玉林市陆川县乌石镇二中2020年七年级下期末模拟数学试卷

合集下载

〖精选3套试卷〗2020学年广西省玉林市初一下学期期末数学经典试题

〖精选3套试卷〗2020学年广西省玉林市初一下学期期末数学经典试题
2019-2020学年初一下学期期末模拟数学试卷
一、选择题(每题只有一个答案正确)
1.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB、CD,若CD//BE,∠1=40°,则∠2的度数是()
A.70°B.55°C.40°D.35°
2.已知m,n为常数,若mx+n>0的解集为 ,则nx-m<0的解集为( )
A. B. C. D.
二、填空题题
11.若点A(1,y1)和点B(2,y2)都在一次函数y=﹣x+2的图象上,则y1_____y2(选择“>”、“<”、=”填空).
12.已知 ,过点 作射线 ,且 ,则 的度数为__________.
13.“ 的值不小于 ”用不等式表示为_______________.
5.如图,两个边长为5的正方形拼合成一个矩形,则图中阴影部分的面积是( )
A.5
B.25
C.50
D.以上都不对
6.下列四种调查适合做抽样调查的个数是()
①调查某批汽车抗撞击能力;②调查某池塘中现有鱼的数量;③调查春节联欢晚会的收视率;④某校运动队中选出短跑最快的学生参加全市比赛.
A.1个B.2个C.3个D.4个
21
1.4
C
15
1.3
D
某校学生平均每天课外阅读时间条形统计图
(1)填空: ________, ________, ________;并在图中补全条形统计图;
(2)该校现有学生1211人,请你根据上述调查结果,估计该校学生平均每天课外阅读时间不少于1小时的共有多少人?
25.(10分)化简: (x﹣2﹣ ),并求当x=3时的值.
解得 .
∵CD//BE,
∴∠DCG=∠EBC=40°.

玉林市2020年七年级下学期数学期末考试试卷C卷

玉林市2020年七年级下学期数学期末考试试卷C卷

玉林市2020年七年级下学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共15分)1. (1分) (2019七上·句容期中) 已知:,,,的值为________.2. (1分) (2020八上·莲湖期末) 将一块体积为1000cm3的正方体木块锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为________cm。

3. (1分) (2020七下·固阳月考) 比较大小:3________ (填“ ”,“ ”或“ ”4. (1分) (2019八上·涧西月考) 已知点A(m+1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2019的值为________.5. (1分) (2019八上·荣昌期中) 如图,∠BAC=100°,MN、EF分别垂直平分AB、AC,则∠MAE的大小为________6. (1分)据《太仓日报》报道:2015年太仓港区完成规模工业产值705.48亿元,将705.48亿元用科学记数法表示为________元.7. (1分)如图,△OA1B1在直角坐标系中,A1(﹣1,0),B1(0,2),点C1与点A1关于OB1的对称.对△A1B1C1进行图形变换,得到△C1B2C2 ,使得B2(3,2),C2(5,0);再进行第二次变换,得到△C2B3C3 ,使得B3(9,2 ),C3(13,0 );第三次将△C2B3C3变换成△C3B4C4 , B4(21,2),C4(29,0 )…按照上面的规律,若对△A1B1C1进行第四次次变换,得到△C4B5C5 ,则C5(________).8. (1分) (2020七下·陇县期末) 在平面直角坐标系中,A(-3,6),M是 x轴上一动点,当AM的值最小时,点M的坐标为________.9. (1分)一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是________.10. (1分) (2018七下·兴义期中) 如图是对顶角量角器,用它测量角的原理是________11. (1分)(2020·温州模拟) 如图,E、F、G、H为四边形ABCD四边的中点,连接HF和EG交于点O,已知四边形AEOH、四边形HDGO、四边形BEOF的面积分别为2、3、4,则四边形CFOG的面积=________.12. (2分)一个等腰三角形的两边长分别为3和7,这个三角形的周长是________13. (1分) (2019八下·兰州期中) 如图,在中,,,平分,交于点,若,则 ________.14. (1分)已知等腰三角形的一个内角是70°,则它的底角为________二、单选题 (共6题;共12分)15. (2分) (2019七上·南浔月考) 下列说法中正确的是()A . 9的立方根是3B . -9的平方根是-3C . ±4是64的立方根D . 4是16的算术平方根16. (2分) (2019七上·河源月考) 实数a在数轴上的位置如图所示,则下列说法错误的是()A . a的相反数大于2B . a的相反数是2C . |a|>2D . 2 + a<017. (2分) (2020七下·北京月考) 已知:如图,,则,,之间的关系是A .B .C .D .18. (2分) (2018八上·鄞州期中) 已知:如图所示,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A . ∠A与∠D互为余角B . ∠A=∠2C . △ABC≌△CEDD . ∠1=∠219. (2分) (2019八上·萧山期末) 在直角坐标系中,已知点在第四象限,则A .B .C .D .20. (2分)如图,在△ABC中,AB=AC , AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12,图中阴影部分的面积为().A . 6B . 10.5C . 11D . 15.5三、解答题 (共5题;共41分)21. (15分) (2019八上·永春月考) 先化简,再求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中实数x、y满足25﹣10x+x2+ =0.22. (6分) (2020八上·潜江期末) 如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于点E.(1)如图①,若AD⊥BC于点D,∠C=40°,求∠DAE的度数;(2)如图②,若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23. (5分) (2019七下·中山期中) 如图,,试判断与的大小关系,并说明理由。

