机械工程控制基础知识点整合
机械工程控制基础
机械工程控制基础一、控制基础概述控制是指对一种现象或过程进行指定的调节或管理。
在机械工程中,控制是指通过对机械系统中的运动、力学等参数进行监测和调节,以满足特定的工作要求。
机械工程中的控制可以分为开环控制和闭环控制两种。
开环控制是指在控制过程中没有对系统输出进行反馈存储的控制方法,也就是说,输出信号与输入信号之间不存在反馈关系。
这种控制方法不适合对系统精度和稳定性要求较高的场合。
而闭环控制则是在系统输出信号与输入信号之间进行反馈控制,以提高系统的精度和稳定性,使系统能够更好地满足要求。
## 二、控制基础理论控制基础理论主要包括控制对象、控制流程、控制算法、控制器等方面。
其中控制对象是进行控制的主要对象,其性能决定了整个控制系统的性能。
控制流程是指对控制对象进行控制的具体过程。
控制算法是指根据控制流程,运用特定的算法对控制对象进行实时调节,以达到控制要求的方法。
另外,控制器是指控制系统的核心部件,其主要功能是对输入信号进行处理和调节,以使输出信号满足要求。
在机械工程中,常见的控制器有比例控制器、积分控制器和微分控制器等。
三、控制技术的应用控制技术在机械工程中的应用较为广泛,主要应用于机床、起重设备、自动化生产线、机器人等领域。
在机床中,常用的控制技术有数控技术和伺服控制技术。
在起重设备中,常用的控制技术有电控制技术和液压伺服控制技术。
在自动化生产线中,常用的控制技术有PLC控制技术和DCS控制技术。
而在机器人领域,控制技术则是重中之重,常用的技术有轨迹规划控制技术和变形控制技术等。
四、控制工程的发展趋势随着科学技术的不断发展,机械工程控制技术也取得了长足的进步。
现在,智能化、高精度、高速度和高可靠性已成为机械工程控制技术的主要发展方向。
同时,控制工程技术还应紧密地与信息技术、计算机技术、通信技术等相关领域结合,以推动控制工程技术的不断发展。
在未来,随着机器人技术的进一步发展,机器人控制技术也将更加成熟。
最新机械工程控制基础知识点整合资料
第一章绪论1、控制论的中心思想、三要素和研究对象。
中心思想:通过信息的传递、加工处理和反馈来进行控制。
三要素:信息、反馈与控制。
研究对象:研究控制系统及其输入、输出三者之间的动态关系。
2、反馈、偏差及反馈控制原理。
反馈:系统的输出信号部分或全部地返回到输入端并共同作用于系统的过程称为反馈。
偏差:输出信号与反馈信号之差。
反馈控制原理:检测偏差,并纠正偏差的原理。
3、反馈控制系统的基本组成。
控制部分:给定环节、比较环节、放大运算环节、执行环节、反馈(测量)环节被控对象基本变量:被控制量、给定量(希望值)、控制量、扰动量(干扰)4、控制系统的分类1)按反馈的情况分类a、开环控制系统:当系统的输出量对系统没有控制作用,即系统没有反馈回路时,该系统称开环控制系统。
特点:结构简单,不存在稳定性问题,抗干扰性能差,控制精度低。
b、闭环控制系统:当系统的输出量对系统有控制作用时,即系统存在反馈回路时,该系统称闭环控制系统。
特点:抗干扰性能强,控制精度高,存在稳定性问题,设计和构建较困难,成本高。
2)按输出的变化规律分类自动调节系统随动系统程序控制系统3)其他分类线性控制系统连续控制系统非线性控制系统离散控制系统5、对控制系统的基本要求1)系统的稳定性:首要条件是指动态过程的振荡倾向和系统能够恢复平衡状态的能力。
2)系统响应的快速性是指当系统输出量与给定的输出量之间产生偏差时,消除这种偏差的能力。
3)系统响应的准确性(静态精度)是指在调整过程结束后输出量与给定的输入量之间的偏差大小。
第二章系统的数学模型1、系统的数学模型:描述系统、输入、输出三者之间动态关系的数学表达式。
时域的数学模型:微分方程;时域描述输入、输出之间的关系。
→单位脉冲响应函数复数域的数学模型:传递函数;复数域描述输入、输出之间的关系。
频域的数学模型:频率特性;频域描述输入、输出之间的关系。
2、线性系统与非线性系统线性系统:可以用线性方程描述的系统。
02240机械工程控制基础
02240机械工程控制基础第一章绪论1.1控制理论的发展简史(了解)1.2机械工程控制论的研究对象1)机械工程控制理论主要是研究机械工程技术为对象的控制论问题。
2)当系统已经确定,且输出已知而输入未知时,要求确定系统的输入以使输出并根据输出来分析和研究该控制系统的性能,此类问题称为系统分析°3)最优控制制:当系统已经确定,且输出已知而输入已施加但未知时,要求识别系统的输入以使输出尽可能满足给定的最佳要求。
4)滤波与预测问题当系统已经确定,且输出已知,输入已施加当未知时,要求识别系统的输入(控制)或输入中的有关信5)当输入与输出已知而系统结构参数未知时,要求确定系统的结构与参数,即建立系统的数学模型,此类问题及系统辨识。
6)当输入与输出已知而系统尚未构建时,要求设计系统使系统在该输入条件下尽可能符合给定的最佳要求,此类问题即最优设计。
1.3控制系统的系统的基本概念1)信息传递是指信息在系统及过程中以某种关系动态地传递的过程。
2)系统是指完成一定任务的一些部件的组合。
3)制制系统是指系统的可变输出能按照要求的参考输入或控制输入进行调节的系统。
4)系统分类:按照控制系统的微分方程进行分类分为线性系统、非线性系统。
按照微分方程系数是否随时间变化分为定常系统和时变系统。
按照控制系统传递信号的性质分类分为连续、离散系统。
按照系统中是否存在反馈将系统分为开环控制、闭环控制系统。
5)对控制系统的基本要求有稳定性、快速性、准确性第二章拉普拉斯变换的数学方法2.3典型时间函数的拉式变换(必须牢记)1)单位阶跃函数为,2)单位脉冲函数为,单位脉冲函数具有以下性质3)单位斜坡函数为,L(t)?第三章系统的数学模型....3.1概述1)数学模型概念在控制系统中为研究系统的动态特性而建立的一种模型。
2)建立数学模型的方法有分析法和实验法。
3)线性系统最重要的特性是叠加原理,具体内容是系统在几个外加作用下所产生的响应等于各个外加作用单独作用下的响应之和。
机械工程控制基础
机械工程控制基础机械工程控制基础是机械工程中非常重要的一部分,涉及到机械工程中各种机器的控制、调整和维护等问题。
机械工程控制基础也包括了机械设计、机械加工和机械维护等方面的知识。
下面将从基础概念、控制系统组成、控制模式和控制环节四个方面来介绍机械工程控制基础。
一、基础概念机械工程控制是通过对机器、设备和系统的控制和调节,使其满足特定的工作要求,保证设备稳定运行,并能对设备的使用进行优化,提高生产效率。
机械工程控制的关键技术是使用电子、仪表和计算机等技术手段,对机械设备和系统进行控制和优化。
二、控制系统组成机械工程控制系统通常由三个部分组成:检测部件、执行部件和控制部件。
