反比例函数的应用PPT课件
合集下载
反比例函数的应用PPT课件
![反比例函数的应用PPT课件](https://img.taocdn.com/s3/m/432090d2cd22bcd126fff705cc17552706225e76.png)
学习目标
1、能根据实际问题中的条件确定反比例函数 的解析式。 2、能综合利用反比例函数的知识分析和解决 一些简单的实际问题。 3、经历分析实际问题中变量之间的关系,建立 反比例函数模型,进而解决问题的过程。 4、认识数学与生活的密切联系,激发学习数学 的兴趣,增强数学应用意识。
面积中的反比例函数
(1)此蓄电池的电压是 36V , 这一函数的
表达式为
.
(2)当电流为18A时,用电器的电阻为 2Ω ; 当电流为10A时,用电器的电阻为 3.6Ω.
(3)如果以此蓄电池为电源的用电器电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?
答:可变电阻应不小于3.6Ω.
课堂检测,细心的你一定行!
(3)当空气中每立方米的含药量低于1.6mg时,学 生方可进教室,那么从消毒开始, 经过多长时间学生 才能回到教室?
1y 3 x
4
y(mg)
A 6
2y 48
x
O8
x(min)
深层思考,综合应用
1、为了预防“传染病”,某学校订教室采用药熏消 毒法进行消毒, 已知在药物燃烧时段内,室内每立方米 空气中的含药量y(mg)与时间x(min)成正比例.药物燃 后,y与x成反比例,如图所示。 (4)当空气中每立方米的含药量不低于3mg且持 续时间不低于10分钟时,才能有效杀灭空气中病 菌,那么此次消毒是否有效?为什么?
1.一个矩形的面积为20cm2 ,相邻两边的
长分别为xcm和ycm,则y与x之间的函数
关系式为
.
行程中的反比例函数
2.A、B两地间的高速公路长为300km,
一辆汽车行完全程所需的时间t(h)与
行驶的平均速度v(km/h)之间的函数关
反比例函数的综合应用ppt课件
![反比例函数的综合应用ppt课件](https://img.taocdn.com/s3/m/58f9dec2dc88d0d233d4b14e852458fb770b3838.png)
x
数 y = 3x 的图象的交点坐标为 (2,6),(-2,-6) .
解析:联立两个函数解析式,解方程即可.
课堂小结
性反
质比
的例
综函
合数
运图
用象
和
比例系数k的
几何意义
与一次函
数的综合
面积不变性
S矩形=|k|
1
S三角形= |k|
2
判断反比例函数和一次函数在
同一直角坐标系中的图象,要
对系数进行分类讨论,并注意
S1=S2=k
y
5
4
y
4
x
3
P( 2, 2 )
•
2
Q( 4, 1 )
•
1 S1
S2
-4-3-2 -1 O 1 2 3 4 5 x
-1
-2
-3
-4
新知探究
2. 若在反比例函数 y 4 中也用同样
x
的方法分别取 P,Q 两点,填写表格:
y
4
y
x
P
Q
S1
S2
O
S1的值 S2的值 S1与S2的 猜想与 k 的关
九年级数学人教版·下册
第二十六章
26.1反比例函数
26.1.2反比例函数的综合应用
教学目标
1.进一步理解和掌握反比例函数的图象与性质.
2. 灵活运用反比例函数的图象和性质解决问题. (重点)
3. 体会“数”与“形”的相互转化,学习数形结合的思想方法,能
对自变量或函数值进行大小比较. (难点)
温故知新
x
点 C,且 △AOC 的面积为 2,求该反比例函数的表达式.
解:设点 A 的坐标为(xA,yA),
数 y = 3x 的图象的交点坐标为 (2,6),(-2,-6) .
解析:联立两个函数解析式,解方程即可.
课堂小结
性反
质比
的例
综函
合数
运图
用象
和
比例系数k的
几何意义
与一次函
数的综合
面积不变性
S矩形=|k|
1
S三角形= |k|
2
判断反比例函数和一次函数在
同一直角坐标系中的图象,要
对系数进行分类讨论,并注意
S1=S2=k
y
5
4
y
4
x
3
P( 2, 2 )
•
2
Q( 4, 1 )
•
1 S1
S2
-4-3-2 -1 O 1 2 3 4 5 x
-1
-2
-3
-4
新知探究
2. 若在反比例函数 y 4 中也用同样
x
的方法分别取 P,Q 两点,填写表格:
y
4
y
x
P
Q
S1
S2
O
S1的值 S2的值 S1与S2的 猜想与 k 的关
九年级数学人教版·下册
第二十六章
26.1反比例函数
26.1.2反比例函数的综合应用
教学目标
1.进一步理解和掌握反比例函数的图象与性质.
2. 灵活运用反比例函数的图象和性质解决问题. (重点)
3. 体会“数”与“形”的相互转化,学习数形结合的思想方法,能
对自变量或函数值进行大小比较. (难点)
温故知新
x
点 C,且 △AOC 的面积为 2,求该反比例函数的表达式.
