(完整word版)高等数学第10章课后习题答案(科学出版社)

合集下载

(WORD)-高等数学课后习题(完整版)及答案

(WORD)-高等数学课后习题(完整版)及答案

高等数学课后习题(完整版)及答案高等数学课后答案习题1 11设A ( 5) (5 ) B [10 3)写出A BA B A\B及A\(A\B)的表达式解 A B ( 3) (5 )A B [105)A\B ( 10) (5 )A\(A\B) [105)2设A、B是任意两个集合证明对偶律 (A B)C AC BC 证明因为x (A B)C x A B x A或x B x AC或x BC x ACBC所以 (A B)C AC BC3设映射f X Y A X B X 证明(1)f(A B) f(A) f(B)(2)f(A B) f(A) f(B)证明因为y f(A B) x A B使f(x) y(因为x A或x B) y f(A)或y f(B)y f(A) f(B)所以 f(A B) f(A) f(B)(2)因为y f(A B) x A B使f(x) y (因为x A且x B) y f(A)且y f(B) y f(A) f(B)所以 f(A B) f(A) f(B)4设映射f X Y若存在一个映射g Y X使g f IXf g IY其中IX、IY分别是X、Y上的恒等映射即对于每一个x X有IX x x 对于每一个y Y有IY y y证明 f是双射且g是f的逆映射 g f 1证明因为对于任意的y Y有x g(y) X且f(x) f[g(y)] Iy y y即Y中任意元素都是X中某元素的像所以f为X到Y的满射又因为对于任意的x1 x2必有f(x1) f(x2)否则若f(x1) f(x2) g[ f(x1)] g[f(x2)] x1 x2因此f既是单射又是满射即f是双射对于映射g Y X因为对每个y Y有g(y) x X且满足f(x) f[g(y)] Iy y y按逆映射的定义 g是f的逆映射5设映射f X Y A X 证明(1)f 1(f(A)) A(2)当f是单射时有f 1(f(A)) A证明 (1)因为x A f(x) y f(A) f 1(y) x f 1(f(A))所以 f 1(f(A)) A(2)由(1)知f 1(f(A)) A另一方面对于任意的x f 1(f(A)) 存在y f(A)使f1(y) x f(x) y 因为y f(A)且f是单射所以x A这就证明了f 1(f(A)) A因此f 1(f(A)) A6求下列函数的自然定义域(1)y x233 解由3x2 0得x 2函数的定义域为[2, )(2)y 1 1x2解由1x2 0得x 1函数的定义域为( 1) (11) (1 )(3)y 1x x2解由x 0且1x2 0得函数的定义域D [1 0) (0 1](4)y 14x2解由4x2 0得 |x| 2函数的定义域为(2 2)(5)y sinx解由x 0得函数的定义D [0 )(6) y tan(x1)2 解由x1 (k 0 1 2 )得函数的定义域为x k 1 (k 0 1 2 2)(7) y arcsin(x3)解由|x3| 1得函数的定义域D [2 4](8)y x1 x解由3x 0且x 0得函数的定义域D ( 0) (0 3)(9) y ln(x1)解由x1 0得函数的定义域D (1 )(10)y ex解由x 0得函数的定义域D ( 0) (0 )7下列各题中函数f(x)和g(x)是否相同?为什么?(1)f(x) lg x2 g(x) 2lg x(2) f(x) x g(x) x2(3)f(x) x4x3g(x) xx1(4)f(x) 1 g(x) sec2x tan2x解 (1)不同因为定义域不同(2)不同因为对应法则不同 x 0时 g(x) x(3)相同因为定义域、对应法则均相相同(4)不同因为定义域不同8 |sinx| |x|3设 (x) |x| 0 3 求 ( ) ( ) ( ) (2)并作出函数y (x)644的图形) |sin | 解 ( ) |sin | 1 (446622) |sin( )| (442 (2) 09试证下列函数在指定区间内的单调性(1)y x ( 1) 1x(2)y x ln x (0 )证明 (1)对于任意的x1 x2 ( 1)有1x1 0 1x2 0因为当x1 x2时y1y2 xxx x 0 1x11x2(1x1)(1x2) 所以函数y x在区间( 1)内是单调增加的 1x(2)对于任意的x1 x2 (0 )当x1 x2时有y1y2 (x1lnx1)(x2lnx2) (x1x2)lnx 0 x2所以函数y x ln x在区间(0 )内是单调增加的10设 f(x)为定义在(l l)内的奇函数若f(x)在(0 l)内单调增加证明f(x)在(l 0)内也单调增加证明对于x1 x2 (l 0)且x1 x2有x1x2 (0 l)且x1 x2因为f(x)在(0 l)内单调增加且为奇函数所以f(x2) f(x1)f(x2) f(x1) f(x2) f(x1)这就证明了对于x1 x2 (l 0)有f(x1) f(x2)所以f(x)在(l 0)内也单调增加11设下面所考虑的函数都是定义在对称区间(l l)上的证明(1)两个偶函数的和是偶函数两个奇函数的和是奇函数(2)两个偶函数的乘积是偶函数两个奇函数的乘积是偶函数偶函数与奇函数的乘积是奇函数证明 (1)设F(x) f(x)g(x)如果f(x)和g(x)都是偶函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为偶函数即两个偶函数的和是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x)g(x) f(x)g(x) F(x)所以F(x)为奇函数即两个奇函数的和是奇函数(2)设F(x) f(x) g(x)如果f(x)和g(x)都是偶函数则F(x) f(x) g(x) f(x) g(x) F(x)所以F(x)为偶函数即两个偶函数的积是偶函数如果f(x)和g(x)都是奇函数则F(x) f(x) g(x) [f(x)][g(x)] f(x) g(x) F(x)所以F(x)为偶函数即两个奇函数的积是偶函数如果f(x)是偶函数而g(x)是奇函数则F(x) f(x) g(x) f(x)[g(x)] f(x) g(x) F(x)所以F(x)为奇函数即偶函数与奇函数的积是奇函数12下列函数中哪些是偶函数哪些是奇函数哪些既非奇函数又非偶函数?(1)y x2(1x2)(2)y 3x2x3(3)y 1x2 1x2(4)y x(x1)(x1)(5)y sin x cos x1(6)y ax a x2解 (1)因为f(x) (x)2[1(x)2] x2(1x2) f(x)所以f(x)是偶函数(2)由f(x) 3(x)2(x)3 3x2x3可见f(x)既非奇函数又非偶函数(3)因为1(x)21x2f(x) f(x) 221x1x所以f(x)是偶函数(4)因为f(x) (x)(x1)(x1) x(x1)(x1) f(x)所以f(x)是奇函数(5)由f(x) sin(x)cos(x)1 sin x cos x1可见f(x)既非奇函数又非偶函数(6)因为(x)(x)xxa aa af(x) f(x) 22所以f(x)是偶函数13下列各函数中哪些是周期函数?对于周期函数指出其周期(1)y cos(x2)解是周期函数周期为l 2(2)y cos 4x解是周期函数周期为l 2(3)y 1sin x解是周期函数周期为l 2(4)y xcos x解不是周期函数(5)y sin2x解是周期函数周期为l14求下列函数的反函数(1)y x1解由y x1得x y31所以y x1的反函数为y x31(2)y 1x 1x解由y 1x得x 1y所以y 1x的反函数为y 1x1x1y1x1x(3)y ax b(ad bc 0) cx d解由y ax b得x dy b所以y ax b的反函数为y dx b cx dcy acx dcx a(4) y 2sin3xyarcsin所以y 2sin3x的反函数为y 1arcsinx解由y 2sin 3x 得x 13232(5) y 1ln(x2)x2(6)y 2 1 解由y 1ln(x2)得x ey12所以y 1ln(x2)的反函数为y ex122xx y 所以的反函数为y log2211x 解 y2xy x log由得21y2 115设函数f(x)在数集X上有定义试证 函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界证明先证必要性设函数f(x)在X上有界则存在正数M使|f(x)| M即M f(x) M这就证明了f(x)在X上有下界M和上界M再证充分性设函数f(x)在X上有下界K1和上界K2即K1 f(x) K2 取M max{|K1| |K2|}则M K1 f(x)K2 M即 |f(x)| M这就证明了f(x)在X上有界16在下列各题中求由所给函数复合而成的函数并求这函数分别对应于给定自变量值x1和x2的函数值(1) y u2 u sin x解 y sin2x x1 6x2 33y1 sin2 12 1y2 sin2 ()2 324624x1 x2 84 (2) y sin u u 2x解 y sin2x(3)y解 y1 sin(2 ) sin y2 sin(2 sin 1 842422u 1x x1 1 x2 2 y x2 y1 12 y2 22(4) y eu u x2 x1 0 x2 1解 y ex2 y1 e0 1 y2 e1 e 22(5) y u2 u ex x1 1 x2 1解 y e2x y1 e2 1 e2 y2 e2 (1) e217设f(x)的定义域D [0 1]求下列各函数的定义域(1) f(x2)解由0 x2 1得|x| 1所以函数f(x2)的定义域为[1 1](2) f(sinx)解由0 sin x 1得2n x (2n1) (n 0 1 2 )所以函数f(sin x)的定义域为[2n (2n1) ] (n 0 1 2 )(3) f(x a)(a>0)解由0 x a 1得a x 1a所以函数f(x a)的定义域为[a 1a](4) f(x a)f(x a)(a 0)22 解由0 x a 1且0 x a 1得 当0 a 1时 a x 1a 当a 1时无解因此当0 a 1时函数的定义域为[a 1a]当a 1时函数无意义2218设的图形解 |x| 1 1 x f(x) 0 |x| 1 g(x) e |x| 1 1 求f[g(x)]和g[f(x)]并作出这两个函数 1 |ex| 1 f[g(x)] 0|ex| 11 |ex| 1 即 1 x 0 f[g(x)] 0 x 0 1 x 0e1 |x| 1 g[f(x)] ef(x) e0 |x| 1e 1 |x| 1 e |x| 1 |x| 1即g[f(x)] 11 |x| 1 e19已知水渠的横断面为等腰梯形斜角 40 (图137)当过水断面ABCD的面积为定值S0周L(L AB BC CD)与水的函数关系式并指明其图137解 AB DC hsin40 0cot40 h所以又从1h[BC(BC2cot40 h)] S0得BC Sh时求湿深h之间定义域 2S2cos40L h hsin40自变量h的取值范围应由不等式组h 0确定定义域为0 h 0cot40S0 cot40 h 0 h20收敛音机每台售价为90元成本为60元厂方为鼓励销售商大量采购决定凡是订购量超过100台以上的每多订购1台售价就降低1分但最低价为每台75元(1)将每台的实际售价p表示为订购量x的函数(2)将厂方所获的利润P表示成订购量x的函数(3)某一商行订购了1000台厂方可获利润多少?解 (1)当0 x 100时 p 90令001(x0100) 9075得x0 1600因此当x 1600时p 75当100 x 1600时p 90(x100) 001 910 01x综合上述结果得到0 x 100 90 p 910.01x 100 x 1600 75 x 1600 30x 0 x 1002100 x 1600 (2)P (p60)x 31x0.01x 15x x 1600(3) P 31 1000001 10002 21000(元)习题1 21观察一般项xn如下的数列{xn}的变化趋势写出它们的极限 (1)xn 1 2n解当n 时(2)xn (1)n1 n1 0 0 xn 1limn 22 解当n 时(3)xn 2 12 nxn (1)n1 0 lim(1)n1 0 n nn解当n 时(4)xn n1 n1xn 21 2 lim(21) 2 n nn2解当n 时(5) xn n(1)n xn n1 12 0 limn1 1n n1n1n 1解当n 时 xn n(1)n没有极限2 cos设数列{xn}的一般项xn nx ? 求出N使当n N时 xn问nlim n与其极限之差的绝对值小于正数 当 0001时求出数N解limx 0n n要使|x n0| 只要1 也就是n 1取n|cos|1 0 |xn0| nnN [1]则n N有|xn0|当 0001时 N [1] 10003根据数列极限的定义证明1 0 (1)nlim 2n分析要使|120| 12 只须n2 1即nnn1nn证明因为 0N [3n1 3 (2)nlim1]1 0当n N时有|120| 所以nlim 2分析2n12n13| 1 1要使|3 2n122(2n1)4n4只须证明因为 0N [1]当n N (3)nlim 分析 n2a2 1 n1 即n 14 4n3n1 3时有|3n13| 所以nlim 2n122n12只须2an222222a a naa要使|1| 22nnn a n)n2aN []证明因为 022n alim 1 n n当n N时有|n2a21|n所以(4)nlim0. 999 9 1n个分析要使|099 91|110n 1只须1 10即n 1lg1证明因为 0N [1lg1]当n N时有|099 91| 所以n n个lim0.999 9 1|u| |a|并举例说明 如果数列{|xn|}有极限但数证明nlimn4limu an n列{xn}未必有极限u a所以 0N N当n N时有|un a| 从而证明因为nlim n||un||a|| |un a||un| |a|这就证明了nlim|(1)n| 1但lim(1)n 数列{|xn|}有极限但数列{xn}未必有极限例如nlimn不存在y 0证明 5设数列{xn}有界又nlim nn limxnyn 0证明因为数列{xn}有界所以存在M使n Z有|xn| Myn 0所以 0N N当n N时有|yn| 从而当n N时又nlim M有xy 0所以nlim nn|xnyn0| |xnyn| M|yn| M M6对于数列{xn}若x2k1 a(k ) x2k a(k )证明 xn a(n )证明因为x2k1 a(k ) x2k a(k )所以 0K1当2k1 2K11时有| x2k1a| K2当2k 2K2时有|x2k a| 取N max{2K11 2K2}只要n N就有|xn a| 因此xn a (n )习题1 31根据函数极限的定义证明(3x1) 8 (1)limx 3分析因为|(3x1)8| |3x9| 3|x3|所以要使|(3x1)8| 只须|x3| 1 3 证明因为 0 1 当0 |x3| 时有 3|(3x1)8|(3x1) 8所以limx 3(5x2) 12 (2)limx 2分析因为|(5x2)12| |5x10| 5|x2|所以要使|(5x2)12| 只须|x2| 1 5 证明因为 0 1 当0 |x2| 时有 5|(5x2)12|(5x2) 12所以limx 22x4 4(3)xlim 2x 2分析因为x24(4) x24x4 |x2| |x(2)| x2x 2所以要使x24(4) x2只须|x(2)| 证明因为 0 当0 |x(2)| 时有x24(4) x2x24 4lim所以x 2x2314x(4)lim 2 2x1x分析因为所以要使14x32 |12x2| 2|x(1)| 2x1214x32 2x1只须|x(1)| 1 2222 证明因为 0 1 当0 |x(1)| 时有 14x32 2x1 314x所以lim 2 2x1x 22根据函数极限的定义证明1x (1)xlim 1 22x3分析因为所以要使1x31 1x3x3 1 2x322x32|x|3 1x312x2只须1 2|x|即|x| 1证明因为 0X 1当|x| X时有 1x312x3231x 1所以xlim3 2x2sinx 0 (2)xlim x 分析因为所以要使证明sinx0 |sinx| 1 xxxsinx0 只须1 即x 12x x因为 0X 1当x X时有 2sinx0 xsinx 0所以xlim x 3当x 2时 y x2 4问 等于多少使当|x2|< 时 |y4|<0001?解由于当x 2时 |x2| 0故可设|x2| 1即1 x 3要使|x24| |x2||x2| 5|x2| 0001只要|x2| 0.001 0.0002 5取 00002则当0 |x2| 时就有|x24| 0 0014当x 时解要使y x21 1 x32问X等于多少使当|x| X时|y1| 001? 只要|x| 43 0.01x211 4 0.01x23x23故X5证明函数f(x) |x|当x 0时极限为零证明因为|f(x)0| ||x|0| |x| |x0|所以要使|f(x)0| 只须|x|因为对 0 使当0 |x0| 时有|f(x)0| ||x|0||x| 0所以limx 06求f(x) x, x (x) |x|当xx 0时的左﹑右极限并说明它们在x 0时的极限是否存在证明因为lim f(x) lim x lim1 1x 0x 0xx 0lim f(x) lim x lim1 1 x 0x 0xx 0x 0limf(x) lim f(x) x 0f(x)存在所以极限limx 0因为|x| lim x 1 x 0x 0xx 0x|x|x 1lim (x) lim limx 0x 0xx 0xlim (x) limx 0 lim (x) lim (x) x 0(x)不存在所以极限limx 07证明 若x 及x 时函数f(x)的极限都存在且都等于Af(x) A则xlimf(x) A证明因为xlim x limf(x) A所以 >0X1 0使当x X1时有|f(x)A|X2 0使当x X2时有|f(x)A|f(x) A取X max{X1 X2}则当|x| X时有|f(x)A| 即xlim8根据极限的定义证明 函数f(x)当x x0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等证明先证明必要性设f(x) A(x x0)则 >0 0使当0<|x x0|< 时有|f(x)A|<因此当x0 <x<x0和x0<x<x0 时都有|f(x)A|<这说明f(x)当x x0时左右极限都存在并且都等于A再证明充分性设f(x00) f(x00) A则 >01>0使当x0 1<x<x0时有| f(x)A<2>0使当x0<x<x0+ 2时有| f(x)A|<取 min{ 1 2}则当0<|x x0|< 时有x0 1<x<x0及x0<x<x0+ 2 从而有| f(x)A|<即f(x) A(x x0)9试给出x 时函数极限的局部有界性的定理并加以证明解 x 时函数极限的局部有界性的定理 如果f(x)当x 时的极限存在则存在X 0及M 0使当|x| X时 |f(x)| M证明设f(x) A(x )则对于 1X 0当|x| X时有|f(x)A| 1所以|f(x)| |f(x)A A| |f(x)A||A| 1|A|这就是说存在X 0及M 0使当|x| X时 |f(x)| M其中M 1|A|习题1 41两个无穷小的商是否一定是无穷小?举例说明之解不一定(x)2 例如当x 0时 (x) 2x (x) 3x都是无穷小但limx 0(x)3 (x)不 (x)是无穷小2根据定义证明2x9(1)y x当x 3时为无穷小; 3(2)y xsin1当x 0时为无穷小x2x9 |x3|时|y| x 3 证明 (1)当x 3有因为 0当0 |x3| 时2|y| x9 |x3| x 32x9所以当x 3时y x为无穷小 3(2)当x 0时|y| |x||sin1| |x0|因为 0 x|y| |x||sin1| |x0| x所以当x 0时y xsin1为无穷小 x当0 |x0| 时有3根据定义证明 函数y 12x为当x 0时的无穷大问x应满足什x么条件能使|y| 104?证明分析|y||x| 1 M212x 21 12 xx|x|2 M即要使|y| M只须|1x|证明因为M 0所以当取1使当0 |x0| 时有12x M xM2x 0时函数y 12x是无穷大 xM 104则 41当0 |x0| 41时|y| 104 10210 2 4求下列极限并说明理由2x1; (1)limx x21x(2)limx 01xxxxx1x2 1所以lim x 01x2x1 2解 (1)因为2x1 21而当x 时1是无穷小所以limx x (2)因为11x2 1x(x 1)而当x 0时x为无穷小5根据函数极限或无穷大定义填写下表解6函数y xcos x在( )内是否有界?这个函数是否为当x 时的无穷大?为什么?