机械工程控制基础(复习要点)

合集下载

02240机械工程控制基础

02240机械工程控制基础

02240机械工程控制基础第一章绪论1.1控制理论的发展简史(了解)1.2机械工程控制论的研究对象1)机械工程控制理论主要是研究机械工程技术为对象的控制论问题。

2)当系统已经确定,且输出已知而输入未知时,要求确定系统的输入以使输出并根据输出来分析和研究该控制系统的性能,此类问题称为系统分析°3)最优控制制:当系统已经确定,且输出已知而输入已施加但未知时,要求识别系统的输入以使输出尽可能满足给定的最佳要求。

4)滤波与预测问题当系统已经确定,且输出已知,输入已施加当未知时,要求识别系统的输入(控制)或输入中的有关信5)当输入与输出已知而系统结构参数未知时,要求确定系统的结构与参数,即建立系统的数学模型,此类问题及系统辨识。

6)当输入与输出已知而系统尚未构建时,要求设计系统使系统在该输入条件下尽可能符合给定的最佳要求,此类问题即最优设计。

1.3控制系统的系统的基本概念1)信息传递是指信息在系统及过程中以某种关系动态地传递的过程。

2)系统是指完成一定任务的一些部件的组合。

3)制制系统是指系统的可变输出能按照要求的参考输入或控制输入进行调节的系统。

4)系统分类:按照控制系统的微分方程进行分类分为线性系统、非线性系统。

按照微分方程系数是否随时间变化分为定常系统和时变系统。

按照控制系统传递信号的性质分类分为连续、离散系统。

按照系统中是否存在反馈将系统分为开环控制、闭环控制系统。

5)对控制系统的基本要求有稳定性、快速性、准确性第二章拉普拉斯变换的数学方法2.3典型时间函数的拉式变换(必须牢记)1)单位阶跃函数为,2)单位脉冲函数为,单位脉冲函数具有以下性质3)单位斜坡函数为,L(t)?第三章系统的数学模型....3.1概述1)数学模型概念在控制系统中为研究系统的动态特性而建立的一种模型。

2)建立数学模型的方法有分析法和实验法。

3)线性系统最重要的特性是叠加原理,具体内容是系统在几个外加作用下所产生的响应等于各个外加作用单独作用下的响应之和。

机械工程控制基础

机械工程控制基础

机械工程控制基础机械工程控制基础是机械工程中非常重要的一部分,它涉及到机械工程中的各种控制系统,包括机械控制系统、电气控制系统、液压控制系统、气动控制系统等。

机械工程控制基础是机械工程师必须掌握的基本知识,它对于机械工程的设计、制造、维护和改进都有着重要的作用。

机械控制系统是机械工程中最基本的控制系统之一,它主要是通过机械元件来实现对机械运动的控制。

机械控制系统的主要组成部分包括传动机构、运动控制机构、传感器和执行机构等。

传动机构是机械控制系统中最基本的部分,它主要是通过传动装置来实现机械运动的传递和转换。

运动控制机构是机械控制系统中的核心部分,它主要是通过控制机构来实现机械运动的控制。

传感器是机械控制系统中的重要部分,它主要是通过感应机构来实现机械运动的检测和反馈。

执行机构是机械控制系统中的最终部分,它主要是通过执行机构来实现机械运动的执行。

电气控制系统是机械工程中另一个重要的控制系统,它主要是通过电气元件来实现对机械运动的控制。

电气控制系统的主要组成部分包括电源、控制器、执行机构和传感器等。

电源是电气控制系统中最基本的部分,它主要是通过电源来提供电能。

控制器是电气控制系统中的核心部分,它主要是通过控制器来实现电气信号的控制。

执行机构是电气控制系统中的最终部分,它主要是通过执行机构来实现电气信号的执行。

传感器是电气控制系统中的重要部分,它主要是通过感应机构来实现电气信号的检测和反馈。

液压控制系统是机械工程中另一个重要的控制系统,它主要是通过液压元件来实现对机械运动的控制。

液压控制系统的主要组成部分包括液压泵、液压阀、执行机构和传感器等。

液压泵是液压控制系统中最基本的部分,它主要是通过液压泵来提供液压能。

液压阀是液压控制系统中的核心部分,它主要是通过液压阀来实现液压信号的控制。

执行机构是液压控制系统中的最终部分,它主要是通过执行机构来实现液压信号的执行。

传感器是液压控制系统中的重要部分,它主要是通过感应机构来实现液压信号的检测和反馈。

机械工程控制基础知识总结

机械工程控制基础知识总结

()o x ∞时所需的时间4nξω≈当增加系统的型别时,系统的准确性将提高。

当系统采用增加开环传递函数中积分环节的数0]或滞后0]的特性。

正负:正值:逆时针方向;负值:顺时针方向幅频特性()A ω和相频特性()ϕω的总称|()|G j e ω=是将()G s90对数幅频特性曲线:在整个频率范围内是一的直线。

当90的水平线。

ω=时,90对数幅频特性曲线:在整个频率范围内是一直线当90的水平线。

、将系统的传递函数准形式的环节的传递函数(即惯性、一阶微0,00a ;、三阶系统(3)n =稳定的充要条件:0,00a ,120a a 。

、在Routh 表中任意一行的第一个元为零,后各元均不为零或部分不为零:用一个很小的正ε来代替第一列等于零的元,然后计算表的其余各元;、当Routh 表的任意一行中的所有元均为零:用该行的上一行的元构成一个辅助多项式,并用180开始向上。

j-(1,0)180开始向下。

+∞时,在开环对数幅频特性曲线为正值的频率范围内,开环对数180线正穿越与负穿越次数之时,闭环系统稳定;否则不稳定。

g ω,则闭环系统稳定;g ω,则闭环系统不稳定;g ω=,则闭环系统临界稳定;为剪切频率0)时,相频特性180线的相位差值γ。

(ϕω+对于稳定系统,γ必在Bode 180线以上。

:对于稳定系统,自:第三象限。

180线以下。

:对于稳定系统,自:第二象限。

0)时,开环幅频的倒数。

()|H j K ω记0;:对于稳定系统,1。

右侧通过。

:对于稳定系统,K 必在0分贝线以0;:对于稳定系统,1。

左侧通过。

线以上;分贝线以下。

8086汇编指令速查手册一、数据传输指令它们在存贮器和寄存器、寄存器和输入输出端口之间传送数据.1. 通用数据传送指令.MOV 传送字或字节.MOVSX 先符号扩展,再传送.MOVZX 先零扩展,再传送.PUSH 把字压入堆栈.POP 把字弹出堆栈.PUSHA 把AX,CX,DX,BX,SP,BP,SI,DI依次压入堆栈.POPA 把DI,SI,BP,SP,BX,DX,CX,AX依次弹出堆栈.PUSHAD 把EAX,ECX,EDX,EBX,ESP,EBP,ESI,EDI依次压入堆栈.POPAD 把EDI,ESI,EBP,ESP,EBX,EDX,ECX,EAX依次弹出堆栈.BSWAP 交换32位寄存器里字节的顺序XCHG 交换字或字节.( 至少有一个操作数为寄存器,段寄存器不可作为操作数)CMPXCHG 比较并交换操作数.( 第二个操作数必须为累加器AL/AX/EAX )XADD 先交换再累加.( 结果在第一个操作数里 )XLAT 字节查表转换.── BX 指向一张 256 字节的表的起点, AL 为表的索引值(0-255,即0-FFH); 返回 AL 为查表结果. ( [BX+AL]->AL )2. 输入输出端口传送指令.IN I/O端口输入. ( 语法: IN 累加器, {端口号│DX} )OUT I/O端口输出. ( 语法: OUT {端口号│DX},累加器 ) 输入输出端口由立即方式指定时, 其范围是 0-255; 由寄存器 DX 指定时,其范围是 0-65535.3. 目的地址传送指令.LEA 装入有效地址.例: LEA DX,string ;把偏移地址存到DX.LDS 传送目标指针,把指针内容装入DS.例: LDS SI,string ;把段地址:偏移地址存到DS:SI.LES 传送目标指针,把指针内容装入ES.例: LES DI,string ;把段地址:偏移地址存到ES:DI.LFS 传送目标指针,把指针内容装入FS.例: LFS DI,string ;把段地址:偏移地址存到FS:DI.LGS 传送目标指针,把指针内容装入GS.例: LGS DI,string ;把段地址:偏移地址存到GS:DI.LSS 传送目标指针,把指针内容装入SS.例: LSS DI,string ;把段地址:偏移地址存到SS:DI.4. 标志传送指令.LAHF 标志寄存器传送,把标志装入AH.SAHF 标志寄存器传送,把AH内容装入标志寄存器.PUSHF 标志入栈.POPF 标志出栈.PUSHD 32位标志入栈.POPD 32位标志出栈.二、算术运算指令ADD 加法.ADC 带进位加法.INC 加 1.AAA 加法的ASCII码调整.DAA 加法的十进制调整.SUB 减法.SBB 带借位减法.DEC 减 1.NEC 求反(以 0 减之).CMP 比较.(两操作数作减法,仅修改标志位,不回送结果).AAS 减法的ASCII码调整.DAS 减法的十进制调整.MUL 无符号乘法.IMUL 整数乘法.以上两条,结果回送AH和AL(字节运算),或DX和AX(字运算), AAM 乘法的ASCII码调整.DIV 无符号除法.IDIV 整数除法.以上两条,结果回送:商回送AL,余数回送AH, (字节运算);或商回送AX,余数回送DX, (字运算).AAD 除法的ASCII码调整.CBW 字节转换为字. (把AL中字节的符号扩展到AH中去)CWD 字转换为双字. (把AX中的字的符号扩展到DX中去)CWDE 字转换为双字. (把AX中的字符号扩展到EAX中去)CDQ 双字扩展. (把EAX中的字的符号扩展到EDX中去) 三、逻辑运算指令AND 与运算.OR 或运算.XOR 异或运算.NOT 取反.TEST 测试.(两操作数作与运算,仅修改标志位,不回送结果). SHL 逻辑左移.SAL 算术左移.(=SHL)SHR 逻辑右移.SAR 算术右移.(=SHR)ROL 循环左移.ROR 循环右移.RCL 通过进位的循环左移.RCR 通过进位的循环右移.以上八种移位指令,其移位次数可达255次.移位一次时, 可直接用操作码. 如 SHL AX,1.移位>1次时, 则由寄存器CL给出移位次数.如 MOV CL,04SHL AX,CL四、串指令DS:SI 源串段寄存器 :源串变址.ES:DI 目标串段寄存器:目标串变址.CX 重复次数计数器.AL/AX 扫描值.D标志 0表示重复操作中SI和DI应自动增量; 1表示应自动减量.Z标志用来控制扫描或比较操作的结束.MOVS 串传送.( MOVSB 传送字符. MOVSW 传送字. MOVSD 传送双字. )CMPS 串比较.( CMPSB 比较字符. CMPSW 比较字. )SCAS 串扫描.把AL或AX的内容与目标串作比较,比较结果反映在标志位.LODS 装入串.把源串中的元素(字或字节)逐一装入AL或AX中.( LODSB 传送字符. LODSW 传送字. LODSD 传送双字. )STOS 保存串.是LODS的逆过程.REP 当CX/ECX<>0时重复.REPE/REPZ 当ZF=1或比较结果相等,且CX/ECX<>0时重复.REPNE/REPNZ 当ZF=0或比较结果不相等,且CX/ECX<>0时重复. REPC 当CF=1且CX/ECX<>0时重复.REPNC 当CF=0且CX/ECX<>0时重复.五、程序转移指令1>无条件转移指令 (长转移)JMP 无条件转移指令CALL 过程调用RET/RETF过程返回.2>条件转移指令 (短转移,-128到+127的距离内)( 当且仅当(SF XOR OF)=1时,OP1<OP2 )JA/JNBE 不小于或不等于时转移.JAE/JNB 大于或等于转移.JB/JNAE 小于转移.JBE/JNA 小于或等于转移.以上四条,测试无符号整数运算的结果(标志C和Z).JG/JNLE 大于转移.JGE/JNL 大于或等于转移.JL/JNGE 小于转移.JLE/JNG 小于或等于转移.以上四条,测试带符号整数运算的结果(标志S,O和Z).JE/JZ 等于转移.JNE/JNZ 不等于时转移.JC 有进位时转移.JNC 无进位时转移.JNO 不溢出时转移.JNP/JPO 奇偶性为奇数时转移.JNS 符号位为 "0" 时转移.JO 溢出转移.JP/JPE 奇偶性为偶数时转移.JS 符号位为 "1" 时转移.3>循环控制指令(短转移)LOOP CX不为零时循环.LOOPE/LOOPZ CX不为零且标志Z=1时循环.LOOPNE/LOOPNZ CX不为零且标志Z=0时循环.JCXZ CX为零时转移.JECXZ ECX为零时转移.4>中断指令INT 中断指令INTO 溢出中断IRET 中断返回5>处理器控制指令HLT 处理器暂停, 直到出现中断或复位信号才继续.WAIT 当芯片引线TEST为高电平时使CPU进入等待状态. ESC 转换到外处理器.LOCK 封锁总线.NOP 空操作.STC 置进位标志位.CLC 清进位标志位.CMC 进位标志取反.STD 置方向标志位.CLD 清方向标志位.STI 置中断允许位.CLI 清中断允许位.六、伪指令DW 定义字(2字节).PROC 定义过程.ENDP 过程结束.SEGMENT 定义段.ASSUME 建立段寄存器寻址. ENDS 段结束.END 程序结束.。

