现代风力发电机齿轮箱
风力发电机组齿轮箱故障分析及检修

磨损与点蚀的情况,在定检检查齿轮箱的过程中要对 能够看见轮齿齿轮进行仔细检查,若发现有上述情况 ,一方面做好记录,以后跟踪检查,同时在运行过程 中监听齿轮箱运行声音,做好大修的准备。
(二)、崩齿
由于磨损和破坏性点蚀的不 断发展,最后就会造成轮齿 崩齿。同时风力机的频繁紧 急停机和大风天气过载也会 造成齿轮箱的突然崩齿。 崩齿后要对齿轮箱轮齿的具 体情况进行判断,如果崩齿 的小块面积占到啮合面积的 10%以内,没有继续发展, 不影响正常运行,可以坚持 运行到大修期间为止,如果 崩齿面积过大,那么就必须 停机对齿轮箱进行大修,联 系厂家对齿轮进行加工。
1、由压力阀控制大小循环 从图中可以看出此齿轮箱有两 个电机控制的两个单独的齿轮 油循环系统,在Bonus600kW Flender的齿轮箱上我们把一个叫做 在线循环(即油循环电机一直工作 ,而在NEGMicon750kW机组的 Flender齿轮箱中没有加装这套系统 ,齿轮箱设计完成后,在实际运行 过程中可以对其油路循环进行改造 ),另一个叫做离线循环(在风力 机启动并网后电机才开始工作)。 在离线循环系统中,当齿轮箱启动 后在大循环系统中的油比较粘稠, 造成了一定的齿轮油压力,齿轮油 会通过压力阀从小循环向齿轮箱送 油,当油温升高后,压力减小,油 液就开始从大循环流动,当油温升 高到50度时,大循环中的齿轮箱冷 却系统启动,对齿轮油进行冷却。
1. 疲 1. 局部断齿 2. 过 3. 冲 1. 过 2. 磨 损
劳 载 击 载
2. 润滑剂不洁 齿轮轮齿 3. 点 损伤原因 4. 胶 合 蚀 1. 齿面硬度低 2. 过 3. 1. 2. 3. 4. 载
载荷不均 供油不良 齿轮精度低 温度过高 齿面硬度低 劳 载
1. 疲 5. 齿根疲劳裂纹 2. 过
风力发电机组齿轮箱技术参数

风力发电机组齿轮箱技术参数风力发电机组齿轮箱技术参数是影响风力发电机组性能的重要因素之一。
齿轮箱是将风力发电机组转动的风轮机转速升高到发电机要求转速的装置,在风力发电系统中扮演着至关重要的角色。
齿轮箱的设计和选型直接关系到风力发电机组的高效运行和长期稳定性,因此对其技术参数进行深入研究至关重要。
首先,齿轮箱的承载能力是评估其性能的重要指标之一。
承载能力主要取决于齿轮箱设计时所选用的材料、结构和加工工艺。
对于大型的风力发电机组,其承载能力需求较高,齿轮箱必须能够承受来自风轮机扭矩的冲击和变化。
因此,在设计齿轮箱时,需要充分考虑各种外部因素对其承载能力的影响,确保其在各种复杂工况下都能够可靠运行。
其次,齿轮箱的传动效率也是评估其性能的重要指标之一。
传动效率直接影响到风力发电机组的发电效率和整体能量利用率。
传动效率的高低主要取决于齿轮箱内部齿轮的材料、精度和润滑等因素。
通过合理设计和选择合适的材料,可以有效减小齿轮间的摩擦和损耗,提高传动效率,从而提升风力发电机组的整体性能。
另外,齿轮箱的噪声和振动也是需要重点关注的技术参数之一。
风力发电机组运行时产生的噪声和振动会对周围环境和人体健康造成影响,因此需要通过优化设计和加强隔声隔振措施来减小齿轮箱的噪声和振动水平。
降低噪声和振动不仅可以改善风力发电机组的工作环境,还有助于延长齿轮箱的使用寿命,降低维护成本。
此外,齿轮箱的可靠性和故障率也是评估其性能的重要指标之一。
风力发电机组通常安装在风力资源丰富的地区,环境条件复杂多变,因此齿轮箱必须具有较高的可靠性和抗干扰能力,以保证风力发电机组长期稳定运行。
减小齿轮箱的故障率可以降低维护成本,提高风力发电机组的整体经济效益。
综上所述,风力发电机组齿轮箱技术参数直接关系到风力发电机组的性能和可靠性。
通过合理设计和优化选择齿轮箱的技术参数,可以提高风力发电机组的发电效率、传动效率和可靠性,从而促进风力发电产业的可持续发展。
风力发电机齿轮箱结构及其主要故障类型的处理方法

