非线性控制系统的稳定性精品PPT课件
合集下载
自动控制原理课件 第7章 非线性控制系统
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
非线性系统的李雅普诺夫稳定性分析34页PPT
非线性系统的李雅普诺夫稳定性分析
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
自动控制原理第九章非线性控制系统PPT课件
02
非线性系统的数学描述
01
02
04
非线性微分方程
非线性微分方程是描述非线性系统动态行为的数学模型之一。
它通常表示为自变量和因变量的函数,其中包含未知函数的导数。
非线性微分方程的解可以描述系统的输出响应与输入信号之间的关系。
解决非线性微分方程的方法通常包括数值解法和解析解法。
03
非线性传递函数是描述非线性系统的另一种数学模型。
非线性系统的特点
研究非线性系统的方法包括解析法、数值法和实验法等。
总结词
解析法是通过数学推导和求解方程来研究非线性系统的行为和特性。数值法则是通过数值计算和模拟来研究非线性系统的行为和特性。实验法则是通过实际实验来研究非线性系统的行为和特性,通常需要设计和构建实验装置和测试系统。
详细描述
非线性系统的研究方法
它类似于线性系统的传递函数,但包含非线性项和饱和项。
非线性传递函数可以表示系统的输入输出关系,并用于分析系统的性能和稳定性。
分析非线性传递函数的方法包括根轨迹法和相平面法等。
01
02
03
04
非线性传递函数
非线性状态方程是描述非线性系统动态行为的另一种数学模型。
非线性状态方程可以用于分析系统的稳定性和动态行为,并用于控制系统设计。
非线性系统仿真软件
非线性系统仿真实例是通过计算机仿真技术对实际非线性系统进行模拟和分析的实例,它可以帮助用户更好地理解非线性系统的特性和行为,并验证仿真模型的正确性和有效性。
常见的非线性系统仿真实例包括电机控制系统、飞行器控制系统、机器人控制系统等,这些实例可以帮助用户更好地了解非线性系统的控制方法和优化策略。
飞行器控制系统
化工过程控制系统
非线性系统的数学描述
01
02
04
非线性微分方程
非线性微分方程是描述非线性系统动态行为的数学模型之一。
它通常表示为自变量和因变量的函数,其中包含未知函数的导数。
非线性微分方程的解可以描述系统的输出响应与输入信号之间的关系。
解决非线性微分方程的方法通常包括数值解法和解析解法。
03
非线性传递函数是描述非线性系统的另一种数学模型。
非线性系统的特点
研究非线性系统的方法包括解析法、数值法和实验法等。
总结词
解析法是通过数学推导和求解方程来研究非线性系统的行为和特性。数值法则是通过数值计算和模拟来研究非线性系统的行为和特性。实验法则是通过实际实验来研究非线性系统的行为和特性,通常需要设计和构建实验装置和测试系统。
详细描述
非线性系统的研究方法
它类似于线性系统的传递函数,但包含非线性项和饱和项。
非线性传递函数可以表示系统的输入输出关系,并用于分析系统的性能和稳定性。
分析非线性传递函数的方法包括根轨迹法和相平面法等。
01
02
03
04
非线性传递函数
非线性状态方程是描述非线性系统动态行为的另一种数学模型。
非线性状态方程可以用于分析系统的稳定性和动态行为,并用于控制系统设计。
非线性系统仿真软件
非线性系统仿真实例是通过计算机仿真技术对实际非线性系统进行模拟和分析的实例,它可以帮助用户更好地理解非线性系统的特性和行为,并验证仿真模型的正确性和有效性。
常见的非线性系统仿真实例包括电机控制系统、飞行器控制系统、机器人控制系统等,这些实例可以帮助用户更好地了解非线性系统的控制方法和优化策略。
飞行器控制系统
化工过程控制系统
非线性控制系统的分析课件.ppt
法求解有困难时,可用图解法绘制。
▪ 对于式(9.2-1)xf(x,x),令 x1x、 x2x ,
▪
有 x 2f(x1、 x2),所以 可得 dx2 f (x1、x2)
d d x t2d dx x1 2d d x t1x2d dx x1 2f(x1、 x2)
(9.2-5)
▪
dx1
x2
式(9.2-5)是关于
y
-b 0
k
x
b
a.
b.