机械工程控制基础复习

机械工程控制基础复习

机械工程控制基础复习引言机械工程控制是机械工程学科中的核心内容之一,它涉及到机械系统的运动学、动力学以及对机械系统的控制。

掌握机械工程控制的基础知识对于机械工程师来说非常重要,因此本文将对机械工程控制的基础知识进行复习和总结。

机械系统的运动学机械系统的运动学研究的是机械系统的运动过程,其中包括位置、速度和加速度等参数的描述与计算。

机械系统的运动学一般分为直线运动和旋转运动两种。

直线运动对于直线运动,我们主要关注以下几个概念:•位移:表示物体从初始位置到某一位置的变化量,通常用符号Δs表示。

•速度:表示单位时间内位移的变化量,通常用符号v表示。

•加速度:表示单位时间内速度的变化量,通常用符号a表示。

直线运动中,位移与速度、加速度之间的关系可以用如下公式表示:Δs = v * Δtv = a * Δt其中,Δt表示时间的变化量。

旋转运动对于旋转运动,我们主要关注以下几个概念:•角位移:表示物体从初始角度到某一角度的变化量,通常用符号Δθ表示。

•角速度:表示单位时间内角位移的变化量,通常用符号ω表示。

•角加速度:表示单位时间内角速度的变化量,通常用符号α表示。

旋转运动中,角位移与角速度、角加速度之间的关系可以用如下公式表示:Δθ = ω * Δtω = α * Δt机械系统的动力学机械系统的动力学研究的是机械系统的运动过程中的力学关系。

机械系统的动力学一般分为直线运动的动力学和旋转运动的动力学两种。

直线运动的动力学对于直线运动,我们常用的动力学公式有:•牛顿第二定律:F = m * a其中,F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。

•质量与惯性力:F = m * g其中,g表示重力加速度。

旋转运动的动力学对于旋转运动,我们常用的动力学公式有:•牛顿第二定律:τ = I * α其中,τ表示物体所受的合力矩,I表示物体的转动惯量,α表示物体的角加速度。