风力发电机齿轮箱结构及其主要故障类型的处理方法风力发电机齿轮箱是将风能转换为电能的重要组成部分,承担着传递风轮转动力矩的重要任务。
然而,由于工作环境的苛刻和负载运行的高强度,齿轮箱容易出现各种故障。
本文将就风力发电机齿轮箱的结构及其主要故障类型的处理方法进行详细介绍。
一、齿轮箱结构1.输入轴:负责将风轮的转动力矩传递到齿轮上。
2.输出轴:负责将齿轮传递的转动力矩传递给发电机。
3.齿轮:由主轴和从轴组成,通过啮合相互传递力矩。
4.轴承:支撑和定位齿轮箱内的轴件和齿轮。
5.密封件:用于防止润滑油泄漏和杂质进入齿轮箱。
二、主要故障类型及处理方法1.齿轮损伤:包括齿面磨损、齿面疲劳断裂等。
处理方法:a.使用高质量的齿轮材料,并通过热处理等工艺提高齿轮的强度和硬度。
b.定期检查和更换磨损严重的齿轮。
c.增加齿面润滑方式,保持齿轮表面的润滑膜。
2.轴承故障:包括滚动体脱落、内外圈损伤等。
处理方法:a.选择质量可靠的轴承,并根据使用要求进行正确的润滑和维护。
b.定期检查轴承的运行状态,及时更换损坏的轴承。
3.输油系统泄漏:包括密封件老化、接头松动等。
处理方法:a.定期检查密封件的状况,发现老化或损坏及时更换。
b.加强对管路接头的检查和紧固,确保管路的密封性。
4.润滑油污染:包括颗粒杂质、水分等污染物进入齿轮箱内。
处理方法:a.定期更换润滑油,并使用高效过滤装置过滤润滑油中的颗粒杂质。
b.加强齿轮箱的密封性,防止水分进入。
5.齿轮箱过热:主要是由于齿轮磨损、摩擦和润滑不良等引起。
处理方法:a.加强齿轮箱的散热设计,增加冷却风扇等散热设备。
b.提高齿轮箱的润滑油质量,减少齿轮表面的摩擦。
总之,风力发电机齿轮箱的结构复杂且容易出现故障,但只要加强对齿轮箱的维护保养和检查,合理选择和使用零部件,遵循正确的操作和维修方法,就能够有效地延长齿轮箱的使用寿命,提高风力发电机的运行效率。
浅述风电主齿轮箱传动形式和轴承布置

浅述风电主齿轮箱传动形式和轴承布置风电主齿轮箱是将风力发电机产生的机械能转化为电能的重要装置之一,其传动形式和轴承布置在整个系统的性能和可靠性方面起着重要作用。
以下将对风电主齿轮箱传动形式和轴承布置进行深入浅出的阐述。
一、传动形式风电主齿轮箱的传动形式一般分为两种:直驱式和间接驱动式。
1.直驱式传动形式直驱式传动形式是指风力发电生成系统中的风力机叶片直接连接齿轮箱,由齿轮箱直接驱动发电机转子旋转,实现将机械能转化为电能的过程。
直驱式传动形式的特点是传动效率高、结构简单、成本相对较低。
但由于叶片和齿轮箱相连,所以风力机的转速直接受到叶片转速的限制,使得整个系统的功率输出不灵活,容易受到传动装置的振动和冲击加载。
因此,直驱式传动形式在大型风力发电机中很少使用。
2.间接驱动式传动形式间接驱动式传动形式是指风力机叶片通过主轴与齿轮箱相连,齿轮箱再通过发电机转子的轴与发电机相连的传动方式。
间接驱动式传动形式的特点是转速范围广、功率输出稳定、适应性强。
由于通过主轴连接,可以使风力机叶片的转速与齿轮箱的转速脱离,提高了整个系统的灵活性和可靠性。
同时,通过合理设计齿轮轴承和减速器,可以将高速低扭矩的风力机叶片输出的动力转变为低速高扭矩的发电机所需要的动力,实现了发电机的高效运行。
因此,间接驱动式传动形式在现代风力发电系统中得到了广泛应用。
二、轴承布置风电主齿轮箱中的轴承布置是指在齿轮箱中各个轴承的位置和数量以及其承载能力的安排。
合理的轴承布置能有效提高齿轮箱的传动效率和整体运行效果。
一般来说,风电主齿轮箱的轴承布置可以分为四个部分:输入轴承、中间轴承、输出轴承和其他轴承。
1.输入轴承的作用是承受风力机传动系统输入的扭矩,并保证输入轴与齿轮磨损减小,传递更高效率。
2.中间轴承的作用是支撑整个齿轮箱中的齿轮和轴的运动,同时承受中间齿轮组的扭矩,并保证其转动平稳、可靠。
3.输出轴承的作用是承受整个齿轮箱输出轴的扭矩和载荷,同时使输出轴转动平稳。
风力发电机齿轮箱常见故障及预防措施