解:设点 A 的坐标为(xA,yA),
反比例函数应用ppt课件ppt
![反比例函数应用ppt课件ppt](https://img.taocdn.com/s3/m/77abf78eba4cf7ec4afe04a1b0717fd5360cb2b2.png)
经济中的应用
供需关系
在经济学中,反比例函数被用来描述供需关系,即当价格上涨时,需求量会相应 减少。
投资回报
在投资中,投资回报与投资风险之间存在反比例关系,即投资风险越高,投资回 报越低。
04
CATALOGUE
反比例函数与其他函数的关联
与线性函数的关联
总结词
反比例函数与线性函数具有密切关联,它们在某些条件下可以互相转化。
在物理学、工程学、经济学等各个领域,反 比例函数都有广泛的应用,如电阻、电容、 电感的关系,液体混合物的浓度,投资回报 与风险等问题的解决都离不开反比例函数。
对未来研究和应用的展望
随着科学技术的不断发展,反比例函 数的应用前景将更加广泛,如在物理 学中的量子力学、天体运动等领域, 反比例函数可能会发挥更加重要的作 用。
反比例函数应用 ppt课件
目录
• 反比例函数概述 • 反比例函数的基本性质 • 反比例函数的应用场景 • 反比例函数与其他函数的关联 • 反比例函数的应用案例分析 • 总结与展望
01
CATALOGUE
反比例函数概述
反比例函数的定义
定义
形如 y=k/x(k为常数,k≠0) 的函 数称为反比例函数。
详细描述
反比例函数y=f(x)=1/x的形式与指数函数y=a^x的形式在结构上具有相似性,两者都涉及到自变量和 因变量的变换。此外,当a为1时,指数函数退化为一个常数函数,与反比例函数在x=0处相交。
与对数函数的关联
总结词
反比例函数与对数函数之间存在一定的 关联,它们在形式上具有相似性。
VS
详细描述
反比例函数y=f(x)=1/x的形式与对数函数 y=log_a(x)的形式在结构上具有相似性, 两者都涉及到自变量和因变量的变换。此 外,当a为1时,对数函数退化为一个常 数函数,与反比例函数在x=0处相交。
反比例函数的应用PPT
![反比例函数的应用PPT](https://img.taocdn.com/s3/m/80c11fb8f80f76c66137ee06eff9aef8941e480e.png)
载完毕,那么平均每天至少要卸载多少吨?
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习
1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,
k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.
2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=
5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,
解:把 t =5
240
代入 v
t
240
48.
,得 v
t
从结果可以看出,如果全部货物恰好用 5 天卸载完,
则平均每天卸载 48 吨. 而观察求得的反比例函数
的解析式可知,t 越小,v 越大. 这样若货物不超
过 5 天卸载完,则平均每天至少要卸载 48 吨.
过程
确数学问题
实际问题
中的反比
例函数
实际问题中的两个变量往往都只能取非
注意 负值;
作实际问题中的函数图象时,横、纵坐
标的单位长度不一定相同
随堂练习
1.近视眼镜的度数y(度)与镜片焦距x(m)成反比例(即y= ,
k≠0),已知400度近视眼镜的镜片焦距为0.25 m,则y与x之间的
100
y=
函数关系式是____________.
2.一个水池装水12 m3,如果从水管每小时流出x(m3)的水,经
12
y=
过y(h)可以把水放完,那么y与x之间的函数关系式是________,
塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所
产生的压强,如下表:
体积x/ml
100
80
60
40
20
压强y/kPa
60
75
100
150
300
则可以反映y与x之间的关系的式子是 ( D )A.y=3000x
6000
3000
B.y=6000x C.y=
D.y=
5.如图,在直角坐标系xOy中,直线 y=mx与双曲线
解:(1)由题意设函数表达式为I= ,
九年级数学《反比例函数的性质应用》课件
![九年级数学《反比例函数的性质应用》课件](https://img.taocdn.com/s3/m/ec8c4c9d05a1b0717fd5360cba1aa81144318f92.png)
1若反比例函数y= 象是否经过点( -1
,kx 2的)图点象,经图过像(在2第,_-1_)__,__则象图限.
2的.函图数象的y 同kx2一,分若支点上A,(且x1,x1y<1)x2,,B则(y1x与2,y2y的2)大在小它关 系为_________. 3.双曲线y1、y2在第一象限的图象如图,y1= ,过y1上 的任意一点A,作x轴的平行线交y2于B,交y轴于C,若
(1)求k1、k2、b的值; (2)当x取何值时y1>y2 (3)求△AOB的面积;
(4)C点是B点关于原点的
对称点,求△AOC的面积。 6.如图1,反比例函数 y k (k 0)
A
x
的图象经过点A( 3,m),过A作
AB x轴于点 B,△AOB 的面积为 3 . B O
(1)求k和m的值;
(2)若过A点的直线 y ax b 与X轴交于C点, 图1 且 ACO 30 ,求此直线的解析式.