1. 检测部件是用来检测控制对象运行状态的传感器和检测器等,如温度传感器、压力传感器、速度检测器等。
2. 执行部件是用来控制控制对象的执行器和驱动器等,如电动机、气缸、伺服电机等。
3. 控制部件则是用来处理检测到的数据,计算出控制指令并送到执行部件,实现对控制对象的控制。
三、控制模式机械工程控制模式通常有三种:开环控制、闭环控制和单自由度控制。
1. 开环控制是一种没有反馈控制的控制方法,控制信号只由输入端产生,不考虑输出端的反馈对控制信号的影响。
开环控制适用于对输出准确性要求不高、对象本身有稳定性和协调性的机械系统。
2. 闭环控制是一种有反馈控制的控制方法,通过检测目标物理量,将实际控制量与给定控制量进行比较,产生偏差,再依照比例、积分、微分控制等方法来调整控制量。
闭环控制适用于对输出准确性要求较高、对象自身性质不稳定、环境变化大或对干扰敏感的机械系统。
3. 单自由度控制是一种对单个目标变量进行控制的控制方式,通过测量系统的某个关键物理量进行控制。
单自由度控制适用于只需要对单个变量进行控制,如升降台、旋转台等。
四、控制环节机械工程控制环节主要有以下几个:1. 检测和传感器:检测和传感器是机械控制中非常重要的一环,它可以实时监测装置的工作情况以及运行时的状态,对于数据的采集、分析和处理等过程起到了很关键的作用。
机械工程控制基础知识总结
()o x ∞时所需的时间4nξω≈当增加系统的型别时,系统的准确性将提高。
当系统采用增加开环传递函数中积分环节的数0]或滞后0]的特性。
正负:正值:逆时针方向;负值:顺时针方向幅频特性()A ω和相频特性()ϕω的总称|()|G j e ω=是将()G s90对数幅频特性曲线:在整个频率范围内是一的直线。
当90的水平线。
ω=时,90对数幅频特性曲线:在整个频率范围内是一直线当90的水平线。
、将系统的传递函数准形式的环节的传递函数(即惯性、一阶微0,00a ;、三阶系统(3)n =稳定的充要条件:0,00a ,120a a 。
、在Routh 表中任意一行的第一个元为零,后各元均不为零或部分不为零:用一个很小的正ε来代替第一列等于零的元,然后计算表的其余各元;、当Routh 表的任意一行中的所有元均为零:用该行的上一行的元构成一个辅助多项式,并用180开始向上。
j-(1,0)180开始向下。
+∞时,在开环对数幅频特性曲线为正值的频率范围内,开环对数180线正穿越与负穿越次数之时,闭环系统稳定;否则不稳定。
g ω,则闭环系统稳定;g ω,则闭环系统不稳定;g ω=,则闭环系统临界稳定;为剪切频率0)时,相频特性180线的相位差值γ。
(ϕω+对于稳定系统,γ必在Bode 180线以上。
:对于稳定系统,自:第三象限。
180线以下。
:对于稳定系统,自:第二象限。
0)时,开环幅频的倒数。
()|H j K ω记0;:对于稳定系统,1。
右侧通过。
:对于稳定系统,K 必在0分贝线以0;:对于稳定系统,1。
左侧通过。
线以上;分贝线以下。
8086汇编指令速查手册一、数据传输指令它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.1. 通用数据传送指令.MOV 传送字或字节.MOVSX 先符号扩展,再传送.MOVZX 先零扩展,再传送.PUSH 把字压入堆栈.POP 把字弹出堆栈.PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.BSWAP 交换32位寄存器里字节的顺序XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )XADD 先交换再累加.( 结果在第一个操作数里 )XLAT 字节查表转换.── BX 指向一张 256 字节的表的起点, AL 为表的索引值(0-255,即0-FFH); 返回 AL 为查表结果. ( [BX+AL]->AL )2. 输入输出端口传送指令.IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器 ) 输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,其范围是 0-65535.3. 目的地址传送指令.LEA 装入有效地址.例: LEA DX,string ;把偏移地址存到DX.LDS 传送目标指针,把指针内容装入DS.例: LDS SI,string ;把段地址:偏移地址存到DS:SI.LES 传送目标指针,把指针内容装入ES.例: LES DI,string ;把段地址:偏移地址存到ES:DI.LFS 传送目标指针,把指针内容装入FS.例: LFS DI,string ;把段地址:偏移地址存到FS:DI.LGS 传送目标指针,把指针内容装入GS.例: LGS DI,string ;把段地址:偏移地址存到GS:DI.LSS 传送目标指针,把指针内容装入SS.例: LSS DI,string ;把段地址:偏移地址存到SS:DI.4. 标志传送指令.LAHF 标志寄存器传送,把标志装入AH.SAHF 标志寄存器传送,把AH内容装入标志寄存器.PUSHF 标志入栈.POPF 标志出栈.PUSHD 32位标志入栈.POPD 32位标志出栈.二、算术运算指令ADD 加法.ADC 带进位加法.INC 加 1.AAA 加法的ASCII码调整.DAA 加法的十进制调整.SUB 减法.SBB 带借位减法.DEC 减 1.NEC 求反(以 0 减之).CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).AAS 减法的ASCII码调整.DAS 减法的十进制调整.MUL 无符号乘法.IMUL 整数乘法.以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算), AAM 乘法的ASCII码调整.DIV 无符号除法.IDIV 整数除法.以上两条,结果回送:商回送AL,余数回送AH, (字节运算);或商回送AX,余数回送DX, (字运算).AAD 除法的ASCII码调整.CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去) 三、逻辑运算指令AND 与运算.OR 或运算.XOR 异或运算.NOT 取反.TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果). SHL 逻辑左移.SAL 算术左移.(=SHL)SHR 逻辑右移.SAR 算术右移.(=SHR)ROL 循环左移.ROR 循环右移.RCL 通过进位的循环左移.RCR 通过进位的循环右移.以上八种移位指令,其移位次数可达255次.移位一次时, 可直接用操作码. 