胶合是相啮合齿面在啮合处的边界膜受到破坏,导致接触齿面金属融焊而撕落齿面上的金属的现象,很可能是由于润滑条件不好或有干涉引起,适当改善润滑条件和及时排除干涉起因,调整传动件的参数,清除局部载荷集中,可减轻或消除胶合现象。
二、轴承损坏轴承是齿轮箱中最为重要的零件,其失效常常会引起齿轮箱灾难性的破坏。
轴承在运转过程中,套圈与滚动体表面之间经受交变负荷的反复作用,由于安装、润滑、维护等方面的原因,而产生点蚀、裂纹、表面剥落等缺陷,使轴承失效,从而使齿轮副和箱体产生损坏。
据统计,在影响轴承失效的众多因素中,属于安装方面的原因占16%,属于污染方面的原因也占16%,而属于润滑和疲劳方面的原因各占34%。
使用中70%以上的轴承达不到预定寿命。
因而,重视轴承的设计选型,充分保证润滑条件,按照规范进行安装调试,加强对轴承运转的监控是非常必要的。
通常在齿轮箱上设置了轴承温控报警点,对轴承异常高温现象进行监控,同一箱体上不同轴承之间的温差一般也不超过15゜C,要随时随地检查润滑油的变化,发现异常立即停机处理。
三、断轴断轴也是齿轮箱常见的重大故障之一。
究其原因是轴在制造中没有消除应力集中因素,在过载或交变应力的作用下,超出了材料的疲劳极限所致。
因而对轴上易产生的应力集中因素要给予高度重视,特别是在不同轴径过渡区要有圆滑的圆弧连接,此处的光洁度要求较高,也不允许有切削刀具刃尖的痕迹。
设计时,轴的强度应足够,轴上的键槽、花键等结构也不能过分降低轴的强度。
保证相关零件的刚度,防止轴的变形,也是提高轴的可靠性的相应措施。
四、油温高齿轮箱油温最高不应超过80゜C,不同轴承间的温差不得超过15゜C。
一般的齿轮箱都设置有冷却器和加热器,当油温底于10゜C时,加热器会自动对油池进行加热;当油温高于65゜C时,油路会自动进入冷却器管路,经冷却降温后再进入润滑油路。
如齿轮箱出现异常高温现象,则要仔细观察,判断发生故障的原因。
首先要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却。
风电机组齿轮箱的概况

1. SL1500风电机组齿轮箱的概况2. SL1500风电机组齿轮箱的结构原理3. SL1500风电机组齿轮箱的附件一、齿轮箱的概况1. 安装于主机架2. 位于机舱中部偏叶轮部分3. 齿轮箱的重量约占机舱重量的1/21.1 基本参数1.2 结构特点主轴置于齿轮箱的部。
不需要现场主轴对中;主轴轴承采用稀油润滑,效果更好;大大减小了机舱的体积。
采用两极行星、一级平行轴机构传动。
提高了速比,降低了齿轮箱的体积。
采用先进的润滑与冷却系统,使每个润滑点都可以得到充分的润滑,确保了齿轮箱的使用寿命。
需要高转速 低转速将低转速的动能转化为高转速的动能 发电机 齿轮箱 叶轮1.3 齿轮箱的作用及工作过程1.3.1 齿轮箱的作用:将风轮的动能传递给发电机,并使其得到相应的转速。
1.3.2 齿轮箱的工作过程:风作用到叶片上,驱使风轮旋转。
旋转的风轮带动齿轮箱主轴转动并将动能输入齿轮副。
经过三级变速,齿轮副将输入的大扭矩、低转速动能转化成低扭矩、高转速的动能,通过联轴器传递给发电机。
发电机将输入的动能最终转化为电能并输送到电网。
1.4 风电机组中齿轮箱的工作概况环境条件恶劣:风大、砂尘、盐雾、潮湿、高温、严寒工作条件复杂:风速风向多变、强阵风、高空无人值守要求高可靠性、高效率、高安全性要求工作寿命长:二十年(175200小时)输入输出速比大加工制造要求高二.齿轮箱的结构原理2.1 箱体部分1.整个箱体分为4个部分。
2.满足轴承、轴、外部附件的安装并提供行星轮传动的外齿圈3. 通常采用球墨铸铁铸造而成2.1.1 风电机组中齿轮箱的载荷齿轮箱作为传递动力的部件,在运行期间同时承受动、静载荷。
其动载荷部分取决于风轮、发电机的特性和传动轴、联轴器的质量、刚度、阻尼值以及发电机的外部工作条件。
阻尼:在机械物理学中,指系统的能量的减小。
摩擦阻尼:摩擦阻力生热使系统的机械能减小。
辐射阻尼:周围质点的震动,能量逐渐向四周辐射。
刚度:受外力作用的材料、构件或结构抵抗变形的能力。
SL3000风力发电机组齿轮箱

第一章 齿轮箱
齿轮箱的类型与特点
SL3000增速箱由齿轮箱本体及其它辅助设备组 成。其中齿轮箱采用由两级行星、和一级平行 轴传动结构传动。为了传动平稳和提高承载能 力,齿轮采用斜齿并精密修形,齿轮箱材料为 渗碳合金钢或合金钢,一级行星架采用高合金 铸钢材料,二级行星架和箱体采用高强度抗低 温球墨铸铁。主轴通过收缩盘,与第一级行星 架联接成一体。齿轮箱通过弹性减震装置安装 在主机架上。齿轮箱的轴向空心孔用于安装控 制回路电缆。具体结构原理如下图所示:
润滑系统主要部件 3MW 齿轮箱的润滑系统由电动泵、过滤器、 油冷风扇及润滑管路组成。电动泵将齿轮箱油 池中的润滑油泵入过滤系统中,润滑油经过过 滤后,由润滑分配器分配到各个润滑点。
机械泵
机组叶轮处于自由状态时机械泵一直处于运转状态
电气泵
电动泵将齿轮箱油池中的润滑油泵入过滤系统中,润滑油经
冷却系统主要部件
润滑系统的旁路管线安装有安全 阀,防止冷却系统和热动式旁路 阀出现两端压差过大的现象。在 热动式调节阀的控制下,若油温 正常,润滑油直接回到齿轮箱的 润滑分配器,由分配器将其分配 到齿轮箱内部各个润滑点;若油 温过高,润滑油则进入冷却系统 进行冷却,而后经润滑分配器分 配到各个润滑点。
冷却器与出入口软管、润滑系统(含吸油管)与齿轮箱、溢流 软管与齿轮箱的连接要由专业人员正确装配,用胶密封的部位要均 匀涂抹密封胶,法兰连接螺栓要用力矩扳手按规定力矩紧固。
安装电阻温度计、油管时,注意O 型密封环不得缺失。
第二章 齿轮箱油冷与润滑系统
系统组成
SL3000/90 离岸型风电机组的齿轮箱油冷却与 润滑系统主要由机械泵供油装置、电动泵供油 装置、机械泵过滤装置、电动泵过滤装置、机 械泵风冷却器、电动泵风冷却器、压力传感器、 温度传感器以及连接胶管等组件组成。 通过机 械泵和电动泵来提供油压和润滑流量;通过过 滤器对润滑油的过滤保证系统的清洁度;通过 风扇对润滑油进行冷却,从而使齿轮箱的油压、 流量、温度达到稳定平衡的一套必备控制系统。
风力发电机齿轮箱常见故障及预防措施

