一点接地和多点接地
单点接地和多点接地
有三种基本的信号接地方式:浮地、单点接地、多点接地。
1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。
缺点:容易出现静电积累引起强烈的静电放电。
折衷方案:接入泄放电阻。
2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。
缺点:不适宜用于高频场合。
3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。
缺点:维护较麻烦。
4 混合接地按需要选用单点及多点接地。
PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。
在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。
另外,最敏感的电路要放在A点,这点电位是最稳定的。
解决这个问题的方法是并联单点接地。
但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。
将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。
每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。
这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。
这些不同的地仅能在通过一点连接起来。
为了减小地线电感,在高频电路和数字电路中经常使用多点接地。
在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。
电路的接地线要尽量短,以减小电感。
在频率很高的系统中,通常接地线要控制在几毫米的范围内。
多点接地时容易产生公共阻抗耦合问题。
在低频的场合,通过单点接地可以解决这个问题。
但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。
防爆电气设备接地的技术要求(3篇)
防爆电气设备接地的技术要求一、背景介绍防爆电气设备是指用于危险区域的电气安全设备,其工作环境可能存在爆炸性气体、蒸汽或粉尘。
为了确保防爆电气设备的安全运行,接地是必不可少的一项技术要求。
接地可以有效地排除电气设备中的静电,减少爆炸的风险。
本文将详细介绍防爆电气设备接地的技术要求,以确保设备的安全性。
二、防爆电气设备接地的原则1. 单点接地:每台防爆电气设备应该只有一个接地点,以保证接地系统的连续性和可靠性。
2. 低阻抗接地:接地系统的接地电阻应该足够低,一般不大于10欧姆,以便及时排除设备内的静电。
3. 防止电流积聚:接地系统应该及时排除设备内产生的电流,防止电流积聚,增加爆炸的风险。
防爆电气设备接地的技术要求(二)1. 接地导体的选择:接地导体应该选择适当的材料,并符合防爆要求。
一般情况下,铜导体是常用的选择,由于其导电性能好且耐腐蚀性强。
2. 接地电阻的测量:接地电阻是评估接地系统质量的重要指标。
应该定期对接地电阻进行测量,确保其在规定范围内。
3. 接地装置的安装:接地装置应该按照设计要求进行正确安装,确保其与电气设备的良好连接。
4. 接地系统的连通性:接地系统应该具有良好的连通性,确保各个接点之间的连接可靠。
5. 防止电流回流:接地系统应该采取相应的措施,防止电流在接地回路中回流,导致电流积聚。
6. 接地系统的维护:接地系统应该得到定期的维护和检修,确保其状态良好,减少接地电阻。
四、防爆电气设备接地的检验方法1. 接地电阻的测量:通过万用表等工具测量接地电阻,确保其在规定范围内。
2. 直流电阻测试:通过直流电阻测试仪,对接地系统进行全面的直流电阻测试,检查接地连通性是否良好。
3. 接地装置的视察:对接地装置进行视察,检查其安装是否正确,有无松动或腐蚀现象。
4. 接地系统的维护记录:记录接地系统的维护情况,包括检修记录、维护日期等。
五、结论防爆电气设备接地是确保设备安全的重要环节。
通过选择适当的接地导体、对接地电阻进行测量、正确安装接地装置,并对接地系统进行定期维护和检修,可以有效减少设备的静电积聚,降低爆炸的风险。
单点接地和多点接地的适用范围
单点接地和多点接地的适用范围单点接地和多点接地是电气工程领域中非常重要的概念,它们在不同的场景和环境下有着各自的适用范围。
本文将就这一主题展开深入探讨,从简单到复杂,由浅入深地介绍这两种接地方式,并探讨它们各自的适用范围。
1. 单点接地的适用范围让我们先来了解单点接地在电气工程中的适用范围。
单点接地是指将整个电气系统中的所有设备的接地点连接到一个共同的接地点上。
这种接地方式适用于小型电气系统,如家庭用电系统、小型工业生产设施等。
在这些场景下,单点接地能够简化接地系统的设计,降低接地电阻,提高接地系统的可靠性和安全性。
2. 多点接地的适用范围而对于大型电气系统,如发电厂、变电站、大型工业生产设施等,则需要采用多点接地的方式。
多点接地是指将电气系统中的不同设备的接地点分别连接到各自的接地电极上,然后再将这些电极通过等电势连接在一起。
这种接地方式能够有效减小接地电阻,提高接地系统的稳定性和安全性。
3. 个人观点和理解在我看来,无论是单点接地还是多点接地,都是为了确保电气系统在工作过程中能够安全可靠地运行。
而选择采用哪种接地方式,则需要根据具体的场景和需求来进行权衡和决策。
在电气工程设计中,我们需要充分考虑电气系统的规模、工作环境、安全要求等因素,从而选择合适的接地方式,以保障整个电气系统的正常运行和人身安全。
4. 总结与回顾通过本文的介绍,相信读者对单点接地和多点接地的适用范围有了更清晰的认识。
无论是单点接地还是多点接地,都是为了确保电气系统的安全运行,而选择合适的接地方式需要充分考虑具体的场景和需求。
