)=1/(1+exp(-net)); %同上endend%BpError(c)反馈/修改;errortmp=0.0;for k=1:outputNumserrortmp=errortmp+(d(k)-o(k))^2; %第一组训练后的误差计算enderrorp(c)=0.5*errortmp; %误差E=∑(d(k)-o(k))^2 * 1/2%end%Backward();for k=1:outputNumsyitao(k)=(d(k)-o(k))*o(k)*(1-o(k)); %输入层误差偏导字串5endfor j=1:hideNumstem=0.0;for k=1:outputNumstem=tem+yitao(k)*w(j,k); %为了求隐层偏导,而计算的∑endyitay(j)=tem*y(j)*(1-y(j)); %隐层偏导end%调整各层权值for j=1:hideNumsfor k=1:outputNumsdeltw(j,k)=alpha*yitao(k)*y(j); %权值w的调整量deltw(已乘学习率)w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);%权值调整,这里的dw=dletw(t-1),实际是对BP算法的一个dw(j,k)=deltw(j,k); %改进措施--增加动量项目的是提高训练速度endendfor i=1:inputNumsfor j=1:hideNumsdeltv(i,j)=alpha*yitay(j)*x(i); %同上deltwv(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);dv(i,j)=deltv(i,j);endendc=c+1;end%第二个while结束;表示一次BP训练结束double tmp;tmp=0.0; 字串8for i=1:samplenumtmp=tmp+errorp(i)*errorp(i);%误差求和endtmp=tmp/c;error(count)=sqrt(tmp);%误差求均方根,即精度if (error(count)<precision)%另一个结束条件< p="">break;endcount=count+1;%训练次数加1end%第一个while结束error(maxcount+1)=error(maxcount);p=1:count;pp=p/50;plot(pp,error(p),"-"); %显示误差然后下面是研友wangleisxcc的程序基础上,我把初始化网络,训练网络,和网络使用三个稍微集成后的一个新函数bpnet %简单的BP神经网络集成,使用时直接调用bpnet就行%输入的是p-作为训练值的输入% t-也是网络的期望输出结果% ynum-设定隐层点数一般取3~20;% maxnum-如果训练一直达不到期望误差之内,那么BP迭代的次数一般设为5000% ex-期望误差,也就是训练一小于这个误差后结束迭代一般设为0.01% lr-学习率一般设为0.01% pp-使用p-t虚拟蓝好的BP网络来分类计算的向量,也就是嵌入二值水印的大组系数进行训练然后得到二值序列% ww-输出结果% 注明:ynum,maxnum,ex,lr均是一个值;而p,t,pp,ww均可以为向量字串1% 比如p是m*n的n维行向量,t那么为m*k的k维行向量,pp为o*i的i维行向量,ww为o* k的k维行向量%p,t作为网络训练输入,pp作为训练好的网络输入计算,最后的ww作为pp经过训练好的BP训练后的输出function ww=bpnet(p,t,ynum,maxnum,ex,lr,pp)plot(p,t,"+");title("训练向量");xlabel("P");ylabel("t");[w1,b1,w2,b2]=initff(p,ynum,"tansig",t,"purelin"); %初始化含一个隐层的BP网络zhen=25; %每迭代多少次更新显示biglr=1.1; %学习慢时学习率(用于跳出平坦区)litlr=0.7; %学习快时学习率(梯度下降过快时)a=0.7 %动量项a大小(△W(t)=lr*X*ん+a*△W(t-1))tp=[zhen maxnum ex lr biglr litlr a 1.04]; %trainbpx[w1,b1,w2,b2,ep,tr]=trainbpx(w1,b1,"tansig",w2,b2,"purelin", p,t,tp);ww=simuff(pp,w1,b1,"tansig",w2,b2,"purelin"); %ww就是调用结果下面是bpnet使用简例:%bpnet举例,因为BP网络的权值初始化都是随即生成,所以每次运行的状态可能不一样。