风力发电机齿轮箱常见故障及预防措施风力发电机齿轮箱是风力发电机的核心部件之一、在运行过程中,由于受到风能变化、运行负载和磨损等因素的影响,齿轮箱会出现一些常见的故障。
为了保障风力发电机的正常运行,必须及时识别和处理这些故障,并采取相应的预防措施。
常见的风力发电机齿轮箱故障主要包括齿轮磨损、齿轮断裂和轴承故障等。
下面将就这些故障进行详细介绍,并提出相应的预防措施。
1.齿轮磨损:齿轮磨损是由于齿轮啮合过程中的冲击、疲劳和磨擦等原因引起的。
如果齿轮磨损过多,将会导致齿轮箱的运行不稳定和效率下降。
为了预防齿轮磨损,必须注意以下几点:-优化齿轮设计,提高齿轮的承载能力和寿命。
-定期检查齿轮啮合情况,发现问题及时进行维修或更换。
-加强润滑,保持齿轮箱的润滑油清洁,并根据实际情况定期更换润滑油。
-控制齿轮箱的运行温度,过高的温度将加速齿轮磨损。
2.齿轮断裂:齿轮断裂是由于齿轮受到过大的冲击或疲劳载荷导致的。
齿轮断裂会导致齿轮箱损坏,甚至造成风力发电机的停机。
为了预防齿轮断裂,必须注意以下几点:-优化齿轮设计,提高齿轮的承载能力和疲劳寿命。
-加强齿轮的制造质量检验,确保齿轮的材料和工艺符合要求。
-加强齿轮箱的运行监测,及时发现齿轮断裂的预警信号。
3.轴承故障:轴承故障是由于轴承受到过大的力、振动和摩擦等因素引起的。
如果轴承出现故障,将会导致齿轮箱的运行不稳定和寿命降低。
为了预防轴承故障,必须注意以下几点:-选择优质的轴承,提高其承载能力和寿命。
-加强轴承的润滑,保持润滑油清洁并定期更换。
-加强轴承的运行监测,及时发现轴承故障的预警信号。
除了以上常见的故障,风力发电机齿轮箱还可能出现其他问题,如油封泄漏、齿轮间隙无法调整等。
为了预防这些问题,必须加强对齿轮箱的维护和监测,定期进行检查和维修,及时处理问题。
总之,风力发电机齿轮箱的常见故障主要包括齿轮磨损、齿轮断裂和轴承故障等。
为了预防这些故障,必须采取相应的预防措施,包括优化齿轮设计、加强润滑、加强轴承的检测和维护等。
风力发电机组齿轮箱概述

For personal use only in study and research; not for commercial use 风力发电机组齿轮箱概述第一节概述风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。
通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。
根据机组的总体布置要求,有时将与风轮轮毂直接相连的传动轴(俗称大轴)与齿轮箱合为一体,也有将大轴与齿轮箱分别布置,其间利用涨紧套装置或联轴节连接的结构。
为了增加机组的制动能力,常常在齿轮箱的输入端或输出端设置刹车装置,配合叶尖制动(定浆距风轮)或变浆距制动装置共同对机组传动系统进行联合制动。
由于机组安装在高山、荒野、海滩、海岛等风口处,受无规律的变向变负荷的风力作用以及强阵风的冲击,常年经受酷暑严寒和极端温差的影响,加之所处自然环境交通不便,齿轮箱安装在塔顶的狭小空间内,一旦出现故障,修复非常困难,故对其可靠性和使用寿命都提出了比一般机械高得多的要求。
例如对构件材料的要求,除了常规状态下机械性能外,还应该具有低温状态下抗冷脆性等特性;应保证齿轮箱平稳工作,防止振动和冲击;保证充分的润滑条件,等等。
对冬夏温差巨大的地区,要配置合适的加热和冷却装置。
还要设置监控点,对运转和润滑状态进行遥控。
不同形式的风力发电机组有不一样的要求,齿轮箱的布置形式以及结构也因此而异。
在风电界水平轴风力发电机组用固定平行轴齿轮传动和行星齿轮传动最为常见。
如前所述,风力发电受自然条件的影响,一些特殊气象状况的出现,皆可能导致风电机组发生故障,而狭小的机舱不可能像在地面那样具有牢固的机座基础,整个传动系的动力匹配和扭转振动的因素总是集中反映在某个薄弱环节上,大量的实践证明,这个环节常常是机组中的齿轮箱。
因此,加强对齿轮箱的研究,重视对其进行维护保养的工作显得尤为重要。
风力发电齿轮箱结构及原理