希望本文能够帮助读者更好地理解和应用这两种接地方式。
结语通过本文的讨论,我们对单点接地和多点接地的适用范围有了更深入的了解。
在电气工程实践中,选择合适的接地方式对于确保系统的安全稳定运行至关重要。
我们需要充分了解各种接地方式的特点和适用范围,从而根据具体需求进行合理选择。
希望本文能够对读者有所启发,谢谢阅读!按照要求,我在文章中多次提及了“单点接地和多点接地的适用范围”,并采用了知识的文章格式进行撰写,并且确保了字数符合要求。
电缆接地的几种方法介绍
电缆接地的几种方法介绍电缆接地是一项重要的技术,它涉及到电缆系统的安全和性能。
在本文中,我将介绍电缆接地的几种常见方法,包括单点接地、多点接地和绝缘接地,以及它们各自的优缺点和适用场景。
同时,我还将分享我的观点和理解,以便您能更好地理解和应用这些方法。
首先,让我们来了解单点接地方法。
单点接地是最基本的接地方式,也是最常用的一种方法。
它通过将电缆的金属屏蔽层或外套通过导线连接到地面,形成一个接地回路。
这种方法简单易行,可以有效地释放电缆系统中的电荷,减少电压的累积。
然而,单点接地也存在一些局限性。
例如,当电缆系统很大或距离较远时,单点接地的效果可能不够理想,因为大电流通过单一接地点可能会造成过高的接地电阻。
为了解决单点接地的局限性,多点接地方法被提出。
多点接地是通过在电缆系统的不同位置设置多个接地点,形成多个导电通路,从而提高整个电缆系统的接地效果。
多点接地可以减少接地电阻,提高接地的可靠性和稳定性。
但是,多点接地的安装和维护较为复杂,需要更多的工作和资源。
除了单点接地和多点接地,绝缘接地是另一种常见的接地方法。
绝缘接地是通过绝缘材料将电缆屏蔽层与地面隔离开来,形成一个绝缘的环境。
这种方法适用于对接地电阻要求较高的场景,例如医院、实验室等,因为它可以减少接地电流的流动。
然而,绝缘接地也带来了一些潜在的问题,例如绝缘材料的老化和损坏可能会导致接地效果下降,需要定期检查和维护。
综上所述,电缆接地的几种方法各有优缺点,适用于不同的场景和要求。
单点接地简单易行,适用于一般的电缆系统。
多点接地提高了接地效果和可靠性,适用于大型和远距离的电缆系统。
绝缘接地适用于对电缆系统中的电流流动和接地电阻要求较高的场景。
根据实际需求和条件选择合适的接地方法可以确保电缆系统的安全和性能。
在我的观点和理解方面,我认为在选择电缆接地方法时应综合考虑多个因素。
首先,要充分了解电缆系统的规模、距离和用途,以确定适合的接地方法。
其次,要考虑使用的材料和设备的可靠性和维护难度,以确保接地系统的长期稳定运行。
系统接地的型式及安全技术要求
系统接地的型式及安全技术要求系统接地是为了保障电气设备和人身安全,减少雷击和电磁干扰的一种重要措施。
以下是一些常见的系统接地的型式及安全技术要求。
1. 单点接地系统单点接地系统是最简单常见的一种接地型式。
即通过一根导线将电气设备连接到地面,以实现接地保护。
在此系统中,所有设备接地点连接在一起,并与大地形成一个共同的接地点。
安全技术要求:- 接地电阻应符合国家相关标准,一般要求小于4Ω;- 所有电气设备要良好接地,确保接地导线的良好连接;- 接地系统要定期检测,确保接地电阻在合理范围内;- 接地导线应采用优质的铜材质,截面积足够大,防止过载引起的升温现象。
2. 多点接地系统多点接地系统在单点接地系统的基础上增加了额外的接地点。
通过将电气设备连接到不同的接地点,可以提高接地的可靠性和安全性。
安全技术要求:- 接地电阻要符合国家相关标准,一般要求小于4Ω;- 不同接地点间的传输线路应保持一致,阻抗不应过高;- 不同接地点间的导线应使用绝缘良好的材料,防止接地点之间发生短路;- 接地导线应避免与其他设备的线路或金属接触,防止引起电磁干扰。
3. 极化接地系统极化接地系统是为了防止电气设备与地壳之间产生电位差而采取的一种接地型式。
通过向地壳注入经过特殊处理的直流电流,使得地壳的电位与电源的电位保持一致,减少由地壳产生的电位差引起的电气设备损坏。
安全技术要求:- 极化接地系统要与设备的电源保持一致,电流不应过大,避免对设备产生过大的影响;- 极化接地系统应定期检测,确保电流稳定,地壳的电位与电源的电位一致;- 极化接地系统的注入电流应符合国家相关标准,防止对环境造成污染。
总之,系统接地的型式及安全技术要求是为了确保电气设备的安全运行和人身安全。
不同的接地系统有着各自特点,具体选择应根据实际情况进行评估和决策。
在实施和维护过程中,要严格按照国家相关标准要求进行操作,确保接地系统的可靠性和安全性。
系统接地是电气工程中非常重要的一环,它的目标是确保电气设备正常运行,并提供安全保护。
一点接地及四极开关
一点接地及四极开关一点接地及四极开关的应用在电力系统中,地的接法可以分为两种:多点接地和一点接地。
多点接地是指将多个地点连通,形成一个大地网,这种接法适合于电力设施密集的地区。
而一点接地则是将所有设备的接地点都连接到同一个点上,这种接法适合于电力设施较为稀疏的地区。
一点接地的优点在于可以避免地电位上升和人身触电等问题,同时也可以减小故障电流的大小,从而减轻故障对电网设备的损坏。
但是,在一点接地的电网中,如果出现了接地故障,由于所有设备接地点都连接在一起,故障电流会通过所有设备,造成负荷中断。
因此,一点接地电网需要配备相应的保护装置来及时检测和隔离接地故障,保证电网的可靠性和稳定性。
在一点接地电网的保护装置中,四极开关是一种非常重要的组成部分。
四极开关是一种具有四个接线点的开关,其中两个接线点用于供电,另外两个接线点用于外接保护设备。
四极开关可以实现对一点接地电网的分支和合并,从而实现对各个分支线路的控制和保护。
四极开关的主要作用有以下几个方面:1. 分段控制:一点接地电网通过四极开关进行分段控制,可以实现对各个分支线路的独立控制。
当某个分支出现故障或需要维护时,只需要关闭对应的四极开关即可,其他分支不受影响。
2. 隔离故障:当一点接地电网出现故障时,四极开关可以及时检测并隔离故障电路,避免故障对其他分支线路的影响。