标分别是-1和3,当y1>y2时, 实数x的取值范围
10如图,四边形OABC是矩形,ADEF是正
方形,点A. D在x轴的正半轴上,点C在y轴
的正半轴上,点F在AB上,点B. E在反比例
函数y=
k x
的图象上,OA=1,OC=6,则正
方形ADEF的面积为
11.已知直线y=kx(k>0)与双曲线
y
3 x
8如图,一次函数y=kx+b与反比例函数 y 6 (x>0)
的图象交于A(m,6),B(n,3)两点。
x
(1)求一次函数的解析式;
(2)根据图象直接写出 kx b 6 0 x
时x的取值范围(3)方程
kx
b
6 x
0 的解
,kx 2的)图点象,经图过像(在2第,_-1_)__,__则象图限.
2的.函图数象的y 同kx2一,分若支点上A,(且x1,x1y<1)x2,,B则(y1x与2,y2y的2)大在小它关 系为_________. 3.双曲线y1、y2在第一象限的图象如图,y1= ,过y1上 的任意一点A,作x轴的平行线交y2于B,交y轴于C,若
(1)求k1、k2、b的值; (2)当x取何值时y1>y2 (3)求△AOB的面积;
(4)C点是B点关于原点的
对称点,求△AOC的面积。 6.如图1,反比例函数 y k (k 0)
A
x
的图象经过点A( 3,m),过A作
AB x轴于点 B,△AOB 的面积为 3 . B O
(1)求k和m的值;
(2)若过A点的直线 y ax b 与X轴交于C点, 图1 且 ACO 30 ,求此直线的解析式.
标分别是-1和3,当y1>y2时, 实数x的取值范围
10如图,四边形OABC是矩形,ADEF是正
方形,点A. D在x轴的正半轴上,点C在y轴
的正半轴上,点F在AB上,点B. E在反比例
函数y=
k x
的图象上,OA=1,OC=6,则正
方形ADEF的面积为
11.已知直线y=kx(k>0)与双曲线
y
3 x
8如图,一次函数y=kx+b与反比例函数 y 6 (x>0)
的图象交于A(m,6),B(n,3)两点。
x
(1)求一次函数的解析式;
(2)根据图象直接写出 kx b 6 0 x
时x的取值范围(3)方程
kx
b
6 x
0 的解
反比例函数的应用ppt课件
![反比例函数的应用ppt课件](https://img.taocdn.com/s3/m/f5858f6db80d6c85ec3a87c24028915f804d84a0.png)
如图,一辆汽车匀速通过某段公路,所需时间
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
清
单
解 t(h)与行驶速度 v(km/h)的图象为双曲线的一段,若这
读 段公路行驶速度不得超过80 km/h,则该汽车通过这段公路
最少需要 _____ h.
6.2 反比例函数的图象与性质
[解题思路]
考
点
清
设双曲线的解析式为t= ,∴k=1×4=40,即 t=
C. y1<y2<y3
D. y1<y3<y2
6.2 反比例函数的图象与性质
[解析]
易
错
∵k=-6<0,∴ 图象位于第二、四象限,在每一象限内
易
混 ,y 随 x 的增大而增大,∵x >x >0,∴y <y <0,∵x
1
3
3
1
2
分
析 <0,∴y2>0,∴y3<y1<y2.
[答案] A
[易错] B
[错因] 忽略了点(x1,y1),(x3,y3)与(x2,y2
成的一元二次方程
即 k1 和 k2 的符号
的根的判别式 Δ
6.2 反比例函数的图象与性质
考
点
清
单
解
读
k1k2>0 ⟹ 两图象有两
交点 个交点
情况
k1k2<0 ⟹ 两图象没有
交点
启示
Δ>0⟹ 两图象有两个交点
Δ=0⟹ 两图象有一个交点
Δ<0⟹ 两图象没有交点
两 图 象 有 交 点 时 , 两 将 =k2x+b 转化为一元二
6.2 反比例函数的图象与性质
重
解题通法
难
解决此类问题需要读懂题目,准确分析出各个量之间的
题
型
突 关系,将需要求的量根据等量关系表示出来.