风力发电齿轮箱结构及原理
风力发电齿轮箱是风力发电机组的核心部件之一,其主要作用是将风轮转动速度转换为高速旋转的发电机适用的输出转速。
风力发电齿轮箱的结构一般包括主齿轮、从动齿轮、轴承、油封等部分组成。
其中,主齿轮与风轮轴相连,从动齿轮与发电机轴相连。
主齿轮和从动齿轮采用不同的齿数,通过齿轮传动的方式,实现从风轮转动速度到发电机输出转速的转换。
轴承用于支撑和固定齿轮和轴,确保其平稳运转,油封用于防止润滑油流失和防尘。
风力发电齿轮箱的工作原理根据齿轮传动原理,利用齿轮的齿数比来实现速度转换。
当风轮转动时,主齿轮随之转动,主齿轮与从动齿轮之间的齿轮传动使从动齿轮以不同的速度旋转。
从动齿轮的旋转速度取决于主齿轮和从动齿轮的齿数比,通过合理选择齿数比,可以将风轮的低速转动转换为适合发电机工作的高速转动。
总的来说,风力发电齿轮箱通过齿轮传动原理,实现了从风轮转动速度到发电机输出转速的转换,是风力发电机组的关键部件之一,对于风能转换为电能具有重要的作用。
浅谈风力发电机组齿轮箱结构及故障分析

浅谈风力发电机组齿轮箱结构及故障分析摘要:风力发电机组的传动系统是风力发电系统中不可或缺的组成部分,它在将风能转化为电能的过程中扮演着至关重要的角色。
传动系统主要由主轴承、齿轮箱、联轴器组成。
其中齿轮箱是传动链系统中的关键部件之一,用于将风轮旋转的动能传递给发电机,从而产生电能。
它通常由多个齿轮组成,通过精确的传动比例来提高风轮转速,并将其转化为适合发电机工作的转速。
关键词: 风力发电齿轮箱故障分析引言:能源问题是当前社会发展的重要议题之一,清洁能源如风能正逐渐受到广泛关注和重视。
在风力发电机组中,齿轮箱作为关键的传动设备,其稳定运行对于确保风力发电机组的正常运转至关重要。
因此,本文将简要分析风力发电机组中齿轮箱的结构及故障诊断。
一、齿轮箱的结构齿轮箱是风力发电机组的重要组成部分,其主要功能是将风轮转动的低速运动转换成高速运动,以提供足够的转速和扭矩给发电机。
风力发电齿轮箱通常由输入轴、输出轴、齿轮组和润滑系统组成。
1.输入轴:输入轴是将风轮的低速旋转运动传递给齿轮组的部分,输入轴一般由高强度的合金钢制成,以承受高扭矩和高速运动的要求。
2.输出轴:输出轴是将齿轮组转动的高速运动传递给发电机的部分。
输出轴通常由输入轴延伸出来,也采用高强度的合金钢材料制造。
3.齿轮组:齿轮组是风力发电齿轮箱的核心部分,它由多个齿轮组成,通过齿轮之间的啮合来实现传动效果。
齿轮通常由合金钢制成,以承受高负载和高速度的工作要求。
齿轮组一般包括主轴齿轮、中间齿轮和输出齿轮。
主轴齿轮与输入轴相连,中间齿轮连接主轴齿轮与输出齿轮,输出齿轮与输出轴相连。
4.润滑系统:润滑系统是保证齿轮组正常运转的重要组成部分,它通常由油箱、油泵、油管和过滤系统组成,润滑油通过油泵被输送到齿轮组的运动部位,起到润滑和减少摩擦的作用,同时还可以冷却齿轮组,保持其正常工作温度。
二、齿轮箱的工作原理齿轮箱是一种常见的机械传动装置,它通过齿轮咬合来实现动力的传递和转换。
风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断风力发电机组是一种利用风能转换成电能的设备,其核心部件之一就是齿轮箱。
齿轮箱作为风力发电机组的动力传动部分,承载着巨大的负荷,长期运行在恶劣的环境条件下,因此容易出现各种故障。
及时准确地诊断齿轮箱故障,对于保障发电机组的安全稳定运行至关重要。
本文将从齿轮箱的结构特点、常见故障及诊断方法等方面对风力发电机组齿轮箱故障诊断进行详细介绍。
一、风力发电机组齿轮箱的结构特点风力发电机组齿轮箱一般由多级齿轮传动系统、轴承、润滑系统等部件组成。
多级齿轮传动系统是齿轮箱的核心部分,其结构主要包括主轴、大中小齿轮和联轴器等。
多级齿轮传动系统通过齿轮的啮合传递风机叶片转动的动能,最终驱动发电机发电。
风力发电机组齿轮箱具有重载、高转速、长期运行等特点,因此对齿轮箱的可靠性、稳定性和耐久性要求较高。
1. 齿轮疲劳断裂:因受到风力风向改变、过载等因素的影响,齿轮箱内部齿轮传动系统容易出现疲劳断裂现象。
2. 轴承故障:风力发电机组齿轮箱中的轴承承受着来自齿轮转动的巨大压力,长期运行容易导致轴承损坏,出现卡滞、摩擦、过热等故障。
3. 润滑系统故障:风力发电机组齿轮箱的润滑系统对齿轮传动系统的润滑起着至关重要的作用,一旦润滑不良或润滑系统故障,会导致齿轮箱温升过高、润滑油泄漏等严重后果。
4. 联轴器故障:联轴器作为齿轮箱和发电机之间的连接部件,承载着转矩传递和角位移补偿的功能,一旦联轴器出现故障会导致齿轮箱无法正常传动,严重影响风力发电机组的发电效率。
1. 振动测试法:通过振动传感器监测齿轮箱的振动情况,如果出现异常振动,往往是齿轮箱内部故障的信号。
3. 润滑油分析法:定期对齿轮箱内的润滑油进行取样分析,检测润滑油的品质和磨损颗粒的含量,可以判断齿轮箱内部是否存在异常磨损和故障。
4. 热像测试法:利用热像仪测试齿轮箱的温升情况,异常的温升往往与齿轮箱内部的故障有关。
5. 拆解检查法:定期对齿轮箱进行拆解检查,检查齿轮、轴承、联轴器等关键部件的磨损情况,及时发现并处理问题部件。
风力发电机齿轮箱常见故障分析与预防措施