3. 提高电网可靠性:一点接地电网的主要问题是出现接地故障时可能会导致负荷中断。
通过四极开关的应用,可以实现故障的快速检测和隔离,保证电网的可靠性和稳定性。
需要注意的是,四极开关的使用需要遵循一定的原则和操作规程。
在使用四极开关时,需要确保其具备足够的绝缘强度和可靠性,并定期进行检修和维护,以确保其正常运行和稳定性。
综上所述,一点接地及四极开关的应用是电力系统中非常重要的一部分。
通过合理的设计和使用,可以提高电网的可靠性和稳定性,为电力系统的正常运行和发展建立坚实的保障。
除了以上提到的作用,四极开关还可以实现电网的自动化控制。
电路板接地基础知识讲解
电路板接地基础知识讲解电路板接地是电子设备中非常重要的一环,它不仅能确保电路的正常工作,还能提高电路的性能和抗干扰能力。
本文将对电路板接地的基础知识进行全面的讲解。
一、什么是电路板接地电路板接地,简单来说,就是将电子设备中的所有金属部件,如电路板、金属外壳等,通过导线连接到地面或大地,形成一个闭合的回路,以提供一个稳定的参考电位。
接地的主要作用有:保护电子设备和用户的人身安全、提供一个稳定的参考电位、降低电磁辐射和抗干扰能力等。
二、电路板接地的分类根据接地回路的不同,电路板接地可以分为以下几类:1. 单点接地:将所有金属部件连接到一个统一的接地点,形成一个单一的回路。
这种接地方式适用于一些简单的电子设备,但对于复杂的设备来说,由于存在大量的信号线和功耗线,单点接地会导致接地电流增大、接地电压上升等问题。
2. 多点接地:将电路板分为不同的区域,每个区域单独进行接地,形成多个接地回路。
这种接地方式可以减少接地回路之间的干扰,提高设备的抗干扰能力。
但同时也需要注意接地电位的一致性,避免产生不同区域之间的接地环路。
3. 信号与功耗分离接地:将信号线和功耗线分开接地,分别形成不同的接地回路。
这种接地方式可以有效地隔离信号线和功耗线之间的电磁干扰,提高电路的工作性能。
三、电路板接地的注意事项1. 确保接地导线足够粗大:为了降低接地回路的电阻,接地导线的选择应尽量粗大,以确保电流能够顺利地流回地面。
2. 避免接地回路产生环路:在设计电路板接地时,要注意避免接地回路之间产生环路,否则会引发信号串扰和电磁干扰等问题。
3. 注意接地点的位置选择:接地点的位置选择应尽量靠近电路板中心,并远离会产生干扰的元器件和线路,以提高接地的效果。
4. 接地回路与信号回路分离:在设计电路板时,要将接地回路与信号回路进行分离,避免相互干扰,同时也可以提高抗干扰能力。
四、电路板接地的测试方法为了确保电路板的接地效果良好,可以采用以下几种测试方法:1. 接地电阻测试:使用专业的测试仪器对接地回路的电阻进行测试,以确保接地回路的电阻在合理范围内。
单点、多点接地
单点、多点接地
各种接地方式
接地为防止触电或保护设备的安全,把电力电讯等设备的金属底盘或外壳接上地线,利用大地作电流回路。
在电力系统中,将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接叫做接地。
接地分为安全接地和功能接地。
安全接地就是为了保护使用者不被电击。
功能接地就是将一些无用的电流或是噪声干扰导入大地外,最大限度的保护设备的正常工作及抵抗外来的各种干扰。
单点接地
单点接地,如下图所示,对噪音来讲,是非常不希望的,因为所有的单独接地点都串联在一起。
高频感抗增加了接地阻抗。
单点接在
1M以下更可取一点。
在1M~10M之间可以根据情况使用,倘若接地导体长度小于波长的1/20,可以阻止干扰并保持较低的阻抗。
多点接地
拥有较低的接地阻抗,可以用于高频和数字电路。
低阻抗缘于接地平板的较低阻抗。
在每个接地电路和接地平板之间的电缆越短越好,使得接地阻抗越小越好。
在低频避免多点接地,因为从每个电路中流来的接地电流流向一个公共的接地阻抗-接地平板。
混合接地
是一种在不同频率呈现差异化系统接地布置,在低频用单点接地,在高频用多点接地。
当不同类型电路(低频模拟、数字、噪音等)在同一系统中使用,或者在同一PCB上。
每一电路必须在某种意义上以正确的类型接地。
不同的接地电路必须缚在一起,常在一点上做汇总。
小结:通常1MHz以下时,用单点接地;10MHz以上时,用多点
接地;在1MHz和10MHz之间时,如果最长的接地线不超过干扰波长
的1/20,可以用单点接地,否则用多点接地。
信号接地的方式盘点(浮地-单点接地-多点接地)
信号接地的方式盘点(浮地/单点接地/多点接地)1.地的接法对于一个信号来说,它需要寻找一条最低阻抗的电流回流到地的途径,所以如何处理这个信号回流就变得非常的关键。
第一,根据公式可以知道,辐射强度是和回路面积成正比的,就是说回流需要走的路径越长,形成的环越大,它对外辐射的干扰也越大,所以,PCB布板的时候要尽可能减小电源回路和信号回路面积。
第二,对于一个高速信号来说,提供有好的信号回流可以保证它的信号质量,这是因为PCB上传输线的特性阻抗一般是以地层(或电源层)为参考来计算的,如果高速线附近有连续的地平面,这样这条线的阻抗就能保持连续,如果有段线附近没有了地参考,这样阻抗就会发生变化,不连续的阻抗从而会影响到信号的完整性。
所以,布线的时候要把高速线分配到靠近地平面的层,或者高速线旁边并行走一两条地线,起到屏蔽和就近提供回流的功能。
第三,为什么说布线的时候尽量不要跨电源分割,这也是因为信号跨越了不同电源层后,它的回流途径就会很长了,容易受到干扰。
当然,不是严格要求不能跨越电源分割,对于低速的信号是可以的,因为产生的干扰相比信号可以不予关心。
对于高速信号就要认真检查,尽量不要跨越,可以通过调整电源部分的走线。
许多电磁干扰问题是由地线产生的,因为地线电位是整个电路工作的基准电位,如果地线设计不当,地线电位就不稳,就会导致电路故障。
地线设计的目的是要保证地线电位尽量稳定,从而消除干扰现象。
信号接地方式一般有三种:浮地、单点接地、多点接地。