解函数y xcos x在( )内无界这是因为M 0在( )内总能找到这样的x使得|y(x)| M例如y(2k ) 2k cos2k 2k (k 0 1 2 )当k充分大时就有| y(2k )| M当x 时函数y xcos x不是无穷大这是因为M 0找不到这样一个时刻N使对一切大于N的x都有|y(x)| M例如y(2k (2k )cos(2k ) 0(k 0 1 2 ) 2222 对任何大的N当k充分大时总有x 2k N但|y(x)| 0 M7证明 函数y 1sin1在区间(0 1]上无界但这函数不是当x 0+时xx的无穷大证明函数y 1sin1在区间(0 1]上无界这是因为 xx M 0在(0 1]中总可以找到点xk使y(xk) M例如当xk2k 1(k 0 1 2 )2时有y(xk) 2k2当k充分大时 y(xk) M当x 0+ 时函数y 1sin1不是无穷大这是因为 xxM 0对所有的 0总可以找到这样的点xk使0 xk但y(xk) M例如可取xk 12k(k 0 1 2 )当k充分大时 xk 但y(xk) 2k sin2k 0 M习题1 51计算下列极限2xlim5 (1)x 2x3x25 225 9lim解 x 2x3232x(2)3 x x 1解 2()23x3 0 2x x1() 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x2 14x32x2xlim(4)x 02 3x2x3224x2x x4x2x1 1 lim解lim x 03x2xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx xxx2x1(7)xlim 2x2x 1 解 1 121 limlimx 1 2x 2x x1x 22xx2(8)xlim解或 x2x 42x3x12xx 0lim42(分子次数低于分母次数x x3x1112x lim23 0lim4x2 x x3x1x 1xx2极限为零) x6x8 (9)limx 4x5x 4解 2(x2)(x4)limx26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 n n 2421 2n 解 123 (n1) (12)nlim(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2nn(n1)(n2)(n3)(13)nlim5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 3n n 5nnn55n(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1x3x 1(1x)(x 1(1x)(1x x2)1x x2) limx 21 x 11x x2计算下列极限32x2x(1)x lim 2(x2)2解 (x2)20lim 0因为x 2x2x162x所以limx 22x2 (x2)23 x (2)xlim 2x 1解 2xlim x 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctanx (2)xlim xarctanx lim1 arctanx 0(当x 时 1是无穷小解xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题1 51计算下列极限2xlim5 (1)x 2x322x52lim 5 9解 x 2x32 3 2x(2)23 x x 1解 2()23x3 0 x x21()2 12 x (3)limx 12x1 2x 1解2(x1)2x2x1x1 0 0lim lim limx 1x 1(x1)(x1)x 1x12x 1 324x2x x(4)limx 03x22x4x32x2x lim4x22x1 1解 limx 03x22xx 03x22 (x h)2x2lim(5)h 0h222(x h)2x2x2hx h xlim lim lim(2x h) 2x解h 0h 0h 0hh(6)xlim(211) xx21lim1 2解xlim(211 2lim x xx x2xx2(7)xlim解x21 22x x1112x1lim2 lim 1x 2x x1x 222xx x2x x x43x212x x 0解xlim(分子次数低于分母次数 x3x1(8)lim极限为零)或112x lim 0lim4x2 x x3x1x 21124xx2 x6x8 (9)limx 42x5x 4解 2(x2)(x4)xlim26x8 lim limx2 42 2x 4x5x4x 4(x1)(x4)x 4x1413(10)xlim(11)(21) 2xx1) lim(21 1 2 2解xlim(11)(21 lim(1 xx2x xx x2(11)nlim(111 1) 242n1(1)n 1lim(111 1) lim 2 nn n 2421 2n 解 123 (n1) (12)nlim 2(n1)n123 (n1) 1limn1 1解nlim lim n 2n n2n2n2(n1)(n2)(n3)(13)nlim3 5n(n1)(n2)(n3)1 (分子与分母的次数相同解nlim 55n3极限为最高次项系数之比)或(n1)(n2)(n3)11)(1213 1 lim(1 n 5n nnn55n3(14)lim(1 33 x 11x1xlim解2131x x3 lim(1x)(x2)lim() limx 11x1xx 1(1x)(x 1(1x)(1x x)1x x) limx 22 1 x 11x x2计算下列极限 32x2xlim(1)x 2(x2)2解 (x2)20lim3 0因为x 2x2x21632x2x 所以limx 2(x2)2 x2lim(2)x 2x1 x2 解 xlim 2x1(因为分子次数高于分母次数)(2x3x1) (3)xlim解 x lim(2x3x1) (因为分子次数高于分母次数)3计算下列极限(1)limx2sin1 x 0x2解 limx2sin1 0(当x 0时 x是无穷小而sin1是有界变量)x 0xxarctan x (2)xlim xarctanx lim1 arctanx 0(当x 时1是无穷小解 xlim x xxx而arctan x是有界变量)4证明本节定理3中的(2)习题 171当x 0时 2x x2 与x2x3相比哪一个是高阶无穷小?解232x xx x lim 0因为limx 02x xx 02x所以当x 0时 x2x3是高阶无穷小即x2x3 o(2x x2)2当x 1时无穷小1x和(1)1x3 (2)1(1x2)是否同阶?是否等2价?解 3(1x)(1x x2)1x lim lim(1x x2) 3 (1)因为limx 11xx 1x 11x所以当x 1时 1x和1x3是同阶的无穷小但不是等价无穷小1(1x2) 1lim(1x) 1 (2)因为limx 11x2x 1所以当x 1时 1x和1(1x2)是同阶的无穷小而且是等价无穷小 23证明 当x 0时有(1) arctan x~x2x(2)secx1~2arctanx lim 证明 (1)因为limx 0y 0xy 1(提示 tany令y arctan x则当x 0时y 0)所以当x 0时 arctanx~x2sin2x2sinxsecx1 2lim1cosx lim lim(2 1 (2)因为limx 02x 0x2cosxx 0x 0x2x2222xsecx1~ 2 所以当x 0时4利用等价无穷小的性质求下列极限tan3x (1)limx 02xsin(xn)(2)limx 0(sinx)m(n m为正整数)tanx sinx (3)limx 0sinx(4)limx 0sinx tanx 2(x1sinx1)tan3x lim3x 3解 (1)limx 0x 02x2x21 n mn sin(xn)x 0 n m lim(2)limx 0(sinx)mx 0xm n m1x2sinx(11)tanx sinx lim lim1cosx lim2 1(3)lim332x 0x 0x 0cosxsinxx 0xcosx2sinxsinx(4)因为sinx tanx tanx(cosx1) 2tanxsin2x~2x x)2 1x3(x 0) 222所以x21 x21x2(x 0) ~1x2)2x213sinx~sinx~x(x 0) sinx1sinx1 1x3sinx tanxlim lim 3x 0(x21sinx1)x 02x x35证明无穷小的等价关系具有下列性质(1) ~ (自反性)(2) 若 ~ 则 ~ (对称性)(3)若 ~ ~ 则 ~ (传递性)证明 (1)lim 1所以 ~1从而lim 1因此 ~ (2) 若 ~ 则lim(3) 若 ~ ~习题18 lim lim lim 1 因此 ~1研究下列函数的连续性并画出函数的图形(1) x2 0 x 1 f(x) 2x 1 x 2解已知多项式函数是连续函数所以函数f(x)在[0 1)和(1 2]内是连续的在x 1处因为f(1) 1并且x 12f(x) lim(2x) 1 limf(x) limx 1lim x 1x 1x 1f(x) 1从而函数f(x)在x 1处是连续的所以limx 1综上所述,函数f(x)在[0 2]上是连续函数x 1 x 1 (2)f(x) 1 |x| 1解只需考察函数在x 1和x 1处的连续性在x 1处因为f(1) 1并且x 1limf(x) lim1 1 f(1) x 1x 1 x 1limf(x) lim x 1 f(1)所以函数在x 1处间断但右连续在x 1处因为f(1) 1并且x 1limf(x) lim x 1 f(1) limf(x) lim1 1 f(1) x 1x 1x 1所以函数在x 1处连续综合上述讨论函数在( 1)和(1 )内连续在x 1处间断但右连续2下列函数在指出的点处间断说明这些间断点属于哪一类如果是可去间断点则补充或改变函数的定义使它连续2x(1)y 21 x 1 x 2 x3x 2解 2(x1)(x1)xy 21 x3x2(x2)(x1)因为函数在x 2和x 1处无定义所以x 2和x 1是函数的间断点2xlimy lim21 因为x 2x 2x3x2所以x 2是函数的第二类间断点(x1)y lim 2所以x 1是函数的第一类间断点并且是可去因为limx 1x 1(x2)间断点在x 1处令y 2则函数在x 1处成为连续的(2)y x x k x k tanx2(k 0 1 2 )2 解函数在点x k (k Z)和x k (k Z)处无定义因而这些点都是函数的间断点因xlim k x (k 0) tanxx 1 tanxlimx k 故x k (k 0)是第二类间断点2 因为limx 0x 0(k Z) tanx所以x 0和x k (k Z) 是第一2类间断点且是可去间断点令y|x 0 1则函数在x 0处成为连续的令x k 时 y 0则函数在x k 处成为连续的2(3)y cos21 x 0 x2xx 解因为函数y cos21在x 0处无定义所以x 0是函数y cos21的间断点又因为limcos21不存在所以x 0是函数的第二类间断点x 0xx 1 x 1 (4)y 3 x x 1 x 1解因为xlim1f(x) lim(x1) 0limf(x) lim(3x) 2x 1x 1x 1所以x 1是函数的第一类不可去间断点 3讨论函数解2n1xf(x) limx的连续性 n 1x2n若有间断点判别其类型x |x| 12n 1xf(x) limx 0 |x| 1 n 1x2nx |x| 1f(x) lim(x) 1 lim f(x) lim x 1x 1x 1x 1lim 在分段点x 1处因为x1所以x 1为函数的第一类不可去间断点在分段点x 1处因为xlim 1f(x) lim x 1 limf(x) lim(x) 1x 1x 1x 1所以x 1为函数的第一类不可去间断点4证明 若函数f(x)在点x0连续且f(x0) 0则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 0证明不妨设f(x0)>0因为f(x)在x0连续所以xlimx的局部保号性定理存在x0的某一去心邻域U(x0)f(x) f(x0) 0由极限f(x)>0使当x U(x0)时从而当x U(x0)时 f(x)>0这就是说则存在x0的某一邻域U(x0)当x U(x0)时 f(x) 05试分别举出具有以下性质的函数f(x)的例子 (1)x 0 12无穷间断点1 n 1 是2nf(x)的所有间断点且它们都是解函数f(x) csc( x)csc 在点x 0 1 2 x 1 n 1 处是间断2n的且这些点是函数的无穷间断点(2)f(x)在R上处处不连续但|f(x)|在R上处处连续1 x Q 解函数f(x) 1 x Q在R上处处不连续但|f(x)| 1在R上处处连续(3)f(x)在R上处处有定义但仅在一点连续x x Q 解函数f(x) 在R上处处有定义它只在x 0处连续x x Q习题191求函数f(x) xlimf(x) x 233x2x3的连续区间 2x x6f(x)并求极限limx 0x 3limf(x)及33x2x3 (x3)(x1)(x1)f(x) x(x3)(x2)x x 6 解函数在( )内除点x 2和x 3外是连续的所以函数f(x)的连续区间为( 3)、(3 2)、(2 )在函数的连续点x 0处 limf(x) f(0) 1 x 02在函数的间断点x 2和x 3处limf(x) limx 2(x1)(x1)(x3)(x1)(x1) 8limf(x) limx 3x 3x 2x25(x3)(x2) 2设函数f(x)与g(x)在点x0连续证明函数(x) max{f(x) g(x)} (x) min{f(x) g(x)} 在点x0也连续证明已知xlim x可以验证(x) 1[f(x)g(x)|f(x)g(x)| ]因此2 (x) 1[f(x)g(x)|f(x)g(x)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ]2 (x0) 1[f(x0)g(x0)|f(x0)g(x0)| ] 20f(x) f(x0)limg(x) g(x0) x x0因为lim (x) lim1[f(x)g(x)|f(x)g(x)| ]x x0x x02 1[limf(x)limg(x)|limf(x)limg(x)| ]x x0x x0x x02x x01[f(x0)g(x0)|f(x0)g(x0)| ] (x0) 2所以 (x)在点x0也连续同理可证明 (x)在点x0也连续3求下列极限(1)limx 0x 4x22x5 (sin2x)3 (2)limln(2cos2x) (3)limx 6(4)limx 0x11 xx4x (5)limx 1x 1(6)xlimsinx sina ax a(7)xlim(x2x x2x)解 (1)因为函数f(x) x 0x22x5是初等函数f(x)在点x 0有定义所以 limx22x5 f(0) 22 054 (2)因为函数f(x) (sin 2x)3是初等函数 f(x)在点x 有定义所以lim(sin2x)3 f( (sin2 3 1 44x 46 (3)因为函数f(x) ln(2cos2x)是初等函数 f(x)在点x 有定义所以limln(2cos2x) f( ) ln(2cos2 0 66x(4)limx 0x11 lim(x11)(x11) limxx 0x 0x(x11xx(x11) )11 111112 limx 0(5)limx 1x4x lim(x4xx4x)x 1x1(x1x4x) lim444x4 lim 2x 1x4xx 1(x1x4x) 142cosx asinx alimsinx sina lim(6)x ax ax ax asinx a cosa a 1 cosalimcosx a limx a2x a2222(x2x x2x)(x2x x2x)(x x x x) lim(7)xlim 22 x (x x x x)lim2x2 lim 1 x (x2x x2x)x (11)xx4求下列极限(1)xlim(2)limlnsinx x 0x1ex(11)2 (3)xlim x2x(13tan2x)cotx (4)limx 0x13x( (5)xlim 6x(6)limx 0tanx sinxx sin2x xlime e1lim1x 解 (1) (2) (3) x e0 1 limlnsinx ln(limsinx) ln1 0x 0x 0xxx1lim(1 2x x limx 11x2(1)x e 12(4)lim(13tan2x)cotx limx 02x 0 1(13tan2x)3tan2x3 e3x13x 3 (5)(6x) (16x)36x2因为3(1)3 e lim3 x1 3 xlim x 6x26x23x2 e2所以xlim 6x(tanx sinx)(sin2x1)tanx sinx lim(6)lim22x 0x 0x sinx xx(sinx1)(tanx sinx)2xtanx 2sin(ta nx sinx sinx1) lim limx 0xsin2x(tanx sinx)x 0xsinx22x (x21 limx 02x应当如何选择数a使得f(x)成为在( 5设函数 ex x 0f(x) a x x 0)内的连续函数?解要使函数f(x)在( )内连续只须f(x)在x 0处连续即只须 x 0limf(x) limf(x) f(0) a x 0x 0 x 0f(x) limex 1因为xlim 0x 0limf(x) lim(a x) a所以只须取a 1习题1101证明方程x53x 1至少有一个根介于1和2之间证明设f(x) x53x1则f(x)是闭区间[1 2]上的连续函数因为f(1) 3 f(2) 25 f(1)f(2) 0所以由零点定理在(1 2)内至少有一点(1 2)使f( ) 0即x 是方程x53x 1的介于1和2之间的根因此方程x53x 1至少有一个根介于1和2之间2证明方程x asinx b其中a 0 b 0至少有一个正根并且它不超过a b证明设f(x) asin x b x则f(x)是[0 a b]上的连续函数f(0) b f(a b) a sin (a b)b(a b) a[sin(a b)1] 0若f(a b) 0则说明x a b就是方程x asinx b的一个不超过a b的根若f(a b) 0则f(0)f(a b) 0由零点定理至少存在一点(0 a b)使f( ) 0这说明x 也是方程x=asinx b的一个不超过a b的根总之方程x asinx b至少有一个正根并且它不超过a b 3设函数f(x)对于闭区间[a b]上的任意两点x、y恒有|f(x)f(y)| L|x y|其中L为正常数且f(a) f(b) 0证明 至少有一点 (a b)使得f( ) 0证明设x0为(a b)内任意一点因为所以 0 lim|f(x)f(x0)| limL|x x0| 0 x x0x x0x x0 lim|f(x)f(x0)| 0即 x x0limf(x) f(x0)因此f(x)在(a b)内连续同理可证f(x)在点a处左连续在点b处右连续所以f(x)在[a b]上连续因为f(x)在[a b]上连续且f(a) f(b) 0由零点定理至少有一点 (a b)使得f( ) 04若f(x)在[a b]上连续 a x1 x2 xn b则在[x1 xn]上至少有一点 使f( ) f(x1)f(x2) f(xn) n证明显然f(x)在[x1 xn]上也连续设M和m分别是f(x)在[x1 xn]上的最大值和最小值因为xi [x1 xn](1 i n)所以有m f(xi) M从而有n m f(x1)f(x2) f(xn) n M m f(x1)f(x2)f(xn) Mn由介值定理推论在[x1 xn]上至少有一点 使f( ) f(x)f(x) f(x) nf(x)存在则f(x)必在( 5证明 若f(x)在( )内连续且xlim)内有界f(x) A则对于给定的 0存在X 0只要|x| X就有证明令xlim|f(x)A| 即A f(x) A又由于f(x)在闭区间[X X]上连续根据有界性定理存在M 0使|f(x)| M x [X X]取N max{M |A | |A |}则|f(x)| N x ()即f(x)在( )内有界6在什么条件下 (a b)内的连续函数f(x)为一致连续?总习题一1在“充分”、“必要”和“充分必要”三者中选择一个正确的填入下列空格内(1)数列{xn}有界是数列{xn}收敛的________条件数列{xn}收敛是数列{xn}有界的________的条件(2)f(x)在x0的某一去心邻域内有界是xlim xx x00f(x)存在的________条件 limf(x)存在是f(x)在x0的某一去心邻域内有界的________条件0 (3) f(x)在x0的某一去心邻域内无界是xlim xx x0f(x) 的________条件 limf(x) 是f(x)在x0的某一去心邻域内无界的________条件(4)f(x)当x x0时的右极限f(x0)及左极限f(x0)都存在且相等是x x0limf(x)存在的________条件解 (1) 必要充分(2) 必要充分(3) 必要充分(4) 充分必要2选择以下题中给出的四个结论中一个正确的结论设f(x) 2x3x2则当x 0时有( )(A)f(x)与x是等价无穷小 (B)f(x)与x同阶但非等价无穷小(C)f(x)是比x高阶的无穷小 (D)f(x)是比x低阶的无穷小解xxxxf(x)232213 lim lim lim 1 因为limx 0xx 0x 0xx 0xxxxt ln3limu ln2ln3 ln2lim(令21 t 31 u)t 0ln(1t)u 0ln(1u)所以f(x)与x同阶但非等价无穷小故应选B3设f(x)的定义域是[0 1]求下列函数的定义域(1) f(ex)(2) f(ln x)(3) f(arctan x)(4) f(cos x)解 (1)由0 ex 1得x 0即函数f(ex)的定义域为( 0](2) 由0 ln x 1得1 x e 即函数f(ln x)的定义域为[1 e](3) 由0 arctan x 1得0 x tan 1即函数f(arctan x)的定义域为[0 tan 1](4) 由0 cos x 1得2n x 2n (n 0 1 2) 22即函数f(cos x)的定义域为[2n , n ] (n 0 12 ) 224设x 0 0 0 x 0 f(x) g(x) 2x x 0x x 0求f[f(x)] g[g(x)] f[g(x)] g[f(x)]0 x 0 解因为f(x) 0所以f[f(x)] f(x) x x 0因为g(x) 0所以g[g(x)] 0因为g(x) 0所以f[g(x)] 00 x 0 因为f(x) 0所以g[f(x)] f 2(x) 2 x x 05利用y sin x的图形作出下列函数的图形(1)y |sin x|(2)y sin|x|(3)y 2sinx 26把半径为R的一圆形铁片自中心处剪去中心角为 的一扇形后围成一无底圆锥试将这圆锥的体积表为 的函数解设围成的圆锥的底半径为r高为h依题意有R(2 ) 2 r222r R(2 ) 22R2(2 )24 h R r R R2 4 2圆锥的体积为V 13 R2(2 )2 24 R2R324 2(2 )2 4 a2 (0 2 )7根据函数极限的定义证明limx2x 6x 3x3 5证明对于任意给定的 0要使|x2x 6x35| 只需|x3| 取当0 |x3| 时就有|x3| 即|x2x65| 所以limx2x 6x3x 3x3 58求下列极限(1)limx2x 1x 1(x1)2(2)xlim x(x21x)(3)3xlim (2x2x1x1(4)limtanx sinxx 0x3(5)limxxx 0(a b cx3)(a 0 b 0 c 0)(6)lim(sinx)tanx x 2解 (1)因为lim(x1)2所以limx2x 1x 1x2x1 0 x 1(x1)(2)xlim x(x21x) x(x21x)(x21x)xlim (x21 x) x1xlim x21x xlim 1112x2x322x1x1() lim(1 lim(1)22(3)xlim 2x1x x 2x12x 1222(1)(1 2 xlim 2x12x 122(1) lim(1) e xlim x 2x12x 1sinx(11)sinx(1cosx)tanx sinx lim lim(4)limx 0x 0x 0x3x3x3cosxsinx 2sin2x2x (x)2lim 1 limx 0x 02x3cosxx3(提示 用等价无穷小换)(a (5)limx 0x b3x cx)x lim(1a b c。