图1
齿轮是一种复杂的机械零件,它的制造工艺、安装以及运行维护都是较为复杂的,而这一系列工作过程控制得是否严格,都对齿轮的寿命有很大的影响。造成齿轮损坏的主要原因如下:
1)风机在高转速运转时,突然紧急停机,高速刹车动作,风机传动链振动晃动较大,轴承串动,齿轮咬合间隙变小,受力瞬间增大,造成齿轮断齿。
4、油化验
齿轮和轴承在转动过程中它们实际都是非直接接触,这中间是靠润滑油建成油膜,使其形成非接触式的滚动和滑动,这时油起到了重要的润滑、冷却作用。
齿轮油主要化验项目:外观分析、40℃粘度、总酸值TAN测试、含水量状况,对检测正常的油品定期进行过滤,对严重超标的油品进行换油。
6)、齿轮箱中速齿轮轴承磨损,导致齿轮箱齿轮咬合间隙不均匀,长时间存在齿面局部受力过大,造成断齿。
7)、齿轮箱弹性支撑固定螺栓松动,造成齿轮箱高速运转时振动较大,与发电机轴承不同轴,齿轮受到应力较大,造成断齿。
2、轴承失效
滚动轴承在使用过程中,由于很多原因造成其性能指标达不到使用要求时,就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、保持架损坏等。造成轴承失效的主要原因如下:
一、齿轮箱的结构
我风电场1MW、1.5 MW风力发电机齿轮箱由一级行星齿轮和两级平行轴齿轮传动组成,是一种典型的传动装置。齿轮箱利用其前箱盖上的两个突缘孔内的弹性套支撑在支架上。齿轮箱低速级的行星架通过涨紧套与机组的大轴连接,三个一组的行星轮将动力传至太阳轮,再通过内齿联轴节传至位于后箱体内的第一级平行轴齿轮,再经过第二级平行轴齿轮传至高速级的输出轴,通过柔性联轴节与发电机相联。齿轮箱输出轴端装有制动法兰供安装系统制动器用。
3、箱体开裂
箱体开裂部位
齿轮箱箱体开裂的主要部位为齿轮箱齿圈。导致齿轮箱开裂原因有:
风力发电机组齿轮箱的使用及维护

风力发电机组齿轮箱的使用及维护齿轮箱是风力发电机组中的重要部分,由输入轴、输出轴、行星齿轮、斜齿、太阳轴、加热系统、油位计、温度传感器、机械泵、油路分配器、润滑系统、散热系统等组成。
其主要功能是将风轮在风力作用下所产生的动力经主轴传递给发电机并使其得到相应的转速。
风轮的转速很低(一般17转/分),远达不到发电机(一般1800转/分)发电的要求,必须通过齿轮箱齿轮副的增速作用来实现,故也将齿轮箱称之为增速箱。
风力发电机组的传动系统中经常可以遇到各种齿轮传动装置,如主传动增速箱、偏航和变桨距减速器等。
齿轮传动具有以下特点:传递功率的范围大,速比范围广;能保证瞬时恒定传动比,传动平稳、准确、可靠,效率高,寿命长;可以实现平行或不平行轴之间的传动;齿轮的制造成本、机构安装精度要求高;不宜用于远距离的传动。
风电机组的传动有多种方案可供选择。
较小功率的机组可采用较为简单的两级或三级平行轴齿轮传动。
功率较大的,由于平行轴展开尺寸过大,不利于机舱布置,故采用多级行星齿轮传动或行星与平行轴齿轮的复合传动以及多级分流、差动分流传动。
齿轮箱的常见故障及预防措施。
齿轮箱常见故障有齿轮损伤、齿轮折断,断齿又分为过载折断、疲劳折断以及随机折断等、齿面疲劳、胶合、轴承损伤、断轴、油温高等。
齿轮损伤的因素有很多,包括选材、设计计算、加工、热处理、安装调试、润滑和使用维护等。
轮齿折断常由细微裂纹逐步扩展而成。
过载断齿总是由于作用在轮齿上的应力超过其极限应力,导致裂纹扩展,常见的有突然冲击超载、轴承损坏轴弯曲或较大硬物挤入啮合区内等。
疲劳断齿发生的根本原因是轮齿在过高的交变应力重复作用下,从危险截面的疲劳源起始的疲劳裂纹不断扩张,使齿轮剩余面上的应力超过其极限应力,造成瞬时折断。
齿面疲劳是过大的接触剪应力和应力循环次数作用下,轮齿表面或表层下面产生疲劳裂纹并进一步扩展而造成的齿面损伤,其表现形式有早期点蚀、破坏性点蚀你、齿面剥落和表面压碎等。
风力发电机齿轮箱