如 SHL AX,1.移位>1次时, 则由寄存器CL给出移位次数.如 MOV CL,04SHL AX,CL四、串指令DS:SI 源串段寄存器 :源串变址.ES:DI 目标串段寄存器:目标串变址.CX 重复次数计数器.AL/AX 扫描值.D标志 0表示重复操作中SI和DI应自动增量; 1表示应自动减量.Z标志用来控制扫描或比较操作的结束.MOVS 串传送.( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. )CMPS 串比较.( CMPSB 比较字符. CMPSW 比较字. )SCAS 串扫描.把AL或AX的内容与目标串作比较,比较结果反映在标志位.LODS 装入串.把源串中的元素(字或字节)逐一装入AL或AX中.( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. )STOS 保存串.是LODS的逆过程.REP 当CX/ECX<>0时重复.REPE/REPZ 当ZF=1或比较结果相等,且CX/ECX<>0时重复.REPNE/REPNZ 当ZF=0或比较结果不相等,且CX/ECX<>0时重复. REPC 当CF=1且CX/ECX<>0时重复.REPNC 当CF=0且CX/ECX<>0时重复.五、程序转移指令1>无条件转移指令 (长转移)JMP 无条件转移指令CALL 过程调用RET/RETF过程返回.2>条件转移指令 (短转移,-128到+127的距离内)( 当且仅当(SF XOR OF)=1时,OP1<OP2 )JA/JNBE 不小于或不等于时转移.JAE/JNB 大于或等于转移.JB/JNAE 小于转移.JBE/JNA 小于或等于转移.以上四条,测试无符号整数运算的结果(标志C和Z).JG/JNLE 大于转移.JGE/JNL 大于或等于转移.JL/JNGE 小于转移.JLE/JNG 小于或等于转移.以上四条,测试带符号整数运算的结果(标志S,O和Z).JE/JZ 等于转移.JNE/JNZ 不等于时转移.JC 有进位时转移.JNC 无进位时转移.JNO 不溢出时转移.JNP/JPO 奇偶性为奇数时转移.JNS 符号位为 "0" 时转移.JO 溢出转移.JP/JPE 奇偶性为偶数时转移.JS 符号位为 "1" 时转移.3>循环控制指令(短转移)LOOP CX不为零时循环.LOOPE/LOOPZ CX不为零且标志Z=1时循环.LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.JCXZ CX为零时转移.JECXZ ECX为零时转移.4>中断指令INT 中断指令INTO 溢出中断IRET 中断返回5>处理器控制指令HLT 处理器暂停, 直到出现中断或复位信号才继续.WAIT 当芯片引线TEST为高电平时使CPU进入等待状态. ESC 转换到外处理器.LOCK 封锁总线.NOP 空操作.STC 置进位标志位.CLC 清进位标志位.CMC 进位标志取反.STD 置方向标志位.CLD 清方向标志位.STI 置中断允许位.CLI 清中断允许位.六、伪指令DW 定义字(2字节).PROC 定义过程.ENDP 过程结束.SEGMENT 定义段.ASSUME 建立段寄存器寻址. ENDS 段结束.END 程序结束.。
机械工程控制基础
机械工程控制基础简介机械工程控制是指对机械设备、系统或过程进行监控和管理的过程。
它涉及到各种控制方法和技术,以确保机械系统的正常运行和性能优化。
本文将介绍机械工程控制的基础知识和常用的控制方法。
1. 控制系统基础控制系统是由传感器、执行器、控制器和反馈回路组成的。
传感器用于检测系统的状态或环境变量,并将其转化为电信号。
执行器根据控制器的指令执行相应的动作。
控制器根据传感器的反馈信号和设定值进行计算和决策,以控制执行器的运动。
反馈回路将执行器的输出信号反馈给控制器,以实现闭环控制。
2. 控制方法2.1 反馈控制反馈控制是一种常用的控制方法,它通过比较系统的实际输出与设定值之间的差异,来调整控制器的输出信号。
反馈控制可以稳定系统并抑制系统的扰动。
2.2 前馈控制前馈控制是指在控制系统中引入一个预测模型,通过预测系统的输出来调整控制器的输出信号。
前馈控制可以提前预测系统的响应,从而更快地抵消外部扰动。
2.3 PID控制PID控制是一种常用的反馈控制方法,它通过比较系统的实际输出与设定值之间的差异,并根据比例、积分和微分三个参数来调整控制器的输出信号。
PID控制可以对系统的静态误差、动态响应和稳定性进行优化。
2.4 模糊控制模糊控制是一种基于模糊逻辑的控制方法,它模拟人的直觉和经验,通过模糊集和模糊规则来描述系统的行为。
模糊控制可以应对非线性、不确定性和模糊性等问题,适用于复杂的控制系统。
2.5 自适应控制自适应控制是一种根据系统的动态变化和参数不确定性来调整控制器的输出信号的方法。
它可以根据系统的反馈信息和模型参数的估计值来自动调整控制器的参数,以适应系统的变化。
3. 控制系统设计控制系统设计是指根据系统的需求和性能指标,选择合适的控制方法和参数,并进行系统模型建立、控制器设计和参数调整的过程。
在控制系统设计中,需要考虑系统的稳定性、鲁棒性、响应速度和控制精度等方面的要求。
4. 控制系统应用机械工程控制广泛应用于各种机械设备和系统中,包括工业生产线、机械加工、自动化生产等。
《机械控制工程基础》考试知识点
《机械控制工程基础》考试知识点需掌握的课程基本内容和具体要求(一)控制系统的基本概念(1)控制的任务,被控制对象、输入量、输出量、扰动量的概念。
(2)开环控制系统、闭环控制系统及反馈的概念。
(3)控制系统的组成、分类、基本环节及对控制系统的基本要求。
(4)三种基本控制方式及特点。
(二)控制系统的数学模型(1)拉氏变换与拉氏反变换的概念,拉氏变换的性质(2) 拉氏变换、与反变换的应用(3)数学模型概念。
简单机、电元件及系统(包括无源和有源电网络)列写微分方程式的方法。
(4) 传递函数的定义、性质,从控制系统的微分方程建立传递函数,求取控制系统开环传递函数、闭环传递函数。
(3)典型环节的传递函数及瞬态(动态)特性。
(4)系统方框图描述及闭环传递函数推导。
系统结构图绘制方法及简化原则,串联、并联、反馈连接时传递函数的求法。
用方框图简化方法求系统的传递函数。
(三)控制系统时域分析(1)时间响应概念(2)—阶系统的瞬态响应与性能指标。
(3)二阶系统的瞬态响应,欠阻尼二阶系统响应的性能指标计算。
(四)控制系统的频域分析(1)频率特性基本概念。
(2)频率特性的表示方法:极坐标图、对数频率特性图。
(3)典型环节(放大、积分、微分、惯性、—阶微分、二阶振荡环节)频率特性,(4)系统开环频率特性曲线(极坐标图、对数频率特性图)绘制方法。