机械系统的控制机械系统的控制是指通过对机械系统施加适当的力或力矩,使得机械系统按照预定的要求进行运动。

华北理工大学《机械控制工程基础》参考复习题及答案

华北理工大学《机械控制工程基础》参考复习题及答案

《机械控制工程基础》参考复习题及习题解答第一部分单项选择题1.闭环控制系统的主反馈取自【】A.给定输入端B.干扰输入端C.控制器输出端D.系统输出端2.不同属性的物理系统可以有形式相同的【】A.数学模型B.被控对象C.被控参量D.结构参数3.闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的误差信号为【】A.Xi(s)-H(s)X0(s)B.Xi(s)-X0(s)C.Xor(s)-X0(s)D.Xor(s)-H(s)X0(s)3-1闭环控制系统的开环传递函数为G(s)H(s),其中H(s)是反馈传递函数,则系统的偏差信号为【】A.Xi(s)-H(s)X0(s)B.Xi(s)-X0(s)C.Xor(s)-X0(s)D.Xor(s)-H(s)X0(s)4.微分环节使系统【】A.输出提前B.输出滞后C.输出大于输入D.输出小于输入5.当输入量发生突变时,惯性环节的输出量不能突变,只能按【】A.正弦曲线变化B.指数曲线变化C.斜坡曲线变化D.加速度曲线变化7.闭环系统前向传递函数是【】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.输出信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与输出信号的拉氏变换之比8.一阶系统的时间常数为T ,其脉冲响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-1.一阶系统的时间常数为T ,其单位阶跃响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-2.一阶系统的时间常数为T ,其单位斜坡响应为【 】 A.T t e --1 B.T t Te T t -+- C.T t e T-1 D.T t Te T -+ 8-3.一阶系统的时间常数为T ,其单位阶跃响应的稳态误差为【 】A.0B.TC.1TD.T t Te T -+ 8-4.一阶系统的时间常数为T ,其单位斜坡响应的稳态误差为【 】A.0B.TC.1TD.T t Te T -+ 9.过阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线10.干扰作用下,偏离原来平衡状态的稳定系统在干扰作用消失后【 】A.将发散离开原来的平衡状态B.将衰减收敛回原来的平衡状态C.将在原平衡状态处等幅振荡D.将在偏离平衡状态处永远振荡11.单位脉冲函数的拉普拉斯变换是【 】A.1/sB.1C. 21sD.1+1/s12.线性控制系统的频率响应是系统对输入【 】A.阶跃信号的稳态响应B.脉冲信号的稳态响应C.斜坡信号的稳态响应D.正弦信号的稳态响应13.积分环节的输出比输入滞后【 】A.090-B.090C.0180-D.018014.奈魁斯特围线中所包围系统开环传递函数)(s G 的极点数为3个,系统闭环传递函数的极点数为2个,则映射到)(s G 复平面上的奈魁斯特曲线将【 】A.逆时针围绕点(0,j0)1圈B.顺时针围绕点(0,j0)1圈C.逆时针围绕点(-1,j0)1圈D.顺时针围绕点(-1,j0)1圈15.最小相位系统稳定的条件是【 】A.γ>0和g L <0B.γ<0和g K >1C.γ>0和)(g L ω<0D.γ<0和)(g L ω>016.若惯性环节的时间常数为T ,则将使系统的相位【 】A.滞后1tan ()T ω-B.滞后1tan ω--C.超前1tan ()T ω-D.超前1tan ω--17.控制系统的误差是【 】A.期望输出与实际输出之差B.给定输入与实际输出之差C.瞬态输出与稳态输出之差D.扰动输入与实际输出之差18.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【】 A.)(s F 的零点就是系统闭环零点 B.)(s F 的零点就是系统开环极点C.)(s F 的极点就是系统开环极点D.)(s F 的极点就是系统闭环极点1.D2.A3.A4.A5.B6.A7.C8.C9.B 10.B 11.B 12.D 13.B14.C 15.C 16.A 17.A 18.C19.要使自动调速系统实现无静差,则在扰动量作用点的前向通路中应含有【 】A.微分环节B.积分环节C.惯性环节D.比例环节20.积分器的作用是直到输入信号消失为止,其输出量将【 】A.直线上升B.垂直上升C.指数线上升D.保持水平线不变21.自动控制系统的控制调节过程是以偏差消除【 】A.偏差的过程B.输入量的过程C.干扰量的过程D.稳态量的过程22.系统输入输出关系为i o o o x x x x cos =++,则该系统为【 】 A.线性系统 B.非线性系统 C.线性时变系统 D.线性定常系统23.线性定常二阶系统的输出量与输入量之间的关系是【 】A.振荡衰减关系B.比例线性关系C.指数上升关系D.等幅振荡关系24. 微分环节可改善系统的稳定性并能【 】A.增加其固有频率B.减小其固有频率C.增加其阻尼D.减小其阻尼25.用终值定理可求得)8)(5(4)(++=s s s s F 的原函数f(s)的稳态值为【 】 A.∞ B.4 C.0.1 D.026.可以用叠加原理的系统是【 】A.开环控制系统B.闭环控制系统C.离散控制系统D.线性控制系统27.惯性环节含有贮能元件数为【 】A.2B.1C.0D.不确定28.一阶系统的单位阶跃响应在t =0处的斜率越大,系统的【 】A.响应速度越快B.响应速度越慢C.响应速度不变D.响应速度趋于零29.临界阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.单调上升曲线D.等幅衰减曲线30.欠阻尼二阶系统的输出信号振幅的衰减速度取决于【 】A.n ξωB.ξωC.g ξωD.c ξω31.单位加速度信号的拉氏变换为【 】A. 1B.s 1C.21sD.31s32.线性系统的输入信号为t t x i ωsin )(=,则其输出信号响应频率为【 】A.ωB.n ωC.ωjD.n j ω33.微分环节的输出比输入超前【 】A.090-B.090C.0180-D.018034.若闭环系统的特征式与开环传递函数的关系为)()(1)(s H s G s F +=,则【 】A.)(s F 的极点就是系统开环零点B.)(s F 的零点就是系统开环极点C.)(s F 的零点就是系统闭环极点D.)(s F 的极点就是系统闭环极点35.系统开环传递函数为)11.0()14.0()(2++=s s s K s G 不用计算或作图,凭思考就能判断该闭环系统的稳定状况是【 】A.稳定B.不稳定C.稳定边界D.取决于K 的大小36.为了保证系统有足够的稳定裕量,在设计自动控制系统时应使穿越频率附近)(ωL 的斜率为【 】A.-40 dB/decB.-20 dB/decC.+40 dB/decD.+20 dB/dec37.线性定常系统的偏差信号就是误差信号的条件为【 】A.反馈传递函数H(s)=1B.反馈信号B(s)=1C.开环传递函数G(s) H(s)=1D.前向传递函数G(s)=138.降低系统的增益将使系统的【】A.稳定性变差B.稳态精度变差C.超调量增大D.稳态精度变好39.含有扰动顺馈补偿的复合控制系统可以显著减小【】A.超调量B.开环增益C.扰动误差D.累计误差40.PID调节器的微分部分可以【】A.改善系统的稳定性B.调节系统的增益C.消除系统的稳态误差D.减小系统的阻尼比41.一般情况下开环控制系统是【】A.不稳定系统B.稳定系统C.时域系统D.频域系统42.求线性定常系统的传递函数条件是【】A.稳定条件B.稳态条件C.零初始条件D.瞬态条件43.单位负反馈系统的开环传递函数为G(s),则其闭环系统的前向传递函数与【】A.反馈传递函数相同B.闭环传递函数相同C.开环传递函数相同D.误差传递函数相同44.微分环节是高通滤波器,将使系统【】A.增大干扰误差B.减小干扰误差C.增大阶跃输入误差D.减小阶跃输入误差45.控制框图的等效变换原则是变换前后的【】A.输入量和反馈量保持不变B.输出量和反馈量保持不变C.输入量和干扰量保持不变D.输入量和输出量保持不变46.对于一个确定的系统,它的输入输出传递函数是【 】A.唯一的B.不唯一的C.决定于输入信号的形式D.决定于具体的分析方法47.衡量惯性环节惯性大小的参数是【 】A.固有频率B.阻尼比C.时间常数D.增益系数48.三个一阶系统的时间常数关系为T2<T1<T3,则【 】A.T2系统响应快于T3系统B.T1系统响应快于T2系统C.T2系统响应慢于T1系统D.三个系统响应速度相等49.闭环控制系统的时域性能指标是【 】A.相位裕量B.输入信号频率C.最大超调量D.系统带宽50.输入阶跃信号稳定的系统在输入脉冲信号时【 】A .将变成不稳定系统 B.其稳定性变好 C.其稳定性不变 D.其稳定性变差51.二阶欠阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线52.单位斜坡信号的拉氏变换为【 】A.1B.s 1C.21sD.31s53.线性控制系统【 】A.一定是稳定系统B.是满足叠加原理的系统C.是稳态误差为零的系统D.是不满足叠加原理的系统54.延迟环节Ts e s G -=)(的幅频特性为【 】A.)(ωA =1B.)(ωA =0C.)(ωA <1D.)(ωA >155.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的【 】A.闭环极点数B.闭环零点数C.开环极点数D.开环零点数56.频率响应是系统对不同频率正弦输入信号的【 】A.脉冲响应B.阶跃响应C.瞬态响应D.稳态响应57.传递函数的零点和极点均在复平面的左侧的系统为【 】A.非最小相位系统B.最小相位系统C.无差系统D.有差系统58.零型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 59.降低系统的增益将使系统的【 】A.稳定性变差B.快速性变差C.超调量增大D.稳态精度变好60.把系统从一个稳态过渡到新的稳态的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差61.闭环控制系统除具有开环控制系统所有的环节外,还必须有【 】A.给定环节B.比较环节C.放大环节D.执行环节62.同一系统由于研究目的的不同,可有不同的【 】A.稳定性B.传递函数C.谐波函数D.脉冲函数63.以同等精度元件组成的开环系统和闭环系统其精度比较为【 】A.开环高B.闭环高C.相差不多D.一样高64.积分环节的积分时间常数为T ,其脉冲响应为【 】A.1B.1/TC.TD.1+1/T65.串联环节的对数频率特性为各串联环节的对数频率特性的【 】A.叠加B.相乘C.相除D.相减66.非线性系统的最主要特性是【 】A.能应用叠加原理B.不能应用叠加原理C.能线性化D.不能线性化67.理想微分环节的输出量正比于【 】A.反馈量的微分B.输入量的微分C.反馈量D.输入量68.若二阶系统的阻尼比和固有频率分别为ξ和n ω,则其共轭复数极点的实部为【 】A.n ξωB.n ξω-C.d ξω-D.d ξω69.控制系统的时域稳态响应是时间【 】A.等于零的初值B.趋于零的终值C.变化的过程值D.趋于无穷大时的终值70.一阶系统的时间常数T 越小,系统跟踪斜坡信号的【 】A.稳定性越好B.稳定性越差C.稳态性越好D.稳态性越差71.二阶临界阻尼系统的阶跃响应为【 】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线72.线性系统的输入信号为t A t x i ωsin )(=,则其稳态输出响应相位【 】A.等于输入信号相位B.一般为输入信号频率ω的函数C.大于输入信号相位D.小于输入信号相位73.延迟环节Ts e s G -=)(的相频特性为【 】A.T ωωϕ1tan )(--=B.T ωωϕ1tan )(-=C. T ωωϕ=)(D. T ωωϕ-=)(74.Ⅱ型系统的开环传递函数在虚轴上从右侧环绕其极点的无穷小圆弧线所对应的开环极坐标曲线是半径为无穷大,且按顺时针方向旋转【 】A.π2的圆弧线B.πv 的圆弧线C.-π2的圆弧线D.π的圆弧线75.闭环系统稳定的充要条件是系统开环对数幅频特性过零时,对应的相频特性【 】A. 180)(-<c ωϕB. 180)(->c ωϕC. 180)(>c ωϕ 180)(<c ωϕ76.对于二阶系统,加大增益将使系统的【 】A.稳态性变差B.稳定性变差C.瞬态性变差D.快速性变差77.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 78.控制系统含有的积分个数多,开环放大倍数大,则系统的【 】A.稳态性能愈好B.动态性能愈好C.稳定性愈好D.稳态性能愈差79.控制系统的稳态误差主要取决于系统中的【 】A.微分和比例环节B.惯性和比例环节C.比例和积分环节D.比例和延时环节80.比例积分微分(PID)校正对应【 】A.相位不变 B .相位超前校正 C .相位滞后校正 D .相位滞后超前校正81.闭环控制系统必须通过【 】A.输入量前馈参与控制B.干扰量前馈参与控制C.输出量反馈到输入端参与控制D.输出量局部反馈参与控制82.不同属性的物理系统可以有形式相同的【】A.传递函数B.反函数C.正弦函数D.余弦函数83.输出信号对控制作用有影响的系统为【】A.开环系统B.闭环系统C.局部反馈系统D.稳定系统84.比例环节能立即地响应【】A.输出量的变化B.输入量的变化C.误差量的变化D.反馈量的变化85.满足叠加原理的系统是【】A.定常系统B.非定常系统C.线性系统D.非线性系统86.弹簧-质量-阻尼系统的阻尼力与两相对运动构件的【】A.相对位移成正比B.相对速度成正比C.相对加速度成正比D.相对作用力成正比87.当系统极点落在复平面S的虚轴上时,其系统【】A.阻尼比为0B.阻尼比大于0C.阻尼比小于1大于0D.阻尼比小于088.控制系统的最大超调量【】A.只与阻尼比有关B.只与固有频率有关C.与阻尼比和固有频率都有关D.与阻尼比和固有频率都无关89.过阻尼的二阶系统与临界阻尼的二阶系统比较,其响应速度【】A.