图9.1-4 齿轮传动及其间隙特性
y(x)k[xs g x)n b](|y/kx|b y (x)0、 y(x)C |y/kx|b
▪ 系统中若有间隙特性元件,不仅会使系统的输出产生相位滞后,导致 系统稳定裕量的减小,使动态性能恶化,容易产生自振;而且间隙区 会降低定位精度、增大非系线统性控静制差系统。的分析课件
▪ 由于相平面只能表示 x(t ) 和 x(t ) 两个独立变量,所以相 平面法只能用来研究一、二阶线性或非线性系统。
▪ 2)相轨迹的绘制方法
▪ (1)二阶线性系统的相轨迹 ▪ (2)相轨迹的绘制
非线性控制系统的分析课件
j
[s]
2 1
0
a.
j 1 [s]
0
2
d.
x2
j
x2
1
[s]
x1
0
0
0
稳定 节点
x
(
t
)
和 x (t ) 的一阶微分方程,即二阶非线性
系统的相轨迹方程。
▪
由式(9.2-5),令
dx2 f (x1,x2)
dx1
x2
,即有
▪
f (x1, x2 )
(9.2-6)
非线性控制系统分析教学课件
总结词
详细描述
智能控制
要点一
总结词
智能控制是一种基于人工智能的控制方法,通过模拟人类 的决策和推理过程来实现对系统的优化和控制。
要点二
详细描述
智能控制采用人工智能技术,如专家系统、神经网络、模 糊逻辑等,实现对系统的优化和控制。智能控制具有自学 习、自适应和自组织能力,能够处理复杂的非线性系统和 不确定性问题。
03
状态观测是非线性控制 系统的重要技术,用于 估计系统状态变量的值。
04
通过观测系统的输出信 号,可以估计系统状态 变量的值,用于控制和 观测目的。
CHAPTER
非线性控制系统的分析与设 计
描述函数法
总结词
详细描述
相平面法
总结词 详细描述
反馈线性化方法
总结词 详细描述
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
CHAPTER
非线性控制系统的应用实例
无人机控制系 统
机器人控制系 统
机器人控制系统是另一个重要的非线 性控制系统应用,它涉及到机器人的 运动学、动力学和轨迹规划等方面。
汽车控制系统需要处理各种非线性特性和耦合效应,如发动机的燃烧过 程、底盘的悬挂系统和转向系统等,以确保汽车的安全性、稳定性和舒
适性。
汽车控制系统的设计需要运用非线性控制理论和方法,如状态反馈控制、 鲁棒控制等,以提高汽车的动态性能和燃油经济性。
航天器控制系 统
详细描述
智能控制
要点一
总结词
智能控制是一种基于人工智能的控制方法,通过模拟人类 的决策和推理过程来实现对系统的优化和控制。
要点二
详细描述
智能控制采用人工智能技术,如专家系统、神经网络、模 糊逻辑等,实现对系统的优化和控制。智能控制具有自学 习、自适应和自组织能力,能够处理复杂的非线性系统和 不确定性问题。
03
状态观测是非线性控制 系统的重要技术,用于 估计系统状态变量的值。
04
通过观测系统的输出信 号,可以估计系统状态 变量的值,用于控制和 观测目的。
CHAPTER
非线性控制系统的分析与设 计
描述函数法
总结词
详细描述
相平面法
总结词 详细描述
反馈线性化方法
总结词 详细描述
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
CHAPTER
非线性控制系统的应用实例
无人机控制系 统
机器人控制系 统
机器人控制系统是另一个重要的非线 性控制系统应用,它涉及到机器人的 运动学、动力学和轨迹规划等方面。
汽车控制系统需要处理各种非线性特性和耦合效应,如发动机的燃烧过 程、底盘的悬挂系统和转向系统等,以确保汽车的安全性、稳定性和舒
适性。
汽车控制系统的设计需要运用非线性控制理论和方法,如状态反馈控制、 鲁棒控制等,以提高汽车的动态性能和燃油经济性。
航天器控制系 统
自动控制原理第七章非线性系统ppt课件