关于反比例函数的ppt课件
![关于反比例函数的ppt课件](https://img.taocdn.com/s3/m/0cffe8aa534de518964bcf84b9d528ea81c72f3f.png)
05
反比例函数的学习方 法
理解概念和定义
总结词:掌握基础
详细描述:首先需要理解反比例函数的基本概念和定义,包括反比例函数的表达 式、自变量和因变量的关系等。
学习图像和性质
总结词:深入理解
详细描述:通过学习反比例函数的图像和性质,可以更好地理解函数的特性,包括函数的单调性、奇 偶性等。
掌握应用和比较
图像特性
正比例函数图像是一条通过原点 的直线,而反比例函数的图像则 位于第一象限和第三象限,且在 x轴和y轴上分别存在一个无穷远
点。
增减性
正比例函数随着x的增大而增大 或减小,而反比例函数在x增大 时y减小,在x减小时y增大。
与一次函数的比较
01
定义
一次函数的一般形式为y=kx+b,其中k和b为常数且k≠0;反比例函数
题目2
已知反比例函数$y = frac{k}{x}$的图 象经过第一、三象限,且与直线$y = mx + b$相交于两点,求证:这两点 的横坐标互为相反数。
题目1
已知点$(m,n)$和$(p,q)$在反比例函 数$y = frac{k}{x}$的图象上,且$m times n = p times q$,求证:$k = 0$。
双曲余切函数
01
02
03
定义
双曲余切函数是双曲函数 的一种,定义为 (e^x + e^-x) / (e^x - e^-x)。
性质
双曲余切函数在实数范围 内是连续且可导的,具有 类似于余切函数的周期性 和奇偶性。
应用
双曲余切函数在解决某些 数学问题、优化算法和工 程计算中有应用。
双曲反正切函数
定义
关于反比例函数的 ppt课件
反比例函数应用课件ppt课件
![反比例函数应用课件ppt课件](https://img.taocdn.com/s3/m/e572f3bc7d1cfad6195f312b3169a4517723e5b4.png)
反比例函数应用课 件ppt课件
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。
目录
• 反比例函数的概念 • 反比例函数的应用 • 反比例函数与实际问题 • 反比例函数与其他函数的关系 • 反比例函数的扩展知识 • 复习与练习
01
CATALOGUE
反比例函数的概念
反比例函数的定义
函数表达式:$y = \frac{k}{x}$(其中k为常数,且k≠0) 定义域:x≠0
在储蓄和投资中,反比例函数可以用来描述本金、利率和时间之间的关系。本金 和时间是成正比的,而利息和时间是成反比的。
反比例函数在药物作用时间中的应用
在药物作用时间中,药物浓度和作用时间之间的关系可以用反比例函数表示。当 药物浓度固定时,作用时间和效果成反比。
数学中的应用
反比例函数在解方程中的应用
在解方程中,有些方程可以通过变形转化为反比例函数的形式,从而更容易求 解。
反比例函数在函数图像中的应用
在函数图像中,反比例函数的图像是双曲线,具有渐近线、焦点和离心率等特 性。
03
CATALOGUE
反比例函数与实际问题
金融领域中的应用
01
02
03
投资组合问题
利用反比例函数关系,计 算不同投资项目的组合收 益率,以制定最佳投资策 略。
货币时间价值
通过反比例函数,计算不 同利率和投资期限下的未 来现金流现值,以评估投 资项目的经济价值。
3
复数在反比例函数中的应用
在复平面上,反比例函数可以表示为两个点之间 的距离,这个距离随着k值的增大而减小,当k为 无穷大时,两个点重合。
三角函数与反比例函数
三角函数的定义
01
三角函数包括正弦、余弦、正切等,它们是描述角度和三角形
边长之间关系的数学工具。
北师大版数学九年级上册6.3反比例函数的应用 课件(共19张PPT)
![北师大版数学九年级上册6.3反比例函数的应用 课件(共19张PPT)](https://img.taocdn.com/s3/m/31dc645a78563c1ec5da50e2524de518964bd3e9.png)
(2)当 = 时, =
.
= . .
例 5:为检测某品牌一次性注射器的质量,将注射器里充满一定量的
气体,当温度不变时,注射器里的气体压强 p(kPa)与气体体积
³ 的部分对应 值如下表:
V(cm³) 15
20
25
30
40
50
p(kPa) 400 300 240 200 150 120
<<
的解集是____________
.
例2:如图所示,一次函数y=-x+m与反比例函数 =
的图象相交于点A 和点
B(5,-1).
(1)求m的值和反比例函数的表达式;
解:(1)∵一次函数 ₁ = − + 与反比例函数 =
− = − + ,
的图象相交于点 − , ∴ ቐ
位置情况,可先由两者中的某一图象确定字母系数的取值情况,再与另一图象相对
照解决;
(3)已知关于一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
(4)利用反比例函数图象的几何意义求与面积有关的问题.
教师讲评
知识点 2:反比例函数与物理问题的综合应用
力学、电学等知识中存在着反比例函数,解决这类问题,要牢记物理公式.
过程
分析实际情境→建立函数模型→明
确数学问题
实际问题中的
反比例函数
实际问题中的两个变量往往都只
能取非负值;
注意
作实际问题中的函数图象时,横、
纵坐标的单位长度不一定相同
1.教材习题:完成课本159-160页习题6.4的
第1-3题
2.作业本作业:完成对应练习
.
= . .
例 5:为检测某品牌一次性注射器的质量,将注射器里充满一定量的
气体,当温度不变时,注射器里的气体压强 p(kPa)与气体体积
³ 的部分对应 值如下表:
V(cm³) 15
20
25
30
40
50
p(kPa) 400 300 240 200 150 120
<<
的解集是____________
.
例2:如图所示,一次函数y=-x+m与反比例函数 =
的图象相交于点A 和点
B(5,-1).