过阻尼的小于临界阻尼的B.过阻尼的大于临界阻尼的C.过阻尼的等于临界阻尼的D.过阻尼的反比于临界阻尼的90.二阶过阻尼系统的阶跃响应为【】A.单调衰减曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线91.一阶系统在时间为T 时刻的单位阶跃响应为【 】A. 1B. 0.98C. 0.95D. 0.63292.线性系统的输出信号完全能复现输入信号时,其幅频特性【 】A.)(ωA ≥1B.)(ωA <1C. 0<)(ωA <1D.)(ωA ≤093.Ⅱ型系统是定义于包含有两个积分环节的【 】A.开环传递函数的系统B.闭环传递函数的系统C.偏差传递函数的系统D.扰动传递函数的系统94.系统的幅值穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率94-1.系统的幅值穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率95.系统的穿越频率越大,则其【 】A.响应越快B.响应越慢C.稳定性越好D.稳定性越差96. 最小相位系统传递函数的【 】A.零点和极点均在复平面的右侧B.零点在复平面的右侧而极点在左侧C.零点在复平面的左侧而极点在右侧D.零点和极点均在复平面的左侧97.Ⅰ型系统能够跟踪斜坡信号,但存在稳态误差,其稳态误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数98.把系统扰动作用后又重新平衡的偏差称为系统的【 】A.静态误差B.稳态误差C.动态误差D.累计误差 99.0型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 100.PID 调节器的比例部分主要调节系统的【 】A.增益B.固有频率C.阻尼比D.相频特性101.随动系统要求系统的输出信号能跟随【 】A.反馈信号的变化B.干扰信号的变化C.输入信号的变化D.模拟信号的变化102.传递函数的量纲是【 】A.取决于输入与反馈信号的量纲B.取决于输出与输入信号的量纲C.取决于干扰与给定输入信号的量纲D.取决于系统的零点和极点配置 103.对于抗干扰能力强系统有【 】A.开环系统B.闭环系统C.线性系统D.非线性系统104.积分调节器的输出量取决于【 】A.干扰量对时间的积累过程B.输入量对时间的积累过程C.反馈量对时间的积累过程D.误差量对时间的积累过程105.理想微分环节的传递函数为【 】 A.Ts+11 B.s 1 C.s D.1+Ts 105.一阶微分环节的传递函数为【 】A.Ts+11 B.s 1 C.s D.1+Ts 106.实际系统传递函数的分母阶次【 】A.小于分子阶次B.等于分子阶次C.大于等于分子阶次D.大于或小于分子阶次107.当系统极点落在复平面S 的负实轴上时,其系统【 】A.阻尼比为0B.阻尼比大于0C.阻尼比大于或等于1D.阻尼比小于0 108.欠阻尼二阶系统的输出信号的衰减振荡角频率为【 】A.无阻尼固有频率B.有阻尼固有频率C.幅值穿越频率D.相位穿越频率109.反映系统动态精度的指标是【 】A.超调量B.调整时间C.上升时间D.振荡次数110.典型二阶系统在欠阻尼时的阶跃响应为【 】A.等幅振荡曲线B.衰减振荡曲线C.发散振幅曲线D.单调上升曲线 111.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.05时,其调整时间为【 】A.TB.2TC.3TD.4T112.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ 113.实际的物理系统)(s G 的极点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点114.系统的相位穿越频率是开环极坐标曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 114-1.系统的相位穿越频率是对数频率特性曲线与【 】A.负实轴相交处频率B.单位圆相交处频率C.Bode 图上零分贝线相交处频率D.Bode 图上-180°相位线相交处频率 115.比例微分环节(时间常数为T )使系统的相位【 】A.滞后1tan T ω-B.滞后1tan ω-C.超前1tan T ω-D.超前1tan ω-116.系统开环频率特性的相位裕量愈大,则系统的稳定性愈好,且【 】A.上升时间愈短B.振荡次数愈多C.最大超调量愈小D.最大超调量愈大117.Ⅱ型系统跟踪阶跃信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C.∞D.时间常数118.PID 调节器的积分部分消除系统的【 】A.瞬态误差B.干扰误差C.累计误差D.稳态误差119.Ⅰ型系统跟踪斜坡信号的稳态误差为【 】A.0B.∞C.常数D. )()(lim 0s H s G s → 120.比例微分校正将使系统的【 】A.抗干扰能力下降B.抗干扰能力增加C.稳态精度增加D.稳态精度减小120-1.比例微分校正将使系统的【 】A.稳定性变好B.稳态性变好C.抗干扰能力增强D.阻尼比减小 121.若反馈信号与原系统输入信号的方向相反则为【 】A.局部反馈B.主反馈C.正反馈D.负反馈122.实际物理系统微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【】A.结构参数组成B.输入参数组成C.干扰参数组成D.输出参数组成123.对于一般控制系统来说【】A.开环不振荡B.闭环不振荡C.开环一定振荡D.闭环一定振荡124.积分环节输出量随时间的增长而不断地增加,增长斜率为【】A.TB.1/TC.1+1/TD.1/T2125.传递函数只与系统【】A.自身内部结构参数有关B.输入信号有关C.输出信号有关D.干扰信号有关126.闭环控制系统的开环传递函数是【】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比127.当系统极点落在复平面S的Ⅱ或Ⅲ象限内时,其系统【】A.阻尼比为0B.阻尼比大于0C.阻尼比大于0而小于1D.阻尼比小于0128.欠阻尼二阶系统是【】A.稳定系统 B. 不稳定系统 C.非最小相位系统 D.Ⅱ型系统129.二阶无阻尼系统的阶跃响应为【】A.单调上升曲线B.等幅振荡曲线C.衰减振荡曲线D.指数上升曲线130.二阶系统总是【 】A.开环系统B.闭环系统C.稳定系统D.非线性系统131.一阶系统时间常数为T ,在单位阶跃响应误差范围要求为±0.02时,其调整时间为【 】A.TB.2TC.3TD.4T132.积分环节Tss G 1)(=的幅值穿越频率为【 】 A.T 1 B.-T 1 C. 20T 1lg D. -20T1lg 132-1.微分环节()G s Ts =的幅值穿越频率为【 】 A.T 1 B.-T 1 C. 20T 1lg D. -20T1lg 132-2.积分环节21()G s Ts =的幅值穿越频率为【 】 A.T 1 B.-T 1 C. D. 133.实际的物理系统)(s G 的零点映射到)(s G 复平面上为【 】A.坐标原点B.极点C.零点D.无穷远点134.判定系统稳定性的穿越概念就是开环极坐标曲线穿过实轴上【 】A.(-∞,0)的区间B.(-∞,0]的区间C.(-∞,-1)的区间D.(-∞,-1]的区间135.控制系统抗扰动的稳态精度是随其前向通道中【 】A.微分个数增加,开环增益增大而愈高B.微分个数减少,开环增益减小而愈高C.积分个数增加,开环增益增大而愈高D.积分个数减少,开环增益减小而愈高136.若系统无开环右极点且其开环极座标曲线只穿越实轴上区间(-1,+∞),则该闭环系统一定【 】A.稳定B.临界稳定C. 不稳定D.不一定稳定 137.比例环节的输出能不滞后地立即响应输入信号,其相频特性为【 】A.00)(=ωϕB.0180)(-=ωϕC.090)(-=ωϕD.090)(=ωϕ 138.控制系统的跟随误差与前向通道【 】A.积分个数和开环增益有关B.微分个数和开环增益有关C.积分个数和阻尼比有关D.微分个数和阻尼比有关139.Ⅰ型系统跟踪阶跃信号的稳态误差为【 】A.0B.∞C.常数D.)()(lim 0s H s G s → 140.Ⅱ型系统跟踪斜坡信号的稳态误差为零,其静态位置误差系数等于【 】A.0B.开环放大系数C. ∞D.时间常数141.实际物理系统的微分方程中输入输出及其各阶导数项的系数由表征系统固有特性【 】A.特征参数组成B.输入参数组成C.干扰参数组成D.输出参数组成 142.输出量对系统的控制作用没有影响的控制系统是【 】A.开环控制系统B.闭环控制系统C.反馈控制系统D.非线性控制系统143.传递函数代表了系统的固有特性,只与系统本身的【 】A. 实际输入量B.实际输出量C.期望输出量D.内部结构,参数 144.惯性环节不能立即复现【 】A.反馈信号B.输入信号C.输出信号D.偏差信号145.系统开环传递函数为)(s G ,则单位反馈的闭环传递函数为【 】 A.)(1)(s G s G + B.)()(1)()(s H s G s H s G + C.)()(1)(s H s G s G + D.)()(1)(s H s G s H + 146.线性定常系统输出响应的等幅振荡频率为n ω,则系统存在的极点有【 】A.n j ω±1B.n j ω±C.n j ω±-1D.1-147.开环控制系统的传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比147-1.闭环控制系统的开环传递函数是【 】A.输出信号的拉氏变换与输入信号的拉氏变换之比B.输入信号的拉氏变换与输出信号的拉氏变换之比C.反馈信号的拉氏变换与误差信号的拉氏变换之比D.误差信号的拉氏变换与反馈信号的拉氏变换之比148.欠阻尼二阶系统的单位阶跃稳态响应为【 】A.零B.常数C.等幅振荡曲线D.等幅衰减曲线 149.一阶系统是【 】A.最小相位系统B.非最小相位系统C.Ⅱ型系统D.不稳定系统 150.单位阶跃函数的拉普拉斯变换是【 】A.1/sB.1C.21sD.1+1/s151.一阶系统的响应曲线开始时刻的斜率为【 】A.TB.TC.T 1 D.T 1 152.惯性环节11)(+=Ts s G 的转折频率越大其【 】 A.输出响应越慢 B.输出响应越快C.输出响应精度越高D.输出响应精度越低153.对于零型系统的开环频率特性曲线在复平面上【 】A.始于虚轴上某点,终于坐标原点B.始于实轴上某点,终于实轴上另一点C.始于坐标原点,终于虚轴上某点D.始于虚轴上某点,终于虚轴上另一点 153-1.对于Ⅰ型系统的开环频率特性曲线在复平面上【 】A.始于(0)180G j =∞∠-的点,终于坐标原点B.始于(0)90G j =∞∠-的点,终于坐标原点C.始于(0)180G j =∞∠-的点,终于实轴上任意点D.始于(0)90G j =∞∠-的点,终于虚轴上任意点154.相位裕量是当系统的开环幅频特性等于1时,相应的相频特性离【 】A.负实轴的距离B.正实轴的距离C.负虚轴的距离D.正虚轴的距离155.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳定性变好C.稳态误差增加D.稳定性变差155-1.对于二阶系统,加大增益将使系统的【 】A.动态响应变慢B.稳态误差减小C.稳态误差增加D.稳定性变好 156.惯性环节使系统的输出【 】A.幅值增大B.幅值减小C.相位超前D.相位滞后156-1.惯性环节使系统的输出随输入信号频率增加而其【】A.幅值增大B.幅值减小C.相位超前D.相位滞后157.无差系统是指【】A.干扰误差为零的系统B.稳态误差为零的系统C.动态误差为零的系统D.累计误差为零的系统158.Ⅱ型系统跟踪加速度信号的稳态误差为【】A.0B.常数C.∞D.时间常数159.控制系统的稳态误差组成是【】A.跟随误差和扰动误差B.跟随误差和瞬态误差C.输入误差和静态误差D.扰动误差和累计误差160.Ⅰ型系统的速度静差系数等于【】A.0B.开环放大系数C.∞D.时间常数161.线性定常系统输入信号导数的时间响应等于该输入信号时间响应的【】A. 傅氏变换 B.拉氏变换 C.积分 D.导数162.线性定常系统输入信号积分的时间响应等于该输入信号时间响应的【】A.傅氏变换 B.拉氏变换 C.积分 D.导数第一部分单项选择题1.D2.A3.A4.A5.B6.A7.C8.C9.B 10.B 11.B 12.D 13.B 14.C 15.C 16.A 17.A 18.C 19.B 20.A 21.A 22.B 23.B 24.C 25.C 26.D 27.B 28.A 29.B 30.A 31.D 32.A 33.B 34.C 35.A 36.B 37.A 38.B 39.C 40.A 41.B 42.C 43.C 44.A 45.D 46.A 47.C 48.A 49.C50.C 51.C 52.C 53.B 54.A 55.C 56.D 57.B 58.C 59.B 60.B 61.B62.B 63.B 64.B 65.A 66.B 67.B 68.B 69.D 70.C 71.A 72.B 73.D74.A 75.B 76.B 77.A 78.A 79.C 80.D 81.C 82.A 83.B 84.B 85.C86.B 87.A 88.A 89.A 90.D 91.D 92.A 93.A 94.B 95.A 96.D 97.B98.B 99.B 100.A 101.C 102.B 103.B 104.B 105.C 106.C 107.C 108.B 109.A 110.B 111.C 112.A 113.D 114.A 115.C 116.C 117.C 118.D 119.C 120.A 121.D 122.A 123.A 124.B 125.A 126.C 127.C 128.A 129.B 130.C 131.D 132.A 133.A 134.D 135.C 136.A 137.A 138.A 139.A 140.C 141.A 142.A 143.D 144.B 145.A 146.B 147.A 148.B 149.A 150.A 151.C 152.B 153.B 154.A 155.D 156.D 157.B 158.B 159.A 160.B第二部分 填空题1.积分环节的特点是它的输出量为输入量对 的积累。