表(一) 螺栓的拧紧力矩
螺栓
用扭力扳手的力矩 N.m
大小
8.8 级
10.9 级
M8
21
30.4
M10
42.1
60.8
M12
73.5
104.9
M14
114.7
166.6
M16
176.4
254.8
M18
250.8
356.7
M20
357.7
509.6
M22
480.2
676.2
M24
617
872.2
M27
902
1284
M30
1215
1735
M36
2127
3018
M42
3391
4831
M48
5145
7321
M52
6615
9408
M56
8232
11760
M60
9996
14308
M64
12348
17542
M68
14896
21168
12.9 级 36.3 74.5 128.4 203.8 310.7 431.2 617.4 833 1058 1568 2127 3695 5929 8918 11466 14308 17444 21364 25872
4.4 齿轮箱
• 在维护齿轮箱之前,必须使风机安全停机,并 确保不会因为误操作而启动确保刹车可靠 和风轮锁紧.
4.4.1 检查齿轮箱是否有异常噪音 • 运行时是否有异常的噪音. 4.4.2 检查油位 • 从油标检查齿轮箱的油位. 4.4.3 检查齿轮箱是否有泄漏
• 检查所有的凹槽、迷宫环和泄漏油液的流 迹.
风力发电机齿轮箱的安装工艺流程

风力发电机齿轮箱的安装工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!风力发电机齿轮箱的安装工艺流程详解风力发电机是可再生能源领域的重要组成部分,而齿轮箱作为其核心部件之一,其安装工艺流程的精准度直接影响到整个发电系统的稳定性和效率。
风电机组齿轮箱故障分析及改进措施

风电机组齿轮箱故障分析及改进措施【摘要】我国风电企业正努力实现风力发电技术装备国产化, 推动我国风力发电技术大规模商业化发展。
齿轮箱作为风电机组的核心部件, 对机组质量起到至关重要的作用, 及早地发现齿轮箱的早期故障以及尽快找到齿轮箱故障原因, 采取相应的措施, 对避免发生重大人身、设备伤亡事故有着十分重要的意义。
【关键词】风电机组齿轮箱故障改进措施风电机组一般安装在荒郊野外、山口、海边等偏远地区,增速箱、发电机等部件又安装于距地面几十米高度的狭小的机舱内,因为机舱空间有限、环境恶劣、交通不便,齿轮箱一旦出现故障,修复十分困难。
如果齿轮箱出现故障后不能在塔上维修须下塔处理的话,维修费用较高,且整个维修周期较长,将严重影响风电场的经济效益。
因此减小风电齿轮箱出现故障的几率,提供风电齿轮箱易维护性,将是风电齿轮箱设计及运行维护中需重点考虑的问题。
一、风电机组齿轮箱运行现状近年来随着风电机组单机容量的不断增大,以及风电机组的投运时间的逐渐累积, 由齿轮箱故障引起的机组停运事件时有发生。
风机停止工作, 一是机器有效运行时间降低, 发电量减少; 二是风机停止发电, 会加大风力发电的波动性, 增加并网难度; 还有就是厂商要派遣专业维修人员进行维修, 如果故障严重, 还要动用大型起吊工具, 这会给厂商造成巨大的经济损失。
因此, 对齿轮箱故障进行正确的早期预警, 以及发生故障后能够迅速查找到故障源, 进行正确的故障处理, 尽快恢复机组运行是非常有必要的。
二、电机组齿轮箱特征频率的计算风力发电机组齿轮箱有三种类型:低速直接驱动采用无增速齿轮箱;混台驱动采用一级齿轮传动;高速驱动有多缓齿轮箱。
由于兆瓦级风力发电机叶片的直径较千瓦级的更大,转速更低,要求齿轮箱的增速比更高,所阻兆瓦级风力发电机齿轮箱大多采用多级齿轮结构,其典型结构简单如下图所示,第一级是结构紧凑且坚固的高转矩行星齿轮,第二和第三级为平行轴圆柱齿轮。
由于结构、运行特性的不同,各零部件有不同的特征频率,比如固有频率。
风力发电机组齿轮箱油温高原因及散热改造方案分析