7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π
2π
ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn
控制工程基础第九章控制系统非线性问题精品PPT课件
当短倾线倾角为45°时,其斜率k为1, 有
x2
x1
该0式.2表1示x12的曲1 线上的每一点斜率均为1。
如上可做其它斜率的倾线,形成如下图
的斜率分布场。画每根相轨迹时,先找
式中,
n1
2
An
1
ytconstdt
0
2
B n
1
y t sin n td t
0
Yn
A
2 n
B
2 n
n arctan
An Bn
如果非线性环节输出的直流分量等于零, 即 A0 0 ,则
y t A1 cos t B 1 sin t Y1 sin t 1
其描述函数为
x1 x2
x2 0.2x121x2x1
因此
d d 1 2 x x 0 .2 x 1 2 x 2 1 x 2 x 1 0 .2 x 1 2 1 x x 1 2
即
k0.2x12
1x1 x2
所以
x2
x1
0.21x12
k
当短倾线倾角为0°时,其斜率k为0,有
x2 该0式.21表x1 示x12的曲线上的每一点斜率均为0。
X Xoijj 1NNG jG j
9.3 相轨迹法
9.3.1 相轨迹的作图法 9.3.2 奇点 9.3.3 非线性系统的相平面分析
9.3.1 相轨迹的作图法
二阶系统状态空间方程为
dx 1
dt dx 2
dt
f1x1, x2 f2 x1, x2
(1)
将式(1)的两式相除,得 解式(2)可得
(3)自持振荡的相轨迹是封闭曲线。
(4)相轨迹若穿过x轴,必然垂直穿过。
在作相轨迹时,考虑对称性往往能使作图简
第八章 非线性控制系统分析PPT课件
2x(t)sinntd(t)
0
直流分量 n次谐波
Xn (An2Bn2)1/2
narctan(An/Bn)
描述函数的定义
e(t)Asint
x(t)X1sin(t1)
N中(在A基正) =波弦N输分(入A量)下和e,j∠输非N(入A线) 信=性XA号环1 e的节j1复的数B稳1比态Aj输A称1出 为非线性环节的描述函数
N (A )2 M A 1 (m A )2 h1 (A h)2 j2 M A 2(m h 1 )
上节重点内容回顾
描述函数的定义
e(t)Asint
x(t)X1sin(t1)
N中(在A基正) =波弦N输分(入A量)下和e,j∠输非N(入A线) 信=性XA号环1 e的节j1复的数B稳1比态Aj输A称1出 为非线性环节的描述函数
x(t)=Asinωt
死区非线性环节的描述函数
19
典型非线性特性的描述函数
2. 饱和特性的描述函数
x(t)
x(t)
0
π
2π
Kk
a
e(t) 0 ψ
ωt
0
A e x( t )
ψ
π 2π ωt
e(t)Asint
kAsint 0t
ቤተ መጻሕፍቲ ባይዱ
x(t) ka
t,Aa,Asina
kAsint t
N(A )2 k arcsina Aa A1(a A)2 ,Aa
x(t)A 1co stB 1sint X1sin(t1)
A11X021x=(t)cAos12+tdB( 12t) B 11 a1rc0t2gABx(11t)sintd(t)
负倒 描述函数
r e N(A) x G(s)
非线性微分方程及稳定性课件
分叉与混沌
分叉
当非线性微分方程的参数发生变化时, 系统的解可能会发生突然变化,这种现 象称为分叉。分叉是描述系统从有序状 态到混沌状态转变的重要概念。
VS
混沌
混沌是非线性微分方程的一种复杂动态行 为,它表现为对初值敏感依赖、不可预测 性和长期行为的复杂性。混沌现象在自然 界和工程领域中广泛存在,对混沌的研究 有助于深入理解复杂系统的行为和演化。
函数和展开方式。
非线性微分方程的应用
04
物理中的应用
01
振荡现象