机械工程控制基础复习资料Word版

机械工程控制基础复习资料Word版

机械工程控制基础1.输入量: 给定量称为输入量。

2.输出量:被控量称为输出量。

3.反馈:就是指将输出量全部或部分返回到输入端,并与输入量比较。

4.偏差:比较的结果称为偏差。

5.干扰:偶然的无法加入人为控制的信号。

它也是一种输入信号,通常对系统的输出产生不利影响。

6.系统:相互作用的各部分组成的具有一定功能的整体。

7.系统分类:按反馈情况:开环控制系统和闭环控制系统;按输出量的变化规律:自动调节系统、随动系统和程序控制系统;按信号类型:连续控制系统和离散控制系统;按系统的性质:线性控制系统和非线性控制系统;按参数的变化情况:定常系统和时变系统;按被控量:位移控制系统、温度控制系统和速度控制系统。

8.机械工程控制论的研究对象:它研究的是机械工程广义系统在一定的外界条件(即输入或激励、干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程;研究这一系统及其输入、输出三者之间的动态关系——广义系统的动力学问题。

9.会分析简单系统的工作原理。

10.拉普拉斯变换:若一个时间函数ƒ(t),称为原函数,经过下式计算转换为象函数F(s):,记为称F(s)为ƒ (t)的Laplace变换其中算子s=σ+ jω为复数。

11.常用的拉氏变换表12.拉氏变换的主要定理(特别是线性定理、微分定理)(1)比例定理(很重要,系统微分方程进行拉氏变换常用)输出量不失真、无惯性、快速地跟随输入量,两者成比例关系。

13.线性系统:系统的数学模型都是线性关系。

14.线性定常系统:用线性常微分方程描述的系统。

15.叠加原理:系统在几个外加作用下所产生的响应,等于各个外加作用单独作用的响应之和。

叠加原理有两重含义:均匀性(齐次性)和可叠加性。

叠加原理有两重含义:均匀性(齐次性)和可叠加性。

这个原理是说,多个输入同时作用于线性系统的总响应,等于各个输入单独作用时分别产生的响应之和,且输入增大若干倍时,其输出亦增大同样的倍数。

机械工程控制基础复习资料

机械工程控制基础复习资料

一、填空1.机械工程控制基础:是研究一机械工程技术为对象的控制论问题;是研究在这一工程领域中广义系统的动力学问题,也就是研究系统及其输入、输出三者之间的动态关系。

2.系统分析:当系统已定,输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题。

3.最优控制:当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求。

4.最优设计:当输入已知,且输出也是给定时,确定系统应使得输出尽可能符合给定的最佳要求。

5. 系统识别或系统的辨识:当输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型。

6.信息传递:是指信息在系统及过程中以某种关系动态地传递,或称转换。

7.信息的反馈:就是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。

8.控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。

9.按系统是否存在反馈,将系统分为开环系统和闭环系统。

10.开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路。

11.闭环系统:系统的输出量对系统有控制作用,或者说,系统中存在反馈的回路。

12.数学模型:是系统动态特性的数学表达式。

13.分析法:是依据系统本省所遵循的有关定律列写数学表达式。

14.实验法:是根据系统对某些典型输入信号的响应或其它实验数据建立数学模型。

15.线性系统:系统的数学模型表达式是线性。

16.非线性系统的最重要特性,是不能运用叠加原理。

17. 传递函数:线性定常系统的传递函数,是初始条件为零时,系统输出地拉氏变换比输入的拉氏变换。

18. 传递函数:是通过输入与输出之间信息的传递关系,来描述系统本省的动态特性。

19.方块图:是系统中各环节的功能和信号流向的图解表示方法。

20.串联:各个环节传递函数一个个顺序连接。

21.并联:凡是几个环节的输入相同,输出相加或想减的连接形式。

22.反馈:是将系统或某一环节的输出量,全部或部分地通过传递函数回输到输入端,又重新输入到系统中去。

《机械工程控制基础》九套复习题

《机械工程控制基础》九套复习题

C Gs n 1 2 2
D Gs n 1 2 2
8. 对于二阶系统,阻尼比越大,则系统(

A 相对稳定性越小
B 相对稳定性越大
C 稳态误差越小
D 稳态误差越大
9. 某典型环节的传递函数为 Gs 1 ,则该环节为(

Ts
A 惯性环节
B 积分环节
C 微分环节
D 比例环节
10. 已知某环节频率特性 Bode 图如右图所示,
5
s2s
1
,当
t
时,
f
t 的值为(

A5
B2
C0
4. 以下关于系统数学模型的说法正确的是(

A 只有线性系统才能用数学模型表示
B 所有的系统都可用精确的数学模型表示
C 建立系统数学模型只能用分析法
D 同一系统可以用不同形式的数学模型进行表示
1
D
江理公共课资料群:806650494
5.
已知机械系统的传递函数为 Gs
二、选择题
1. 机械系统、生命系统及社会和经济系统的一个共同的本质特性是(

A 都是由元素组成的
B 通过信息的传递、加工处理并利用反馈来控制
C 都是可以控制的
D 都存在微分环节
2. 开环控制系统的控制信号取决于(

Aห้องสมุดไป่ตู้系统的实际输出
B 系统的实际输出与理想输出之差
C 输入与输出之差
D 输入
3.
已知
Fs

A 稳定
B 不稳定
15.所谓校正(又称补偿)是指(
C 临界稳定 )
D 无法判断
A 加入 PID 校正器

机械工程控制基础-机控复习考试资料

机械工程控制基础-机控复习考试资料

X i X 01. 什么是系统的反馈?一个系统的输出,部分或全部地被反过来用于控制系统的输入。

2. 一个系统的动力学方程可以写成微分方程,这一事实就揭示了系统本身状态变量之间的联系,也就体现了系统本身存在着反馈;而微分方程的解就体现了由于系统本身反馈的存在与外界对系统的作用的存在而决定的系统的动态历程。

3. 几何判据有奈奎斯特判据、波德判据两种;代数判据有劳斯判据、胡尔维茨判据两种。

4. 列写微分方程的步骤:(1).确定系统或各元素的输入量输出量(2).按照信号的传递顺序,从系统的输入端开始,根据各变量所遵循的运动规律列写出在运动过程中的各个环节的动态微分方程 (3).消除所列各微分方程的中间变量,得到描述系统的输入量输出量之间的关系的微分方程。

(4).整理所得微分方程。

5. 非线性系统有:本质非线性和非本质非线性两种,能进行线性化的是非本质非线性系统。

6. 给出两种传递函数的定义:1.传递函数是经典控制理论中对线性系统进行研究分析与综合的基本数学工具 2.在外界输入作用前,输入输出的初始条件为零时,线性定常系统环节或元件的输出 (t )与输入 (t )经Laplace 变换后 与 之比称为该系统环节或元件的传递函数。