(5) 最小相位系统、非最小相位系统的概念(6) 已知最小相位系统的幅频特性曲线,求传递函数(7) 几个闭环频域性能指标的定义:零频值、谐振频率、谐振峰值、截止频率、截止带宽等,及它们与时域性能指标的定性关系。
(五)控制系统的稳定性分析(1)稳定性的概念,系统闭环稳定的充要条件(2)判别系统闭环稳定性的判据——劳斯稳定判据、Nyquist判据、Bode判据及其应用。
(5)控制系统的相对稳定性:相角裕量、幅值裕量定义及计算方法。
(六)稳态误差分析(1)稳态误差的定义、静态误差系数的定义、误差传递函数的含义(2)稳态误差分析计算——典型输入下的稳态误差、扰动输入下的稳态误差。
机械工程控制基础笔记
目录第一章自动控制系统的基本原理第一节控制系统的工作原理和基本要求第二节控制系统的基本类型第三节典型控制信号第四节控制理论的内容和方法第二章控制系统的数学模型第一节机械系统的数学模型第二节液压系统的数学模型第三节电气系统的数学模型第四节线性控制系统的卷积关系式第三章拉氏变换第一节傅氏变换第二节拉普拉斯变换第三节拉普拉斯变换的基本定理第四节拉普拉斯逆变换第四章传递函数第一节传递函数的概念与性质第二节线性控制系统的典型环节第三节系统框图及其运算第四节多变量系统的传递函数第五章时间响应分析第一节概述第二节单位脉冲输入的时间响应第三节单位阶跃输入的时间响应第四节高阶系统时间响应第六章频率响应分析第一节谐波输入系统的稳态响应第二节频率特性的极坐标图第三节频率特性的对数坐标图第四节由频率特性的实验曲线求系统传递函数第七章控制系统的稳定性第一节稳定性概念第二节劳斯判据第三节乃奎斯特判据第四节对数坐标图的稳定性判据第八章控制系统的偏差第一节控制系统的偏差概念第二节 输入引起的稳态偏差 第三节 输入引起的动态偏差 第九章 控制系统的设计和校正第一节 综述第二节 希望对数幅频特性曲线的绘制 第三节 校正方法与校正环节 第四节 控制系统的增益调整 第五节 控制系统的串联校正 第六节 控制系统的局部反馈校正 第七节 控制系统的顺馈校正第一章 自动控制系统的基本原理定义:在没有人的直接参与下,利用控制器使控制对象的某一物理量准确地按照预期的规律运行。
第一节控制系统的工作原理和基本要求一、 控制系统举例与结构方框图例1. 一个人工控制的恒温箱,希望的炉水温度为100C °, 利用表示函数功能的方块、信号线,画出结构方块图。
图1解:人通过眼睛观察温度计来获得炉内实际温度,通过大脑分析、比较,利用手和锹上煤炭助燃。
煤炭给定的温度100 C手和锹眼睛比较图2例2. 图示为液面高度控制系统原理图。
试画出控制系统方块图和相应的人工操纵的液面控制系统方块图。
机械工程控制基础
机械工程控制基础机械工程控制基础是机械工程专业的一门重要基础课程,主要涉及工程控制的基本概念、基本原理和基本方法。
下面将从几个方面展开,分别介绍机械工程控制基础的相关内容。
一、控制系统的基本概念1. 系统:指由若干元件、设备或部件组成的整体,可以接受人为或自然力的作用,从而完成某种功能。
2. 控制系统:指通过一定的被控对象和调节器的相互作用,将被控对象使之按照某一规定的要求进行运动或工作的系统。
3. 控制对象:指参与控制系统中的被控元件(或被控设备),其能够通过控制信号而改变某些物理量。
4. 调节器:指参与控制系统中的控制元件(或控制设备),其能够根据实际输出与期望输出之差来调整控制信号。
二、控制原理与分类1. 控制原理:指控制对象按照要求运动或工作的基本规律,包括开环控制原理和闭环控制原理两种。
- 开环控制原理:即在没有反馈的情况下实现对控制对象的控制,主要通过事先确定的控制规律对控制对象进行控制。
- 闭环控制原理:即通过对控制对象输出结果与设定值之间的比较,通过反馈作用对控制器进行调整,使得控制对象输出结果接近设定值。
2. 控制分类:按照被控对象的性质和控制方式的不同,可以将控制系统分为连续控制系统和离散控制系统两种。
- 连续控制系统:指控制对象输出结果的变化是连续变化的,如温度控制系统、速度控制系统等。
- 离散控制系统:指控制对象输出结果的变化是离散变化的,如开关控制系统、数字化控制系统等。
三、控制过程与控制常用方法1. 控制过程:包括调节过程和追踪过程两种。
- 调节过程:指通过对被控对象的调整,使其输出结果稳定在设定值附近的过程。
- 追踪过程:指通过对被控对象的调整,使其输出结果能够随着设定值的变化而相应变化的过程。
2. 控制常用方法:包括比例控制、积分控制、微分控制和 PID 控制等几种常用控制方法。
- 比例控制:根据被控对象实际输出结果与设定值的差异,通过调节控制信号使得差异减小的控制方法。
机械工程控制基础知识点
机械工程控制基础知识点●控制论的中心思想:它抓住一切通讯和控制系统所共有的特点,站在一个更概括的理论高度揭示了它们的共同本质,即通过信息的传递、加工处理和反馈来进行控制。
机械工程控制论:是研究机械工程技术为对象的控制论问题。
(研究系统及其输入输出三者的动态关系)。
机械控制工程主要研究并解决的问题:(1)当系统已定,并且输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,即系统分析。
(2)当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控制。
(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,此即●最优设计。
(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识。
(5)当系统已定,输出已知时,以识别输入或输入中得有关信息,此即滤液与预测。
●信息:一切能表达一定含义的信号、密码、情报和消息。
信息传递/转换:是指信息在系统及过程中以某种关系动态地传递。
信息的反馈:是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。
如果反馈回去的讯号(或作用)与原系统的输入讯号(或作用)的方向相反(或相位相差180度)则称之为“负反馈”;如果方向或相位相同,则称之为“正反馈”。
●系统:是指完成一定任务的一些部件的组合。
控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。
开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路的。
闭环系统:系统的输出量对系统有控制作用,或者说,系统中存在反馈的回路。
开环系统与闭环系统的区别:开环系统构造简单,不存在不稳定问题、输出量不用测量,开环系统对系统悟空制作用;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定性,对系统有控制作用。