遗传算法的Matlab实现讲解

遗传算法的Matlab实现讲解
x(i)=decodechrom(bestindividual,1,chromlength)*10/(2^chromlength-1); %最佳个体解码 y(i)=bestfit+Cmin; %最佳个体适应度
y_mean(i)=mean(fitvalue+Cmin); %第i代平均适应度
pop=newpop; end fplot('2*x+10*sin(5*x)+7*cos(4*x)',[0 10]) hold on plot(x,y,'r*') hold off
temp1=decodechrom(pop,1,chromlength); %将pop每行转化成十进制数
x=temp1*(Xmax-Xmin)/(2^chromlength-1); %将十进制域 中的数转化为变 量域 的数 objvalue=2*x+10*sin(5*x)+7*cos(4*x); %计算目标函数值
Matlab编程实现GA
计算目标函数值
计算目标函数值 % calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示 例仿真,可根据不同优化问题予以修改。 %遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算 function [objvalue]=calobjvalue(pop,chromlength,Xmax,Xmin)
bestindividual=pop(1,:);
bestfit=fitvalue(1); for i=2:px
if fitvalue(i)>bestfit
bestindividual=pop(i,:); bestfit=fitvalue(i);

利用MATLAB实现遗传算法和MATLAB神经网络工具箱的使用

利用MATLAB实现遗传算法和MATLAB神经网络工具箱的使用

实验一利用MATLA实现遗传算法一、实验目的1、熟悉MATLA语言编程环境2、掌握MATLA语言命令3、学会利用MATLA编程实现遗传算法二、实验原理MATLA是美国Math Works公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,MATLA可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计等领域。

通过学习遗传算法原理,使用 MATLA编写程序,实现其求解策略。

三、实验内容通过MATLA编程,利用遗传算法求解:f (x) 200exp( 0.05x)sin(x), 求maxf (x),x [-2,2] .三、实验要求1 、程序设计2、调试3、实验结果4、撰写实验报告实验二MATLAB申经网络工具箱的使用一、实验目的1、掌握MATLA语言命令2、提高MATLA程序设计能力3、学会使用MATLA申经网络工具箱二、实验原理MATLA语言是Math Works公司推出的一套高性能计算机编程语言,集数学计算、图形显示、语言设计于一体,其强大的扩展功能为用户提供了广阔的应用空间。

它附带有 30多个工具箱,申经网络工具箱就是其中之一。

利用该工具箱可以方便的构建申经网络的结构模型、设计、训练等,实现申经网络算法。

三、实验内容通过MATLA编程,利用神经网络工具箱预测公路运量:公路运量主要包括公路客运量和公路货运量两个方面。

据研究,某地区的公路运量主要与该地区的人数、机动车数量和公路面积有关,上表给出了该地区20年的公路运量相关数据。

根据有关部门数据,该地区2010和2011 年的人数分别为73.39 和75.55 万人,机动车数量分别为3.9635 和4.0975 万辆,公路面积分别为0.9880和1.0268万平方千米。