广西玉林市2020年(春秋版)七年级下学期数学期末考试试卷(II)卷

广西玉林市2020年(春秋版)七年级下学期数学期末考试试卷(II)卷

广西玉林市 2020 年(春秋版)七年级下学期数学期末考试试卷(II)卷姓名:________班级:________成绩:________一、 选择题 (共 6 题;共 12 分)1. (2 分) (2017 九上·宜昌期中) 下列计算中,正确的是( )A . (a3b)2=a6b2B . a•a4=a4C . a6÷a2=a3D . 3a+2b=5ab2. (2 分) (2018 八上·青岛期末) 以下列各组线段为边,能组成三角形的是( )A . 1cm,2cm,4cmB . 4cm,6cm,8cmC . 5cm,6cm,12cmD . 2cm,3cm,5cm3. (2 分) (2019 七下·洪江期末) 下列分解因式正确的是( )A.B.C.D.4. (2 分) 如果不等式 ax>1 的解集是 x< , 则( ) A . a≥0 B . a≤0 C . a>0 D . a<0 5. (2 分) (2020 七下·嘉兴期中) 下列图形中,由∠1=∠2,能得到 AB//CD 的是( )A.B.第 1 页 共 11 页C.D. 6. (2 分) (2019·台州模拟) 一列火车匀速驶入长 2000 米的隧道,从它开始驶入到完全通过历时 50 秒,隧 道内顶部一盏固定灯在火车上垂直照射的时间为 10 秒,则火车的长是( )米. A . 400 B . 500C. D . 600二、 填空题 (共 10 题;共 10 分)7. (1 分) (2020 七下·溧水期末) 命题“对顶角相等”的逆命题是一个________命题(填“真”或“假”). 8. (1 分) (2016·黔西南) 0.0000156 用科学记数法表示为________. 9. (1 分) (2019 七下·鼓楼月考) 若 am=3,an=2,则 am-2n 的值为________.10. (1 分) (2019 七下·淮安月考) 计算________.11. (1 分) 用不等式表示“x 与 5 的差不小于 4”:________.12. (1 分) (2019 八上·浦东月考)________13. (1 分) (2020 七下·东台期中) 若:(x²+mx+n)(x+1)的结果中不含 x2 的项和 x 的项,则 mn=________.14. (1 分) (2018 七下·龙海期中) 在虚线上填写一个二元一次方程,使所成方程组的解是. 15. (1 分) (2018 八上·防城港月考) 如图:小亮从 A 点出发,沿直线前进 10 米后向左转 30 度,再沿直线 前进 10 米,又向左转 30 度,⋯⋯照这样走下去,他第一次回到出发点 A 点时,一共走了________米?16. (1 分) (2016 九上·怀柔期末) 不等式组的正整数解是________.三、 解答题 (共 10 题;共 72 分)第 2 页 共 11 页17. (10 分) (2019 八上·南关期末) 分解因式:2m3﹣8mn2 18. (5 分) (2019 七下·永州期末) 先化简再求值:19. (5 分) (2018 七下·韶关期末) 解方程组.20. (8 分) (2020 七下·江阴期中)(1) 解方程组;,其中,.(2) 解不等式组,并将解集在数轴上表示出来.21. (6 分) (2020 九上·莘县期末) 如图,正方形网格中的每个小正方形的边长都是 1,每个小正方形的顶点叫做格点△ABC 的三个顶点 A,B,C 都在格点上将△ABC 绕点 A 顺时针方向旋转 90°得到△AB'C'。