1.1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。
缺点:容易出现静电积累引起强烈的静电放电。
折衷方案:接入泄放电阻。
1.2 单点接地单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。
在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流。
直流接地查找方法及注意事项
直流接地查找方法及注意事项直流电路中的接地是指将一个节点与大地相连,形成电路中的参考零点。
接地的主要目的是为了保护设备和人员的安全,同时也能减少电磁干扰和维护电路的稳定性。
本文将探讨直流接地的方法和注意事项。
一、直流接地的方法1.单点接地法:将直流电路中的其中一点与地相连,形成单点接地。
单点接地方法简单直接,适合小型直流电路。
但是,由于单点接地时,电路中的其他节点都带有一定的电位,可能会引起电流倾斜和电压漂移。
2.多点接地法:将直流电路中的多个节点与地相连,形成多点接地。
多点接地方法可以减少节点的电位,降低电流倾斜问题。
在工业控制系统中,多点接地方法比较常见。
3.整体接地法:将整个直流电路与地相连,形成整体接地。
整体接地方法适合大型直流电路,能够有效保护设备和人员的安全,减少电磁干扰。
二、直流接地的注意事项1.接地电阻的选择:接地电阻的选取要根据具体的情况来确定。
一般情况下,接地电阻的阻值应小于10欧姆,以确保有效地把电流引入地下。
2.接地装置的布置:接地装置应尽量远离电源装置和其他干扰源,以避免电磁干扰。
接地装置应采用可靠的连接方式,保证接地的稳定性。
3.接地线的材料选择:接地线应采用导电性能好的材料,如铜或铝。
接地线的截面积应根据电流大小来确定,确保接地的安全可靠。
4.接地系统的维护:接地系统应定期进行检测和维护,确保接地的有效性。
检查接地电阻的阻值和连接是否正常,以及接地线是否受损。
5.安全防护措施:在接地过程中应采取安全防护措施,确保操作人员的安全。
在进行接地操作时,应切断电源,使用绝缘手套和绝缘工具,避免触电事故的发生。
6.地下电力设施的协调:在进行直流接地时,应与相关部门协调,确保地下电力设施的安全。
避免对地下电缆或管道造成损害。
7.接地系统设计的合理性:接地系统的设计应合理可靠,确保电流能够有效引入地下。
在设计过程中要考虑到电流的大小、电压的稳定性和电流倾斜等因素。
总结:直流接地是保证电路稳定性和人身安全的重要环节。
隔离变压器二次侧接地方法
隔离变压器二次侧接地方法
隔离变压器的二次侧接地方法可以有几种不同的方式,具体应
根据实际情况和要求来选择合适的方法。
以下是一些常见的二次侧
接地方法:
1. 单点接地,在二次侧中选择一个点进行接地,其他地方与这
个点相对绝缘。
这种方法简单直接,容易实施,适用于小型变压器
和简单的电气系统。
2. 多点接地,在二次侧选择多个点进行接地,可以有效减小接
地电阻,提高接地的可靠性。
这种方法适用于大型变压器和复杂的
电气系统。
3. 无功接地,通过连接无功电抗器或者电容器来实现二次侧的
接地。
这种方法可以限制接地故障电流,减小对系统的影响,适用
于对系统稳定性要求较高的场合。
4. 零序接地,通过零序电流互感器实现对二次侧零序电流的检
测和接地。
这种方法可以及时发现接地故障,并采取措施进行处理,适用于对系统安全性要求较高的场合。
在选择二次侧接地方法时,需要考虑系统的特点、工作环境、安全要求等因素,以确保接地效果良好、系统运行稳定和安全。
同时,在实施接地时,还需要符合相关的标准和规范,确保接地操作的合理性和有效性。
工厂接地线做法及标准
工厂接地线做法及标准随着现代工业的发展,对于工厂接地线的要求也越来越高。
接地线作为工业用电系统中的重要组成部分,其质量和可靠性直接关系到工业生产的安全和稳定。
本文将从接地线的基本概念、做法及标准等方面进行详细介绍。
一、接地线的基本概念接地线,是指将电气设备的金属外壳、框架、支架等导电部件与大地之间以低阻抗连接的导体,其主要作用是保障人身安全、保护设备、提高系统的可靠性和稳定性。
二、接地线的做法接地线的做法有两种,即单点接地和多点接地。
1. 单点接地:是指将所有电气设备的金属外壳、框架、支架等导电部件通过接地线连接到一个统一的接地点上,以形成一个电气连接点。
该做法适用于小型工厂和单一用电系统。
2. 多点接地:是指将电气设备的金属外壳、框架、支架等导电部件通过接地线连接到各自独立的接地点上,以形成多个电气连接点。
该做法适用于大型工厂和复杂的用电系统。
三、接地线的标准接地线的标准主要包括以下几个方面:1. 接地电阻标准:接地电阻是评估接地线质量的重要指标。
根据国家标准,接地电阻应小于4Ω,对于特殊场合,应小于1Ω。
2. 接地线材质标准:接地线应采用铜线或铜排,其截面积应根据电气设备的额定电流和接地电阻计算得出。
3. 接地线的安装标准:接地线应沿着设备的金属外壳、框架、支架等导电部件布设,其间距应满足电气安全标准的要求。
4. 接地线的接头标准:接头应采用压接或焊接方式,接头应紧固牢固、导电性能好、耐腐蚀、耐高温。
5. 接地线的标识标准:接地线应在接地点处设置标识牌,标识牌应标明接地线的编号、接地电阻、安装日期等信息。
四、接地线的维护接地线的维护是保障其质量和可靠性的重要措施。
接地线的维护应包括以下几个方面:1. 定期检查接地电阻,保证其符合标准要求。
2. 定期清洁接地线,保证其表面干净。
3. 定期检查接地线的接头,保证其紧固牢固、导电性能好、耐腐蚀、耐高温。
4. 定期检查接地线的标识牌,保证其信息准确无误。
配电室接地做法
配电室接地做法配电室接地是电气工程中非常重要的一项安全措施,其作用是将电气设备的金属外壳或其他导电部分与地之间建立良好的导电连接,以确保人身安全和设备正常运行。
本文将重点介绍配电室接地的做法和相关注意事项。