线性系统:系统的数学模型表达式是线性的系统。
线性的定常系统:用线性常微分方程描述的系统。
机械控制工程基础知识点总结
机械控制工程基础知识点总结一、知识概述《机械控制工程基础》①基本定义:机械控制工程呢,就是研究机械工程技术中的控制原理、方法等东西的学科。
简单说,就是让机械按照咱们想要的方式去工作,好比指挥一个机器人做出各种动作。
②重要程度:在机械学科里超重要啦。
如果机械没有好的控制,就像没了方向盘的汽车,瞎跑乱撞。
机械制造、机器人研发、自动化生产等好多领域都得用它。
③前置知识:需要先懂得一些基本的机械原理,像机械传动那些知识,还有物理里的动力学基础,也就是力和运动的知识。
比如说你想在机械控制中搞清楚一个部件怎么动得稳当,不知道动力学肯定不行。
④应用价值:在现代工业生产里,像汽车生产线自动化控制、数控机床里对刀具的控制,能让产品质量超稳定。
在智能家居里,控制窗帘开合、空调温度啥的也靠这方面的知识。
二、知识体系①知识图谱:它在机械学科里像个联络中心。
跟机械原理、力学、电子电路等知识都有紧密联系,是很多复杂机械系统的思维大脑。
②关联知识:和机械制造关系密切,因为制造出的机械部件要控制得好才能发挥好作用。
还有电气知识,现在机械很多都和电联系在一起,电机的控制就是典型。
③重难点分析:- 掌握难度:理解各种控制系统的原理有点难,像闭环控制、开环控制,概念不太好理解。
- 关键点:掌握不同控制方式的特点和适用场景是关键。
比如说开环控制简单但精度可能低,闭环控制精度高能自动调整不过成本高。
④考点分析:- 在考试中的重要性:蛮重要的,机械相关专业考试经常考。
- 考查方式:会有概念问答,像让你说说闭环控制系统的组成部分;也有计算,比如计算控制系统的传递函数之类的。
三、详细讲解【理论概念类】①概念辨析:- 控制系统:就是对机械的各种动作、性能等进行调节、管理的系统。
就好比训宠物,得让宠物听你的话,控制系统就让机械听指挥。
- 开环控制:简单说就是给个输入,机械就按照预定的程序工作,不管最终结果是不是准确。
就像咱定个闹钟,不管当时是白天黑夜,到点就响,不会看看外边天亮没亮来调整响铃时间。
机械工程控制基础复习资料
机械工程控制基础1. 输入量:给定量称为输入量。
2. 输出量:被控量称为输出量。
3. 反馈:就是指将输出量全部或部分返回到输入端,并与输入量比较。
4. 偏差:比较的结果称为偏差。
5. 十扰:偶然的无法加入人为控制的信号。
它也是一种输入信号,通常对系统的输出产生不利影响。
6. 系统:相互作用的各部分组成的具有一定功能的整体。
7. 系统分类:按反馈情况:开环控制系统和闭环控制系统;按输出量的变化规律:自动调节系统、随动系统和程序控制系统;按信号类型:连续控制系统和离散控制系统;按系统的性质:线性控制系统和非线性控制系统;按参数的变化情况:定常系统和时变系统;按被控量:位移控制系统、温度控制系统和速度控制系统。
8. 机械工程控制论的研究对象:它研究的是机械工程广义系统在一定的外界条件(即输入或激励、十扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程;研究这一系统及其输入、输出三者之间的动态关系一一广义系统的动力学问题。
9. 会分析简单系统的工作原理。
10. 拉普拉斯变换:若一个时间函数?(t),称为原函数,经过下式计算转换为象函数F(s):记为称F(s)为? (t)的Laplace变换其中算子s= b + j 3为复数。
11. 常用的拉氏变换表12. 拉氏变换的主要定理(特别是线性定理、微分定理)(1) 比例定理(很重要,系统微分方程进行拉氏变换常用)输出量不失真、无惯性、快速地跟随输入量,两者成比例关系。
13. 线性系统:系统的数学模型都是线性关系。
14. 线性定常系统:用线性常微分方程描述的系统。
15. 叠加原理:系统在几个外加作用下所产生的响应,等于各个外加作用单独作用的响应之和。
叠加原理有两重含义:均匀性(齐次性)和可叠加性。
叠加原理有两重含义:均匀性(齐次性)和可叠加性。
这个原理是说,多个输入同时作用于线性系统的总响应,等于各个输入单独作用时分别产生的响应之和,且输入增大若十倍时,其输出亦增大同样的倍数。
机械控制工程基础
机械控制工程基础1. 引言机械控制工程是研究机械系统的运动和控制的学科。
它涉及到机械工程、电子工程和自动化控制等多个领域的知识,并且在现代制造业中具有重要的应用价值。
本文将介绍机械控制工程的基础知识和概念,包括机械系统的建模与分析、控制理论与方法以及实际应用等方面。
机械系统的建模是指将机械系统抽象为数学模型,以便进行分析和控制。
常见的机械系统包括旋转系统、平动系统和复杂的组合系统等。
对于旋转系统,可以使用角度、角速度和转矩等参数来描述;对于平动系统,可以使用位移、速度和力等参数来描述。
机械系统的分析可以通过应用牛顿力学、动力学和控制理论等方法来进行。
旋转系统是机械系统中常见的一种形式,例如电机、发动机和风力发电机等。
旋转系统的建模通常使用惯性、阻尼和刚度等参数来描述系统的特性。
旋转系统的分析可以通过应用扭矩方程和旋转动力学方程等方法来进行。
2.2. 平动系统的建模与分析平动系统是机械系统中另一种常见的形式,例如汽车、电梯和运输机械等。
平动系统的建模通常使用质量、阻尼和刚度等参数来描述系统的特性。
平动系统的分析可以通过应用牛顿第二定律和平衡方程等方法来进行。
2.3. 复杂系统的建模与分析复杂系统是由多个旋转系统和平动系统组合而成的系统,例如机器人和生产线等。
复杂系统的建模可以通过将旋转系统和平动系统进行耦合,并考虑其间的相互作用来进行。
复杂系统的分析可以通过应用联立方程和状态空间方法等方法来进行。
3. 控制理论与方法控制理论是机械控制工程中的重要内容,它研究如何设计控制器以稳定和优化机械系统的运动。
控制方法包括经典控制和现代控制两种类型。
3.1. 经典控制经典控制方法是机械控制工程中最早发展的一种控制方法,主要包括比例控制、积分控制和微分控制等。
经典控制方法适用于线性系统和稳定系统,但对于非线性系统和时变系统则效果有限。
3.2. 现代控制现代控制方法是机械控制工程中较新发展的一种控制方法,主要包括状态反馈控制、最优控制和鲁棒控制等。
机械工程控制基础-课件
0, t 0 I (t ) 1 , t 0
1 I (t )e dt s
, t 0 (t )} 0 , t 0
st
• 2 单位脉冲函数
L[ (t )] (t )e dt 1
0
• 3 单位斜坡函数
L[( t )]
t
0
f (t ) g ( )d f (t ) * g (t ) 叫做
of f (t ) and g (t ).