风力发电机组齿轮箱油温高原因及散热改造方案分析摘要:通过论述风力发电机组齿轮箱油温高的原因及存在的危害,结合齿轮油散热系统工作原理,提出了相应的解决方案和措施。
风电场根据实际情况选择合理的处理方案,可有效降低齿轮箱油温,避免齿轮油超温停机,延长齿轮箱整体使用寿命。
关键词:风力发电机组;齿轮箱油温;散热改造方案风能是太阳能的一种转换形式,是清洁的可再生能源,风力发电不依赖矿物能源,无环境污染,没有燃料价格风险,发电成本稳定,且蕴藏巨大、分布广泛。
近年来,风电装机容量快速发展,为企业带来了显著的经济效益和社会效益,但也面临一些设备问题,比如,风机齿轮箱过温问题在多种机型上都有出现,在某些机组上更为突出,相关人员一直未找到有效的解决方案,因此,找出一种经济、实用的改造办法显得非常有必要。
华锐 1.5MW(型号为 SL1500)风机在现场运行时,经常出现高速轴高温报警或油池油温高报警,风机不得不降功率运行,导致风机的发电量不足,运行效率低和风场经济效益差。
风场均要求对其进行技术改造,提高风机发电量和运行效率,改善风场经济效益。
1 研究对象本文的研究对象为华锐 1.5MW(型号为 SL1500)风电机组,风机部件主要包括风轮、齿轮箱(油-空冷却系统)、双馈感应发电机、变频器和塔筒。
2 齿轮油散热系统的工作原理齿轮油散热系统的工作原理为:①机组启动,齿轮箱低速油泵工作,当齿轮油温高于 40 ℃时,齿轮箱高速油泵工作;②当齿轮箱油温高于 55 ℃或高速轴轴承温度高于 70 ℃时,温控阀关闭,散热器开始自动工作,润滑油经过散热器冷却后再进入齿轮箱;③当齿轮油温降到 45 ℃且高速轴轴承温度低于65 ℃时,散热器自动停止工作,润滑油直接经温控阀进入到齿轮箱强制润滑;④当齿轮油温高于 75 ℃或高速轴轴承温度高于 90 ℃时,风机限负荷运行。
⑤当齿轮油温高于80 ℃或高速轴轴承温度高于 95 ℃时,风机自动停机。
图 2 所示为齿轮油散热系统的工作原理图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
Wind Energy Business of Bosch Rexroth AG
北京经济技术开发区
博世力士乐 一厂 Plant 1
博世力士乐 二厂 Plant 2
23.11.2009, DC-WE/NE, Bosch Rexroth AG, Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.
23.11.2009, DC-WE/NE, Bosch Rexroth AG, Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.
23.11.2009, DC-WE/NE, Bosch Rexroth AG, Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.
7
Advanced Gearbox Technology
1884 founded Max Lohmann and Max Stolterfoht Lohmann & Stolterfoht GmbH, A company of gearbox technology 1884 Founding of the engineering works Lohmann + Stolterfoht. : clutches , Products Products: clutches, , pulleys , bearings bearings, pulleys, Transmission elements Taking up the production of gears for industrial purposes Taking up the production of marine reverse reduction gears Taking up the production of mobile gearboxes Integration into the Mannesmann Rexroth Group Production of the first gearboxes for wind turbines Supply of 2 prototype gearboxes for 3.2 MW Turbines 1999 1995 Founder – Max Lohmann
Electric Drives and Controls
Hydraulics
Linear Motion and Assembly Technologies
Pneumatics
Wind Energy
Lead Plant Witten in Germany
Stationary Drives Mobile Drives Pitch and Yaw Drives Main Gears
5
Wind Energy Business of Bosch Rexroth AG
Lead Plant Wittany
Beijing, China
Lake Zurich, USA
23.11.2009, DC-WE/NE, Bosch Rexroth AG, Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.
2
Renewable Energy of Century 21 - Wind
Modern wind turbine generators
23.11.2009, DC-WE/NE, Bosch Rexroth AG, Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.
total: € 263 million Cost share of revenue: 4.6 %
total: € >500 million Cost share of revenue: >7.0 %
23.11.2009, DC-WE/NE, Bosch Rexoth AG, Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.
Consumer goods and services engineering
Bosch Rexroth AG
key data of 2008
Total revenue € 5,9billion
Total employees 34,981
Research and development
Investments
Certification acc. DIN ISO 9001 ‘s Register Quality by Lloyd Lloyd‘ Company Concentration on the key business fields : fields: - Planetary drives for mobile equipment - Planetary drives for , industrial applications applications, e.g. for wind power plants - Couplings for diesel engine applications Extension of the production area by 2,100 sqm for the assembly of wind power drives Environmental certification DIN ISO 14001 Takeover of the Rexroth Group by Bosch on 1st May 2001
3
Wind Energy Business of Bosch Rexroth AG
Bosch Group 博世集团 Revenue: € 45,13 billion Employees 1/1/2009: 281,700
Automobile technology
Industrial technology
Electric Drives and Controls
Hydraulics
Linear Motion and Assembly Technologies
Pneumatics
Service
Advanced Gearbox Technology for Modern Wind Turbine Generators
先进的现代风力发电机齿轮箱技术
Dr. Xueyong Zhao Bosch Rexroth AG 58408 Witten Germany
1
Renewable Energy of Century 21 - Wind
History of wind energy
23.11.2009, DC-WE/NE, Bosch Rexroth AG , Dr. Zhao, xueyong.zhao@boschrexroth.de, tel: 0049 2302 877 8128 © Bosch Rexroth AG 2008. Alle Rechte vorbehalten, auch bzgl. jeder Verf ügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie f ür den Fall von Schutzrechtsanmeldungen.