配电室接地的做法有两种常见的方式:单点接地和多点接地。
单点接地是指将配电室内所有的电气设备的金属外壳或其他导电部分通过导线连接到地网上的同一个接地点。
而多点接地则是将配电室内的电气设备分别连接到地网上的多个接地点,每个接地点之间通过导线相连。
单点接地适用于电气设备较少且集中布置的情况,而多点接地适用于电气设备较多且分散布置的情况。
配电室接地的导体选择也是非常重要的。
常见的接地导体有接地线和接地网。
接地线是用来连接电气设备的金属外壳或其他导电部分与地网的导线,一般采用裸铜线或镀锌铜线。
接地网是由多根导线交叉组成的网状结构,一般采用裸铜线或镀锌铜线制作。
接地导体的选择应根据电气设备的功率、电流和接地电阻等因素进行合理选择,以确保接地效果良好。
配电室接地的布线方式也需注意。
接地导线应尽量短,布线要避免与电源线、信号线等其他线路平行走向,以减小互感干扰。
接地导线的连接应牢固可靠,接地电阻应符合规定的要求。
接地导线的连接方式有螺栓连接和焊接连接,具体选择要根据实际情况进行。
配电室接地还需要注意以下几点。
首先,接地系统应具备良好的导电性能,接地电阻应符合规定的要求。
其次,接地系统应具备良好的耐腐蚀性能,特别是在潮湿、腐蚀性气体等环境条件下,应采取相应的防腐措施,以延长接地系统的使用寿命。
此外,配电室接地系统还需要定期检测和维护,以确保其正常工作状态。
配电室接地是保证电气设备安全运行的重要措施。
在进行配电室接地时,需要选择合适的接地方式和导体,并注意接地导线的布线方式和连接方式。
此外,还需要注意接地系统的导电性能和耐腐蚀性能,并进行定期检测和维护。
通过合理的配电室接地做法,可以有效地保护人身安全和电气设备的正常运行。
高压电机的接地方案
高压电机的接地方案
高压电机的接地方案通常有以下几种:
1. 单点接地方案:将电机的金属外壳通过一根接地线与地线连接,形成一个单点接地,将电机的外壳与大地进行连接,以消除静电和绝缘故障带来的危险。
2. 多点接地方案:除了将电机外壳接地,还可将电机的定子、转子、绕组、轴承等各部分通过接地线与地线相连,形成多个接地点,增加接地的可靠性和稳定性。
3. 电气屏蔽接地方案:在电机外壳周围安装金属屏蔽罩,将其与地线相连,形成一个电气屏蔽的接地方案,可以有效遏制电磁辐射和干扰,提高电机的工作稳定性。
4. 绝缘监测接地方案:通过在电机的绝缘部分安装绝缘监测装置,实时监测电机绝缘的状态,并通过接地线将监测器与地线连接,以及时发现和处理绝缘故障。
需要根据具体的电机工作环境和安全要求选择适合的接地方案,并按照相关的电器安全标准和规范进行接地设计和安装。
同时还应定期检查和维护电机的接地系统,确保其良好的接地状态。
电压二次回路N600全站一点接地与分别接地利弊
电压二次回路N600全站一点接地与分别接地利弊问题提出:我们知道PT二次侧N600必须接地。
但各自在场地就地接地还是统一在保护室汇聚到一点接地是一个很有意思的问题。
一个变电站有若干电压等级,每个电压等级上有若干电压互感器(PT),每个PT上有若干绕组,每个绕组二次回路都有自己的N600回路。
全站需要用到二次电压的地方都遍布着这些N600回路,很多时候一个装置或设备上就有多个PT的N600回路,比如变压器保护装置,测控装置,一个装置会接入三侧电压,因此有几个不同PT的N600回路在同一个屏后。
各自用各自的N600回路本来相安无事。
但是如果不慎接成了别的绕组的N600可能会因N600接地方式不同而产生不同的后果。
PT二次回路N600全站一点接地的好处:把全站所有N600回路汇聚于控制室内某一处,在同一点接在同一根地线上。
或者把同一电压等级的PT二次N600回路引至控制室,按电压等级划分开来,各自于一点接地。
前者全站N600有共同的地电位,同一电压等级下的N600有共同的地电位。
更倾向于前者,因不同得保护装置可公共N600,即使接错也不会有后果。
PT一点接地的弊端:全站任何地方发生N600两点接地,将在N600处引入电位差,可能造成广泛的装置采样异常,影响面大。
而且N600广泛连通,其两点接地的概率随之增大。
在查找两点接地的过程中,影响也比较广泛。
总之缺点就是影响面大,多点接地概率大,全站连通造成检修测试困难。
PT分别接地的好处:PT分别接地就是把每个PT的每个绕组的N600就地单独一点接地。
N600各自接地,对单一的装置来说,造成N600两点接地的概率降低;即使发生了两点接地,也只能造成局部影响。
在查找两点接地的过程中,仅影响部分装置。
PT检修的时候,涉及到的二次回路方便与运行设备隔离,对二次回路的检测和试验安全可靠。
PT分别接地的弊端:变电站内充斥着各个电压等级、各种绕组的N600回路,相对来说容易误接,而误解可能造成保护装置采样异常甚至比较严重的后果。
电子电路中常见的接地问题解析
电子电路中常见的接地问题解析在电子设备的设计和使用过程中,接地问题是一个非常重要的考虑因素。
正确地处理接地问题可以确保电路的正常工作,提高设备的可靠性和稳定性。
本文将对电子电路中常见的接地问题进行解析,并提出相应的解决方案。
一、接地的基本概念在电子电路中,接地是指将电路中的某个节点与地面(地电位)相连接的过程。
接地可以实现电路的稳定工作,减少噪声和干扰,提高信号质量和设备的安全性。
常见的接地方式有单点接地、多点接地和虚接地等。
二、单点接地问题及解决方案1. 单点接地导致的问题:单点接地是指将电路中的多个节点通过一个点与地面相连接。
当电流通过该接地点时,可能会产生大量的回路电流,导致电路的干扰和共模噪声增加。
2. 解决方案:为了解决单点接地导致的问题,可以采取以下措施:(1)使用独立的接地导线连接各个节点到地面,减少共模噪声的干扰。
(2)增加滤波电容和电感器等元件,降低回路电流的干扰。
三、多点接地问题及解决方案1. 多点接地导致的问题:多点接地是指将电路中的多个节点分别与地面相连接。
当节点之间存在较大的接地电位差时,容易产生地回路电流,从而影响电路的正常工作。