非线性微分方程可以描述各种物理系统的振荡现象,如 弹簧振荡器、电磁振荡器等。通过求解非线性微分方程 ,可以了解系统的振动规律和稳定性。
03
02
流体动力学
在流体动力学中,非线性微分方程可以描述湍流、波动 等现象。通过求解这些方程,可以研究流体的运动规律 和稳定性。
经济周期分析
非线性微分方程可以用于分析经济周期的波动和稳定性。通过建立相应的模型,可以研究经济周期的规 律和预测未来的发展趋势。
生物中的应用
生态模型
在生态学中,非线性微分方程可以用于描述种群数量的动态变化 。通过建立相应的模型,可以研究生态系统的稳定性和演化规律
。
神经网络
在神经科学中,非线性微分方程可以用于描述神经元的电信号传 递和神经网络的动态行为。通过求解这些方程,可以了解神经网
络的运行机制和稳定性。
生物分子动力学
在生物分子动力学中,非线性微分方程可以用于描述蛋白质折叠 、DNA分子转录等过程的动态变化。通过求解这些方程,可以了
解生物大分子的结构和功能稳定性。
05 非线性微分方程的展望
理论研究的挑战与机遇
要点一
挑战
自动控制原理第九章非线性控制系统优秀课件
(
x0
,u0
)
u1
f1
u2
u
f2
u2
( x0
,u0
)
线性系统稳定 非线性系统稳定
研究非线性控制理论的意义
对于非线性程度比较严重,且系统工作范围较大的 非线性系统,建立在线性化基础上的分析和设计方 法已经难以得到较为正确的结论,只有采用非线性 系统的分析和设计方法才能解决高质量的控制问题。 为此,必须针对非线性系统的数学模型,采用非线 性控制理论进行研究。
展开的一次近似,高阶
项省略,代入原系统得
:
C
d (H
0 dt
H
)
Q i0
Qi
K
用上述方程减去稳态方 程 :
H0 2
1 (H H0
H
) 0
C
dH 0 dt
Q i0
Байду номын сангаас
K
H0
就求出小偏差的近似线
性方程:
C
dH dt
Qi 2
K H0
H
通常在工作点附近直接 写作
dH
K
C
dt
Qi 2
H H0
H
,
Q
i
但一般V函数构造为线性二次型附加修正项的形式, 真正的非线性方法也是在线性为基础的情况下才得 以实现的
其他非线性研究方法——微分几何控制理论:
• 前面介绍的三种方法对非线性系统的分析与控制 主要是定性的,与线性系统的研究进展比较起来 远远不如,其主要原因就在于没有合适的数学工 具。在线性定常系统中,系统的性质仅取决于由 系统矩阵表示的各种变换形式,但是对于非线性 系统来讲却非常复杂,数学上仅有的可利用结果 只是微分几何中局部变换等并不十分完善的工具。 微分几何控制理论就是在这种情势下,用微分几 何来研究系统的能控性、能观测性等基本特性作 为开始发展起来的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)继电特性
常会使系统产生自持振荡,甚至导致 系统不稳定。
0 y b0sgn x
b b
(ma x a, x 0) (a x ma, x 0)
( x a) (x ma, x 0) (x ma, x 0)
9.1.2 非线性系统的特性
(1)叠加原理不能应用于非线性控制系统
9.1 控制系统的非线性特性
9.1.1 典型的非线性特性
(1)饱和特性
系统存在饱和特性的元件时,
过渡过程时间的增加和稳态误
差的加大
但在某些自动控制系统中饱 和特性能够起到抑制系统振荡 的作用。
y
kx b sgn
x
( x a) ( x a)
在自动调速系统中,常人为 地引入饱和特性,以限制电动 机的最大电流。
对于同一结构和参数的非线性控制系统,在不同的初态下, 运动的最终状态可以完全不同。
(4)自持振荡问题
线性系统只有两种基本的暂态响应模式:收敛和发散。线性 系统的等幅振荡是暂时性的,只要系统中的参数稍有微小的 变化,系统就有临界稳定状态趋于发散或收敛。