《高等数学教程》第十章多元函数微分法习题参考答案

《高等数学教程》第十章多元函数微分法习题参考答案

《高等数学教程》第十章 多元函数微分法 习题参考答案10-1 (A)1.)()(y x xy +2.x xy xy y x 2)()(++5.(1)}012),({2>+-x y y x ; (2)}0,0),({>->+y x y x y x ; (3)}4,10),({222x y y x y x ≤<+<; (4)}0,0,0),,({>>>z y x z y x ; (5)},0,0),({2y x y x y x ≥≥≥; (6)}1,0,0),({22<+≥>-y x x x y y x ; (7)},),({+∞≤≤-∞+∞≤≤∞-y x y x ; (8)}2,0),({x y x y x π≤≠;(9)}),,({22222R z y x r z y x ≤++<; (10)}0,0),,({22222≠+≥-+y x z y x z y x .6.(1)2ln ; (2)0; (3)∞+;(4)41- (5)不存在; (6)0(7)0 (8)e 9.(1)在)0,0(点不连续(2)在0≠+y x 上所有),(y x 点均连续 (3) 在)0,0(点不连续10-1 (B)1.21x +2.1,22-+=+=x y z x x f3.yy x +-1)1(210-2 (A)1.(1)52(2)1,2ln 22+ (3)3334,3,2e e e2. 13.(1)x y x yz y y x x z 23323,3-=∂∂-=∂∂ (2)221,1vu u v s u v v u s -=∂∂-=∂∂ (3))ln(21,)ln(21xy y y z xy x x z =∂∂=∂∂ (4))]2sin()[cos()],2sin()[cos(xy xy x y z xy xy y x z -=∂∂-=∂∂ (5)y x yx y z y x y x z 2csc 2,csc 222-=∂∂=∂∂ (6)]1)1[ln()1(,1)1(2xyxy xy xy y z xy y xy x z y y++++=∂∂++=∂∂ (7)x x zy z u x z y u x z y x u z yz y y zln ,1,21⋅-=∂∂=∂∂=∂∂-(8)zz x z z z y x y x y x z u y x y x z y u y x y x z x u 22121)(1)ln()(,)(1)(,)(1)(-+--=∂∂-+--=∂∂-+-=∂∂-- 6.4π 7.6π 10.(1)2222812y x x z -=∂∂,2222812x y yz -=∂∂,xy y x z 162-=∂∂∂ (2)22222)(2y x xy x z +=∂∂,22222)(2y x xy y z +-=∂∂,2222222)(y x x y x z +-=∂∂ (3)y y x z x 222ln =∂∂,222)1(--=∂∂x y x x yz ,)ln 1(12y x y y x z x +=∂∂∂- (4))sin()cos(222y x x y x xz+-+=∂∂,)sin(22y x x yz+-=∂∂, )sin()cos(2y x x y x y x z +-+=∂∂∂. 11. 2;2;0;012.023=∂∂∂y x z ,2231y y x z -=∂∂∂.10-2 (B)2.74arctan , )74arctan(-.10-3 (A)1.(1)dy y x dx y y )11()1(2-++;(2))(1dy dx xye x x y--;(3)xdz yx xdy zx dx yzx yz yz yz ln ln 1⋅+⋅+- (4)])1()1[(22)(dy x yx dx y x y eyx x y -+-+- 2.(1)dy dx 3231+ (2)dy dx 5252-3. 0.25e4. (1)2.95 (2)0.005 (3)2.039 (4)0.50235. -5厘米6. 55.3立方厘米10-3 (B)1.xdy e ydx e du yxyx ⋅+⋅=--222210-4 (A)1.)sin (cos cos sin 32θθθθρ-=∂∂pz]cos )sin 2(cos sin )cos 2[(sin 223θθθθθθρθ-+-=∂∂z2.)]23ln(2233[22y x xy x x y x z ---=∂∂]23)23[ln(22yx y y x x y y z ---=∂∂ 3.]2[244)(22yx y x x e x z xyy x -+=∂∂+ ]2[244)(22xyx y y e y z xyy x -+=∂∂+ 4.])()(cos[])(3))((21[322xyz xz yz xy z y x yz xyz z y zx yz xy xu++++++⋅+++++=∂∂ ])()(cos[])(3))((21[322xyz xz yz xy z y x xz xyz z x zx yz xy yu++++++⋅+++++=∂∂ ])()(cos[])(3)(21[3222xyz xz yz xy z y x xy xyz zx yz xy zu++++++⋅++++=∂∂ 5.)6(cos 22sin 2t t e t t -- 6.232)43(1)41(3t t t ---7.xx e x x e 221)1(++ 8.11sin 2++⋅a a x e ax9.)ln 1(1x y x xzy x y +=∂∂-+,x x y z y x y 2ln +=∂∂ 11.(1)'2'12f ye xf xzxy +=∂∂,'2'12f xe yf y z xy +-=∂∂ (2)'11f y x u =∂∂,'2'121f z f y x y u +-=∂∂,'22f zy z u -=∂∂ (3)'3'2'1yzf yf f x u ++=∂∂,'3'2xzf xf y u +=∂∂,'3xyf zu=∂∂ (4))1('yz y f x u ++⋅=∂∂,)('xz x f x u +⋅=∂∂,xy f xu⋅=∂∂' 14.(1)''2'2242f x f x z +=∂∂,''24xyf y x z =∂∂∂,''2'2242f y f yz +=∂∂(2)''222''12''112212f yf y f x z ++=∂∂ '22''22''12221)1(f y f y f y x y x z -+-=∂∂∂ ''2242'23222f yx f y x y z +=∂∂ (3)''2222''123''114'222442f y x f xy f y yf xz +++=∂∂''1223''223''113'2'1252222f y x yf x f xy xf yf yx z ++++=∂∂∂ ''224''123''1122'122442f x yf x f y x xf yz +++=∂∂ (4)''33)(2''12''112'1'322cos 2cos sin f e xf e xf f x f e xz y x y x y x ++++++⋅-=∂∂''33)(2''32''13''12'32sin cos sin cos f e yf e xf e yf x f e yx z y x y x y x y x +++++-+-=∂∂∂ ''33)(2''23''222'2'322sin 2sin cos f e yf e yf f y f e y z y x y x y x ++++-+⋅-=∂∂10-4 (B)1. )1()()()(212122121ψψϕψϕϕψψϕψϕϕ'+'+'-'=∂∂'-'+'+'=∂∂xx y z x yy x z 2. vvuv uu xv xu v u v u x yf x f xy x xf f x xf xf f y x zyf f f x f x z2222)2(22)2(+++++++=∂∂∂+++=∂∂3. z t y f z f z u x t y f x y f x f x u ∂∂∂∂∂∂+∂∂=∂∂∂∂∂∂∂∂+∂∂∂∂+∂∂=∂∂ψϕψϕϕ.10-5 (A)1.xy y e y x 2cos 2--;2.-1;3.xxy x y xy y ln ln 22--. 4.xy xyz xyz yz x z --=∂∂,xyxyz xyzxz y z --=∂∂2 5.z x zx z +=∂∂,)(2z x y z y z +=∂∂ 6. zy y z zxe x z x cos 3,cos 252-=∂∂-=∂∂ 7.dy dx xee x dz xy z xy z ++-+=----1)1(1 8.322224)()2(xy z y x xyz z z ---⋅ 9.32232)(22xy e e z y z xy ze y z z z --- 10. 2 11. 2 12.(1))13(2)16(++-=z y z x dx dy ,13+=z x dx dz (2)y x z y dz dx --=, yx x z dz dy --= (3)y x u y x u -+-=∂∂, y x y v y u -+-=∂∂; y x x u x v -+=∂∂, yx xv y v -+=∂∂10-5 (B)5.32)()()(v u u vv v uv u uv v uu u v u v uu u uv F F F F F F F F F F F F F F F F F -⋅-⋅+⋅+⋅---⋅-⋅ 7.'1'2'2'1'1'2'2'1)12)(1()12(g f yvg xf g f yvg uf x u------=∂∂ '1'2'2'1'1'1'1)12)(1()1(g f yvg xf uf xf g x v----+=∂∂8.1)cos (sin sin +-=∂∂v v e v x u u ,1)cos (sin cos +--=∂∂v v e v y u u ]1)cos (sin [cos +--=∂∂v v e u e v x v u u ,]1)cos (sin [sin +-+=∂∂v v e u e v y v uu 10-61.321+2.32 3.)(2122b a ab+ 4.2948 5. 5 6.14227.1412 8.202020000zy x z y x ++++9. }6,2,3{)0,0,0(--=gradf , }0,3,6{)1,1,1=(gradf10-71.切线方程:222111)12(-=-=--z y x π 法平面方程:422+=++πz y x2.切线方程:8142121-=--=-z y x 法平面方程:011682=-+-z y x 3.切线方程:000211z z z y m y y x x --=-=- 法平面方程:0)(21)()(00000=---+-z z z y y y m x x 4.切线方程:1191161--=-=-z y x 法平面方程:024916=--+z y x5.)1,1,1(1---P 及)271,91,31(2--P7.(1)切平面方程:042=-+y x法线方程:⎪⎩⎪⎨⎧=-=-02112z y x(2)切平面方程:22π=+-z y x , 法线方程:241111π-=--=-z y x(3)切平面方程:002002002202020)()()(1z z z c y y y b x x x a c z z b y y a x x -=-=-=++, 8.2112±=+-z y x 9.)3,1,3(--,133113-=+=+z y x 11.223cos =r10-8])4(21)4(22)[2sin()4(22222)2sin(.122ππηξπ-+-++--++=+y y x x y x y x其中 ).10()4(4<<-+==θπθπηθξy x ,])1(2)1(313)1[ln(!)2(!21.23322232y y x y x x y e y xy y z ηηηξξ+++-++++-+= 其中 ).10(,<<==θθηθξy x ,1021.1.3 10)!1()(!)(.4)(10<<++++=++=+∑θθy x n nk k yx e n y x k y x e10-9(A)1.(1)驻点)0,0(;极大点)0,0((2)驻点)2,2(),0,2(),2,0(),0,0(;极大点)0,0(;极小点(2,2).(3)驻点)0,2(),0,76(-;极大点)0,716(;极小点)0,2(-.2.(1)极小值:3231313),(a a a f =; (2)极小值:0)1,1(=-f ; (3)极大值:8)2,2(=-f ;(4)极小值:2)1,21(ef -=-.3.极大值:41)21,21(=z .4.当两边都是2e 时,可取得最大周界.5.当长、宽、都是32k ,而高为3221k 时,表面积最小. 6. 购买A 原料100吨, 购买B 原料25吨,可使生产量达到最大值. 7. 368. .3,521==D D 利润 125)3,5(=L 9.X=15(千克), Y=10(千克)10. (1) 当电台广告费用万元),(75.01=x 当报纸广告费用万元),(25.12=x 时可使利润最大。