2020学年广西省玉林市初一下学期期末数学经典试题

2020学年广西省玉林市初一下学期期末数学经典试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图1是一个边长分别为2x ,2y 的长方形纸片(x >y ),沿长方形纸片的两条对称轴剪开,得到四块形状和大小都相同的小长方形,拼成如图2所示的一个正方形,则中间空白部分的面积是( )A .x y ⋅B .2()x y +C .2()x y -D .22x y -2.已知a <b ,则下列不等式一定成立的是( )A .a +5>b +5B .-2a <-2bC .32a >32bD .7a -7b <0 3.某校组织部分学参加安全知识竞赛,并将成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%,12%,40%,21%,第五组的频数是1.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-10分的人数最多;④10分以上的学生有14名;其中正确的个数有( )A .1个B .2个C .3个D .4个4.若a =b+3,则代数式a 2﹣2ab+b 2的值等于( )A .3B .9C .12D .815.解方程组 3410?435?m n m n +=⎧⎨-=⎩①②,如果用加减消元法消去n ,那么下列方法可行的是( ) A .①×4+②×3B .①×4-②×3C .①×3-②×4D .①×3+②×4 6.下列各数:227,2π912121,0.101001…(每两个1之间的0逐渐增加一个),中,无理数有( )个.A .3B .4C .2D .17.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若CD//BE ,∠1=40°,则∠2的度数是( )A.70°B.55°C.40°D.35°8.已知21xy=⎧⎨=⎩,是二元一次方程26ax y+=的一个解,那么a的值为()A.2 B.-2 C.4 D.-49.设▲,●,■表示三种不同的物体,现用天平称了两次,情况如图所示,那么▲,●,■这三种物体的质量从大到小的顺序排列应为()A.▲,●,■B.▲,■,●C.■,●,▲D.●,▲,■10.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是()A.B.C.D.无法确定二、填空题题11.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有___人.12.计算:23÷25=______.13.在△ABC中,∠A≤∠B≤∠C,若∠A=20°,且△ABC能分为两个等腰三角形,则∠C=___________________。

2020-2021学年广西玉林市六县市联考七年级(下)期末数学试卷 (解析版)

2020-2021学年广西玉林市六县市联考七年级(下)期末数学试卷 (解析版)