2-5 拉氏逆变换
• 1 拉氏逆变换的三种方法 • (1)查表法 由拉氏变换表直接查出与像函数 F(s)对应的原函数f(t). • (2)留数定理法 利用留数定理计算像函数的 原函数。 • (3) 部分分式法 先把像函数分解为部分分式,
L[ f (t )] F (s)
0
f (t )e st dt, t 0
• 2 拉氏逆变换 • 定义式
s j,
f (t ) 原函数,F (s) 像函数
2-3 典型时间函数的拉氏变换
• 1 单位阶跃函数
L[ I (t )}
st 0
其中, p1 , p 2 , p n 是极点, k1 , k 2 , k n 是待定常数 .则
• 例题2-6 p22
• (2)F(s)有重极点
F (S ) k11 B( S ) a n ( s p1 ) r ( s p r 1 ) ( s p n )
kn k12 k1r k r 1 r r 1 s p1 s p r 1 s pn ( s p1 ) ( s p1 ) 其中, p1 , p 2 , p n 是极点, k11 , k12 , k n 是待定常数 . k11 F ( s )(s p1 ) r k12
机械工程控制基础
机械工程控制基础机械工程控制是现代工程中一个重要的领域,它涵盖了许多关键概念和技术。
本文将介绍机械工程控制的基础知识,包括控制系统的组成、控制器的类型、传感器的作用以及闭环和开环控制等内容。
1. 控制系统的组成机械工程控制系统由多个组件组成,这些组件协同工作来实现所需的控制效果。
主要组件包括传感器、执行器、控制器和反馈环路。
- 传感器:传感器用于检测和测量各种物理量,如温度、压力、速度等。
它们将这些物理量转换为电信号,并将其传送给控制器进行处理。
- 执行器:执行器根据控制器的指令,执行相应的动作。
常见的执行器包括电机、液压缸和阀门等。
- 控制器:控制器是控制系统的核心部分,它接收传感器传来的信号,并根据预设的控制策略,发出指令给执行器。
控制器的选择取决于具体的应用和控制要求,常见的控制器包括PID控制器、PLC和微控制器等。
- 反馈环路:反馈环路用于将执行器的状态信息反馈给控制器,以便进行调节和校正。
反馈可以实现闭环控制,提高系统的稳定性和准确性。
2. 控制器的类型控制器根据其工作原理和应用范围的不同,可分为多种类型。
常见的控制器类型包括模拟控制器、数字控制器和逻辑控制器等。
- 模拟控制器:模拟控制器使用连续模拟信号来进行控制。
它们通常适用于需要连续调节的系统,如温度控制、压力控制等。
- 数字控制器:数字控制器使用数字信号进行控制。
它们通常具有更高的精度和更强的稳定性,在现代工程中得到广泛应用。
数字控制器可以通过编程来实现不同的控制策略,例如PID控制。
- 逻辑控制器:逻辑控制器使用逻辑运算来进行控制。
最常见的逻辑控制器是可编程逻辑控制器(PLC),它们被广泛用于工业自动化领域。
逻辑控制器适用于需要基于逻辑条件进行开关控制的系统。
3. 传感器的作用传感器在机械工程控制中起着至关重要的作用。
它们用于将物理量转换为可测量的电信号,并将其传送给控制器进行处理。
传感器的选择取决于所需测量的物理量和精度要求。
(完整版)机械工程控制基础简答题汇总
控制论两个核心:信息和反馈控制论与机械工程控制关系:机械工程控制论是研究控制论在机械工程中应用的一门技术学科。
控制论发展阶段及特点:第一阶段的自动控制理论,即经典伺服机构理论,成熟于40~50年代。
针对工程技术运用控制论的基本原理建立起来的在复数域(频率域)内以传递函数(频率特性)概念为基础的理论体系,主要数学基础是拉普拉斯变换和傅里叶变换,主要研究单输入—单输出定常系统的分析和设计。
第二阶段的自动控制理论,即形成于20世纪60年代的现代控制理论。
主要以状态空间法为基础建立起来的理论体系,主要针对多输入—多输出(线性或非线性)系统研究其稳定性、可控性、可观测性等系统分析、综合以及最优控制和自适应控制等问题。
第三阶段的自动控制理论,即在20世纪70年代形成的大系统理论,主要针对规模特别庞大的系统,或者特别复杂的系统,采用网络化的电子计算机进行多级递阶控制。
第四阶段的自动控制理论,即始于20世纪70年代的智能控制理论。
使工程系统、社会、管理与经济系统等具有人工智能。
机械工程控制论研究对象:机械工程控制论是研究以机械工程控制技术为对象的控制论问题。
具体的讲,是研究在这一工程领域中广义系统的动力学问题,即研究系统在一定的外界条件(即输入与干扰)作用下,系统从某一初始状态出发,所经历的整个动态过程,也就是研究系统及其输入、输出三者之间的动态关系。
控制系统研究涉及问题分类:1)系统确定,输入已知而输出未知,要求确定系统输出并分析系统性能,此类问题为系统分析。
2)系统确定,输出已知而输入未施加,要求确定输入使输出满足最佳要求,此类问题称为最优控制。
3)系统已确定,输出已知而输入已知但未知时,要求识别系统输入或输入中有关信息,此类问题即滤波与预测。
4)当输入与输出已知而系统结构参数未知时,要求确定系统的结构与参数,即建立系统的数学模型,此类问题即系统辨识。
5)当输入与输出已知而系统尚未构建时,要求设计系统使系统在该输入条件下尽可能符合给定的最佳要求,此类问题即最优设计。
机械工程控制基础知识点总结
机械工程控制基础知识点总结一、概述机械工程控制是指通过各种控制手段,对机械设备进行控制和调节,以达到要求的工作状态。
机械工程控制基础知识点包括电气、电子、自动化等多个学科的内容,涉及到传感器、执行器、控制器等多个方面。
二、传感器传感器是用于将物理量转换为电信号的装置,常用于测量温度、压力、流量等参数。
常见的传感器包括热电偶、压力传感器、流量计等。
在机械工程中,传感器可以用于测量机械设备的运行状态,如温度变化、压力波动等。
三、执行器执行器是指能够将电信号转换为机械运动的装置,常用于控制阀门、泵等设备。
常见的执行器包括电动阀门、液压缸等。
在机械工程中,执行器可以用于调节机械设备的运行状态,如开启或关闭阀门调节流量。
四、控制器控制器是指对传感器和执行器进行控制和调节的装置,可通过编程实现自动化操作。
常见的控制器包括PLC、单片机等。
在机械工程中,控制器可以用于实现对机械设备的自动化控制,如自动调节阀门开度、自动调节泵的流量等。