高等数学高教版课后习题答案

高等数学高教版课后习题答案
4
5 x 2
ax
C4 e
4
ax
(a 0) ;
(9) y (C1 C2 x) sin x (C3 C4 x) cos x ; (10) y C1 C2 x (C3 C4 x)e x 。 2. (1) y
1 7 5 (2) y e 3 x e 3 x ; sin 2 x ; 2 6 6
25.提示:微分方程的解为 y 其中 k 为常数。
1 x 26.函数 f 满足的微分方程 y 2 (2 xy x 2 y ) ,特解: y 。 3 1 x3
§ 3 二阶线性微分方程 1. (1) y C1e 3 x C2 e 2 x ; (2) y C1e 3 x C2 e 3 x ; (3) y C1 cos 2 x C2 sin 2 x ; (4) y (C1 C 2 x)e ; (5) y (C1 C2 x)e 3 x ; (6) y C1e 4 x C2 ; (7) y C1 C2 e 3 x C3 e 2 x ; (8) y C1 cos 4 a x C2 sin 4 a x C3 e
x 3 3 3 2 e ; (3) y (4) y 2e 2 x 4 xe 2 x ; cos x sin x 2 3 2
(5) y
29 x 6 6 x 1 1 e e ; (6) y e 2 x 。 7 7 2 2
3. y C1e x C2 x x 2 1 。 4. y C1e x C2 (1 2 x) 。 5. y x sin x cos x ln(cos x) C1 cos x C2 sin x 。
(3) y ( x C ) cos x ; (4) y e 2 x Ce x ; (5) y 1 Ce x ; (6) y

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)

高等数学课后习题及参考答案(第十章)习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为⎰⎰==L L y dsy x ds y x x M M x ),(),(μμ, ⎰⎰==LL x ds y x dsy x y M M y ),(),(μμ. 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 111011),(lim),(lim ),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+L nds y x)(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n ⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .xdx L ⎰xdx xdx LL ⎰⎰+=21⎰⎰'++'+=102122)(1])[(1dx x x dx x x⎰⎰++=10102241xdx dx x x )12655(121-+=.(4)ds ey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解 dt dtdz dt dydt dx ds 222)()()(++=dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223sin cos 11dt e et e t e ds z y x t t t t ⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故yzds x yzds x yzds x yzds x CD BC AB 2222⎰⎰⎰⎰++=Γ9010200322231=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=L dt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023cos 1)cos 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdydt dx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (atdt t t t a t t t a ds y x L ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a tdt t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==L x xds a M M x ϕ21⎰-⋅=ϕϕθθϕad a a cos 21ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=. (2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=, ds z y x x M x L)(1222⎰++=⎰++=π2022222)(cos 1dt k a t k a t a M2222436k a ak ππ+=, ds z y x y M y L)(1222⎰++=⎰++=π2022222)(sin 1dt k a t k a t a M2222436k a ak ππ+-=, ds z y x z M z L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3k a k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())( ,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtda t a P dx y x P . 2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lbadx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baL b adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-L dx x x dx y x2042221556)()(.(2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L L xydx xydx xydx⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π3020232)sin sin sin (a t td tdt a πππ-=+-=⎰⎰.(3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解 ⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202cos πtdt R .(4)⎰+--+L y x dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L yx dyy x dx y x 22)()( ⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a ⎰-=-=ππ202221dt a a .(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=1)]1211(3)21(2)1[(dt t t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1, CA : x =x , y =0, z =1-x , x 从0变到1, 故ydz dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=101010)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-L dy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x 1514)4(21042-=-=⎰dx x x 4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y . (2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1); 解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰+=L ds y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()cos ,(cos 22x x x ++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰++=L ds xy x xQ y x P 241),(2),(. (3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2x x x --=τ, 单位切向量为)1 ,2()cos ,(cos 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)cos ,cos ,(cos 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=L ds y x yRxQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx x xy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=112243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(1010245235=++--++=⎰⎰dy y y y dx x x x ,而dxdy x dxdy yPx Q DD)21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQdy Pdx dxdy yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、 (2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x )2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x 8482020=-+=⎰⎰ydy xdx , 而 dxdy xy y dxdy y P x Q DD )32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(20=-=⎰dx x , 所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解 ⎰⎰-⋅⋅-=-=L dt t t a t a ydx A π2023)sin (cos 3sin ⎰==ππ20224283cos sin 3a tdt t a . (2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故⎰-=Lydx xdy A 21 ⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d . (3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故 ⎰-=Lydx xdy A 21 ⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)cos 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-L y x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方 向为逆时针方向.解 )(222y x y P +=, )(222y x x Q +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+dxdy y P x Q Qdy Pdx D l L ε, 即 ⎰⎰⎰+=+-=+-lL l dy Pdx Qdy Pdx Qdy Pdx . 因此 ⎰⎰+-=+-l L y x xdy ydx y x xdy ydx )(2)(22222⎰--=πθεθεθε20222222cos sin d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值:(1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQ y P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x ⎰=+=2125)1(dx x . (2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且2312y xy xQ y P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy⎰⎰=++-=102135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、 (3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(dxdy y P x Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰dxdy D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2cos sin 2()2cos sin 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yP x Q , 由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰dxdy yP x Q D . (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线 2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧; 解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)cos 26()6cos 2(22=--+-=∂∂-∂∂x y xy xy x y yP x Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-dxdy yP x Q Qdy Pdx D OB OA L , 其中L 、OA 、OB 、及D 如图所示.故 ⎰⎰++=+AB OA L Qdy Pdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--L dy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂y P x Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++dxdy y P x Q Qdy Pdx DBO AB L , 其中L 、AB 、BO 及D 如图所示.故 ⎰⎰++--=+--L OB BA dy y x dx y x dy y x dx y x )sin ()()sin ()(22222sin 4167)sin 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数u (x , y )的全微分, 并求这样的一个u (x , y ):(1)(x +2y )dx +(2x +y )dy ;证明 因为yP x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分.⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222. (2)2xydx +x 2dy ;解 因为y P x x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分.⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C xydx dy 00220. (3)4sin x sin3y cos xdx –3cos3y cos2xdy解 因为yP x y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分.⎰+-=),()0,0(2cos 3cos 3cos 3sin sin 4),(y x C xdy y xdx y x y x u C y x C xdy y dx xy +-=+-+=⎰⎰3sin 2cos 2cos 3cos 3000. (4)dy ye y x x dx xy y x y )128()83(2322++++解 因为yP xy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x u C dx xy y x dy ye yx y +++=⎰⎰0022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++解 因为yP y x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分 ⎰⎰+-+=x y C dy y x x y xdx y x u 002)sin sin 2(2),( C y x x y ++=cos sin 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2. 由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且i i i i nm m i i i i i m i i i i i n m i S f S f S f ∆∑+∆∑=∆∑++==+=),,(),,(),,(111ζηξζηξζηξ. 令}{max 11i mi S ∆=≤≤λ, }{max 12i n m i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当 λ→0时, 有dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dSz y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,dxdy dxdy z z dS y x=++=221, 故 dxdy z y x f dS z y x f D),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ313])41(121[2202/32=+=r . (2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ301494122022=+=⎰rdr r r . (3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dS z y x f ),,(∑⎰⎰dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰⎰⎰+-=πθ20202241)2(3rdr r r d ππ1011141)2(62022=+-=⎰rdr r r . 5. 计算dS y x )(22+∑⎰⎰, 其中∑是: (1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面;解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x2122=++=. dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ dxdy y x dxdy y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ201032dr r d πππ221222+=+=. 提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,dxdy dxdy z z dS y x2122=++=, 因而 πθπ922)()(302202222==+=+⎰⎰⎰⎰⎰⎰∑rdr r d dxdy y x dS y x xy D . 提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z y x 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤, dxdy z z dS y x 221++=dxdy 361=, 61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xy xyD D . (2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,dxdy dxdy z z dS y x3122=++=, dS z x x xy )22(2+--∑⎰⎰ dxdy y x x x xy xyD 3)22622(2--+--=⎰⎰⎰⎰--+--=x dy y xy x x dx 30230)22236(3 427)9103(33023-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,dxdy z z dS y x 221++=dxdy y x a a 222--=,dxdy yx a a y x a y x dS z y x xy D 222222)()(----++=++⎰⎰⎰⎰∑ )(||22h a a D a adxdy xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y y x a x dS 22222222)()(1+--++--+=dxdy y x a a 222--=, (4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax ,dxdy dxdy z z dS y x2122=++=, dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑ ⎰⎰++=-θππθθθθcos 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )cos sin cos cos (sin 24422554⎰-++= 421564a =. 提示: dxdy yx y y x x dS 2222221++++=. 7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x222211++=++=.故 dxdy y x y x zdS M xyD 22221)(21+++==⎰⎰⎰⎰∑ ⎰⎰+=πθ202022121rdr r r d )136(152+=π. 8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,dxdy z z dS y x 221++=dxdy yx a a 222--=, dxdy y x a a y x dS y x I z 222022022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=a dr ya r d a 0223200πθμ 4034a πμ=.提示:dxdy yx a y y x a x dS 22222222)()(1---+---+=dxdy y x a a 222--=.习题10-51. 按对坐标的曲面积分的定义证明公式:dydz z y x P z y x P )],,(),,([21±∑⎰⎰dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则dydzz y x P z y x P )],,(),,([21±∑⎰⎰ yz i i i i i i i n i S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i n i S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλ dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是zdxdy y x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ20222202sin cos rdr r R r r d R⎰⎰-=πθθ20052222sin 41R dr r r R d 71052R π=. (2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故 ⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 ydzdx xdydz zdxdy ++∑⎰⎰)13(2102dx x ⎰-=ππ2346=⨯=. 解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为)0 , ,(1)cos ,cos ,(cos 22y x y x +=γβα, 由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示: dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31 ,31 ,31()cos ,cos ,(cos -=γβα, 由两类曲面积分之间的联系可得dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰ 2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑dxdy dS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdy xzdxdy 4000∑⎰⎰+++= dxdy y x x xy D )1(--=⎰⎰⎰⎰-=--=1010241)1(x dy y x xdx . 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz . 因此⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdx xydydz xzdxdyyzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD . 4. 把对坐标的曲面积分dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧;解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为:)32 ,2 ,3(),,(==z y x F F F n ,单位法向量为)32 ,2 ,3(51)cos ,cos ,(cos =γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰. (2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为)1 ,2 ,2(4411)cos ,cos ,(cos 22y x y x ++=γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaa a a dz dy xdx xdv 0400366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ20004sin 3a dr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体 x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧;解 由高斯公式原式dv y x z d z R y Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ2020022sin a dr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧;解 由高斯公式原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv z R y Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧.解 由高斯公式原式dv y y z dv z R y Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=10101023)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量: (1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy ,⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv z xy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰dv . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a ,的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv z r y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=a a a a a dz xz x dy dx 023200)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z ,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv z R y Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度:(1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ;解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222div z y x z y x zR y Q x P ++=++=∂∂+∂∂+∂∂=A . (2)A =e xy i +cos(xy )j +cos(xz 2)k ;解 P =e xy , Q =cos(xy ), R =cos(xz 2),)sin(2sin div 2xz xz xy x ye zR y Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ;解 P =y 2, Q =xy , R =xz ,x x x zR y Q x P 20div =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, n u ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向 的方向导数. 证明dS n u v n v u dxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知dxdydz z v y v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ dxdydz z v z u y v y u x v x u dS n v u )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, dxdydz z u y u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰dxdydz z v z u y v y u x v x u dS n u v )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得dxdyd z u y u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰ ⎰⎰∑∂∂-∂∂=dS n u v n v u )(. 5. 利用高斯公式推证阿基米德原理: 浸没在液体中所受液体的压力 的合力(即浮力)的方向铅直向上, 大小等于这物体所排开的液体的重力. 证明 取液面为xOy 面, z 轴沿铅直向下, 设液体的密度为ρ, 在物 体表面∑上取元素dS 上一点, 并设∑在点(x , y , z )处的外法线的方向余 弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F x αρ,00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F y βρ,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1)⎰Γ++xdz zdy ydx , 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴 的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为)31,31,31()cos ,cos ,(cos ==γβαn .于是 ⎰Γ++xdz zdy ydx dS x z y zy x ∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos 2333)cos cos cos (a dS dS πγβα-=-=---=∑∑⎰⎰⎰⎰.提示:dS ∑⎰⎰表示∑的面积, ∑是半径为a 的圆.(2)⎰Γ-+-+-dz y x dy x z dz z y )()()(, 其中Γ为椭圆x 2+y 2=a 2, 1=+b z a x(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面1=+b z a x 上Γ所围成的部分, 则∑上侧的单位法向量为) ,0 ,()cos ,cos ,(cos 2222b a b b a b ++==γβαn . 于是 ⎰Γ-+-+-dz y x dy x z dx z y )()()(dS y x x z z y zy x ---∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos dS b a b a dS ∑∑⎰⎰⎰⎰++-=---=22)(2)cos 2cos 2cos 2(γβα)(2)(2)(22222b a a dxdy a b a dxdy a b a b a b a xyxyD D +-=+-=+++-=⎰⎰⎰⎰π.提示: ∑(即x ab b z -=)的面积元素为dxdy a b a dxdy a b dS 222)(1+=+=.(3)⎰Γ+-dz yz xzdy ydx 23, 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则⎰Γ+-dz yz xzdy ydx 2323yz xz y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ ππ2025)3()(22-=⨯-=+-+=∑⎰⎰dxdy z dydz x z .(4)⎰Γ-+dz z xdy ydx 232, 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则⎰Γ-+dz z xdy ydx 232232z x y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ π9===⎰⎰⎰⎰∑dxdy dxdy xyD .2. 求下列向量场A 的旋度: (1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 k j i kj i A 6422332++=---∂∂∂∂∂∂=x y z x y z z y x rot . (2)A =(sin y )i -(z -x cos y )k ;解 j i kji A +=--+∂∂∂∂∂∂=0)cos (sin y x z y z z yx rot . (3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解 )sin(cos )sin(sin 22z xy xz y y x z y x ∂∂∂∂∂∂=kj i A rot=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分dS n A ⋅∑⎰⎰rot 化为曲线积分, 并计算积分值,其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面221y x z --=, 的上侧, n 是∑的 单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为 x =cos θ, y =sin θ, z =0(0≤θ≤2π, 由托斯公式dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx ⎰Γ++=xzdz xydy dx y 2⎰=+-=πθθθθθ20220]sin cos )sin ([sin d .(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量. 解dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx⎰Γ-++-=dz xz yzdy dx x y )()(⎰⎰Γ-===0242dx ydx .4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量: (1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0; 解θθθθθπd cdz xdy ydx L ]cos cos )sin ()(sin [(20+--=++-⎰⎰⎰==ππθ202d .(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周222y x z +-=, z =0. 解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++LL dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(。

(完整word版)高等数学第10章课后习题答案(科学出版社)

(完整word版)高等数学第10章课后习题答案(科学出版社)
; .
于是所求的曲面积分为
.
(2) ,其中 为旋转抛物面 介于 之间部分的下侧。
解由两类曲面积分之间的联系,可得

在曲面 上,有



再依对坐标的曲面积分的计算方法,得

注意到



(3) ,其中 为 , 的上侧;
解 在 面上的投影为半圆域 , ,
=
= =
由对称性 = , =
∴原式= =
(4) ,其中 是由平面 , , , 所围成的四面体的表面的外侧。

其中 为上半球面 , , ,故

其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是得
= ,
是一个无界函数的反常积分,按反常积分的计算方法可得