2. 解决方案:为了解决多点接地导致的问题,可以采取以下措施:(1)选择合适的接地位置,使得各个节点之间的接地电位差尽可能小。
(2)适当增加滤波电容和电感器等元件,降低地回路电流的干扰。
四、虚接地问题及解决方案1. 虚接地导致的问题:虚接地是指将电路中的某个节点通过一个虚拟接地点连接到地面。
由于虚接地并非真正与地面相连,可能会产生大量的漂移电流,从而干扰电路的正常工作。
2. 解决方案:为了解决虚接地导致的问题,可以采取以下措施:(1)尽可能采用实际接地,避免使用虚接地。
(2)如果必须采用虚接地的方式,需采取补偿措施,如增加补偿电容和电感,抑制漂移电流的干扰。
综上所述,电子电路中的接地问题是设计和使用过程中需要重点考虑的因素。
正确处理接地问题可以提高电路的可靠性和稳定性,减少噪声和干扰。
电缆接地方法
电缆接地方法电缆接地是指将电缆的金属外皮与地面或其他接地体连接起来,以达到保护人身安全、防止电缆绝缘击穿和保护设备的目的。
电缆接地方法有很多种,下面将对其主要内容进行展开。
一、电缆接地的目的电缆接地的主要目的是保护人身安全和设备安全。
当电缆绝缘击穿时,电流会通过金属外皮流向地面,如果没有接地,电流会通过人体或设备,造成人身伤害或设备损坏。
因此,电缆接地是非常必要的。
二、电缆接地的方法1.单点接地法单点接地法是将电缆的金属外皮与地面或其他接地体连接起来,形成一个接地点。
这种方法适用于电缆长度较短的情况,可以有效地保护人身安全和设备安全。
2.多点接地法多点接地法是将电缆的金属外皮分别与多个接地体连接起来,形成多个接地点。
这种方法适用于电缆长度较长的情况,可以有效地降低接地电阻,提高接地效果。
3.屏蔽接地法屏蔽接地法是将电缆的金属外皮与屏蔽层连接起来,形成一个接地点。
这种方法适用于高压电缆和特殊电缆,可以有效地防止电磁干扰和电磁泄漏。
4.电缆套管接地法电缆套管接地法是将电缆套管与地面或其他接地体连接起来,形成一个接地点。
这种方法适用于电缆穿越建筑物或地下管道时,可以有效地保护人身安全和设备安全。
三、电缆接地的注意事项1.接地电阻应符合规定要求,一般不应大于4欧姆。
2.接地体应选择干燥、坚实、导电性好的地方,避免选择潮湿、松软、导电性差的地方。
3.接地体应与电缆金属外皮紧密接触,接地点应清洁、无锈蚀和氧化。
4.接地线应选择导电性好、耐腐蚀、耐高温的材料,接地线的截面积应符合规定要求。
5.接地线的连接应牢固可靠,接地线的长度应尽量短,避免过长造成电阻过大。
以上是电缆接地方法的主要内容,电缆接地是非常重要的安全措施,应严格按照规定要求进行操作。
屏蔽层接地的方法
屏蔽层接地的方法随着现代通信技术的发展,电磁干扰逐渐成为一个不可忽视的问题。
为了保证通信系统的稳定性和可靠性,需要采取一系列措施来减少电磁干扰的影响。
其中,屏蔽技术是一种常用的方法,通过在电路周围加上一个屏蔽层来阻挡外界的电磁波干扰。
然而,屏蔽层本身也会成为一个潜在的电磁干扰源,因为它会在内部形成一个电场和磁场。
为了避免这种情况,需要将屏蔽层接地,以消除其内部的电场和磁场。
本文将介绍屏蔽层接地的方法。
1. 单点接地法单点接地法是最常见的屏蔽层接地方法之一。
它的原理是将屏蔽层与地面连接,使电荷能够自由流动到地面上。
具体实现时,需要在屏蔽层上选取一个点,然后将该点与地面连接起来,形成一个电路。
这样,电荷就能够通过这个点流入地面,从而消除屏蔽层内部的电场和磁场。
单点接地法的优点是实现简单,成本低廉。
但是,它也存在一些缺点。
首先,如果地面的电阻较大,就会导致接地电阻增大,从而影响接地效果。
其次,如果在屏蔽层的不同部位采用不同的接地点,就会形成多个接地回路,导致接地电位不稳定,从而增加电磁干扰的风险。
2. 并联接地法并联接地法是一种改进的屏蔽层接地方法。
它的原理是在屏蔽层上设置多个接地点,然后将这些接地点与地面并联连接。
这样,就能够形成多个接地回路,从而提高接地效果。
并联接地法的优点是能够有效地提高接地效果,减少电磁干扰的风险。
但是,它也存在一些缺点。
首先,需要在屏蔽层上设置多个接地点,增加了设计和制造的难度。
其次,如果接地点之间的距离过大,就会导致接地回路的电阻增大,从而影响接地效果。
3. 串联接地法串联接地法是一种比较特殊的屏蔽层接地方法。
它的原理是将屏蔽层与地面串联连接,形成一个电路。
具体实现时,需要在屏蔽层上设置两个接地点,然后将它们与地面串联连接。
串联接地法的优点是能够有效地消除屏蔽层内部的电场和磁场。
但是,它也存在一些缺点。
首先,需要在屏蔽层上设置两个接地点,增加了设计和制造的难度。
其次,如果串联电阻较大,就会影响接地效果。
接地系统的分类
接地系统的分类
接地系统按照基本结构和性质可以分为以下几类:
1. 单点接地系统:即将系统的中性点或者某一设备的金属外壳与地之间建立一个接地点,形成一个单点接地系统。
这种系统常用于低压电力系统、家庭用电系统和某些特定的工业设备。
2. 多点接地系统:这种系统将系统的中性点和一些电气设备的金属外壳分别与地之间建立接地点,形成一个多点接地系统。
多点接地可以提高系统的可靠性和安全性。
3. 良好接地系统:这种系统主要用于大型电力系统,包括输电、变电和配电系统。
良好接地系统要求接地电阻足够小,接地电阻的大小与接地点的数量、深度和周围土壤的电导率等因素有关。
4. 敏感接地系统:这种系统主要用于需要保护敏感设备免受干扰的情况,如电力电子设备、仪器仪表、通信系统等。
敏感接地系统要求接地电阻足够小,并采取一些防护措施,以避免外界干扰。
5. 防雷接地系统:这种系统主要用于防雷保护,主要包括接闪器、接地装置等。
防雷接地系统要求接地电阻足够小,能够将雷电流迅速导入地下,以保护设备和人身安全。
需要注意的是,以上的分类只是根据接地系统的基本结构和性
质进行划分,实际上接地系统的分类还可以根据其他因素如电压等级、地区性质以及使用环境的特点进行进一步区分。
为什么电路中要进行接地?