(1)求m的值和反比例函数的表达式;
解:(1)∵一次函数 ₁ = − + 与反比例函数 =
− = − + ,
的图象相交于点 − , ∴ ቐ
位置情况,可先由两者中的某一图象确定字母系数的取值情况,再与另一图象相对
照解决;
(3)已知关于一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
(4)利用反比例函数图象的几何意义求与面积有关的问题.
教师讲评
知识点 2:反比例函数与物理问题的综合应用
力学、电学等知识中存在着反比例函数,解决这类问题,要牢记物理公式.
过程
分析实际情境→建立函数模型→明
确数学问题
实际问题中的
反比例函数
实际问题中的两个变量往往都只
能取非负值;
注意
作实际问题中的函数图象时,横、
纵坐标的单位长度不一定相同
1.教材习题:完成课本159-160页习题6.4的
第1-3题
2.作业本作业:完成对应练习
反比例函数应用课件ppt课件ppt课件
![反比例函数应用课件ppt课件ppt课件](https://img.taocdn.com/s3/m/c7c6d03b7ed5360cba1aa8114431b90d6c8589e3.png)
• 举例说明如何利用已知条件求反比例函数的解析 式。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
例题一:求反比例函数的解析式
例题与实战演练
1. 已知某地电话费每分钟0.5元,求通话时间t(分)与电话费y(元)之间的函数关系式。
2. 如果某地有甲、乙两个车站,相距400km,甲站到乙站的距离为s(km),求甲车到乙站所 需时间t(h)与速度v(km/h)之间的函数关系式。
VS
详细描述
在解决一些实际应用问题时,常常需要将 不等式与反比例函数的知识结合起来,例 如在研究某些物理量之间的关系时,利用 反比例函数和不等式可以更好地描述它们 之间的关系。
与对数函数的结合
总结词
反比例函数与对数函数的结合,可以解决一 类实际应用问题。
详细描述
在解决一些实际应用问题时,常常需要将反 比例函数和对数函数的知识结合起来,例如 在研究某些传染病传播问题时,利用反比例 函数和对数函数可以更好地描述其传播速度 和时间的关系。
02
反比例函数通常表示为y=k/x或 x=k/y,其中k是常数且不为零。
反比例函数的基本形式
反比例函数的基本形式是y=k/x,其 中k是常数且不为零。
在这个函数中,x和y都是变量,而k是 一个常数。
反比例函数的图像特征
反比例函数的图像是一个双曲 线。
双曲线有两条曲线,一条在第 一象限,另一条在第三象限。
力学中的反比关系
在力学中,有些量之间存在反比关系,例如重力与距离的平方成反比,可以利用 反比例函数进行描述。
化学中的应用
化学反应速率
在化学反应中,反应速率与反应物的浓度成正比,与反应时 间成反比。利用反比例函数可以描述反应速率、反应物浓度 和反应时间之间的关系。
酸碱度与氢离子浓度
在酸碱度与氢离子浓度的关系中,氢离子浓度与酸碱度成反 比,可以利用反比例函数进行描述。
反比例函数图象性质及应用复习课件
![反比例函数图象性质及应用复习课件](https://img.taocdn.com/s3/m/41bbfd3ca517866fb84ae45c3b3567ec102ddcb1.png)
04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。
反比例函数应用ppt课件ppt课件ppt
![反比例函数应用ppt课件ppt课件ppt](https://img.taocdn.com/s3/m/7435ae70590216fc700abb68a98271fe910eafae.png)
检验解
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
将求得的参数代入原方程,检验方 程是否符合实际问题中的条件,如 是否合理、是否符合实际情况等。
验证模型准确性
选择检验方法
根据问题的实际情况,选择合适 的检验方法来验证模型的准确性 ,如残差分析、相关性检验等。
进行模型检验
利用收集到的数据或其他已知条 件,对模型进行检验。通过比较 模型的预测值与实际观测值之间
解题思路
利用简谐振动的周期公式和振 幅定义,建立数学表达式,通 过已知量求解未知量。
PPT内容展示
弹簧振子模型、公式推导、计 算步骤和结果。
例题三:液体流量与管道截面积问题
题目描述
给定管道中液体的流量和管道截面积,求解 液体流速或其他相关量。
解题思路
利用流量公式和流速定义,建立数学表达式 ,通过已知量求解未知量。
液体流量与管道截面积关系
• 流量公式:表述液体在管道中流动时,流量Q、截面积A、流速 v之间的关系,即Q=A×v,当流速确定时,流量与截面积成正 比;当截面积确定时,流量与流速成反比。
03 反比例函数建模与求解方法
CHAPTER
建立数学模型
确定问题类型
明确问题是涉及两个量之 间的反比例关系,即一个 量增加时,另一个量减少 ,反之亦然。