请利用BP网络预测该地区2010和2011 年的公路客运量和公路货运量。

某地区20年公路运量数据三、实验要求1、程序设计2、调试3、实验结果4、撰写实验报告运用遗传算法求解函数最大值:所有的子程序为M文件%子程序:计算适应度函数,函数名称存储为fitnessfu.m function[Fitvalue,sumsump]=fitnessfun(population); global BitLengthglobal boundsbeginIfCroIfMut.mglobal boundsendpopsize=size(population,1); for i=1:popsizex=transform2to10(population(i,:));xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1); Fitvalue(i)=targetfun(xx); endFitvalue(i)=Fitvalue'+230; fsum=sum(Fitvalue);Pperpopulation=Fitvalue/fsum; cumsump(1)=Pperpopulation(1); for i=2:popsizecumsump(i)=cumsumo(i-1)+Pperpopulation(i); endcumsump=cumsump';%子程序:新种群交叉操作,函数名称存储为crossover.mfunction scro=crossover(population,seln,pc) BitLength=size(population,2); pcc=IfCroIfMut(pc); if pcc==1chb=round(rand*(BitLength-2))+1;scro(1,:)=[population(seln(1),1:chb),population(seln(2),chb+1:BitLength)]; scro(2,:)=[population(seln(2),1:chb),population(seln(1),chb+1:BitLength)]; else scro(1,:)=population(seln(1),:); scro(2,:)=population(seln(2),:); end% 子程序:新种群变异操作,函数名称存储为 mutation.m function snnew=mutation(snew,pmutation); BitLength=size(snew,2); snnew=snew;pmm=IfCroIfMut(pmutation); if pmm==1chb=round(rand*(BitLlength-1))+1; end%子程序:判断遗传运算是否需要进行交叉或变异,函数名称存储为 function pcc=IfCroIfMut(mutORcro); test(1:100)=0;1=round(100*mutORcro); test(1:1)=1; n=round(rand*99)+1; pcc=test(n);%子程序:新种群选择操作,函数名称存储为selection.mfunction seln=selection(population,cumsump);for i=1:2r=rand;prand=cumsump-r;j=1;whlie prand(j)<0j=j+1;end seln(i)=j; end%子程序:将二进制数转换为十进制数,函数名称存储为transform2to10.mfunction x=transform2to10(Population);BitLength=size(Population,2); x=Population(BitLength); for i=1:BitLength-1 x=x+Population(BitLength-i)*power(2,i);end%子程序:对于优化最大值或者极大值函数问题,目标函数可以作为适应度函数,%函数名称存储为targetfun.m function y=targetfun(x); y=200*exp(-0.05*x).*sin(x);涯程序:用遗传算法求解y=200*exp (-0.05*x ) .*sin (x)在[-2 2]区间上的最大值clc;clear all;close all;global BitLengthglobal boundsbeginglobal boundsendbounds=[-2 2];precision=0.0001;boundsbegin=bounds(:,1); boundsend=bounds(:,2);BitLength=cell(log2((boundsend-boundsbegin)'./precision));popsize=50;Generationnmax=12; pcrossover=0.90;pmutation=0.09; population=round(rand(popsize,BitLength));[Fitvalue,cumsump]=fitnessfun(population);cumsump Generation=1;while Generation<Generationnmax+1for j=1:2:popsize seln=selection(population,cumsump);scro=crossover(popuoation,seln,pcrossover);scnew(j,:)=scro(1,:); scnew(j+1,:)=scro(2,:);smnew(j,:)=mutation(scnew(j,:),pmutation); smnew(j+1,:)=mutation(scnew(j+1,:),pmutation); endpopulation=smnew; [Fitvalue,cumsump]=fitnessfun(population);[fmax,nmax]=max(Fitvalue); fmean=mean(Fitvalue);ymax(Generation)=fmax; ymean(Generation)=fmean;x=transform2to10(population(nmax,:));xx=boundsbegin+x*(boundsend-boundsbegin)/(power((boundsend),BitLength)-1);xmax(Generation)=xx;Generation=Generation+1;endGeneration=Generation-1;Bestpopulation=xx;Besttargetfunvalue=targetfun(xx);figure(1); hand1=plot(1:Generation,ymax);set(hand1,'linestyle','-','linewidth',1.8,'marker','*','markersize',6) hold on;hand2=polt(1:Generation,ymean);set(hand2,'color','linestyle','linewidth',1.8,'marker','h','mrkersize',6) xlabel;ylabel; xlim([1 Generationnmax]);legend;box off; hold off附件二(参考程序)利用神经网络工具箱预测公路运量:为了了解利用BP网络求解问题的过程,把问题分为六个模块处理: 1.原始数据的输入;2.数据归一化;3.网络训练;4.对原始数据进行仿真; 5.将原始数据仿真的结果与已知样本进行对比; 6. 对新数据进行仿真。

BP神经网络matlab实例(简单而经典)(完整资料).doc

BP神经网络matlab实例(简单而经典)(完整资料).doc

【最新整理,下载后即可编辑】p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx');%设置网络,建立相应的BP网络,minmax(pn)找到pn 矩阵的最大最小值net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;[net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络pnew=pnew1';pnewn=tramnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew';1、BP网络构建(1)生成BP网络net newff PR S S SNl TF TF TFNl BTF BLF PF=(,[1 2...],{ 1 2...},,,)PR:由R维的输入样本最小最大值构成的2R⨯维矩阵。