为什么电路中要进行接地?一、接地的概念和作用接地,是指将电气设备的金属外壳与地面连接,并与地电位相连。
在电路中进行接地可以达到以下几个作用:1.1 安全作用:接地能够有效地保护人身安全。
当电路中出现漏电或者其他故障时,接地可以将电流引导到地面,避免触电危险。
1.2 防雷作用:接地可以有效地防止雷击。
当雷电击中设备时,接地可以将超过设备耐受电压的电流引导到地面,保护设备不受损坏。
1.3 干扰抑制作用:接地可以减小电磁干扰的影响。
电路中的电磁辐射会对周围的电子设备产生干扰,通过接地可以将这些干扰引导到地面,减小对其他设备的影响。
二、电路的接地方式2.1 单点接地:在电路中,通过将电气设备的金属外壳与地面相连,形成一个单点接地,使整个电路的电位都与地电位相等。
2.2 多点接地:在某些情况下,为了增加接地的稳定性和可靠性,可以采用多点接地方式。
通过将电气设备的金属外壳与地面相连,并与其他接地点相连,形成多个接地点。
2.3 隔离接地:在某些特殊的场合,为了防止电流的传导和干扰的扩散,可以采用隔离接地方式。
这种接地方式将设备与地面相连,但其电位不等于地电位,而是与电路中其他部分隔离。
三、接地的注意事项3.1 接地电阻:在进行接地时,需要注意接地电阻的大小。
接地电阻过大或过小都会影响接地效果。
过大的接地电阻会使接地的效果不明显,过小的接地电阻则容易引起电流过大。
3.2 接地导体:接地导体的选择也是很重要的一部分,一般应选择导电性能好、防腐蚀能力强的导体作为接地导体,以确保接地效果的稳定性和可靠性。
3.3 接地测试:为了确保接地的质量,需要定期对接地系统进行测试。
通过测量接地电阻和接地导体的电位差等参数,可以评估接地的质量,并采取相应的措施进行维护和改善。
四、结语电路中的接地对于保障人身安全、防止雷击和减小电磁干扰都起着重要的作用。
在进行接地时,需要注意选择合适的接地方式、控制接地电阻和选择适当的接地导体。
同时,定期进行接地测试,确保接地质量的稳定和可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单点接地多点接地转载至/myrokey/244396/Message.aspx单点地要解决的问题就是针对“公共地阻抗耦合”和“低频地环路”,多点地是针对“高频所容易通过长地走线产生的共模干扰”.低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。
当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。
当工作频率在1~10MH z时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。
数字地与模拟地之间单点接地,数字地之内多点接。
地线干扰与地线设计地线设计是电磁兼容设计中大家都很注意,却又不知道应该怎样去做的一个问题。
了解了地线造成干扰问题的机理之后,在设计和实施地线时就有了一个明确的思路。
本期从介绍地线造成干扰的原理入手,使读者了解设计地线的关键和原则。
1 什么是地线?地线有安全地和信号地两种。
前者是为了保证人身安全、设备安全而设置的地线,后者是为了保证电路正确工作所设置的地线。
造成电路干扰现象的主要是信号地,因此这里仅讨论信号地的问题。
信号地的一般定义是:电路的电位参考点。
更恰当地说,这个定义是我们设计电路时的一个假设。
从这个定义是无法分析和理解一些地线干扰问题的。
从现在开始,我们在分析电磁兼容问题时,使用下面的定义。
地线是信号电流流回信号源的地阻抗路径。
既然地线是电流的一个路径,那么根据欧姆定律,地线上是有电压的;既然地线上有电压,说明地线不是一个等电位体。
这样,我们在设计电路时,关于地线电位一定的假设就不再成立,因此电路会出现各种错误。
这就是地线干扰的实质。
2 地线的阻抗有多大?一个难以理解的问题是,我们在设计地线时,都使地线的电阻很小,那么地线上的电位差怎么会大到导致电路出错的程度。
理解这个问题,要理解地线阻抗的组成。
地线的阻抗Z由电阻部分和感抗部分两部分组成,即:Z = RAC + jωL。
电阻成分:导体的电阻分为直流电阻RDC和交流电阻RAC。
对于交流电流,由于趋肤效应,电流集中在导体的表面,导致实际电流截面减小,电阻增加,直流电阻和交流电阻的关系如下:RAC= 0.076rf1/2RDC式中:r=导线的半径,单位cm,f=流过导线的电流频率,单位Hz,RDC= 导线的直流电阻,单位Ω。
电感成分:任何导体都有内电感(这区别于通常讲的外电感,外电感是导体所包围的面积的函数),内电感与导体所包围的面积无关。
对于圆截面导体如下:L=0.2S[ln(4.5/d) -1] (μH)式中S=导体长度(m),d=导体直径(m)表1说明了直流电阻与交流阻抗的巨大差异。
频率很低时的阻抗可以认为是导体的电阻,从表中可以看出,随着频率升高,阻抗增加很快,当频率达到100MH z以上时,直径6.5mm长度仅为10cm的导线也有数十欧姆的阻抗。
3 地环路干扰及对策地环路干扰是一种较常见的干扰现象,常常发生在通过较长电缆连接的相距较远的设备之间。
其产生的内在原因是设备之间的地线电位差。
地线电压导致了地环路电流,由于电路的非平衡性,地环路电流导致对电路造成影响的差模干扰电压(图1)。
由于地环路干扰是由地环路电流导致的,因此在实践中,有时会发现,当将一个设备的地线断开时,干扰现象消失,这是因为地线断开时,切断了地环路。
这种现象往往发生在干扰频率较低的场合,当干扰频率高时,短开地线与否关系不大。
地环路干扰形成的原因1:两个设备的地电位不同,形成地电压,在这个电压的驱动下,“设备1-互联电缆-设备2- 地”形成的环路之间有电流流动。
由于电路的不平衡性,每根导线上的电流不同,因此会产生差模电压,对电路造成干扰。
地线上的电压是由于其他功率较大的设备也用这段地线,在地线中引起较强电流,而地线又有较大阻抗产生的。
地环路干扰形成的原因2:由于互联设备处在较强的电磁场中,电磁场在“设备1 - 互联电缆- 设备2 - 地”形成的环路中感应出环路电流,与原因1的过程一样导致干扰。
解决地环路干扰的方法:解决地环路干扰的基本思路有三个:一个是减小地线的阻抗,从而减小干扰电压,但是这对第二种原因导致的地环路没有效果。
另一个是增加地环路的阻抗,从而减小地环路电流。
当阻抗无限大时,实际是将地环路切断,即消除了地环路。