五、电气电气是机械工程控制中不可或缺的一部分,涉及到电路原理、电器元件等知识点。
在机械工程中,电气可以用于设计和维护各种控制系统。
六、电子电子是指应用于半导体材料和器件的技术和学科,包括集成电路、传感器等内容。
在机械工程中,电子可以用于设计和实现各种控制系统。
七、自动化自动化是指通过各种手段实现对生产过程或其他过程的自动化控制和管理。
在机械工程中,自动化可以用于提高生产效率和质量,并减少人力成本。
八、总结机械工程控制基础知识点包括传感器、执行器、控制器等多个方面,涉及到电气、电子、自动化等多个学科的内容。
了解这些知识点对于设计和维护各种机械设备都具有重要意义。
机械工程控制基础【共81张PPT】精选全文完整版
2、传递函数确定
(1)对实验测得的系统对数幅频曲线进行分段处理。即用斜率 为20dB/dec整数倍的直线段来近似测量到的曲线。
(2)当某处系统对数幅频特性渐近线的斜率发生变化时,此 即为某个环节的转折频率。①当斜率变化+20dB/dec时,可知处 有一个一阶微分环节Ts+1; ②若斜率变化+40dB/dec时,则处 有一个二阶微分环节 (s2/ 2n+2s/n+1) ③ 若斜率变化 20dB/dec时,则处有一个惯性环节1/(Ts+1);③若斜率变化40dB/dec时,则处有一个二阶振荡环节1/ (s2/ 2n+2s/n+1) 。
系统开环的对数幅频特性:
n
L() 20 lg A() 20 lg[ Ai ()]
n
20 lg Ai ()
i 1
i 1 n
Li ()
开环相频特i性1 :
n
() G( j) i ()
由此看出,系统的开环i对1 数幅频特性L(ω)等于各
个串联环节对数幅频特性之和;系ቤተ መጻሕፍቲ ባይዱ的开环相频特
性 等于各个环节相频特性之和。
即用斜率为 20dB/dec整数倍的直线段来近似测量到的曲线。
绘图制4-1系7 统纯开微环分2对环数节幅的频Bo特de性图曲线的一般步骤:
2
(2) 将各环节的对数幅频特性和相频特性曲线分别画于半对数
极坐标图在 时,在实轴上的投影为实频特性 ,在虚轴上的投影为虚频特性
对数相频特性横轴采用对数分度,纵轴为线性分度,单位为度。
曲线。
对数幅频特性的纵轴
为L(ω)=20lgA(ω)采用线 性分度,A(ω)每增加10 倍,L(ω)增加20dB;横坐 标采用对数分度,即横 轴上的ω取对数后为等 分点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1控制论的中心思想、三要素和研究对象。
中心思想:通过信息的传递、加工处理和反馈来进行控制。
三要素:信息、反馈与控制。
研究对象:研究控制系统及其输入、输出三者之间的动态关系。
2、反馈、偏差及反馈控制原理。
反馈:系统的输出信号部分或全部地返回到输入端并共同作用于系统的过程称为反馈。
偏差:输出信号与反馈信号之差。
反馈控制原理:检测偏差,并纠正偏差的原理。
3、反馈控制系统的基本组成。
控制部分:给定环节、比较环节、放大运算环节、执行环节、反馈(测量)环节被控对象基本变量:被控制量、给定量(希望值)、控制量、扰动量(干扰)4、控制系统的分类1 )按反馈的情况分类a、开环控制系统:当系统的输出量对系统没有控制作用,即系统没有反馈回路时,该系统称开环控制系统。
特点:结构简单,不存在稳定性问题,抗干扰性能差,控制精度低。
b、闭环控制系统:当系统的输出量对系统有控制作用时,即系统存在反馈回路时,该系统称闭环控制系统。
特点:抗干扰性能强,控制精度高,存在稳定性问题,设计和构建较困难,成本高。
2)按输出的变化规律分类自动调节系统随动系统程序控制系统3)其他分类线性控制系统连续控制系统非线性控制系统离散控制系统5、对控制系统的基本要求1)系统的稳定性:首要条件是指动态过程的振荡倾向和系统能够恢复平衡状态的能力。
2)系统响应的快速性是指当系统输出量与给定的输出量之间产生偏差时,消除这种偏差的能力。
3 )系统响应的准确性(静态精度)是指在调整过程结束后输出量与给定的输入量之间的偏差大小。
第十章系统的数学模型1、系统的数学模型:描述系统、输入、输出三者之间动态关系的数学表达式。
时域的数学模型:微分方程;时域描述输入、输出之间的关系。
T单位脉冲响应函数复数域的数学模型:传递函数;复数域描述输入、输出之间的关系。
频域的数学模型:频率特性;频域描述输入、输出之间的关系。
2、线性系统与非线性系统线性系统:可以用线性方程描述的系统。
重要特性是具有叠加原理。
3、系统微分方程的列写4、非线性系统的线性化i)y = /G)Ay = kAx2)y = /(wJy二九十耐(旺—血)十咫(冷一兀却1Ay = £AX] + 仏Ax?5、传递函数的概念:1)定义:初始状态为零时,输出的拉式变换与输入的拉氏变换之比。
即G(s) =Y(s)/X(s)2)特点:(a)传递函数反映系统固有特性,与外界无关。
(b)传递函数的量纲取决于输入输出的性质,同性质的物理量无量纲;不同性质的物理量有量纲,为两者的比值。
(c)不同的物理系统可以有相似的传递函数,传递函数不反映系统的真实的物理结构。
(d )传递函数的分母为系统的特征多项式,令分母等于零为系统的特征方程,其解为特征根。
(e)传递函数与单位脉冲响应函数互为拉氏变换与拉氏反变换的关系。
6、基本环节的传递函数1)比例环节:G(s)=K2)惯性环节:= 旦K--增益丁―—时间常数7s + l3)微分环节:G(^)= TSy = y Q+k(x-x.) #1 dx 1f4)积分环节,G(j) =丄Ts5)振荡环节:G&)二-- 一=s2十2£a)n s 4- ty; TP十l^Ts十1 K——增益T二——时间常数叫--固有频率叫歹_斗狙尼比;;6)—阶微分环节:G(J)= 75+ 17)二阶微分环节:G(J)= T2S2+2^TS +18)延时环节:G(J)=e~rs7、系统各环节之间的三种连接方式:串联:nG#)=r[G«)J=1并联:n ^=l反馈:f、G(s)GJ—]土G($)恥)"'-I)8、方框图简化及梅逊公式等效变换法则:变换前后输出与输入之间的关系保持不变。
掌握分支点、相加点相对方框移动法则及同类元素交换法则,切记分支点与相加点不能随便交换。