7. 写出六种典型环节的名称、微分方程和传递函数、奈奎斯特图和波德图。

8. 方框图的基本元素由传递函数方框、相加点、分支点组成。

9. 二阶系统时间响应的性能指标是根据欠阻尼二阶系统在单位阶跃信号作用下得到的。

10. 系统稳定的充要条件是:系统所有特征根的实部为负。

11. 什么是系统的动柔度、动刚度、静刚度。

若机械系统输入为力,输出为位移(变形)则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当W=0时系统频率特性的倒数为系统的静刚度12. 线性定常系统对谐波输入的稳态响应称为频率响应。

13. 相频特性和幅频特性的定义:相频特性是指:稳态输出信号与输入信号的相位差;幅频特性是指:稳态输出与输入的幅值之比。

机械工程控制基础知识点

机械工程控制基础知识点

机械工程控制基础知识点●控制论的中心思想:它抓住一切通讯和控制系统所共有的特点,站在一个更概括的理论高度揭示了它们的共同本质,即通过信息的传递、加工处理和反馈来进行控制。

机械工程控制论:是研究机械工程技术为对象的控制论问题。

(研究系统及其输入输出三者的动态关系)。

机械控制工程主要研究并解决的问题:(1)当系统已定,并且输入知道时,求出系统的输出(响应),并通过输出来研究系统本身的有关问题,即系统分析。

(2)当系统已定,且系统的输出也已给定,要确定系统的输入应使输出尽可能符合给定的最佳要求,即系统的最佳控制。

(3)当输入已知,且输出也是给定时,确定系统应使得输出金肯符合给定的最佳要求,此即●最优设计。

(4)当系统的输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识。

(5)当系统已定,输出已知时,以识别输入或输入中得有关信息,此即滤液与预测。

●信息:一切能表达一定含义的信号、密码、情报和消息。

信息传递/转换:是指信息在系统及过程中以某种关系动态地传递。

信息的反馈:是把一个系统的输出信号不断直接地或经过中间变换后全部或部分地返回,再输入到系统中去。

如果反馈回去的讯号(或作用)与原系统的输入讯号(或作用)的方向相反(或相位相差180度)则称之为“负反馈”;如果方向或相位相同,则称之为“正反馈”。

●系统:是指完成一定任务的一些部件的组合。

控制系统:是指系统的输出,能按照要求的参考输入或控制输入进行调节的。

开环系统:系统的输出量对系统无控制作用,或者说系统中无反馈回路的。

闭环系统:系统的输出量对系统有控制作用,或者说,系统中存在反馈的回路。

开环系统与闭环系统的区别:开环系统构造简单,不存在不稳定问题、输出量不用测量,开环系统对系统悟空制作用;闭环系统有反馈、控制精度高、结构复杂、设计时需要校核稳定性,对系统有控制作用。

线性系统:系统的数学模型表达式是线性的系统。

线性的定常系统:用线性常微分方程描述的系统。

机械工程控制基础

机械工程控制基础

机械工程控制基础机械工程控制是现代工程中一个重要的领域,它涵盖了许多关键概念和技术。

本文将介绍机械工程控制的基础知识,包括控制系统的组成、控制器的类型、传感器的作用以及闭环和开环控制等内容。

1. 控制系统的组成机械工程控制系统由多个组件组成,这些组件协同工作来实现所需的控制效果。

主要组件包括传感器、执行器、控制器和反馈环路。

- 传感器:传感器用于检测和测量各种物理量,如温度、压力、速度等。

它们将这些物理量转换为电信号,并将其传送给控制器进行处理。

- 执行器:执行器根据控制器的指令,执行相应的动作。

常见的执行器包括电机、液压缸和阀门等。

- 控制器:控制器是控制系统的核心部分,它接收传感器传来的信号,并根据预设的控制策略,发出指令给执行器。

控制器的选择取决于具体的应用和控制要求,常见的控制器包括PID控制器、PLC和微控制器等。

- 反馈环路:反馈环路用于将执行器的状态信息反馈给控制器,以便进行调节和校正。

反馈可以实现闭环控制,提高系统的稳定性和准确性。

2. 控制器的类型控制器根据其工作原理和应用范围的不同,可分为多种类型。

常见的控制器类型包括模拟控制器、数字控制器和逻辑控制器等。

- 模拟控制器:模拟控制器使用连续模拟信号来进行控制。

它们通常适用于需要连续调节的系统,如温度控制、压力控制等。

- 数字控制器:数字控制器使用数字信号进行控制。

它们通常具有更高的精度和更强的稳定性,在现代工程中得到广泛应用。

数字控制器可以通过编程来实现不同的控制策略,例如PID控制。

- 逻辑控制器:逻辑控制器使用逻辑运算来进行控制。

最常见的逻辑控制器是可编程逻辑控制器(PLC),它们被广泛用于工业自动化领域。

逻辑控制器适用于需要基于逻辑条件进行开关控制的系统。

3. 传感器的作用传感器在机械工程控制中起着至关重要的作用。

它们用于将物理量转换为可测量的电信号,并将其传送给控制器进行处理。

传感器的选择取决于所需测量的物理量和精度要求。

机械工程控制基础复习

机械工程控制基础复习

机械工程控制基础复习第一章 绪论1.控制理论在工程技术领域中体现为工程控制论,在机械工程领域则体现为机械工程控制论。

2.工程控制论实质上是研究工程技术中广义系统的动力学问题。

具体地说,它研究的是工程技术中的广义系统在一定的外界条件(即输入或激励,包括外加控制与外加干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程;研究这一系统及其输入、输出三者之间的动态关系。

3。

y(t )称为系统的输出,显然,y(t )(它就是微分方程的解)是由系统的初始状态、系统的固有特性、系统与输入之间的关系以及输入所决定的。

4.工程控制论(包括机械工程控制论)的内容大致可归纳为如下五个方面:⑴当系统已定、输入(或激励)已知时,求出系统的输出(或响应),并通过输出来研究系统本身的有关问题,此即系统分析问题;⑵当系统已定,确定输入,且所确定的输入应使得输出尽可能符合给定的最佳要求,此即最优控制问题;⑶当输入已知时,确定系统,且所确定的系统应使得输出尽可能符合给定的最佳要求,此即最优设计问题;⑷当输出已知时,确定系统,以识别输入或输入中的有关信息,此即滤波与预测问题;⑸当输入与输出均已知时,求出系统的结构与参数,即建立系统的数学模型,此即系统识别或系统辨识问题。

5。

反馈:系统的输出不断地、直接或间接地、全部或部分地返回,并作用于系统。

负反馈:输出(被控量)偏离设定值(目标值)时,反馈作用使输出偏离程度减小,并力图达到设定值.反馈的作用:消除偏离正反馈: 输出偏离初始值(或稳定值)时,反馈作用使输出偏离程度加剧。

反馈的作用:加剧偏离。

6.开环控制:只有输入量对输出量产生控制作用,输出量不参与对系统的控制。

特点是 结构简单、维护容易、成本低、不存在稳定性问题;输入控制输出;输出不参与控制; 系统没有抗干扰能力。

适用范围:输入量已知、控制精度要求不高、扰动作用不大。

机械工程控制基础考点解析(1)

机械工程控制基础考点解析(1)

机械工程控制基础十五大考点(简答:三选二)1稳态误差与系统输入的关系:1) 稳态误差与输入信号有关;2) 稳态误差与系统型次有关。

型次越高,稳态误差越小;3) 稳态误差与系统开环增益有关。

开环增益越大,稳态误差越小;4) 当系统存在几个输入作用时,可按叠加原理进行计算。

系统存在干扰作用时,总的偏差等于给定输入和干扰分别作用引起的偏差之和;5) 单位反馈系统稳态误差与稳态偏差相同。

2在不同输入时不同类型系统的稳态偏差3系统特征方程的根对系统性能的影响:1) 特征根的实部影响自由响应项的收敛性(系统稳定性)① 若所有特征根具有负实部时,则系统自由响应项收敛(系统稳定) ② 若存在特征根的实部为正,则系统自由响应项发散(系统不稳定)③ 若存在特征根的实部为零,其余的实部为负,则系统自由响应等幅振荡(系统临界稳定) 2)实部的绝对值影响系统的快速性3)特征根的虚部影响自由响应项的振荡情况:虚部绝对值越大自由响应项的振荡越剧烈4典型函数的拉氏变换及反变换1) 单位脉冲函数L[δ(t)]=1 注意:其拉氏反变换1-L [1]≠δ(t)2)单位阶跃函数L[u(t)]= L[1]=1/S 1-L [1/S]=13)单位斜坡函数r(t)=t, t ≥0 L[r(t)]= L[t]=1/2S 1-L [1/2S ]=t 4)单位加速度函数a(t)=2t /2, t ≥0 L[a(t)]= L[2t /2]=1/3S 1-L [1/3S ]=2t /2 5)指数函数f(t)=ate-, t ≥0 L[ate-]=1/(s+a) 1-L [1/(s+a)]=ate-6)正弦函数f(t)=sin ωt ,t ≥0 L[sin ωt]= ω/(22w S +) 1-L [ω/(22w S +)]= sin ωt 7)余弦函数f(t)=cos ωt, t ≥0 L[cos ωt]= S/(22w S +) 1-L [S/(22w S +)]= cos ωt相关例题:5传递函数方框图的等效变换1)串联2)并联3)反馈连接闭环传递函数:4)分支点移动规则①分支点前移②分支点后移5)相加点移动规则①相加点前移②相加点后移5)梅逊公式:当方框图满足如下两个条件:①只有一条前向通道②各局部反馈回路中包含公共传递函数方框。