解法2设球面方程为 ,定直径在 轴上,依题意得球面上点 的密度为 ,从而得球面的质量为 ,由轮换对称性可知: ,故有

2设某流体的流速为 ,求单位时间内从圆柱 : ( )的内部流向外侧的流量(通量)。
,其中 从 变到 ,


解法2作有向线段 ,其方程为
,其中 从 变到 ,
则有向曲线 与有向线段 构成一条分段光滑的有向闭曲线,设它所围成的闭区域为 ,由格林公式,有







3.计算 ,其中 为平面 在第一卦限中的部分;
解 将曲面 投影到 面上,得投影区域为 ,此时曲面方程可表示为

于是


4. 计算 ,其中 是球面 的上半部分并取外侧;
解如右图所示,因为闭曲面取外侧,所以 取下侧, 取后侧, 取左侧, 取上侧。于是

高等数学 课后习题答案 第十章

高等数学 课后习题答案 第十章

习题十1. 根据二重积分性质,比较ln()d Dx y σ+⎰⎰与2[ln()]d Dx y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x+y=1与x+y=2之间,显然有图10-112x y ≤+≤从而0l n ()1x y ≤+<故有2l n ()[l n ()]x y x y +≥+ 所以2l n ()d [l n ()]dDDx y x yσσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2 从而 ln(x+y)>1 故有2l n ()[l n ()]x y x y +<+ 所以2l n ()d [l n ()]dDDx y x yσσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值:(1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}DI x y D x y x y σ==≤≤≤≤⎰⎰;(3)2222(49)d ,{(,)|4}DI x y D x y x y σ=++=+≤⎰⎰.解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而04xy ≤≤.从而2≤≤故2d DD σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而d Dσσ=⎰⎰(σ为区域D 的面积),由σ=4得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d DDDx y σσσ≤≤⎰⎰⎰⎰⎰⎰即220sin sin d d DDx y σσσ≤≤=⎰⎰⎰⎰而2πσ=所以2220sin sin d πDx y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以 22229494()925x y x y ≤++≤++≤故229d (49)d 25d DDDx y σσσ≤++≤⎰⎰⎰⎰⎰⎰即 229(49)d 25Dx y σσσ≤++≤⎰⎰而2π24πσ=⋅=所以 2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值:(1)222(,{(,)|};Da D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,Da σ-⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3D a a σ=⎰⎰(2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰4. 设f(x ,y)为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f(x ,y)为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x0,y0)为圆心,r 为半径的圆盘,所以当0r→时,00(,)(,),x y ξη→于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d Df x y σ⎰⎰化为累次积分:(1){(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥(3)2{(,)|,2,2}D x y y y x x x =≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yDy f x y y f x y xσ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y=x-2与抛物线x=y2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y Dyf x y y f x y xσ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y=2x 与曲线2y x =的交点(1,2),与x=2的交点为(2,4),曲线2y x =与x=2的交点为(2,1),区域D 可表示为22,1 2.y x x x ≤≤≤≤图10-5所以2221(,)d d (,)d xDxf x y x f x y yσ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序:(1)2220d (,)d yy y f x y x⎰⎰; (2)eln 1d (,)d xx f x y y⎰⎰;(3)1320d (,)d y y f x y x-⎰; (4)πsin 0sin2d (,)d xxx f x y y-⎰⎰;(5)123301d (,)d d (,)d yyy f x y y y f x y x-+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以22242d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D:1e,0ln.x y x≤≤≤≤如图10-7所示.图10-7D亦可表示为:01,e e,yy x≤≤≤≤所以e ln1e100ed(,)d d(,)dyxx f x y y y f x y x=⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y≤≤≤≤-如图10-8所示.图10-8D亦可看成D1与D2的和,其中D1:201,0,x y x≤≤≤≤D2:113,0(3).2x y x≤≤≤≤-所以2113213(3)200010d(,)d d(,)d d(,)dy x xy f x y x x f x y y x f x y y--=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D为:0π,sin sin.2xx y x≤≤-≤≤如图10-9所示.图10-9D亦可看成由D1与D2两部分之和,其中D1:10,2arcsinπ;y y x-≤≤-≤≤D2:01,arcsinπarcsin.y y x y≤≤≤≤-所以πsin 0π1πarcsin 0sin12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx yyx f x y y y f x y x y f x y x----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D1与D2两部分组成,其中 D1:01,02,y x y ≤≤≤≤ D2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤-所以()123323012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y--+=⎰⎰⎰⎰⎰⎰7. 求下列立体体积:(1)旋转抛物面z=x2+y2,平面z=0与柱面x2+y2=ax 所围; (2)旋转抛物面z=x2+y2,柱面y=x2及平面y=1和z=0所围. 解:(1)由二重积分的几何意义知,所围立体的体积V=22()d d Dx y x y+⎰⎰其中D :22{(,)|}x y x y ax +≤由被积函数及积分区域的对称性知,V=2122()d d D x y x y+⎰⎰,其中D1为D 在第一象限的部分.利用极坐标计算上述二重积分得cos πππcos 344442220001132d d 2d cos d π4232a a V r r r a a θθθθθθ====⎰⎰⎰⎰.(2) 由二重积分的几何意义知,所围立体的体积22()d d ,DV x y x y =+⎰⎰其中积分区域D 为xOy 面上由曲线y=x2及直线y=1所围成的区域,如图10-11所示.图10-11D 可表示为:211, 1.x x y -≤≤≤≤所以21122221()d d d ()d DxV x y x y x x y y-=+=+⎰⎰⎰⎰2111232461111188d ()d .333105x x y y x x x x x --⎡⎤=+=+--=⎢⎥⎣⎦⎰⎰ 8. 计算下列二重积分:(1)221d d ,:12,;Dx x y D x y x y x ≤≤≤≤⎰⎰(2)e d d ,x yDx y ⎰⎰D 由抛物线y2=x,直线x=0与y=1所围;(3)d ,x y ⎰⎰D 是以O(0,0),A(1,-1),B(1,1)为顶点的三角形;(4)cos()d d ,{(,)|0π,π}Dx y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx Dx xx x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000e d d d e d d e d()xx x y y y y yD xx y y x y y y ==⎰⎰⎰⎰⎰⎰ 21111ed (e 1)d e d d y x y y yy y y y y y y y==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰(3) 积分区域D 如图10-13所示.图10-13 D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxx x y x y x y xx --⎡==+⎢⎣⎰⎰⎰⎰⎰112300ππ1πd .2236x x x ==⋅=⎰ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x xx x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224sin (1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d xx x ⎰求不出来,故应改变积分次序。

(完整版)高等数学II练习册-第10章答案

(完整版)高等数学II练习册-第10章答案

(完整版)⾼等数学II练习册-第10章答案习题10-1 ⼆重积分的概念与性质1.根据⼆重积分的性质,⽐较下列积分的⼤⼩:(1)2()D x y d σ+??与3()Dx y d σ+??,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成;(2)ln()Dx y d σ+??与2[ln()]Dx y d σ+??,其中D 是三⾓形闭区域,三顶点分别为(1,0),(1,1),(2,0);2.利⽤⼆重积分的性质估计下列积分的值:(1)22sin sin DI x yd σ=,其中{(,)|0,0}D x y x y ππ=≤≤≤≤;(2)22(49)DI x y d σ=++??,其中22{(,)|4}D x y x y =+≤.(3).DI =,其中{(,)|01,02}D x y x y =≤≤≤≤解 (),f x y =Q 2,在D 上(),f x y 的最⼤值()14M x y ===,最⼩值()11,25m x y ====故0.40.5I ≤≤习题10-2 ⼆重积分的计算法1.计算下列⼆重积分:(1)22()Dx y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤;(2)cos()Dx x y d σ+??,其中D 是顶点分别为(0,0),(,0)π和(,)ππ的三⾓形闭区域。

2.画出积分区域,并计算下列⼆重积分:(1)x y De d σ+??,其中{(,)|||1}D x y x y =+≤(2)22()Dxy x d σ+-??,其中D 是由直线2y =,y x =及2y x =所围成的闭区域。

3.化⼆重积分(,)DI f x y d σ=为⼆次积分(分别列出对两个变量先后次序不同的两个⼆次积分),其中积分区域D 是:(1)由直线y x =及抛物线24y x =所围成的闭区域;(2)由直线y x =,2x =及双曲线1(0)y x x=>所围成的闭区域。

高等数学科学出版社答案

高等数学科学出版社答案

高等数学科学出版社答案【篇一:第一章习题答案科学教育出版社高数答案(惠院)】txt>习题1-11.求下列函数的自然定义域:x3(1)y?? 21?xx?1arccos; (3) y?解:(1)解不等式组?(2) y?arctan1x3x?1?(4) y??. ?3 , x?1?x30得函数定义域为[?3,?1)?(?1,1)?(1,??); 21x03x20(2)解不等式组?得函数定义域为[?;x?0x?1??1??1?(3)解不等式组?得函数定义域为[?5,?2)?(3,6]; 52??x?x?6?0(4)解不等式x?1?0得函数定义域为[1,??).2.已知函数f(x)定义域为[0,1],求ff(cosx),f(x?c)?f(x?c) (c?0)义域.解:因为f(x)定义域为[0,1]220xc11当?时,得函数f(x?c)?f(x?c)定义域为:(1)若c?,x??c,1?c?;(2)0?x?c?12?若c?3.设f(x)?1?x?a?1,a?0,求函数值f(2a),f(1). x2?|x?a|?1?a?x?1,则 x2?|x?a|?的定111,x?;(3)若c?,x??. 222解:因为f(x)?f(2a)?1?a?1??0 ,a1,1??a?1f(1)?1??1??,2 ,0a1. 12?a?14a2?a?2a24. 证明下列不等式:(1) 对任何x?r有 |x?1|?|x?2|?1;1(2) 对任何n?z?有 (1?1)n?1?(1?1)n;n?1n(3) 对任何n?z?及实数a?1有 an?1?a?1.n证明:(1)由三角不等式得|x?1|?|x?2|?|x?1?(x?2)|?1 (2)要证(1?1)n?1?(1?1)n,即要证1?1?n?1n1n?1(1?得证。

111)?(??))11 ?1?n?1n?1(3)令h?a?1,则h?0,由bernouli不等式,有a?(1?h)?1?nh?1?n(a?1)n1n1n所以a?1。