梅逊公式:前向通道的传递函数之积1+乞[每一反馈回路的开环传递函数I9、系统的传递函数1)开环传递函数:G K(S)=B(S),厶少)2)前向通道传递函数:Gg(s) = Xo($)/E(s)3)反馈传递函数:G『($)= &$)/血($)4)误差传递函数:G e(s)=E(s)/XA S)5)闭环传递函数:乞“)=1±:($)第三章时间响应分析i时间响应及其组成时间响应:系统在激励作用下,系统输出随时间变化关系。
时间响应可分为零状态响应和零输入响应或分为自由响应和强迫响应。
零状态响应:“无输入时的系统初态”为零而仅由输入引起的响应。
零输入响应:“无输入时的系统初态”引起的自由响应。
控制工程所研究的响应往往是零状态响应。
对稳定的线性系统而言,自由响应又叫瞬态响应;强迫响应又叫稳态响应。
瞬态响应:系统从初始状态到最终状态的响应过程稳态响应:系统在时间趋于无穷时,系统的输出状态。
2、典型输入信号1)单位脉冲信号:兀0)=几)尤(5)= 12)单位阶跃信号皿)=1(/)= m3)单位斜波信号4)单位抛物线信号3、一阶系统及其时间响应一阶系统:凡是用一阶线性微分方程描述的系统或传递函数的分母含数学模型:S的最咼幂次为一阶系统的参数:静态:系统增益k动态:时间常数T(T)一阶系统的时间响应:脉冲响应:y(t)=-e~t!T 阶跃响应:%)=曲一严) 斜波响应:y^) = k(t-T + Te-,n}一阶系统阶跃响应曲线为:c(0初始斜率为结论:一阶系统的稳态值取决于系统增益,响应速度取决于时间常数越慢,响应速度跟系统增益无关。
4、二阶系统及其时间响应二阶系统:凡是用二阶线性微分方程描述的或传递函数的分母含数学模型:二阶系统的性能参数有三个:静态:系统增益k动态:阻尼比Z和无阻尼固有频率3 n。
二阶系统的特征根及其在S平面的分布:G(s)二75+1G($)=52 + 2^G)n S +T, T越大,响应速度S的最咼幂次数为2。
特征方程:+特征根:几2二—利土© —I二阶系统在单位阶跃信号下的响应无阻尼状态:等幅振汤曲线,振荡频率为固有频率欠阻尼状态:衰减振汤曲线:振荡频率为有阻尼固有频率临界阻尼状态: 单调上升曲线过阻尼状态:上升曲线5、时间响应的瞬态性能指标瞬态响应性能指标是由二阶系统在欠阻尼状态下的单位阶跃响应曲线上推导出来的。
大家要掌握的有:1)上升时间:响应曲线从原始工作状态起,第一次达到输出稳定值的时间。
2)峰值时间:响应曲线达到第一个峰值所需的时间。
常用百分比值表示为:0 = arctan3)最大超调量二訂/时J100%4)调整时间ts:在响应曲线稳态值附近取土 ' (一般为0.02~0.05 )作为误差带, 出误差带范围所需的时间。
J HE(采用行%的允许误差)或J 超4/(加』(采用臨的允许误差)6、时间响应的稳态性能指标误差:实际输出信号与期望输出信号之差。
偏差:输入信号与反馈信号之差。
£(O = x (.(r)-Z )(r)稳态误差:误差的终值。
€骑=limf(F) =lim 昭 G)稳态偏差:偏差的终值。
两者关系:厂"—厂“小、' 7、稳态误差(偏差)的计算基本公式:lim - lim5£(5)£->呛5->0响应曲线达到并不再超GSs) = G(s)H(s) = k ^1$规定:尸=0丄2…时分别称为0型、I 型、II 型…系统。
v r+i ;v = lim.X©)8、静态误差系数:静态位置误差系数:g = hmG(s)H(s)20静态速度误差系数:Ky =lim£G(s)H(s)■ST O静态加速度误差系数;^=liin^G(.)W)5—>09、典型输入信号引起的稳态误差表4-5不同类型系统的稳态误差表系 统 型 别 許态误養霍数阶趺输入 r (/)= X X0 斜坡愉入 r(t) = A t加速度獅人 小A 严2瓦A 比.=■ % 7 AAff =2 -----0 tl A 1+Kg1gK 00 A_ 丘g LLK 0£结论:输入信号引起的稳态误差与输入信号、 系统的型次、开环增益有关,系统的型次越高,系统可能从有静差系统变为无静差系统;开环增益越大,系统稳态误差越小。
10、扰动信号引起的稳态偏差结论:要减小扰动信号引起的稳态误差,只有在扰动作用点前增大K 值和增设积分环节个数Ni 。
=lim^(Z) = UmsE(s) - limf —>005 —>0-S G 2(S )H(S )第四章频率特性分析1频率响应与频率特性频率响应:线性定常系统对谐波输入的稳态响应。
幅频特性:线性定常系统在简谐信号激励下,其稳态输出信号和输入信号的幅值比,记为A( 3 );相频特性:线性定常系统在简谐信号激励下,其稳态输出信号和输入信号的相位差,记为0 ( 3 );频率特性:幅频特性与相频特性的统称。
即:线性定常系统在简谐信号激励下,其稳态输出信号和输入信号的幅值比、相位差随激励信号频率3变化特性。
记为G(j〔S)=宜(血”回⑹频率特性又称频率响应函数,是激励频率3的函数。
频率特性:在零初始条件下,系统输出y(t)的傅里叶变换丫(3 )与输入x(t)的傅里叶变换X( 3 )之比,即G(购)二架二川型屁)2、频率特性的求取方法:1)微分方程-G(j<o)2)G(S) —- G(j<o)3)h(t)—4)实验法3、频率特性的表示方法:1)代数表示方法G(jco)= 胃"皿=A(a))e jpMG(jco)=Re[G(;(D)J+J Im[G(; ©)] =M(®)+y v(®)其中何//二貝@)一-称为幅频特•性/G(M)F S)---称为相频特性R』G(M)]=iM——称为实频特性Im[G(丿劲卜#(劲——称为虚频特性2)图示法(几何表示方法)Nyquiist 图和Bode 图4、频率特性的特点与作用1 )频率特性、微分方程、传递函数三者之间关系:p=d/dt频率特性是传递函数s=j 3的特例,反映了系统频域内固有特性,是系统单位脉冲响应函数的傅里叶变换,所以频率特性分析就是对单位脉冲响应函数的频谱分析。
2)频率特性是分析系统的稳态响应,以获得系统的稳态特性。
3)根据频率特性可判断系统的稳定性和稳定性储备。
4)通过频率特性可进行参数选择或系统校正,选择系统工作频率范围,或根据系统工作条件,设计具有合适的频率特性的系统。
5、频率特性的极坐标图(Nyquist图)。