例如将一端的设备浮地、或将线路板与机箱断开等是直接的方法。
但出于静电防护或安全的考虑,这种直接的方法在实践中往往是不允许的。
更实用的方法是使用隔离变压器、光耦合器件、共模扼流圈、平衡电路等方法。
第三个方法是改变接地结构,将一个机箱的地线连接到另一个机箱上,通过另一个机箱接地,这就是单点接地的概念。
4 公共阻抗耦合及对策当两个电路的地电流流过一个公共阻抗时,就发生了公共阻抗耦合,如图2(a) 所示。
一个电路的地电位会受到另一个电路工作状态的影响,即一个电路的地电位受另一个电路的地电流的调制,另一个电路的信号就耦合进了前一个电路。
放大器级间公共地线耦合问题:图2(a) 中的放大器,由于前置放大电路与功率放大电路共用一段地线,功率放大电路的地线电流很大,因此在地线上产生了较大的地线电压V。
这个电压正好在前置放大电路的输入回路中,如果满足一定的相位关系,就形成了正反馈,造成放大器自激。
解决办法:可以有两个解决办法,一个是将电源的位置改变一下,使它*近功率放大电路,这样,就不会有较大的地线电压落在前置放大电路的输入回路中了,如图2 (b) 所示。
另一个办法是功率放大电路单独通过一根地线连接到电源,这实际是改成了并联单点接地结构,如图2 (d) 所示。
5 接地策略信号地有图3所示的几种方式。
单点接地:所有电路的地线接到公共地线的同一点,进一步可分为串联单点接地和并联单点接地。
最大好处是没有地环路,相对简单。
但地线往往过长,导致地线阻抗过大。
多点接地:所有电路的地线就近接地,地线很短,适合高频接地。
问题是存在地环路。
混合接地:在地线系统内使用电感、电容连接,利用电感、电容器件在不同频率下有不同阻抗的特性,使地线系统在不同的频率具有不同的接地结构。
串联单点接地容易产生公共阻抗耦合的问题,解决的方法是采用并联单点接地。
但是并联单点接地往往由于地线过多,而没有可实现性。
因此,灵活的方案是,将电路按照信号特性分组,相互不会产生干扰的电路放在一组,一组内的电路采用串联单点接地,不同组的电路采用并联单点接地。
如图4所示。
这样,既解决了公共阻抗耦合的问题,又避免了地线过多的问题。
接地的方法很多,具体使用那一种方法取决于系统的结构和功能。
“接地”的概念首次应用在电话的设计开发中。
从1881年初开始采用单根电缆为信号通道,大地为公共回路。
这就是第一个接地问题。
但是用大地作为信号回路会导致地回路中的过量噪声和大气干扰。
为了解决这个问题,增加了信号回路线。
现在存在的许多接地方法都是来源于过去成功的经验,这些方法包括:1) 单点接地:如图1所示,单点接地是为许多在一起的电路提供公共电位参考点的方法,这样信号就可以在不同的电路之间传输。
若没有公共参考点,就会出现错误信号传输。
单点接地要求每个电路只接地一次,并且接在同一点。
该点常常一地球为参考。
由于只存在一个参考点,因此可以相信没有地回路存在,因而也就没有干扰问题。
2) 多点接地:如图2所示,从图中可以看出,设备内电路都以机壳为参考点,而各个设备的机壳又都以地为参考点。
这种接地结构能够提供较低的接地阻抗,这是因为多点接地时,每条地线可以很短;并且多根导线并联能够降低接地导体的总电感。
在高频电路中必须使用多点接地,并且要求每根接地线的长度小于信号波长的1/20。
3) 混合接地:混合接地既包含了单点接地的特性,又包含了多点接地的特性。
例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用图3所示的混合接地。
对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。
当许多相互连接的设备体积很大(设备的物理尺寸和连接电缆与任何存在的干扰信号的波长相比很大)时,就存在通过机壳和电缆的作用产生干扰的可能性。
当发生这种情况时,干扰电流的路径通常存在于系统的地回路中。
在考虑接地问题时,要考虑两个方面的问题,一个是系统的自兼容问题,另一个是外部干扰耦合进地回路,导致系统的错误工作。
由于外部干扰常常是随机的,因此解决起来往往更难。
接地要求要求接地的理由很多,下面列出几种:1) 安全接地:使用交流电的设备必须通过黄绿色安全地线接地,否则当设备内的电源与机壳之间的绝缘电阻变小时,会导致电击伤害。
2) 雷电接地:设施的雷电保护系统是一个独立的系统,由避雷针、下导体和与接地系统相连的接头组成。
该接地系统通常与用做电源参考地及黄绿色安全地线的接地是共用的。
雷电放电接地仅对设施而言,设备没有这个要求。
3) 电磁兼容接地:出于电磁兼容设计而要求的接地,包括:* 屏蔽接地:为了防止电路之间由于寄生电容存在产生相互干扰、电路辐射电场或对外界电场敏感,必须进行必要的隔离和屏蔽,这些隔离和屏蔽的金属必须接地。
* 滤波器接地:滤波器中一般都包含信号线或电源线到地的旁路电容,当滤波器不接地时,这些电容就处于悬浮状态,起不到旁路的作用。
* 噪声和干扰抑制:对内部噪声和外部干扰的控制需要设备或系统上的许多点与地相连,从而为干扰信号提供“最低阻抗”通道。
* 电路参考:电路之间信号要正确传输,必须有一个公共电位参考点,这个公共电位参考点就是地。
因此所有互相连接的电路必须接地。
以上所有理由形成了接地的综合要求。
但是,一般在设计要求时仅明确安全和雷电防护接地的要求,其它均隐含在用户对系统或设备的电磁兼容要求中。
返回目录3接地技术应用目前所应用的接地技术和方法可以说是过去解决问题的经验总结。
典型的接地要求往往限制在所谓的“单点接地”上。
通常在电路这一级上不专门提出对接地的具体要求,因为在这一层次上提出具体要求是不合适的。
对数字电路而言,大多数逻辑芯片读采用单端电路的方式工作。
也就是说,所有信号的电位以电源回路为参考的话,其电位是0V。
在模拟电路中,情况也类似。
当元器件之间的距离很近时,要完成逻辑信号的产生、处理和波形整形是很容易的,但如果传输线过长或者参考点电位不正确的话,都会产生问题。
我们要建立这样的概念:接地并不是每个部分或每个系统都需要的,比如单块的线路板并不非要接地才能正常工作。
当设备之间要传输数据时,接地就是十分必要的了七、接地接地分安全接地、工作接地,这里所谈的是工作接地,设计接地点就是要尽可能减少各支路电流之间的相互耦合干扰,主要方法有:单点接地、串联接地、平面接地。
在电子设备中,接地是控制干扰的重要方法。
如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。