在非线性控制系统中,即使没有外加的输入信号,系统自身 产生一个有一定频率和幅值的稳定振荡,称为自持振荡(自 振荡)。自持振荡是非线性控制系统的特有运动模式,它的 振幅和频率由系统本身的特性所决定。
9.1.3非线性控制系统的分析研究方法
(1)描述函数法
(2)相平面法
(3)李雅普诺夫第二法
相平面法是一种时域分析法,它保留非线性特性,而将高阶的 线性部分近似地化为二阶来进行分析。描述函数法是一种频域 分析法,它保留线性部分,而对非线性环节进行谐波线性化分 析。
这些方法都有一定的局限性。如相平面法,是一种图 解法,能给出稳态和暂态性能的全部信息,但只适用 于一、二阶非线性控制系统。描述函数法虽不受阶次 的限制,但只能给出系统的稳定性和自振荡的信息。 尽管如此,它们仍不失为目前分析非线性控制系统有 效方法,故得到广泛应用。
第九章 非线性系统的分析
概述
(1)实际控制系统在某种程度上都具有非线 性,所谓线性系统是在实际系统中,忽略了非 线性因素后的理想模型。
(2)若系统的非线性特性y=f(x) 在工作点附 近能展开台劳级数,忽略变量增量的高次项, 仅取变量增量的一次项,则函数增量与变量增 量之间是线性关系。此时,系统可近似成线性 系统。若y=f(x) 在工作点附近不能展开成台劳 级数,则称 y=f(x) 为本质非线性,这样的系统 只能按非线性系统理论来进行分析。
描述函数法是线性控制系统理论中的频率法在非线 性系统中的推广。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
在非线性控制系统中,如果输入是正弦信号,输出就不一定 是正弦信号,而是一个畸变的波形,它可以分解为正弦波和 无穷多谐波的叠加。
(3)稳定性问题
在线性系统中,系统的稳定性只与系统的结构和参数有关, 而与外作用及初始条件无关。
非线性控制系统的稳定性,不仅取决于系统的结构和参数, 与输入信号的幅值和初始条件有密切关系。
(1)描述函数法
描述函数法又称为谐波线性化法,它是一种基于频 率域工程近似方法。
这种方法用非线性元件输出的基波信号代替在正弦 作用下的非正弦输出,使非线性元件近似于一个线 性元件,从而可以应用乃奎斯特稳定判据对系统的 稳定性进行判别。
应用描述函数法研究非线性控制系统的自持振荡时, 能给出振荡过程的基本特性(如振幅、频率)与系统 参数(如放大系数、时间常数等)的关系,给系统的 初步设计提供一个思考方向。
即几个输入信号作用于非线性控制系统所引起的输出,不再 等于每一个输入信号所引起的输出之总和。
在线性系统中,由于系统的运动特征与输入的幅值、系统的 初始状态无关,故通常是在典型输入函数和零初始条件下进 行研究。
在非线性系统中,由于叠加原理不成立,不能应用上述方法。
(2)对正弦输入信号的响应
在线性控制系统中,当输入是正弦信号时,则输出为同频率 的正弦信号。
(3)滞环特性
k(x sgn y
( y 0)
滞环特性实际上就是 间隙特性,它一般是由 非线性元器件的滞后作 用引起的。 通常情况下,如果控 制系统中包含有滞环非 线性特性不仅降低了系 统的定位精度,增大系 统的稳态误差,而且加 剧了系统的振荡,使系 统的稳定程度下降。
谢谢你的到来
学习并没有结束,希望大家继续努力
Learning Is Not Over. I Hope You Will Continue To Work Hard
演讲人:XXXXXX 时 间:XX年XX月XX日
(2)死区特性
0
( x a)
y k(x a sgn x) ( x a)
1)降低了系统的稳态准确度, 使稳态误差不可能小于死区值。 2) 对系统暂态性能影响的利 弊与系统的结构和参数有关, 如某些系统,由于死区特性的 存在,可以抑制系统的振荡; 而对另一些系统,死区又能导 致系统产生自振荡。 3) 死区能滤去从输入引入的 小幅值干扰信号,提高系统抗 干扰能力。 4) 由于死区存在有时会引起 系统在输出端的滞后。