高数答案第10章

高数答案第10章

第 10 章 (之1)(总第53次)* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平行,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为 .答:||||b a =.** 3.设直线L 经过点0P 且平行于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意一点,试用向量0r ,a 表示点P 的径向量r . 解:∵a P P ||0, ∴a t P P=0, 而P P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹角等于π32,求:(1)b a ⋅; (2))2()23(b a b a +⋅-; (3)b a )(; (4)b a 23-.解:(1)〉〈=⋅b a b a a ,cos b 332cos 32-=⨯⨯=π.(2)()()b a b a223+⋅-b a b a 44322+-=()3634342322-=-⨯+⨯-⨯=.(3)()133-=-=⋅=bb a a b.(4)()()b a b a b a 2323232-⋅-=-b a b a124922-+=()108312342922=-⨯-⨯+⨯=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹角等于π31,求:(1)b a b a -+)(;(2)b a 25+与b a -的夹角.解:(1)()()b a ba b a--=-⋅2b a b a 222-+=213cos 5425422=⨯⨯-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+⋅-2122b a -=215422-=7213-=. (2)()()b a ba-+⋅25b a b a 32522--=03cos543524522=⨯⨯-⨯-⨯=π,∴向量b a b a-+,25垂直.** 6. 若a ,b 为非零向量,且b a b a -=+,试证b a ⊥.解:b a b a -=+,∴ 22b a b a -=+,∴()()()()b a ba b a ba --=++⋅⋅,∴b a b a b a b a222222-+=++, ∴0=⋅b a, ∴b a⊥.***7.用向量的方法证明半圆的圆周角必是直角. 解:如图所示,AC 为直径,B 为圆周上任一点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有 →--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--⋅CB →--=OB (⋅→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴ 半圆的圆周角必为直角.第 10 章(之2)(总第54次)B教学内容:§10.2空间直角坐标系与向量代数1.填空题*(1) 点A (2,-3,-1)关于点M (3,1,-2)的对称点是______ .答:(4,5,3-)**(2) 设平行四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ . 答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且 a b a b +=-,则z =______ .答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.解:令AB 与y 轴相交于C 点,即C 为AB 的中点,则C 点的坐标为 )21,235,22(+-+-p q , 又C 点在y 轴上,所以021,022=+=+-p q,即 1,2-==p q , 故C 点的坐标为)0,1,0(,即交点的坐标为)0,1,0(.**3.设A,B 两点的坐标分别为()()1,0,1,1,2,0-.求 (1)向量AB 的模; (2)向量AB 的方向余弦; (3)使AB AC 2=的C 点坐标.解:(1)}2,2,1{-=, 则32)2(1222=+-+=,所以的模为3. (2)32cos ,32cos ,31cos =-==r βα.(3) 设C 的坐标为(x ,y ,z ),由2-= 则2)2(1)2(10=-+-⨯+=x , 2)2(1)2(02-=-+-⨯+=y , 3)2(1)2(1)1(=-+-⨯+-=z ,所以C 点的坐标为)3,2,2(-.**4. 求q p ,的值,使向量}4,,2{-p 与},0,1{q -平行,再求一组使此两向量垂直的q p ,值. 解:向量}4,,2{-=p u 与},0,1{q v -=平行,即:v uλ=,∴q p 4012-==-, ∴2,0==q p , 向量u 与v 垂直时,0=⋅v u, ∴()()04012=⨯-+⨯+-⨯q p . ∴21-=q , p 为任意值.**5.求作用于某点三个力}5,4,3{},4,3,2{},3,2,1{321-=--==F F F 之合力的大小及方向.解:321F F F F ++=合{}{}{}{}4,1,25,4,34,3,23,2,1=-+--+=,合力的大小 21412222=++=合F,214cos ,211cos ,212cos ===γβα,其中γβα,,分别为合F与x 轴,y 轴,z 轴的夹角.** 6.试在xy 平面上求一与 }1,1,1{=a 成正交的向量.解:设所求向量为 {}z y x b ,,=, ∵ 在xy 平面上,∴0=z , 且 0=⋅b a,即:{}{}01,1,10,,=⋅y x , ∴0=+y x ,y x -=,取 1,1-==y x , ∴ 向量 {}0,1,1-=b 与 {}1,1,1=a 正交. ** 7.设}2,2,1{-=a ,}4,0,3{-=b ,求:(1)j a⋅; (2)k b ⨯;(3))()2(b a b a -⋅+; (4))3()(b a b a -⨯+.解:(1)2)22(-=⋅+-=⋅j k j i j a . (2)j k i k k i k b 33)43(-=⨯=⨯-=⨯.(3))}4(2,2,31{}422),2(2,312{)()2(----⋅-⨯-⨯+⨯=-⋅+b a b a260)2()4()2(5}6,2,2{}0,4,5{-=⨯+-⨯-+-⨯=--⋅-=. (4)}24,40,32{}10,6,0{}2,2,4{)3()(---=-⨯--=-⨯+. ** 8.设}1,1,0{-=a ,}1,1,2{-=b ,求:(1)a b b a )(,)(; (2)a 与b 的夹角. 解:(1)11)1()2(}1,1,2{}1,1,0{)(22-=+-+-⋅-==b a ;(){}{}()2111,1,01,1,222-=-+-⋅-=⋅=aa b b a;(2)θcos =⋅, 即 θc o s 222⨯⨯=-, 则 22cos -=θ, 又 πθ≤≤0,所以 43πθ=,即a 与的夹角为43π.** 9.在yz 平面内求模为10的向量b ,使它和向量 k j i a 348+-= 垂直.解:∵ 向量b在yz 平面内, ∴ 可设坐标为 {}z y ,,0,∵ a b ⊥, ∴ 0=⋅a b,即:{}{}03,4,8,,0=-⋅z y , ∴034=+-z y ,又 1022=+=z y b , ∴6,8==y z , 或 6,8-=-=y z ,∴向量b的坐标为:{}8,6,0 或 {}8,6,0--.*** 10. 试证明∑∑∑===≥⋅31312312i ii i ii iba ba.其中321,,a a a 及321,,b b b 为任意实数.解:设b a,的坐标分别为{}{}321321,,,,,b b b a a a ,b a b a b a b a⋅≤〉〈⋅=⋅,cos ,即:232221232221332211b b b a a a b a b a b a ++⋅++≤++,∴∑∑∑===≥⋅31312312i ii i ii iba ba.第 10 章(之3)(总第55次)教学内容:§10.3平面与直线[10.3.1]**1.解下列各题(1) 平行于x 轴,且过点)2,1,3(-=P 及)0,1,0(=Q 的平面方程是______ . 答:y z +=1(2) 与xOy 坐标平面垂直的平面的一般方程为______ . 答:Ax By d A B ++=+≠0022()(3) 过点)1,2,1(=P 与向量k j S k j i S--=--=21,32平行的平面方程为_____ .答:x y z -+=0(4) 点 )1,2,6(0-=M 到平面 0622=++-z y x 的距离为=d ___________. 解: ()()222161222622=+-++-⨯+⨯-=d .(5)平面3360x y --=是 ( ) (A )平行于xOy 平面 (B )平行于 z 轴,但不通过 z 轴 (C )垂直于y 轴(D )通过z 轴答:B**2.填表讨论一般方程0=+++D Cz Bx Ax 中,系数A,B,C,D 中有一个或数个等于零的解:0=+++D Cz By Ax , (1)0,0≠=ABD C 平行于z 轴(不包括过z 轴)的平面.(2)0,0≠⋅==C B D A 过x 轴的平面(不包括过y 轴、z 轴的平面).(3))0(,0,022≠⋅≠+==B A B A D C 过z 轴的平面. (4)0,0==≠C A B 平面垂直于y 轴.3.在下列各题中,求出满足给定条件的平面方程:**(1)过点()2,3,1--=P 及()1,2,0-=Q 且平行于向量{}1,1,2--=l;解:所求平面的法向量n垂直于向量{}1,1,2--=l 与由点()2,3,1--=P 与点()1,2,0-=Q 构成的向量{}1,1,1-=,故取{}1,3,2112111=---=⨯=kj i l n.故可得所求平面方程为 ()()()023312=++-++z y x , 即 0532=-++z y x .**(2)过z 轴且垂直于平面0723=+--z y x ; 解:平面0723=+--z y x 的法向量 {}1,2,3--=n ,故所求平面法向量n与0n 垂直,与z 轴正交,故可取{}0,3,21123--=--=⨯=kj i k n n ,所求平面过z 轴,故此平面必经过原点()0,0,0, 故可得所求平面方程为 0032=+--z y x , 即 032=+y x .**(3)垂直于yz 坐标面,且过点()2,0,4-=P 和()7,1,15=Q ;解:由题意可知()2,0,4-=P 、()7,1,15=Q ,所以{}9,1,1=PQ .又由题意可知所求平面法向量 n即与x 轴垂直,又与向量PQ 垂直,故可取{}1,9,0001911-==⨯=kj i i PQ n, 故可得所求平面方程为:()()()02109=+-+-z y , 即: 029=--z y .***4.自点)5,3,2(0-=P 分别向各坐标面作垂线,求过三个垂足的平面方程. 解:垂足分别为:)0,3,2(=A 、)5,3,0(-=B 和)5,0,2(-=C ,所以}5,3,0{},5,0,2{--=--=AC AB平面法向量为}6,10,15{530502--=----=⨯=kj i n故平面方程为:15106600x y z +--= .*** 5. 过两点)3,4,0(-=M 和)3,4,6(-=N 作平面,使之不过原点,且使其在坐标轴上截距之和等于零,求此平面方程. 解:设平面方程为:x a y b z a b+-+=1,由于它过M N ,两点,则⎪⎩⎪⎨⎧=+--=++1346134ba b a b a b 解得:a b ==-326,,,故平面方程为: 2366x y z --= 或 63218x y z +-=. **6. 判断下列各组平面相对位置,是平行,垂直还是相交,重合.(1)ππ1221022430:,:x y z x y z -+-=-+-=(2)ππ122210220:,:x y z x y z ---=+-=解:(1)ππ12,法向量分别为n n n n 12211122242=-=-={,,},{,,}取π1上一点(,,)100,显然不在π2上,故ππ12,平行,不重合. (2)ππ12,法向量分别为n n n n 12212211220=--=-⋅={,,},{,,},故n n 21,垂直,从而ππ12,垂直.第 10 章(之4)(总第56次)教学内容:§10.3平面与直线[10.3.2,10.3.3]**1.解下列各题:(1) 过点M M 12321102(,,),(,,)--的直线方程为⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽ . 答:x y z +=-=--14221(2) 直线x y z x y z -+-=+-+=⎧⎨⎩2302260在xOz 坐标面上的交点为=P ____________,并利用该点的坐标,写出此直线的对称式方程和参数方程.答: )3,0,0(=P .对称式方程为x y z 3435==-,参数方程为⎪⎩⎪⎨⎧+===3543t z t y tx(3)直线kzy a x =-=+21在平面3=-+z y x 上的充要条件是=a ______,=k _____. 答:2-=a ,3=k .因为点)0,1,(a P -=在平面上,直线的方向向量{}k l ,2,1=→与平面的法向量{}1,1,1-=→n 必须垂直.**2.求经过点)2,0,3(-=A 且与两个平面1=+z x 及1=++z y x 同时平行的直线方程.解:所求直线L 的方向向量 {}1,0,11=⊥n l,且 {}1,1,12=⊥n l ,∴ 可取 {}1,0,111110121-==⨯=k j i n n l,∴ 所求直线方程为:2013-==-+z yx .**3.求经过点)0,1,2(-=A 且与两条直线z y x ==及11201-=-=+zy x 同时垂直的直线方程.解:所求直线L 的方向向量 {}1,1,11=⊥l l ,且 {}1,1,02-=⊥l l,∴可取{}1,1,211011121-=-=⨯=kj i l l l,∴所求直线方程为:z y x =+=--1122. **4. 求出过点)3,4,1(--=A 且与下列两条直线⎩⎨⎧-=+=+-53142:1y x z y x L ⎪⎩⎪⎨⎧+-=--=+=tz t y tx L 23142:2均垂直的直线方程.解:⎩⎨⎧-=+=+-53142:1y x z y x L,{}1,4,211-=⊥n l,{}0,3,121=⊥n l∴ 可取 {}10,1,3211-=⨯=n n l,23114223114223142:2+=-+=-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=-+=-⇒⎪⎩⎪⎨⎧+-=--=+=z y x t z t y tx t z t y t x L ,∴ 可取 {}2,1,42-=l ,1l l ⊥,且2l l⊥.∴ 可取 {}1,46,1221-=⨯=l l l,∴所求直线方程为13464121--=+=+z y x . **5.求通过点()5,1,20-=M 且与直线12131-=-=+zy x 相交并垂直的直线方程. 解法一:直线132131:1--=-=+z y x L 上取一点()0,1,11-=M ,过点0M 与直线1L 的平面π的法向量n ,则1l n ⊥ 且 10M M n ⊥,∴{}{}{}6,12,105,0,31,2,3101-=-⨯-=⨯M M l ,故n 可取为 {}3,6,5-=n .因所求直线L 过点0M 点且与1L 相交,故L 亦在平面π上,故 {}28,14,0,1--=⨯⊥n l n l , 故可取 {}2,1,0=l.故所求直线方程为251102+=-=-z y x . 解法二:过点0M 作垂直于直线1L 的平面π:()()()051223=+--+-z y x ,即01323=--+z y x直线1L 与平面π的交点M 的坐标满足: ⎪⎩⎪⎨⎧-====⇒⎪⎩⎪⎨⎧=-=-=+=--+13211213101323z y x t t zy x z y x∴M 点坐标为()1,3,2-,∴{}4,2,00=M , ∴所求直线方程为:251102+=-=-z y x .** 6. 试求k 值,使两条直线7144933:,33541:21+=--=+--=+=-z y x L z y k x L 相交. 解:将第二条直线的参数方程⎪⎩⎪⎨⎧-=+-=-=1479433t z t y t x 代入第一条直线方程,有3441357173t k t t -=-+=--解得 k =2**7.求直线l x y z 112110:-=--=+与l x y z 211032:-=+=-之间的夹角. 解:l 1,l 2方向向量分别为S S 12110102=-=-{,,},{,,},cos(,)||||S S S S 121212110∧==-,故l 1,l 2之间的夹角为 arccos 110. **8.已知直线1121-=-=+zp y x 和平面126=+-z y qx 垂直,求常数q p ,之值.解: {}{}2,6,//1,,2-=-=q n p l,∴3,42162=-=⇒-=-=p q p q .**9.求过直线⎩⎨⎧=-+-=--+04207572z y x z y x 且在x 轴和y 轴上的截距相等的平面方程.解:过直线⎩⎨⎧=-+-=--+04207572z y x z y x 的平面束方程可设为()()(*)427572=-+-+--+z y x v z y x u令0==z y ,求得在x 轴截距v u vu x 2247++=,令0==z x ,求得在y 轴截距vu vu y -+=747.∵y x = ∴vu vu v u v u -+=++7472247,∴v u v u v u -=+=+722047或,即:5374=-=v u v u 或,代入(*)式,可得满足条件的平面有两个 (1)()()042757274=-+-+--+-z y x z y x ,即:027356=+-z y x ; (2)()()042757253=-+-+--+z y x z y x ,即:41101616=-+z y x .***10. 求直线z y x ==在平面135=-+z y x 上的投影直线.解:直线L 的方向向量 {}1,1,1=→l .在直线L 上取一点()0,0,0=A ,显然不满足方程135=-+z y x , ∴A 不在该平面上.设过A 做与平面135:0=-+z y x π的垂直的平面π.则平面π的法向量可取为 {}1,1,243511110---=-=⨯=kj i n l n,这就得到了π的方程为02=--z y x .从而得到投影直线方程为⎩⎨⎧=--=-+02135z y x z y x .第 10 章(之5)(总第57次)教学内容:§10.4空间曲面1. 选择题 *(1) 曲面z x y =+22是 ( )(A )zox 平面上曲线z x =绕z 轴旋转而成的旋转曲面 (B )zoy 平面上曲线z y =绕z 轴旋转而成的旋转曲面 (C )zox 平面上曲线z x =绕x 轴旋转而成的旋转曲面 (D )zoy 平面上曲线z y =绕y 轴旋转而成的旋转曲面 答:B** (2) 方程122=+z x 在空间表示 ( )(A )z 轴 (B )球面(C )母线平行y 轴的柱面 (D )锥面答:C*(3) 方程x y z 2229251+-=-是 ( ) (A) 单叶双曲面 (B) 双叶双曲面 (C) 椭球面 (D) 双曲抛物面答:B*(4) 双曲面x y z 222491--=与yoz 平面 ( ) (A) 交于一双曲线(B) 交于一对相交直线(C) 不交 (D) 交于一椭圆答:C*2. 求以)1,1,1(),5,4,1(21==M M 为直径的两个端点的球面的方程. 解:M M 12,中点为)3,25,1(0=M ,M M 125=. 即直径为5,半径为5/2.故球面方程为()()()()x y z -+-+-=1523522222.即x y z x y z 222256100++---+= .**3. 动点M 到两定点)0,0,4(),0,0,(21a P a P ==的两个距离之比等于1:2,求动点M 的轨迹方程.解:设动点M =(,,)x y zP M P M 1212::= 即 44222222[()]()x a y z x a y z -++=-++, 即 x y z a 22222++=() .**4.动点),,(z y x M =到点()2,0,0=A 的距离和它到xy 平面的距离相等,求动点M 的轨迹方程.解:动点),,(z y x M =到点()2,0,0=A 的距离为 ()22212-++=z y x d ,动点M 到xOy 平面的距离为 212d d zd ==,∴动点M 的轨迹方程为 ()22222z z y x =-++, 整理得:4422-=+z y x 是旋转抛物面.**5. 求yOz 平面上曲线y z 221-=分别绕y 轴,z 轴而成的旋转曲面的方程. 解:绕y 轴 -+-=x y z 2221; 绕z 轴 x y z 2221+-=.6. 把下列方程化为标准形式,从而指出方程所表示曲面的名称并画出图形. **(1)01422222=-++-+y x z y x ; 解:01422222=-++-+y x z y x ,()()1422222=-+++z y y x x,()()142141222=-+++z y x ,是一个单叶双曲面, 中心为()0,1,10--=M .**(2)09284222=--+--z y z y x .解:09284222=--+--z y z y x , ()()9224222=+---z z y y x ,()()4114222=+---z y x ,()()14114222=+---z y x ,是一个双叶双曲面,中心为()1,1,00-=M .第 10 章(之6)(总第58次)教学内容:§10.5向量函数 空间曲线基本知识**1. 求曲线x y z x z 22216451230+-=-+=⎧⎨⎪⎩⎪在xoy 平面上的投影柱面方程.解:消去z ,得x y x 2220241160+--=, 即为所求投影柱面方程.**2.求以曲线⎩⎨⎧=+-=++112222222z y x z y x 为准线,母线平行于z 轴的柱面方程. 解:1311222222222=-⇒⎪⎩⎪⎨⎧=+-=++y x z y x z y x z消 故所求柱面方程为1322=-y x .**3. 求曲线z x y x y z =+++=⎧⎨⎩221在各坐标平面上的投影曲线方程.解:消去z ,得x y x y 221+++=故在xoy 平面上,投影曲线为 ⎩⎨⎧==+++0122z y x y x消去x ,得z y z y =--+()122故在yoz 平面上,投影曲线为 ⎩⎨⎧=+--=0)1(22x y z y z消去y ,得z x x z =+--221()故在xoz 平面上,投影曲线为 ⎩⎨⎧=--+=0)1(22y z x x z** 4.把曲面1222=++z y x 和1=+y x 的交线改写为母线分别平行于x 轴与y 轴的两个柱面的交线. 解:)1(11222⎩⎨⎧=+=++y x z y x由(1)消去x ()022*******=+-⇒=++-⇒z y y z y y , 由(1)消去y ()022*******=+-⇒=++-⇒z x x z x x ,交线可写为⎩⎨⎧=-+=-+0220222222x z x y z y .**5. 求由曲面322x y z +=和z y =-12所围成的立体在 xOy 平面上的投影区域.解:投影区域由交线⎩⎨⎧-==+22213y z zy x 在xOy 平面上投影曲线所围成 投影曲线为⎩⎨⎧=-=+013222z y y x , 故投影区域为 ⎩⎨⎧=≤+012322z y x .**6. 试求曲线()k e j e i t t r t t-++= 对应于0=t 点出的切线方程.解:()k e j e i t r t t-++=θ,∴此空间曲线的参数方程为 ()()()()()()⎪⎩⎪⎨⎧-===⇒⎪⎩⎪⎨⎧===--t t t t e t z e t y t x e t z e t y t t x ''1'.∴在对应于0=t 时, 000010ee z e e y x --=-=-, 即:111--=-=z y x .**7. 试求曲线()()()k t j t i t t r23sin 23cos 2++= 从0=t 到4=t 这一段的弧长.解:空间曲线的参数方程为()()()()()()()()⎪⎩⎪⎨⎧==-=⇒⎪⎩⎪⎨⎧===t t z t t y t t x t t z t t y t t x 2'3cos 6'3sin 6'3sin 23cos 22.∴ 弧长()[]()[]()[]dt t z t y t x s ⎰++=40222''' dt t t t ⎰++=422243cos 363sin 363ln 9209242+=+=⎰dt t .。