S S SNl:各层的神经元个数。

[ 1 2...]TF TF TFNl:各层的神经元传递函数。

{ 1 2...}BTF:训练用函数的名称。

(2)网络训练[,,,,,] (,,,,,,)=net tr Y E Pf Af train net P T Pi Ai VV TV (3)网络仿真=Y Pf Af E perf sim net P Pi Ai T[,,,,] (,,,,){'tansig','purelin'},'trainrp'BP网络训练参数举例1、%traingdclear;clc;P=[-1 -1 2 2 4;0 5 0 5 7];T=[-1 -1 1 1 -1];%利用minmax函数求输入样本范围net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp');%minmax(P)取P的最大最小值;[5,1]第一次神经元5个,第二层1个;'tansig','purelin'神经网络第一层和第二层的转移函数;'trainrp'网络训练函数。

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析神经网络和遗传算法是两种常用的优化方法,可以分别用于解决不同的问题。

然而,有时候单独使用神经网络或遗传算法可能不能达到理想的效果,因此将两者结合起来进行联合优化可以有效地提高优化结果的质量。

本文将以一个实例为例,介绍如何在MATLAB中使用神经网络和遗传算法进行联合优化。

首先,我们可以使用神经网络来构建一个分类器。

在MATLAB中,可以使用神经网络工具箱来搭建和训练神经网络模型。

可以选择不同的网络结构、激活函数和优化算法等进行配置。

在本例中,我们选择一个具有一层隐藏层的全连接神经网络,并使用Sigmoid作为激活函数。

接下来,我们使用遗传算法来优化神经网络的参数。

遗传算法是一种模拟自然进化过程的优化方法,通过基于个体适应性的选择、交叉和变异等操作,不断演化产生更优解。

在MATLAB中,可以使用遗传算法和全局优化工具箱来实现遗传算法的相关操作。

在联合优化中,我们将神经网络的模型参数作为遗传算法的优化变量。

遗传算法根据神经网络在训练样本上的分类准确率来评估每个个体的适应性,并根据适应性进行选择、交叉和变异操作。

通过不断演化,遗传算法最终得到最优的模型参数,从而达到最佳的分类性能。

下面是在MATLAB中进行神经网络和遗传算法联合优化的步骤:2.建立神经网络模型:使用神经网络工具箱创建一个全连接神经网络模型,指定网络的结构和参数。

3.配置遗传算法:使用全局优化工具箱配置遗传算法的相关参数,例如种群大小、交叉和变异操作的概率等等。

4.定义适应函数:定义一个函数来计算神经网络在训练样本上的分类准确率。

该函数将用于评估每个个体的适应性。

5.运行遗传算法:使用遗传算法求解问题,将适应函数和神经网络模型作为输入,并设置迭代次数和终止条件等参数。

6.获取最优解:从遗传算法得到的最优个体中提取出最佳的神经网络模型参数。

7.测试模型性能:使用测试集数据评估得到的最佳神经网络模型的性能,例如计算分类准确率、精确率和召回率等指标。

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析

MATLAB中的神经网络与遗传算法联合优化实例分析神经网络和遗传算法是两种常用的智能优化方法,它们在不同领域的问题求解中发挥了重要作用。

而将这两种方法结合起来,可以进一步提升算法的性能和效果。

本文将介绍MATLAB中如何使用神经网络和遗传算法联合优化,并通过一个实例进行分析和验证。

首先,我们先来了解一下神经网络和遗传算法的基本原理。

神经网络是一种模拟生物神经系统的计算模型,它由多个神经元组成,通过学习调整神经元之间的连接权重,从而实现对输入数据的非线性映射和分类。

而遗传算法则是一种模拟生物进化过程的优化方法,通过不断迭代和交叉变异的方式搜索最优解。

在MATLAB中,可以使用Neural Network Toolbox和Global Optimization Toolbox分别实现神经网络和遗传算法的优化。

下面我们将以一个分类问题为例,演示如何使用这两种方法联合优化。

假设我们需要构建一个神经网络模型,对一个包含多个特征的数据集进行分类。

首先,我们可以使用Neural Network Toolbox搭建一个基本的神经网络结构。

通过设定输入层、隐层和输出层的神经元个数,以及选择合适的激活函数和损失函数,我们可以训练得到一个初步的神经网络模型。

然而,这个初步模型可能并不是最优的,它可能存在欠拟合或过拟合的问题。

为了进一步提升模型的性能,我们可以引入遗传算法进行优化。

具体做法是将神经网络的连接权重作为遗传算法的优化变量,通过遗传算法的搜索过程来调整权重,以寻找最优解。

在全局优化问题中,遗传算法能够避免陷入局部最优解,并且具有较好的鲁棒性。

在MATLAB中,Global Optimization Toolbox提供了ga函数来实现遗传算法的优化。

我们可以将神经网络的连接权重作为输入变量,定义一个适应度函数来评估神经网络模型的性能,然后通过调用ga函数进行优化求解。

在每次迭代中,遗传算法将根据适应度函数的评估结果来调整权重,直至找到最优解。

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的Matlab编程实例

用遗传算法优化BP神经网络的Matlab编程实例程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=premnmx(XX);YY=premnmx(YY);%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数=1;=1;s=50;=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2 for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用遗传算法优化BP神经网络的