的差异,评估模型的准确性。
调整模型
如果模型检验结果不理想,可以 对模型进行调整,如修改参数、 引入其他变量等,以提高模型的
准确性。
04 典型例题解析及思路梳理
CHAPTER
例题一:电阻、电流、电压问题
01
02
03
04
题目描述
给定电路中电阻、电流和电压 之间的关系,求解未知量。
解题思路
利用欧姆定律,建立电阻、电 流、电压之间的数学表达式,
反比例函数应用课件
![反比例函数应用课件](https://img.taocdn.com/s3/m/9d0c300cc950ad02de80d4d8d15abe23482f03a2.png)
Part
04
如何提高反比例函数的解题能 力
掌握反比例函数的图像和性质
反比例函数的图像
反比例函数的图像是双曲线,分布在两个象限内,随着k值的正负变化,图像的位置也会 发生变化。
反比例函数的性质
反比例函数具有离散性、奇函数性、单调性等性质,这些性质在解题过程中具有重要的 作用。
熟悉反比例函数在实际问题中的应用场景
总结词
利用反比例函数性质,解决与速度相关的实际问题。
详细描述பைடு நூலகம்
在物理问题中,当涉及到两个物体以相反方向运动的问题时,如追及问题或碰撞 问题,可以通过建立反比例函数模型来描述两物体的速度关系,进而找到问题的 解决方案。
用反比例函数解决最大利润问题
总结词
利用反比例函数性质,解决最大利润问题。
详细描述
在经济学或商业问题中,当涉及到成本、售价和利润之间的关系时,可以通过建立反比例函数模型来找到获得最 大利润的条件。例如,在固定成本下,可以通过调整售价来最大化利润。
图像在 x 轴和 y 轴上没 有交点,但会无限接近 x 轴和 y 轴。
反比例函数的性质
当 x > 0 时,y 随 x 的增大而减 小;当 x < 0 时,y 随 x 的增大
而增大。
当 k > 0 时,图像的两个分支分 别位于第一象限和第三象限;当 k < 0 时,图像的两个分支分别
位于第二象限和第四象限。
一次函数和反比例函数在图像上也有所不同。一次函数的图像是一条直线,而反比例函 数的图像则是一个双曲线。这种图像上的差异使得反比例函数在解决实际问题时具有独
特的优势。
反比例函数与二次函数的关联
二次函数和反比例函数在某些方面是相似的,例如它们的开 口方向取决于系数a的符号。然而,它们在顶点、对称轴和最 值等方面存在显著差异。
初三反比例函数ppt课件ppt课件
![初三反比例函数ppt课件ppt课件](https://img.taocdn.com/s3/m/68b84959640e52ea551810a6f524ccbff021ca11.png)
反比例函数是具有极限的函数,当x趋 近于无穷大或无穷小时,y的值趋近于 0。
反比例函数的图像是关于原点对称的 。
02CHBiblioteka PTER反比例函数的应用生活中的反比例现象
总结词
生活中常见的反比例现象
详细描述
在日常生活中,许多现象可以用反比例函数来描述。例如,当两个量之间的比例保持恒定时,其中一个量增加, 另一个量会相应减少,形成反比例关系。这种现象在很多场合都可以观察到,如物体的质量和体积、电路中的电 流和电阻等。
提高练习题解析
总结词
提升解题能力
详细描述
提高练习题相对于基础练习题难度有所增加,题目设计更加灵活,需要学生具备一定的数学思维和解 题技巧。这些题目通常涉及到反比例函数与其他数学知识的综合运用,如与一次函数、二次函数等知 识的结合。
竞赛练习题解析
总结词
挑战高难度
详细描述
竞赛练习题是针对数学竞赛和数学特长生设计的题目,难度较大,题目设计更加复杂和 综合。这些题目不仅要求学生掌握反比例函数的知识,还需要具备较高的数学素养和解 题能力。通过解答这些题目,学生可以挑战自己的数学思维和解题能力,提升数学学习
对未来学习的展望
学生可以在反比例函数的基础上,进一 步学习其他类型的函数,如幂函数、对 数函数等,以拓展数学知识的广度和深
度。
学生可以尝试将反比例函数与其他学科 的知识点进行结合,例如与物理中的电 流、电压等概念进行联系,加深对相关
概念的理解。
学生可以通过参加数学竞赛、科研项目 等活动,进一步提高自己的数学素养和 解决问题的能力,为未来的学习和职业
总结词
掌握实际应用题的解题技巧是提高解 题效率的关键。
详细描述
在解决反比例函数实际应用题时,需 要将问题转化为数学模型,并运用适 当的解题技巧,如排除法、比较法等 ,以简化问题并快速找到答案。
九年级数学《反比例函数的应用》教学课件
![九年级数学《反比例函数的应用》教学课件](https://img.taocdn.com/s3/m/d27f715130126edb6f1aff00bed5b9f3f90f728b.png)
当堂检测
1、(40分)如图,已知A点是反比例函数的图象上一点, AB⊥轴于B,且△ABO的面积为3,则的值为____________.
2、(60分)如图,在平面直角坐标系xoy中, 正比例函数y=kx 的图象与反比例函数的图象有一个交点A(m,2).