高等数学同济第五版第10章答案

高等数学同济第五版第10章答案

习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为 ⎰⎰==L L ydsy x ds y x x MM x ),(),(μμ, ⎰⎰==L L x dsy x ds y x y MM y ),(),(μμ.2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 11111),(lim),(lim),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+Ln ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .x d x L ⎰x d x x d x L L⎰⎰+=21⎰⎰'++'+=121022)(1])[(1dx x x dx x x⎰⎰++=1102241x d x dx x x )12655(121-+=.(4)dsey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axaaxdx e dt t a t a edx e220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧; 解 dt dtdz dt dy dtdx ds 222)()()(++= dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223s i n c o s 11dt e e t e t e ds z y x t tt t⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故y z d sx y z d s x y z d s x y z d s xCDBCAB2222⎰⎰⎰⎰++=Γ 901020030222301=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=Ldt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023c o s 1)c o s 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdy dtdx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (a t d tt t t a t t t a ds y xL ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a t d t t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==Lx x d s aMM x ϕ21⎰-⋅=ϕϕθθϕa d a ac o s 21ϕϕs i n a =,所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=.(2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=,ds z y x x M x L)(1222⎰++=⎰++=π2022222)(c o s 1dt k a t k a t a M2222436k a ak ππ+=,ds z y x y My L)(1222⎰++=⎰++=π2022222)(s i n 1dt k a t k a t a M2222436k a ak ππ+-=,ds z y x z Mz L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3ka k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())(,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtdat a P dx y x P .2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lba dx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baLb adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-Ldx x x dx y x 242221556)()(. (2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L Lx y d xx y d x x y d x ⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π302232)s i n s i ns i n (a t td tdt a πππ-=+-=⎰⎰. (3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202c o s πt d t R .(4)⎰+--+Ly x dyy x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+Ly x dyy x dx y x 22)()(⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a⎰-=-=ππ202221dt a a.(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=10)]1211(3)21(2)1[(dtt t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1, 故y d z dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=111)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-Ldy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x1514)4(2142-=-=⎰dx x x4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y .(2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1);解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰ ⎰+=Ld s y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()c o s ,(c o s 22xx x++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰++=Lds xy x xQ y x P 241),(2),(.(3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2xx x --=τ,单位切向量为)1 ,2()c o s ,(c o s 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧, 把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)c o s ,c o s ,(c o s 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=Lds yx yR xQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx xxy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=1012243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(101245235=++--++=⎰⎰dy y y y dx x x x , 而 d x d y x d x d y yPx Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界. 解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x)2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰⎰⎰⎰⎰+-+-+=20200222222)8()4(dy y dx x x dy y y dx x848202=-+=⎰⎰y d y x d x ,而d x d y xy y dxdy yPx Q DD)32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(2=-=⎰dx x ,所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.2. 利用曲线积分, 求下列曲线所围成的图形的面积: (1)星形线x =a cos 3t , y =a sin 3t ; 解 ⎰⎰-⋅⋅-=-=Ldt t t a t a ydx A π2023)sin (cos 3sin⎰==ππ20224283c o s s i n 3a t d t t a.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2=144的参数方程为 x =4cos θ, y =3sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d .(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)c o s 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-Ly x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方向为逆时针方向. 解 )(222y x y P +=, )(222y x xQ +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周 l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+d x d y yPx Q Q d y P d x D l L ε, 即⎰⎰⎰+=+-=+-lL ldy Pdx Qdy Pdx QdyPdx .因此⎰⎰+-=+-l L y x x d yy d x y x x d yy d x )(2)(22222⎰--=πθεθεθε20222222c o s s i n d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值: (1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQy P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x⎰=+=2125)1(dx x .(2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且2312y xy xQy P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx yxy⎰⎰=++-=12135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yPx Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(d x d y yPx Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰d x d y D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2c o s s i n 2()2c o s s i n 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yPx Q , 由格林公式⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰d x d y yPx Q D. (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧;解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)c o s 26()6c o s 2(22=--+-=∂∂-∂∂x y xy xy x y yPx Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-d x d y yPx Q Q d y P d x DOBOA L , 其中L 、OA 、OB 、及D 如图所示. 故⎰⎰++=+AB OA L QdyPdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--Ldy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧. 解 P =x 2-y , Q =-x -sin 2y , 0)1(1=---=∂∂-∂∂yPx Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++d x d y yPx Q Q d y P d x DBO AB L , 其中L 、AB 、BO 及D 如图所示. 故⎰⎰++--=+--L OBBA dy y x dx y x dy y x dx y x)sin ()()sin ()(22222s i n 4167)s i n 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数 u (x , y )的全微分, 并求这样的一个u (x , y ): (1)(x +2y )dx +(2x +y )dy ; 证明 因为yPx Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分. ⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222.(2)2xydx +x 2dy ; 解 因为yPx x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分. ⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C x y d x dy 0220.(3)4sin x sin3y cos xdx –3cos3y cos2xdy 解 因为yPx y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+-=),()0,0(2c o s 3c o s 3c o s 3s i n s i n 4),(y x C x d y y x d x y x y x uC y x C x d y y dx x y+-=+-+=⎰⎰3sin 2cos 2cos 3cos 300.(4)dy ye y x x dx xy y x y )128()83(2322++++ 解 因为yPxy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分.⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x uC dx xy y x dy ye y xy +++=⎰⎰022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++ 解 因为yPy x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分⎰⎰+-+=xyC dy y x x y xdx y x u 02)sin sin 2(2),(C y x x y ++=c o s s i n 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2.由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS , 对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅ ⋅ ⋅, ∆S m ; 划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅ ⋅ ⋅, ∆S m +n , 则∆S 1, ⋅ ⋅ ⋅, ∆S m , ∆S m +1, ⋅ ⋅ ⋅, ∆S m +n 为∑的一个划分, 并且 i i i i nm m i i i i i mi i i i i nm i S f S f S f ∆+∆=∆++==+=∑∑∑),,(),,(),,(111ζηξζηξζηξ.令}{max 11i mi S ∆=≤≤λ, }{max12i nm i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当λ→0时, 有dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dS z y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,d x d y d x d yz z dS y x =++=221, 故d x d y z y x f dS z y x f D ),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下: (1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d y y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ313])41(121[2202/32=+=r .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d yy x y xdS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ30149412222=+=⎰rdr r r .(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此dS z y x f ),,(∑⎰⎰d x d y y x y x xyD 2222441)](2[3+++-=⎰⎰ ⎰⎰+-=πθ2022241)2(3r d r r r d ππ1011141)2(6222=+-=⎰rdr r r .5. 计算dS y x )(22+∑⎰⎰, 其中∑是:(1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中 ∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x 2122=++=.dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ d x d y y x d x d y y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ20132dr r dπππ221222+=+=.提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,d x d y d x d yz z dS y x 2122=++=, 因而πθπ922)()(32202222==+=+⎰⎰⎰⎰⎰⎰∑r d r r d d x d y y x dS y x xyD .提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z yx 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤,d x d y z z dS y x 221++=d x d y 361=,61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdydxdy dS y x z xyxyD D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,d x d y d x d yz z dS y x 3122=++=,dS z x xxy )22(2+--∑⎰⎰d x d yy x x xxy xyD 3)22622(2--+--=⎰⎰ ⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(3323-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; 解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a ay x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a a d x d y xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y yx a x dS 22222222)()(1+--++--+=dxdyyx a a 222--=,(4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax , dxdy dxdy z z dS y x 2122=++=,d x d yy x y x xy dSzx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθc o s202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a)c o s s i n c o s c o s (s i n 24422554⎰-++=421564a =.提示: dxdy yx y y x x dS 2222221++++=.7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 222211++=++=. 故 d x d yy x y x z d S M xyD 22221)(21+++==⎰⎰⎰⎰∑⎰⎰+=πθ20222121r d r r r d )136(152+=π.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a a y x dS y x I z 22222022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=πθμ202230adr ya r d a 4034a πμ=.提示: dxdy yx a y yx a x dS 22222222)()(1---+---+=dxdyyx a a 222--=,习题10-51. 按对坐标的曲面积分的定义证明公式:d y d z z y x P z y x P )],,(),,([21±∑⎰⎰d y d z z y x P d y d zz y x P )],,(),,(21∑∑⎰⎰⎰⎰±=. 解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点,λ是各小块曲面的直径的最大值, 则d y d z z y x P z y x P )],,(),,([21±∑⎰⎰yz i i i i i i i ni S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i ni S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλdydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系? 解 因为∑: z =0, (x , y )∈D xy , 故d x d y z y x R d x d yz y x R xyD ),,(),,(⎰⎰⎰⎰±=∑, 当∑取的是上侧时为正号, ∑取的是下侧时为负号. 3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是z d x d yy x22∑⎰⎰d x d yy x R y xxyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ2022222s i n c o s r d r r R r r d R⎰⎰-=πθθ20052222s i n 41Rdr r r R d 71052R π=.(2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧; 解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑30112221311dy y dy y dz dydz y xdyz yzD∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故d z d x x y d z d x zxD 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=301122131dx x dx x dz .因此 y d z d x x d y d z z d x d y ++∑⎰⎰)13(212dx x ⎰-=ππ2346=⨯=.解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为 )0 , ,(1)c o s ,c o s ,(c o s 22y x yx +=γβα,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy)cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示:dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中 f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31,31 ,31()c o s ,c o s ,(c o s -=γβα, 由两类曲面积分之间的联系可得d x d y z z y x f d z d x y z y x f d y d zx z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰ dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑d x d ydS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧. 解 ∑=∑1+∑2+∑3+∑4, 其中 ∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z , ∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x , ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x , 于是⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdyx z d x d y4000∑⎰⎰+++= d x d y y x x xyD )1(--=⎰⎰⎰⎰-=--=110241)1(xdy y x xdx. 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz .因此 ⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x . 显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdxxydydz xzdxdyy z d z d x x y d y d z x z d x d y ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD .4. 把对坐标的曲面积分d x d y z y x R d z d x z y x Q d y d zz y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧; 解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为: )32 ,2 ,3(),,(==z y x F F F n , 单位法向量为)32 ,2 ,3(51)c o s ,c o s ,(c o s =γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧. 解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量 n =(F x , F y , F z )=(2x , 2y , 1), 单位法向量为)1 ,2 ,2(4411)c o s ,c o s ,(c o s 22y x yx ++=γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dSR yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaaaa dz dy xdx xdv 040366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ204s i n 3adr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧; 解 由高斯公式 原式dv y x z d zRy Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ202022s i n adr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧; 解 由高斯公式 原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv zRy Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧. 解 由高斯公式原式dv y y z dv zRy Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=1010123)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量:(1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy , ⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv zxy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰d v . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a , 的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2, ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv zr y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=aaaa a dz xz x dy dx 02320)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z , ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv zRy Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度: (1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ; 解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222d i vz y x z y x zRy Q x P ++=++=∂∂+∂∂+∂∂=A .(2)A =e xy i +cos(xy )j +cos(xz 2)k ; 解 P =e xy , Q =cos(xy ), R =cos(xz 2),)s i n (2s i n d i v2xz xz xy x ye zRy Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ; 解 P =y 2, Q =xy , R =xz , x x x zRy Q x P 20d i v =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, nu ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向的方向导数. 证明dS nu v n v udxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知d x d y d z zvy v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d z zv z u y v y u x v x u dS n v u)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, d x d y d zzuy u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d zzvz u y v y u x v x u dS n u v)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得d x d y d zuy u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰⎰⎰∑∂∂-∂∂=dS nu v n v u)(.。

高数下第十章的答案

高数下第十章的答案
.
3.设 ,求证 .
证明:因为 ,所以 ;
于是 .
4.设 ,求证 .
证明:已知 ,则 ;所以 .
5.讨论 在任一点处偏导数的存在性.
解:在(0,0)点

不在(0,0)点
.
6.求下列函数的二阶偏导数.
(1) ;(2) ;
(3) .
解:(1)
.
(2)
(3)
7.设 ,求 与 .
解:
.
8.设 ,求 、 、 、 .
3.在半径为R的半球内,求出体积最大的长方体的体积.
解:设长方体的在第一卦限内的顶点坐标为 ,则满足 ;则在半径为R的半球内,最大的长方体的体积为 ;即求 在 条件下的条件极值:作辅助函数 ,则 ;联立解得 ,负的舍去;由问题的实际意义知:在半径为R的半球内,体积最大的长方体的体积为 .
4.从斜边长为l的所有直角三角形中,求出周长最大的直角三角形.

.
(10)设 ,验证 .
(11)求下列函数的极值.
; .
解:(1)已知 ,则令
有 代入得
即 .
(2)在点 处,
;故不连续;
在点 处,
;故连续.
(3)要使函数 有意义,须使 ; ,所以函数 的定义域为 ;且 .
(4) .
.
.
(5)
.
(6)
.
(7)

.
(8)

所以 .
(9) 两边去对数得 ;再求导数得 解得 .
1.求下面复合函数的导数或偏导数.
(1)已知 ,求 .
(2)已知 ,求 .
(3)已知 ,求 .
(4)已知 ,求 .
(5)已知 ,求 .
(6)已知 ,求 .

(整理)高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

(整理)高等数学科学出版社下册课后答案第十章曲线积分与曲面积分习题简答

第十章曲线积分与曲面积分习题简答习题10—11 计算下列对弧长的曲线积分: (1)LI xds =⎰,其中L 是圆221x y +=中(0,1)A到B 之间的一段劣弧; 解:(1+.(2)(1)L x y ds ++⎰,其中L 是顶点为(0,0),(1,0)O A 及(0,1)B 所成三角形的边界;解:(1)3Lx y ds -+=+⎰.(3)22Lx y ds +⎰,其中L 为圆周22x y x +=;解:222Lx y ds +=⎰.(4)2 Lx yzds ⎰,其中L 为折线段ABCD ,这里(0,0,0)A ,(0,0,2),B (1,0,2),C(1,2,3)D ;解: 2Lx y z d =⎰2 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥度1ρ=。

解 故所求重心坐标为444,,333πππ⎛⎫⎪⎝⎭.习题10—21 设L 为xOy 面内一直线y b =(b 为常数),证明xyoABC(,)0LQ x y dy =⎰。

证明:略.2 计算下列对坐标的曲线积分: (1)Lxydx ⎰,其中L 为抛物线2y x =上从点(1,1)A -到点(1,1)B 的一段弧。

解 :45Lxydx =⎰。

(2)⎰-++Ldy y x dx y x 2222)()(,其中L 是曲线x y --=11从对应于0=x 时的点到2=x 时的点的一段弧;解34)()( 2222=-++⎰Ldy y x dx y x .(3),Lydx xdy +⎰L 是从点(,0)A a -沿上半圆周222x y a +=到点(,0)B a 的一段弧;解 0.Lydx xdy +=⎰(4)22Lxy dy x ydx -⎰,其中L 沿右半圆222x y a +=以点(0,)A a 为起点,经过点(,0)C a 到终点(0,)B a -的路径;解 22Lxy dy x ydx -⎰44a π=-。

(5)3223Lx dx zy dy x ydz +-⎰,其中L 为从点(3,2,1)A 到点(0,0,0)B 的直线段AB ;解 3223Lx dx zy dy x ydz +-⎰3187874t dt ==-⎰。

大学高等数学课后习题第十章第三次作业答案

大学高等数学课后习题第十章第三次作业答案

第十章第三次作业1.设L 为4)2(22=+-y x 在第一象限的半圆弧,沿从点)0,4(到点)0,0(的方向,则曲线积分⎰-++Lyydy y e x dx xe )()21(2=解 填20-由于yP xe x Q y ∂∂==∂∂2处处成立,故曲线积分与路径无关,取x 轴上的直径为积分路径,则得⎰-++Lyydy y e x dx xe)()21(2⎰-++=)0,0()0,4(2)()21(dy y e x dx xe yy⎰+=04)21(dx x2004)(2-=+-=x x 2.以dy xy x dx xy xy xy )cos()]cos()[sin(2++为全微分的一个二元函数=),(y x u 解 填)sin(xy x),(y x u ⎰++=),()0,0(2)cos()]cos()[sin(y x dy xy x dx xy xy xy⎰++=)0,()0,0(2)cos()]cos()[sin(x dy xy x dx xy xy xy ⎰+++),()0,(2)cos()]cos()[sin(y x x dy xy x dx xy xy xy⎰=y dy xy x 02)cos()sin(xy x =3.设L 为圆)0(222>=+a x a y x ,沿逆时针方向,则曲线积分⎰-Lydx x dy xy 22= ( )A .⎰⎰θπθcos 20320a dr r d B .⎰⎰-θππθcos 20322a dr r dC .⎰⎰-θππθθcos 20222cos 2a dr ar d D .⎰⎰θπθcos 2032a dr r d解 选B2xyQ =,y x P 2-=,∴22x y yP x Q +=∂∂-∂∂, 故 ⎰-Lydx x dy xy 22⎰⎰+=Ddxdy x y )(22⎰⎰-=θππθcos 20322a dr r d4.设L是从点)0,(R A 到点)0,0(O 的上半圆弧:)0(2>-=R x x R y ,则⎰+-Lxxydy e dx y e y sin )cos (=( )A .182--ReRπ B .82Rπ-C .82R e R π- D .182--Re R π。

《高等数学》练习题库及答案,DOC(word版可编辑修改)

《高等数学》练习题库及答案,DOC(word版可编辑修改)
A、B、eC、-eD、-e—1 12、下列有跳跃间断点 x=0 的函数为()
A、xarctan1/xB、arctan1/x C、tan1/xD、cos1/x 13、设 f(x)在点 x0 连续,g(x)在点 x0 不连续,则下列结论成立是() A、f(x)+g(x)在点 x0 必不连续 B、f(x)×g(x)在点 x0 必不连续须有 C、复合函数 f[g(x)]在点 x0 必不连续 D、在点 x0 必不连续
C、-1/2D、1
48、两椭圆曲线 x2/4+y2=1 及(x—1)2/9+y2/4=1 之间所围的平面图形面积等于()
A、лB、2лC、4лD、6л
49、曲线 y=x2—2x 与 x 轴所围平面图形绕轴旋转而成的旋转体体积是()
A、лB、6л/15
C、16л/15D、32л/15
50、点(1,0,-1)与(0,-1,1)之间的距离为()
5.下列命题正确的是()
A.发散数列必无界 B.两无界数列之和必无界
C.两发散数列之和必发散 D.两收敛数列之和必收敛
6. lim sin(x2 1) ()
x1 x 1
A.1B。0
C。2D.1/2
7.设 lim(1 k )x e 6 则 k=()
x
x
A。1B.2
C.6D。1/6
8。当 x 1 时,下列与无穷小(x-1)等价的无穷小是()
7、已知ρ=ψsinψ+cosψ/2,求 dρ/dψ|ψ=л/6=()
8、已知 f(x)=3/5x+x2/5,求 f`(0)=()
9、设直线 y=x+a 与曲线 y=2arctanx 相切,则 a=()
《高等数学》练习题库及答案,DOC(word 版可编辑修改) 10、函数 y=x2-2x+3 的极值是 y(1)=()

高数第十章答案

高数第十章答案

高数第十章答案【篇一:高等数学2第十章答案】=txt>1.根据二重积分的性质,比较下列积分的大小:(1)成;2223d与,其中积分区域是圆周(x?2)?(y?1)?2所围(x?y)d?(x?y)d????? dd(2)??ln(x?y)d?与??[ln(x?y)]d?,其中d是三角形闭区域,三顶点分别为(1,0),dd2(1,1),(2,0);2.利用二重积分的性质估计下列积分的值:(1)i?22sinxsinyd?,其中d?{(x,y)|0?x??,0?y??};??d(2)i?2222,其中d?{(x,y)|x?y?4}.(x?4y?9)d???d(3).i?d,其中d?{(x,y)|0?x?1,0?y?2}解 ?f?x,y??,积分区域的面积等于2,在d上f?x,y?的最大值m?14?x?y?0?,最小值m?1?5?x?1,y?2? 故0.4?i?0.5习题10-2二重积分的计算法1.计算下列二重积分:(1)??(x2?y2)d?,其中d?{(x,y)||x|?1,|y|?1};d(2)??sinyd?,其中d是由y?x,y2?x所围成的闭区域. dy解:??sinyd??dy?10dy?ysinyy2ydx?1?sin1 2.画出积分区域,并计算下列二重积分:(1)??ex?yd?,其中d?{(x,y)||x|?y?1}d(2)22(x?y?x)d?,其中d是由直线y?2,y?x及y?2x所围成的闭区域。

??d3.化二重积分i???f(x,y)d?为二次积分(分别列出对两个变量先后次序不同的两个二次d积分),其中积分区域d是:(1)由直线y?x及抛物线y2?4x所围成的闭区域;(2)由直线y?x,x?2及双曲线y?1(x?0)所围成的闭区域。

x4.求由曲面z?x2?2y2及z?6?2x2?y2所围成的立体的体积。

5.画出积分区域,把积分22其中积分区域d是: ??f(x,y)dxdy表示为极坐标形式的二次积分, d(1){(x,y)|x?y?2x};(2){(x,y)|0?y?1?x,0?x?1}6.化下列二次积分为极坐标形式的二次积分:(1?2dxxfdy;【篇二:高等数学2第十章答案_62010】=txt>1.根据二重积分的性质,比较下列积分的大小:(1)成;2223d与,其中积分区域是圆周(x?2)?(y?1)?2所围(x?y)d?(x?y)d????? dd(2)??ln(x?y)d?与??[ln(x?y)]d?,其中d是三角形闭区域,三顶点分别为(1,0),dd2(1,1),(2,0);2.利用二重积分的性质估计下列积分的值:(1)i?22sinxsinyd?,其中d?{(x,y)|0?x??,0?y??};??d(2)i?2222,其中d?{(x,y)|x?y?4}.(x?4y?9)d???d(3).i?d,其中d?{(x,y)|0?x?1,0?y?2}解f?x,y??,积分区域的面积等于2,在d上f?x,y?的最大值1m??x?y?0?,最小值m???x?1,y?2? 45故0.4?i?0.5习题10-2二重积分的计算法1.计算下列二重积分:(1)22(x?y)d?,其中d?{(x,y)||x|?1,|y|?1};??d(2)??xcos(x?y)d?,其中d是顶点分别为(0,0),(?,0)和(?,?)的三角形闭区域。