(完整版)机械工程控制基础简答题汇总

(完整版)机械工程控制基础简答题汇总

控制论两个核心:信息和反馈控制论与机械工程控制关系:机械工程控制论是研究控制论在机械工程中应用的一门技术学科。

控制论发展阶段及特点:第一阶段的自动控制理论,即经典伺服机构理论,成熟于40~50年代。

针对工程技术运用控制论的基本原理建立起来的在复数域(频率域)内以传递函数(频率特性)概念为基础的理论体系,主要数学基础是拉普拉斯变换和傅里叶变换,主要研究单输入—单输出定常系统的分析和设计。

第二阶段的自动控制理论,即形成于20世纪60年代的现代控制理论。

主要以状态空间法为基础建立起来的理论体系,主要针对多输入—多输出(线性或非线性)系统研究其稳定性、可控性、可观测性等系统分析、综合以及最优控制和自适应控制等问题。

第三阶段的自动控制理论,即在20世纪70年代形成的大系统理论,主要针对规模特别庞大的系统,或者特别复杂的系统,采用网络化的电子计算机进行多级递阶控制。

第四阶段的自动控制理论,即始于20世纪70年代的智能控制理论。

使工程系统、社会、管理与经济系统等具有人工智能。

机械工程控制论研究对象:机械工程控制论是研究以机械工程控制技术为对象的控制论问题。

具体的讲,是研究在这一工程领域中广义系统的动力学问题,即研究系统在一定的外界条件(即输入与干扰)作用下,系统从某一初始状态出发,所经历的整个动态过程,也就是研究系统及其输入、输出三者之间的动态关系。

控制系统研究涉及问题分类:1)系统确定,输入已知而输出未知,要求确定系统输出并分析系统性能,此类问题为系统分析。

2)系统确定,输出已知而输入未施加,要求确定输入使输出满足最佳要求,此类问题称为最优控制。

3)系统已确定,输出已知而输入已知但未知时,要求识别系统输入或输入中有关信息,此类问题即滤波与预测。

4)当输入与输出已知而系统结构参数未知时,要求确定系统的结构与参数,即建立系统的数学模型,此类问题即系统辨识。

5)当输入与输出已知而系统尚未构建时,要求设计系统使系统在该输入条件下尽可能符合给定的最佳要求,此类问题即最优设计。

机械工程控制基础-机械工程控制基础_学习辅导与题解_第1章绪论

机械工程控制基础-机械工程控制基础_学习辅导与题解_第1章绪论

机械工程控制基础学习辅导与题解(修订版)第1章绪论内容提要1.1 机械工程控制论的研究对象与任务1.1.1 系统及广义系统系统是由相互联系、相互作用的若干部分构成,且具有一定运动规律的一个有机整体。

系统各元素之间存在着非常紧密的联系,而且,系统与外界也存在一定的联系。

系统及其与外界的关系如图1.1-1所示,其中.输入是指外界对系统的作用,输出是指系统对外界的作用。

系统可大可小可繁可简,甚至可“实”可“虚”,完全由研究的需要而定,因而将它们统称为为广义系统。

图1.l-l 系统及其与外界的联系1.1.2 机械工程控制论的研究对象机械工程控制论实质上足研究机械工程技术中广义系统的动力学问题。

具体地说,它研究机械工程广义系统在一定的外界条件(即输入或激励、干扰)作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)所决定的整个动态历程,研究这一系统与其输入、输出三者之间的动态关系。

1.1.3 机械工程控制论的研究任务从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械工程控制论的任务可以分为以下五方面:(1)已知系统和输入,求系统的输出,即系统分析问题;(2)已知系统和系统的理想输出,设计输入,即最优控制问题;(3)已知输入和理想输出,设计系统,即最优设计问题;(4)已知输出,确定系统,以识别输入或输入中的有关信息.此即滤波与预测问题;(5)已知系统的输^和输出,求系统的结构与参数即系统辨识问题。

1.2 系统及其模型1.2.1 系统的特性(1)系统的性能不仅与构成系统的元素有关,而且还与系统的结构有关;(2)系统具有层次性;(3)系统的内容比组成系统各元素的内容要丰富得多;(4)系统是运动的,具有~定的动态特性。

1.2.2 机械系统以实现一定的机械运动、输出一定的机械能,以及承受一定的机械载荷为目的的系统称为机械系统。

对于机械系统,其输入和输出分别称为“激励”和“响应”。

《机械工程控制基础》题库

《机械工程控制基础》题库

机械工程控制基础复习题第一章绪论1、以同等精度元件组成的开环系统和闭环系统,其精度比较()。

A.开环高 B.闭环高 C.相差不多 D. 一样高1、系统的输出信号对控制作用的影响()。

A.开环有 B.闭环有 C.都没有 D.都有1、对于系统抗干扰能力()。

A.开环强 B.闭环强 C.都强 D.都不强1A.恒值控制系统 B.计算机控制系统 C.随动控制系统 D.程序控制系统1、按照系统传输信号的类型可分成()。

A.定常系统和时变系统 B.离散控制系统和连续控制系统 C.线性系统和非线性系统 D.恒值系统和程序控制系统1.按照控制系统是否设有反馈作用来进行分类,可分为___ ___和___ ___。

答案:开环控制系统闭环控制系统1.对一个自动控制系统的最基本要求是,也即是系统工作的首要条件。

答案:稳定稳定性1.对控制系统性能的基本要求一般可归结为稳定性、___________和___________。

答案:快速性准确性1、控制论的中心思想是,通过,和反馈来进行控制。

答案:信息的传递加工处理1.什么是反馈(包括正反馈和负反馈)?根据反馈的有无,可将控制系统如何分类?答案:(1)反馈是指输出量通过适当的检测装置将信号全部或一部分返回输入端,使之与输入量进行比较。