(1)求m的值;
(2)求正比例函数y=kx的解析式;
(1)求当0≤x≤2时,y与x的函数关系式; (2)求当x>2时,y与x的函数关系式; (3)若每毫升血液中的含药量不低于2毫克时 治疗有效,则服药一次,治疗疾病的有效时间是多长?
第3课时 反比例函数的应用
解: (1)当 0≤x≤2 时,设函数关系式为 y=k1x,由题 意,得 4=2k1,解得 k1=2,
(3)试判断点B(2,3)是否在正比例函数图象上,
并说明理由.
y
A(m , 2)
O
x
第1题
第2题
第3课时 反比例函数的应用
课堂小结
A.S1>S2>S3 B.S3>S2>S1 C.S1=S2=S3 D.S2>S3>S1
第3课时 反比例函数的应用
例 1 如图 21-5-11,正比例 y=-2x 与反比例函数 y=kx的 图象相交于 A(m,2),B 两点.
(1)求反比例函数的表达式及点 B 的坐标; (2)结合图象直接写出当-2x>xk时, x 的取值范围.
21.5 反比例函数
第3课时 反比例函数的应用
复习回顾
一、三 减小
二、四 增大
导新定向
1、知道反比例函数的概念、图象及性质; 2、能利用它们解决与一次函数结合问题 3、能利用它们解决与几何图形结合问题 4、知道反比例函数中比例系数k的几何意义
小组第展3课示时 反比例函数的应用
反比例函数的应用课件
![反比例函数的应用课件](https://img.taocdn.com/s3/m/b4ec05365bcfa1c7aa00b52acfc789eb172d9ebd.png)
误差分析
在进行数值计算时,需要 进行误差分析,以确保计 算结果的精度和可靠性。
04
反比例函数的应用案例
案例一:解决实际问题
总结词
反比例函数在实际问题中的应用广泛,可以通过建立数学模型来求解实际问题 。
详细描述
反比例函数可以描述一些实际问题的关系,例如电流与电阻、电容与电压等。 通过建立反比例函数模型,可以求解出未知量,为实际问题的解决提供依据。
详细描述
在经济学中,反比例函数可以用于描述供需关系、市场均衡等经济现象和规律。 通过应用反比例函数,可以更好地理解经济现象和规律,为经济政策的制定提供 依据。
案例四:在其他领域中的应用
总结词
反比例函数在其他领域中也有应用,例如生物学、化学等。
详细描述
在生物学中,反比例函数可以用于描述生物种群数量与环境容量的关系;在化学中,反比例函数可以用于描述化 学反应速率与反应物浓度的关系等。通过应用反比例函数,可以更好地理解这些领域的规律和现象,为相关领域 的发展提供支持。
反比例函数在生物学中的应用:计算生物种群数量、繁 殖率等。
反比例函数在心理学中的应用:研究人的行为与心理活 动之间的关系。
03
反比例函数的应用方法
建模方法
建立实际问题与反比例函数的联系
01
通过分析实际问题的数学模型,将问题转化为反比例函数的形
式,以便利用其性质和结论解决问题。
确定变量的实际意义
02
图像变化
当k的值逐渐增大或减小,双曲线的形 状会发生变化,但始终关于原点对称 。
反比例函数的性质
奇函数
无界性
单调性
实际应用
由于反比例函数的图像关于 原点对称,因此它是一个奇 函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新旧衔接
(计时赛) 4、如图,A( x , y3)是函数 y x y )、C(x3 , y )、B( x ,
1
1
1
的图象在第一象限分支上的三个点,且x1< x2 < x ,过A、
B、C三点分别作坐标轴的垂线,得矩形ADOH、BEON、CFOP, 它们的面积分别为S1、S2、S3,则下列结论中正确的是( (A)S1<S2<S3 (B)S3 <S2< S1 (C)S2 < S3 < S1 (D) S1=S2=S3 )
情感目标:使学生乐于接触社会环境中的数学信息,敢于
面对数学活动中的困难,并有独立克服困难和 运用知识解决问题的成功体验,增强学好数学 的自信心。
四、教学的重点Leabharlann 难点教学重点:将实际问题抽象为数学问题,并能用反比例 函数的性质去解决实际问题。 教学难点:用函数的思想解决实际问题,建立数学模型。 突破难点 从学生熟悉和感兴趣的问题情境出发,依据 的方法: 学生已有的知识背景和活动经验,提供大量 的操作、思考和交流的机会,使学生在自主 探究的过程中建立符合个体认知特点的知识 结构。
说课课例
反比例函数的应用
朱国旺
珠海市夏湾中学
一、教学内容及其地位、作用 二、教学指导思想和教法选择、学法指导 三、教学目标 四、教学的重点、难点
五、教学程序
一、教学内容及其地位、作用