高等数学第十章习题详细解答答案

高等数学第十章习题详细解答答案

习题10.11. 写出下列级数的前五项:(1)∑∞=+12)2(n n n; (2)∑∞=⋅-⋅1)2(42)12(31n n n ; (3)∑∞=--1110)1(n n n; (4)∑∞=+1)1(!n nn n . 解 (1) +++++222227564534231(2) +⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅⋅⋅+⋅⋅⋅⋅+⋅⋅+1086429753186427531642531423121 (3)-+-+-501401********* (4) +++++543216!55!44!33!22!1.2. 写出下列级数的一般项: (1)+++614121; (2)+⋅+⋅+⋅+⋅117957351132a a a ; (3) -+-+-+-36132511169974513; (4) +⋅⋅⋅+⋅⋅+⋅+86426424222x x x x x (0x >). 解(1)因为21121⋅=,22141⋅=, 23161⋅=,因此一般项nu n 21= (2) 因为 )312()112(5110+⋅⋅-⋅=⋅a ,)322()122(731+⋅⋅-⋅=⋅a a )332()132(9522+⋅⋅-⋅=⋅a a 因此一般项)32)(12(1+-=-n n a u n n (3) 因为11)112()1(131⋅+⋅-=-,222)122()1(45+⋅-=, 233)132()1(97+⋅-=- 因此一般项2)12()1(n n u n n +-=(4)因为21221⋅=xx ,424222⋅=⋅x x ,64264223⋅⋅=⋅⋅x x x ,因此一般项!2)321(2)2(642222n xn x n x u n n n n n n =⋅⋅=⋅⋅=.3. 判定下列级数的敛散性:(1)∑∞=-+1)1(n n n ; (2)∑∞=+-1)12)(12(1n n n ;(3)++++⋅+⋅)1(1321211n n ; (4) ++++6πsin 6π2sin6πsin n ; (5)∑∞=++-+1)122(n n n n ; (6)++++4331313131; (7)22111111()()()323232n n -+-++-+ ;(8) ++-+++++121297755331n n ; (9))(12112-∞=+-∑n n n a a (0a >);(10)+++++++++n n)11(1)311(1)211(1111132. 解(1)因为11)1()34()23()12(-+=-+++-+-+-=n n n S n 当∞→n 时,∞→n S ,故级数发散. (2)因为)121121(21)12)(12(1+--=+-n n n n)12)(12(1751531311+-++⋅+⋅+⋅=n n S n )]121121()5131()311[(21+--+-+-=n n ]1211[21+-=n , 当∞→n 时,21→n S ,故级数收敛.(3) 因为111)1(1+-=+n n n n , )1(1431321211+++⋅+⋅+⋅=n n S n 111)111()3121()211(+-=+-+-+-=n n n当∞→n 时,1→n S ,故级数收敛.(4)因为 6sin 63sin 62sin 6sin π++π+π+π=n S n )6sin 12sin 263sin 12sin 262sin 12sin 26sin 12sin 2(12sin21ππ++ππ+ππ+πππ=n )]1212cos 1212(cos )125cos 123(cos )123cos 12[(cos 12sin21π+-π-++π-π+π-ππ=n n ]12)12(cos 12[cos 12sin21π+-ππ=n由于 π+∞→1212coslim n n 不存在,所以n n S ∞→lim 不存在,因而级数发散. (5)因为)1()12(122n n n n n n n -+-+-+=++-++---+---+---=)34()45()23()34()12()23[(n S )]1()12(n n n n -+-+-++)12(121)12()12(--+++=--+-+=n n n n当∞→n 时,21-→n S ,故级数收敛. (6) 该级数的一般项)(013311∞→≠→==-n u nnn ,故由级数收敛的必要条件可知,该级数发散.(7) ∑∑∞=∞=-=-++-+-+-1133222131)2131()2131()2131()2131(n n n n n n∑∞=131n n 该级数为公比131<=q 的等比级数,该级数收敛,而∑∞=121n n该级数为公比121<=q 的等比级数,该级数也收敛,故∑∑∞=∞=-112131n n n n 也为收敛级数.(8) 该级数的一般项)(0112211212∞→≠→+-=+-=n n n n u n ,故由级数收敛的必要条件可知,该级数发散.(9) 因为 a a a a a a a a S n n n n -=-++-+-=+-+121212353)()()( 当∞→n 时,a S n -→1,故该级数收敛. (10) 该级数的一般项)(01])11[()11(11∞→≠→+=+=-n e n nu n nn ,故由级数收敛的必要条件可知,该级数发散. 4. 证明下列级数收敛,并求其和:++-++⋅+⋅+⋅)13)(23(11071741411n n . 证 )13()23(11071741411+⋅-++⋅+⋅+⋅=n n S n )1311(31)]131231()7141()411[(31+-=+--++-+-=n n n 当∞→n 时,31→n S ,故该级数收敛,且 31)13()23(11=+⋅-∑∞=n n n . 5.若级数∑∞=1n nu与∑∞=1n nv都发散时,级数∑∞=±1)(n n nv u的收敛性如何?若其中一个收敛,一个发散,那么,级数∑∞=±1)(n n nv u收敛性又如何?解 若级数分别为+-+-+-=-∞=∑11)1(111n n nu;(发散)+-++-+-=∑∞=n n nv)1(1111;(发散) 则级数∑∞=+1)(n n nv u显然收敛;但是如果另外有级数∑∑∞=∞==11n n n n u w ,则级数∑∞=+1)(n n nw u显然发散。

大学高等数学课后习题第十章第二次作业答案

大学高等数学课后习题第十章第二次作业答案

第十章 第二次作业1.设L 为曲线x ysin =上从)0,0(O 到)0,(πA 的一段弧,则曲线积分⎰-L ydx xdy =解 填4- ()4sin cos 0-=-=-⎰⎰πdx x x x ydx xdy L 2. 平面力场j xy i y x F 2232+=将一质点沿着圆周222ay x =+从点),0(a 移动到点)0,(a 时所做的功=W 解 填416a π-⎰+=Ldy xy ydx x W 2232,L :{t a y t a x sin cos ==⎰+-=02224224]sin cos 3sin cos 2[πdt t t a t t a W⎰-=20224cos sin πtdt t a416a π-=3.设L 是抛物线x y =2上从点)1,1(-A 到点)1,1(B 的弧段,),(y x P 是二元连续函数,则曲线积分⎰Ldx y x P ),(化成定积分为( )A .⎰⎰+-1010),(),(dx x x P dx x x P B .⎰10),(2dx x x P C .⎰⎰+-1001),(),(dx x x P dx x x PD .⎰-01),(2dx x x P解:选C⎰⎰⎰+=OB AOL dx y x P dx y x P dx y x P ),(),(),( ⎰⎰+-=1001),(),(dx x x P dx x x P 4.设Γ是螺旋线bt z t a yt a x ===,sin ,cos 上从0=t 到π2=t 的弧段,则⎰Γ++ydz xdy zdx 之值为( ).A .)2(b a a +πB .)2(b a a +πC .)2(b a b +πD .)2(b a b +π解:选A⎰Γ++ydz xdy zdx ⎰++-=π202]sin )cos ()sin ([dt t ab t a t a bt ⎰⎰+-=ππ202220cos sin tdta tdt t ab )2(22b a a a ab +=+=πππ 5.计算曲线积分()⎰-+L xdy dx y x 22,其中L 为曲线22x a y -=上从点()0,a A -到点()0,a C 的一段弧.解 令 (),0 t sin ,cos π∈==t a y t a x ()⎰-+Lxdy dx y x 22 ⎰--=0223]cos sin [πdt t a t a 2322a a π+= 6.计算曲线积分dy y x dx y x L )()(2222-++⎰,其中L 是曲线x y --=11与x 轴所围平面图形的整个边界,按逆时针方向.解 由于L 可用方程⎪⎩⎪⎨⎧≤≤-≤≤≤≤=21,210,20,0x x x x x y 表示,故有, ⎰-++Ldy y x dx y x )()(2222 ⎰=202dx x⎰---+-++122222]})2()[1()2({dx x x x x ⎰+0122dx x 0132)2(202332123x dx x x ---=⎰ 32123)2(2383--+=x 34= 7.计算曲线积分⎰Γ+--++++zy x z y x zdz ydy xdx 222222,其中Γ是从点)1,1,1(到点)4,3,2(的直线段.解 Γ的参数方程为:⎪⎩⎪⎨⎧+=+=+=tz t y tx 31211,)10(≤≤t所以⎰Γ+--++++zy x z y x zdz ydy xdx 222222 ⎰+++=10214121146dt tt t 13301141212-=++=t t。

高数课后题及答案10

高数课后题及答案10
故 an 单调减少且有下界, bn 单调增加且有上界,由单调 有界准则知 lim a n 、lim bn 存在,在 a n 1
n nn
a n bn 两边取极限 2
并整理得 lim a n = lim bn .
n nn
题目二: 证明数列 a , a a , a a a ,… a 0 收 敛,并求它的极限. 解题思路: 利用单调有界准则.
证明 lim a n 、 lim bn 存在且相等.
n n
解题思路: 利用单调有界准则及 ab 解答: 由于 an 0, bn 0 , a n bn
n 1,2, ;因此
1 an bn ,故 bn1 an1 , 2 1 a b . 2
a n 1
又 xn 1 ,因此 a 1 ,这样 a 由
0 xn a 1
xn1 xn1 a a 1 1 xn1 1 a 1 xn1 1 a
n 1
1 1 xn1 a 4 4
即得 lim x n
n
试证 xn 极限存在. 解题思路: 利用单调有界准则.
解答: 不 妨 设 a b , 即 x0 x1 , 由 x 2
1 x0 x1 得 2
x0 x2 x1 ,由 x3
1 x1 x 2 得 x2 x3 x1 ,于是有 2
a x0 x2 x2n x2n1 x3 x1 ,
n n n
因此 lim x 2 n 1 lim x 2 n , lim x n lim x 2 n 1 lim x 2 n , xn 故 即
n n n n n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, , ,
取逆时针方向.于是

其中 表示 的负方向.由格林公式则有

其中 为 与 所围成的闭区域.故

(5) ,其中 , 为圆周 取逆时针方向, 是 沿 的外法线方向导数。
解由于 ,其中 是在曲线 上点 处的切线的方向角,故 .根据两类曲线积分之间的联系及格林公式,有

因为 为圆周 ,所以 所围成的圆的面积 ,因此

(5) ,其中 为从点 到点 的直线段 ;
解 直线 的方程为
化成参数方程得
, , , 从 变到 。
所以

(6) , 为椭圆周 且从 轴正方向看去, 取顺时针方向。
解 的参数方程为
, , , 从 变到 ,

1.利用曲线积分求下列平面曲线所围成图形的面积:
(1)星形线 ( );)


(2)圆 ,( );
5可微函数 应满足什么条件时,曲线积分
与路径无关?
解 令 , ,则
, 。
当 ,即 或 在整个 面内恒成立时,曲线积分 在整个 面内与路径无关。
习题
1当 为 面内的一个闭区域时,曲面积分 与二重积分有什么关系?
答当 为 面内的一个闭区域 时, 在 面上的投影就是 ,于是有

2计算曲面积分 ,其中 是
(1)锥面 及平面 所围成的区域的整个边界曲面;
解 锥面 与平面 的交线为 ,即锥面在 面上的投影区域为圆域 。而
, ,

因此

(2) 面上的直线段 绕 轴旋转一周所得到的旋转曲面。
解 旋转曲面为 ,故

所以

其中 是 在 坐标面上的投影区域,利用极坐标计算此二重积分,于是

3计算下列曲面积分:
(1) ,其中 是抛物面在 面上方的部分: , ;
解 抛物面 在 面上方的部分在 面上的投影 为圆域 , ,故

的方程为 ,则有

的方程为 ,则

所以 .
(3) 是从点 沿上半圆周 到点 的一段弧;

利用曲线的参数方程计算. 的参数方程为: ,在起点 处参数值取 ,在终点 处参数值相应取0,故 从 到0.则
= .
(4) ,其中 沿右半圆 以点 为起点,经过点 到终点 的路径;
解利用曲线的参数方程计算. 的参数方程为: ,在起点 处参数值取 ,在终点 处参数值相应取 ,则

故所求重心坐标为 .
1设 为 面内一直线 ( 为常数),证明

证明:设 是直线 上从点 到点 的一段,其参数方程可视为
,( ),
于是

2计算下列对坐标的曲线积分:
(1) ,其中 为抛物线 上从点 到点 的一段弧。
解将曲线 的方程 视为以 为参数的参数方程 ,其中参数 从 变到 。因此

(2) ,其中 是曲线 从对应于 时的点到 时的点的一段弧;

综上所述 .
(3) ,其中 为圆周 ;
解直接化为定积分. 的参数方程为
, ( ),


于是

(4) ,其中 为折线段 ,这里 ,

解如图所示,

线段 的参数方程为 ,则



线段 的参数方程为 ,则


线段 的参数方程为 ,则


所以

2求八分之一球面 的边界曲线的重心,设曲线的密度 。
解设曲线在 坐标平面内的弧段分别为 、 、 ,曲线的重心坐标为 ,则曲线的质量为 .由对称性可得重心坐标
解因为 , ,所以 在整个 面内恒成立,因此,:在整个 面内, 是某一函数 的全微分,即有

于是就有
(4)
(5)
由(4)式得
(6)
将(6)式代入(5)式,得
(7)
比较(7)式两边,得
于是 (其中 是任意常数)
代入(6)式便得所求的函数为

(3) 。
解 令 , ,则在全平面上有
,满足全微分存在定理的条件,故在全平面上,
第十章曲线积分与曲面积分习题详解
1计算下列对弧长的曲线积分:
(1) ,其中 是圆 中 到 之间的一段劣弧;
解: 的参数方程为:
,于是

(2) ,其中 是顶点为 及 所成三角形的边界;
解: 是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有

由于 : , ,于是

故 ,
而 ,,于是



同理可知 ( ), ,则

(3) ,其中 和 为连续函数。
解 令 , ,则 在整个 面内恒成立,因此,曲线积分 在整个 面内与路径无关。为了计算该曲线积分,取如右图所示的积分路径,则有

4 验证下列 在整个 面内为某一函数 的全微分,并求出这样的一个 :
(1) ;
解令 ,

∴原式在全平面上为某一函数的全微分,取

= =
(2) ;

3证明下列曲线积分在整个 面内与路径无关,并计算积分值:
(1) ;
解 令 , ,则 在整个 面内恒成立,因此,曲线积分 在整个 面内与路径无关。为了计算该曲线积分,取如右图所示的积分路径,则有

(2) ;
解 令 , ,则 在整个 面内恒成立,因此, 在整个 面内与路径无关。为了计算该曲线积分,取如右图所示的积分路径,则有
解设圆的参数方程为 , 从 变到 .那么

2利用格林公式计算下列曲线积分:
(1) ,其中 是圆 ,方向是逆时针方向;
解设闭曲线 所围成闭区域为 ,这里
, , , ,
由格林公式,得

(2) ,其中 是依次连接 三点的折线段,方向是顺时针方向。
解令 , ,则 ,且线段 , 由1变化到-1,故有

其中 为 所围成的闭区域.
是全微分.
下面用三种方法来求原函数:
解法1 运用曲线积分公式,为了计算简单,如图9-10所示,可取定点 ,动点 与 ,于是原函数为

取路径: ,得

解法2 从定义出发,设原函数为 ,则有 ,两边对 积分( 此时看作参数),得
(*)
待定函数 作为对 积分时的任意常数,上式两边对 求偏导,又 ,于是

即 ,从而 ( 为任意常数),代入(*)式,得原函数 .
.
(2) ,其中 是上半球面 , ;
解 上半球面 在 面上的投影 为圆域 ,
,
,故
.
.
(3) ,其中 为平面 在第一卦限的部分;
解 将曲面的方程改写为 ,则
, ,从而

图9-12
(3) ,其中 为常数, 为圆 上从点 到点 的一段有向弧;
解如右图所示,设从点 到点 的有向直线段的方程为
, 从 变到 。
则 与曲线 构成一闭曲线,设它所围成闭区域为 ,令
, ,
, ,
由格林公式,得





(4) ,其中 为椭圆 ,取逆时针方向;
解 令 , ,则当 时, ,
但积分曲线 所围区域包含点 , 在该点不具有连续的偏导数,因此不能直接应用格林公式计算,需要将奇点 去掉,为此作半径足够小的圆 : ,使 位于 的内部,如图右所示. 的参数方程为
相关文档
最新文档