如果反馈信号与系统的输入信号的方向相反,则称为负反馈;如果反馈信号与系统的输入信号的方向相同,则称为正反馈。

(2)根据反馈的有无,可将控制系统分为开环控制系统和闭环控制系统。

1.何为闭环控制系统?其最主要的优点是什么?答案:闭环控制系统就是反馈控制系统,即输出量对控制作用有影响的系统。

其最主要的优点是能实现自我调节,不断修正偏差,抗干扰能力强。

1.简述“自动控制”和“系统”的基本概念。

答案:(1)所谓“自动控制”就是在没有人直接参与的情况下,采用控制装置使被控对象的某些物理量在一定精度范围内按照给定的规律变化。

(2)所谓“系统”,即具有某一特定功能的整体。

机械工程控制基础知识点总结

机械工程控制基础知识点总结

机械工程控制基础知识点总结一、概述机械工程控制是指通过各种控制手段,对机械设备进行控制和调节,以达到要求的工作状态。

机械工程控制基础知识点包括电气、电子、自动化等多个学科的内容,涉及到传感器、执行器、控制器等多个方面。

二、传感器传感器是用于将物理量转换为电信号的装置,常用于测量温度、压力、流量等参数。

常见的传感器包括热电偶、压力传感器、流量计等。

在机械工程中,传感器可以用于测量机械设备的运行状态,如温度变化、压力波动等。

三、执行器执行器是指能够将电信号转换为机械运动的装置,常用于控制阀门、泵等设备。

常见的执行器包括电动阀门、液压缸等。

在机械工程中,执行器可以用于调节机械设备的运行状态,如开启或关闭阀门调节流量。

四、控制器控制器是指对传感器和执行器进行控制和调节的装置,可通过编程实现自动化操作。

常见的控制器包括PLC、单片机等。

在机械工程中,控制器可以用于实现对机械设备的自动化控制,如自动调节阀门开度、自动调节泵的流量等。

五、电气电气是机械工程控制中不可或缺的一部分,涉及到电路原理、电器元件等知识点。

在机械工程中,电气可以用于设计和维护各种控制系统。

六、电子电子是指应用于半导体材料和器件的技术和学科,包括集成电路、传感器等内容。

在机械工程中,电子可以用于设计和实现各种控制系统。

七、自动化自动化是指通过各种手段实现对生产过程或其他过程的自动化控制和管理。

在机械工程中,自动化可以用于提高生产效率和质量,并减少人力成本。

八、总结机械工程控制基础知识点包括传感器、执行器、控制器等多个方面,涉及到电气、电子、自动化等多个学科的内容。

了解这些知识点对于设计和维护各种机械设备都具有重要意义。

机械工程控制基础

机械工程控制基础

机械工程控制基础机械工程控制基础机械工程控制是指通过各种手段和技术手段,对机械设备、生产流程和设备工艺进行监控、调控、保护和优化。

这样可以提高机械设备的工作效率,降低成本和消耗,提高生产质量和稳定性,还能延长机械设备的使用寿命。

机械工程控制的实现需要基础的控制技术和系统。

一般来说,机械工程控制分为自动控制和手动控制两种方式。

自动控制主要是指通过各种控制技术实现对机械设备的自动化操作。

而手动控制主要是指人工参与控制操作,通过人的经验和技能确保机械设备正常运行。

机械工程控制的要素包括传感器、控制器和执行器三部分。

传感器主要是负责采集机械设备的运行状态信息,通过传感器将这些信息传输至控制器。

控制器可以根据预设程序进行数据分析,并控制执行器实现对机械设备的控制和调节。

在传感器方面,常见的有温度传感器、压力传感器、力传感器、流量传感器等。

这些传感器可以精准地感知机械设备的运行状态,比如是否过热、是否超负荷等,从而及时调整机械设备的运行状况,以达到最佳的运行性能。

在控制器方面,主要有PLC(可编程逻辑控制器)、DCS(数字控制系统)和SCADA(监控和数据采集系统)等。

PLC主要是用于控制工业设备的控制器,能够快速响应各种信号,并控制执行器实现对机械设备的控制和操作。

DCS是对工厂生产流程的管理,可以集成多个控制器,提高生产效率和质量。

SCADA则可实现监控和数据采集,是对生产过程的实时监控和数据采集。

在执行器方面,常见的有电机、机械手和气动装置等。

这些执行器可以实现对机械设备的控制和调节,在机械工程控制中起着非常重要的作用。

机械工程控制也需要考虑到安全因素。

在生产过程中,机械设备的控制和操作必须在严格的安全规定下进行。

在控制系统中,加入安全元件和控制逻辑可以实现对机械设备的安全保护。

总之,机械工程控制是通过多种技术手段,对机械设备进行自动化监控和调节,以实现高效、安全和稳定的生产流程。

通过合理的控制和调节,机械设备的小故障可以得到及时解决,避免了停机时间的浪费和高昂的维修费用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d tr tan ( ) d d
1
1
2)峰值时间:响应曲线达到第一个峰值所需 的时间。
tp d 1 2 n
3)最大超调量 M p :常用百分比值表示为:
Mp x0 (t p ) x0 () x0 ( )
( / 1 2 )
第四章 频率特性分析
1、频率响应与频率特性
频率响应:线性定常系统对谐波输入的稳态响应。 幅频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的幅值比,记为A(ω); 相频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的相位差,记为φ(ω); 频率特性:幅频特性与相频特性的统称。即:线性 定常系统在简谐信号激励下,其稳态输出信号 和输入信号的幅值比、相位差随激励信号频率 ω变化特性。记为
G B s 1 Gk s G q s
第三章 时间响应分析
1、时间响应及其组成 时间响应:系统在激励作用下,系统输出随 时间变化关系。 时间响应可分为零状态响应和零输入响应或 分为自由响应和强迫响应。 零状态响应:“无输入时的系统初态”为零 而仅由输入引起的响应。 零输入响应:“无输入时的系统初态”引起 的自由响应。 控制工程所研究的响应往往是零状态响应。
K 增益 T 1Fra bibliotekn 时间常数 n 固有频率
阻尼比
6)一阶微分环节: G s s 1 7)二阶微分环节: G s s 2 s 1
2 2
8)延时环节: G s e s
7、系统各环节之间的三种连接方式:
串联:
G s Gi s
G ( j ) A e
j
频率特性又称频率响应函数,是激励频率ω的函数。 频率特性:在零初始条件下,系统输出y(t)的傅里叶 变换Y(ω)与输入x(t)的傅里叶变换X(ω)之比,即 Y j G ( j ) A e X
2、频率特性的求取方法:
偏差:输入信号与反馈信号之差。
(t ) xi (t ) b(t )
稳态误差:误差的终值。 ess lim e(t ) lim sE1 (s)
t s 0
稳态偏差:偏差的终值。 ss lim (t ) lim sE (s) 两者关系:E1 ( s) E ( s) / H ( s)
t s 0
7、稳态(误差)偏差的计算基本公式:
sX i ( s ) ss lim (t ) lim sE ( s ) lim t s 0 s 0 1 G ( s ) H ( s ) kG0 ( s ) Gk ( s ) G ( s ) H ( s ) s 规定: 0、 1、 2... 时分别称为 0型、Ⅰ型、Ⅱ型 ...系统。 s 1 则: ss lim . X i (s) s 0 s k
8、静态误差系数:
G( s) H ( s) 静态位置误差系数: K p lim s 0
静态速度误差系数: K v lim sG (s) H (s)
s 0
静态加速度误差系数:
K a lim s 2 G ( s) H ( s)
s 0
9、典型输入信号引起的稳态偏差(误差)
结论:输入信号引起的稳态误差与输入信号、 系统的型次、开环增益有关,系统的型次越 高,系统可能从有静差系统变为无静差系统; 开环增益越大,系统稳态误差越小。
i 1 n
并联:
反馈:
G s Gi s
n
G s GB s 1 G s H s (“-”—“+”,“+”—“-”)
i 1
8、方框图简化及梅逊公式 等效变换法则:变换前后输出与输入之间的 关系保持不变。 掌握分支点、相加点相对方框移动法则及同 类元素交换法则,切记分支点与相加点 不能随便交换。 梅逊公式:
G( s) Ts 1
一阶系统的参数:静态:系统增益 k 动态:时间常数 T(τ) 一阶系统的时间响应: k t / T 脉冲响应: yt e T 阶跃响应: yt k 1 e t / T 斜波响应: yt k t T Tet / T
10、扰动信号引起的稳态误差
sG2 ( s ) ss lim (t ) lim sE ( s ) lim N (s) t s 0 s 0 1 G ( s )G ( s ) H ( s ) 1 2
结论:要减小扰动信号引起的稳态误差,只 有在扰动作用点前增大K值和增设积分环 节个数Ni。
X 0 s G B s X i s 前向通道的传递函数之 积 1 每一反馈回路的开环传 递函数
9、系统的传递函数 G K s B s / E s 1)开环传递函数: 2)前向通道传递函数:Gq s X 0 s / E s G f s B s / X 0 s 3)反馈传递函数: Ge s E s / X i s 4)误差传递函数: 5)闭环传递函数:
f k1 | x1 x10 x1 x2 x20
y k1x1 k 2 x2
5、传递函数的概念: 1)定义:初始状态为零时,输出的拉氏变 换与输入的拉氏变换之比。即 G(s) =Y(s)/X(s)
2)特点: (a)传递函数反映系统固有特性,与系统本身 的结构参数有关,而与输入信号的大小和形式 无关。 (b)传递函数的量纲取决于输入输出的性质, 同性质的物理量无量纲;不同性质的物理量有 量纲,为两者的比值。 (c)不同的物理系统可以有相似的传递函数, 传递函数不反映系统的真实的物理结构。 (d)传递函数的分母为系统的特征多项式,令 分母等于零为系统的特征方程,其解为特征根。 (e)传递函数与单位脉冲响应函数互为拉氏变 换与拉氏反变换的关系。
2)按输出的变化规律分类 自动调节系统 随动系统 程序控制系统 3)其他分类 线性控制系统 连续控制系统 非线性控制系统 离散控制系统 5、对控制系统的基本要求 1)系统的稳定性:首要条件 是指动态过程的振荡倾向和系统能够恢 复平衡状态的能力。



2)系统响应的快速性 是指当系统输出量与给定的输出量之间产生 偏差时,消除这种偏差的能力。 3)系统响应的准确性(静态精度) 是指在调整过程结束后输出量与给定的输入 量之间的偏差大小。
6、基本环节的传递函数
1)比例环节: G s K K 2)惯性环节: G s K 增益 T 时间常数 Ts 1 3)微分环节: G s s 1 4)积分环节: G s Ts
2 K n K 5)振荡环节: G s 2 2 2 2 s 2n s n T s 2Ts 1
一阶系统单位阶跃响应曲线为:
c(t) 1 0.865 0.632 c(t)=1-e-t/T 0 T 0.95 初始斜率为1/T
0.982
2T
3T
4T
t
结论:一阶系统的稳态值取决于系统增益, 响应速度取决于时间常数T,T越大,响 应速度越慢,响应速度跟系统增益无关。
4、二阶系统及其时间响应 二阶系统:凡是用二阶线性微分方程描述 的或传递函数的分母含S的最高次数为2。 2 数学模型: kn
s1.2 n n 2 1
二阶系统在单位阶跃信号下的响应: 无阻尼状态:等幅振荡曲线,振荡频率为固有频率 欠阻尼状态:衰减振荡曲线:振荡频率为有阻尼固 有频率 临界阻尼状态:单调上升曲线 过阻尼状态:上升曲线
5、时间响应的瞬态性能指标 瞬态响应性能指标是由二阶系统在欠阻尼状 态下的单位阶跃响应曲线上推导出来的。大 家要掌握的有: 1)上升时间:响应曲线从原始工作状态起, 第一次达到输出稳定值的时间。
100 %
e
100 %
4)调整时间ts:在响应曲线稳态值附近取± (一般为0.02~0.05)作为误差带,响应曲 线达到并不再超出误差带范围所需的时间。 t s 3 /( n ) (采用5%的允许误差) 或 t s 4 /( n ) (采用2%的允许误差)
6、时间响应的稳态性能指标 误差:实际输出信号与期望输出信号之差。 e(t ) x0 r (t ) x0 (t )
G( s)
2 s 2 2n s n
二阶系统的性能参数有三个: 静态:系统增益 k 动态:阻尼比ξ 和无阻尼固有频率ω n。 二阶系统的特征根及其在S平面的分布:
特征方程: s 2 n s 0
2 2 n
特 征 根: s1.2 n n 2 1
控制工程基础
复习提纲
第一章


1、控制论的中心思想、三要素和研究对象。 中心思想:通过信息的传递、加工处理和反 馈来进行控制。 三要素:信息、反馈与控制。 研究对象:研究控制系统及其输入、输出三 者之间的动态关系。 2、反馈、偏差及反馈控制原理。 反馈:系统的输出信号部分或全部地返回到 输入端并共同作用于系统的过程称为反馈。
第二章 系统的数学模型
1、系统的数学模型:描述系统、输入、输出三 者之间动态关系的数学表达式。 时域的数学模型:微分方程;时域描述输入、 输出之间的关系。 单位脉冲响应函数 复数域的数学模型:传递函数;复数域描述 输入、输出之间的关系。 频域的数学模型:频率特性;频域描述输入、 输出之间的关系。
2、线性系统与非线性系统 线性系统:可以用线性方程描述的系统。 重要特性是具有叠加原理。 3、系统微分方程的列写 4、非线性系统的线性化
对稳定的线性系统而言,自由响应又叫瞬态响应; 强迫响应又叫稳态响应。 瞬态响应:系统从初始状态到最终状态的响应过程 稳态响应:系统在时间趋于无穷时,系统的输出状 态。 2、典型输入信号
3、一阶系统及其时间响应 一阶系统:凡是用一阶线性微分方程描述的 系统或传递函数的分母含S的最高幂次为一。 数学模型: k
1)微分方程→G(jω ) 2)G(S)―→G(jω ) 3)h(t)-→G(jω ) 4)实验法
相关文档
最新文档