反比例函数的应用是北师大版九年级上册第 五章第三节的教学内容。它是在七年级学习变量 与变量之间的关系,八年级学习正比例函数及一 次函数后进行的,九年级下册还将继续学习二次 函数。因此本节课起着承上启下的作用。它既是 反比例函数性质的巩固和应用,又是用函数的思 想解决实际问题的典范。同时,反比例函数的应 用将把代数和几何知识有机糅合在一起,是典型 的数形结合的例子,也是理论与实践的有机结合 体,其中蕴涵着丰富的数学思想方法。
新旧衔接
(计时赛) 1、在下列函数表达式中,不属于反比例函数的是( )。 1 1 x (C)y=3x 1 (D)xy=3 (A)y= (B)y=
3x
3
2、若y=(m-1)x ( m1)( m 2) 1为反比例函数,则 m =( (A) 1 (B) 1或-2 (C)-2 (D)0
)。
3、已知菱形的面积为定值,它的两条对角线长分别为x,y, 则x与y之间的函数图象是( )
设计意图
从学生的实际出发,用他们熟悉和感兴趣的问题情境引出学 习主题,通过设置富有数学含义的问题链,促使学生展开数学探 究,展现数学与现实生活及其他学科的联系,突出“数学化”的 过程,增强学生的应用意识。
拓展应用
如图,正比例函数与反比例函数的图象相交于A、B两点, A点的横坐标为 3 。 请补充一个条件: 并求出正比例函数关系式、 反比例函数关系式、A、B两 点的坐标(条件中已知的项 不用求)。并与同伴交流。
设计意图
引入课题
舞台的灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布 的阴天,或由黑夜变成白昼。你能解释这样的效果是怎样产生的吗? 舞台用电的电压一定时,随着可变电阻R(Ω )的变化,电流将 如何变化? 若舞台用电的电压为220(ν ),那么 (1)用含R的代数式表示I,R是I的反比例函数吗?为什么? (2)当通过可变电阻的电流为10A时,电阻是多少? (3)为安全起见,电路的电流不得超过20A,那么可变电阻应控制 在 什 么范围内? (4)在直角坐标系中,作出相应的函数图象。 请利用图象对(2)(3)作出直观解释,并在小组内交流。
设计 本例选自2003年浙江金华中考题,以预防“非典”,为切入点, 提出富有启发性的问题,为学生提供操作、思考和交流的机会, 意图 促使学生主动尝试从数学的角度运用所学知识寻求解决问题的策
二、教学指导思想和教法选择、学法指导
数学新课程标准十分强调数学学习内容的选择、数学教 学活动的设计以及数学教学的评价。强调数学学习内容要有 利于学生主动进行观察、实验、验证、推理与交流等数学活 动;有效的数学学习活动不能单纯地依赖模仿与记忆,动手 实践、自主探索与合作交流是学生学习数学的重要方式 。教 师应向学生提供现实、有趣、富有挑战性的学习素材,以便 学生自主展开探究,帮助他们在自主探索和合作交流的过程 中真正理解和掌握基本的数学知识与技能、获取数学思想和 方法、积累广泛的数学活动的经验。根据这一指导思想,本 课选择的教学方法和学法指导如下:
3
2
2
新旧衔接
(计时赛) 5、如图,A为反比例函数图象上一点, AB X轴,垂足为B,若 AOB的面积为3, 则反比例函数图象的关系式为( )
6、如果双曲线经过点(2,-3),那么它一定还经过点( ) (A)(2,3)(B)(-2,3)(C)(-2,-3)(D)不确定 精心设置的选择题,既是对旧知识进行巩固复习, 又是为学生新的数学学习构筑起点。
设 计 意 图
改编教材147页中“做一做”的第2题,努力为学生提供丰 富多彩的学习素材,让学生经历知识的形成和应用过程, 关注、尊重学生的个体差异,有效地实施有差异的教学, 使每一个学生都得到充分的发展。
示例演示
如图,为了预防“非典”,某学校对教室采用药熏消毒法进行消毒。 已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成 正比例,药物燃烧完后,y与x成反比例,现测得药物8min燃毕,此时室 内空气中每立方米的含药量为6mg。请根据题中所提供的信息,解答下 列问题: (1)药物燃烧时,y与x的关系式为 ; (2)药物燃烧完后,y与x的关系式为 ; (3)研究表明,当空气中每立方米的含药量低 于 1.6 mg 时学生方可进入教室,那么从消毒开 始,至少经过 min后,学生才能回到教室; 研究表明,当空气中每立方米的含药量不低于 3mg且持续时间不低于10 min时,才能有效杀灭 空气中的病菌,那么此次消毒是否有效?请说 明理由。
教学方法:问题情境—建立模型—应用拓展 学法指导:合作交流、操作探究、评价发展
三、教学目标
认知目标: 让学生在进一步理解反比例函数的性质的基础
上,通过对现实生活问题的研究,探索运用抽 象的数学知识解决实际问题的方法,经历知识 的成长和应用过程。
能力目标: 加深学生对函数图象的阅读理解能力和分析应
用的能力,培养学生应用函数思想解决实际问 题的能力及数形结合的方法。