Matlab编程实例
由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。

以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。

程序一:GA训练BP权值的主函数
function net=GABPNET(XX,YY)
%--------------------------------------------------------------------------
%
% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络
%--------------------------------------------------------------------------
%数据归一化预处理
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
%创建网络
net=newff(minmax(XX),[19,25,1],{'tansig','tan sig','purelin'},'trainlm');
%下面使用遗传算法对网络进行优化
P=XX;
T=YY;
R=size(P,1);
S2=size(T,1);
S1=25;%隐含层节点数
S=R*S1+S1*S2+S1+S2;%遗传算法编码长度
aa=ones(S,1)*[-1,1];
popu=50;%种群规模
initPpp=initializega(popu,aa,'gabpEval');%初始化种群
gen=100;%遗传代数
%下面调用gaot工具箱,其中目标函数定义为gabpEval
[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],ini tPpp,[1e-6 1 1],'maxGenTerm',gen,...
'normGeomSelect',[],['arithXover'],[2],'n onUnifMutation',[2 gen 3]);
%绘收敛曲线图
figure(1)
plot(trace(:,1),1./trace(:,3),'r-');
hold on
plot(trace(:,1),1./trace(:,2),'b-');
xlabel('Generation');
ylabel('Sum-Squared Error');
figure(2)
plot(trace(:,1),trace(:,3),'r-');
hold on
plot(trace(:,1),trace(:,2),'b-');
xlabel('Generation');
ylabel('Fittness');
%下面将初步得到的权值矩阵赋给尚未开始训练的BP 网络
[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);
{2,1}=W1;
{3,2}=W2;
{2,1}=B1;
{3,1}=B2;
XX=P;
YY=T;
%设置训练参数
%训练网络
net=train(net,XX,YY);
程序二:适应值函数
function [sol, val] = gabpEval(sol,options)
% val - the fittness of this individual
% sol - the individual, returned to allow for Lamarckian evolution
% options - [current_generation]
load data2
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
P=XX;
T=YY;
R=size(P,1);
S2=size(T,1);
S1=25;%隐含层节点数
S=R*S1+S1*S2+S1+S2;%遗传算法编码长度
for i=1:S,
x(i)=sol(i);
end;
[W1, B1, W2, B2, P, T, A1, A2, SE,
val]=gadecod(x);
程序三:编解码函数
function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)
load data2
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
P=XX;
T=YY;
R=size(P,1);
S2=size(T,1);
S1=25;%隐含层节点数
S=R*S1+S1*S2+S1+S2;%遗传算法编码长度
% 前R*S1个编码为W1
for i=1:S1,
for k=1:R,
W1(i,k)=x(R*(i-1)+k);
end
end
% 接着的S1*S2个编码(即第R*S1个后的编码)为W2
for i=1:S2,
for k=1:S1,
W2(i,k)=x(S1*(i-1)+k+R*S1);
end
end
% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1
for i=1:S1,
B1(i,1)=x((R*S1+S1*S2)+i);
end
% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2
for i=1:S2,
B2(i,1)=x((R*S1+S1*S2+S1)+i);
end
% 计算S1与S2层的输出
A1=tansig(W1*P,B1);
A2=purelin(W2*A1,B2);
% 计算误差平方和
SE=sumsqr(T-A2);
val=1/SE; % 遗传算法的适应值
注意:上面的函数需要调用gaot工具箱,请从网上搜索下载。

相关文档
最新文档