2020-2021学年广西玉林市六县市联考七年级(下)期末数学试卷一、选择题(共12小题,每题3分,共36分).1.0,﹣,﹣1,这四个数中,最小的数是()A.﹣1B.﹣C.0D.2.若m<n,则下列不等式正确的是()A.m﹣2>n﹣2B.>C.﹣6m>﹣6n D.﹣8m<﹣8n 3.如图,数轴上的A,B,C,D四个点中,表示1﹣的点是()A.点A B.点B C.点C D.点D4.课间操时,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成()A.(4,3)B.(4,5)C.(3,4)D.(5,4)5.如图,AB∥CD,AD⊥AC,∠ACD=53°,则∠BAD的度数为()A.53°B.47°C.43°D.37°6.已知点P(a,a+5)在第二象限,且点P到x轴的距离为2,则a的值为()A.﹣3B.﹣2C.﹣1D.27.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:3:4:1,则第二小组频数和第三小组的频率分别为()A.0.4和0.3B.0.4和9C.9和0.4D.12和98.某种商品进价为500元,标价800元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至多可以打()A.7折B.7.5折C.8折D.8.5折9.甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌10.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm11.如图,AB∥CD,∠EBF=2∠ABE,∠ECF=3∠DCE,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是()A.4β﹣α+γ=360°B.3β﹣α+γ=360°C.4β﹣α﹣γ=360°D.3β﹣2α﹣γ=360°12.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.3种B.4种C.5种D.6种二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上13.写出一个比0大且比2小的无理数.14.如图,两直线交于点O,若∠3=3∠2,则∠1的度数是.15.已知点A的坐标是A(﹣2,3),线段AB∥y轴,且AB=4,则B点的坐标是.16.关于x的不等式﹣k﹣x+6>0的正整数解是1,2,3,则k的取值范围是.17.某校有2400名九年级学生,随机调查了其中的400名学生,结果有150名学生会游泳,估计该校会游泳的九年级学生人数约为.18.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为.三、解答题:本大题共8小题,满分共66分.解答应写出证明过程或演算步骤(含相应的文字说明).将解答写在答题卡上19.计算:+﹣+(﹣1)2021.20.解方程组.21.解不等式组,并在数轴上表示不等式组的解集.22.如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3),此时点A1的坐标为.23.学校为了进一步丰富学生的课外阅读,准备购买一批课外书,为此对部分学生进行了“你最喜欢的书籍”问卷调查(每人只选一项),收集数据并绘制成不完整的统计图.请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了名学生,请将条形统计图补充完整;(2)扇形图中“科普”所对的圆心角的度数为;(3)如果全校共有学生1600人,请通过计算估计该校最喜欢“科普”书籍的学生比最喜欢“文艺”书籍的学生少多少人?24.如图,AF分别与BD、CE交于点G、H,∠1=56°,∠2=124°.(1)求证:BD∥CE;(2)若∠A=∠F,探索∠C与∠D的数量关系,并证明你的结论.25.某学校为了改善办学条件,计划购置一批A型电脑和B型电脑.经投标发现,购买1台A型电脑比购买1台B型电脑贵500元;购买1台A型电脑和2台B型电脑共需8000元.(1)购买1台A型电脑和1台B型电脑各需多少元?(2)根据学校实际情况,购买A、B型电脑总数为30台,购买电脑的总费用不超过86250元,且A型电脑台数不少于B型电脑台数的2倍,该校共有几种购买方案?试写出所有的购买方案.26.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2),P的坐标为(m,0).(1)直接写出线段AP的长为(用含m的式子表示);(2)求△ABC的面积;(3)当S△PAB=2S△ABC时,求m的值.参考答案一、选择题(共12小题).1.0,﹣,﹣1,这四个数中,最小的数是()A.﹣1B.﹣C.0D.解:排列得:﹣1<﹣<0<,则最小的数是﹣1.故选:A.2.若m<n,则下列不等式正确的是()A.m﹣2>n﹣2B.>C.﹣6m>﹣6n D.﹣8m<﹣8n 解:A、∵m<n,∴m﹣2<n﹣2,∴选项A不符合题意;B、∵m<n,∴,∴选项B不符合题意;C、∵m<n,∴﹣6m>﹣6,∴选项C符合题意;D、∵m<n,∴﹣8m>﹣8n,∴选项D不符合题意.故选:C.3.如图,数轴上的A,B,C,D四个点中,表示1﹣的点是()A.点A B.点B C.点C D.点D【分析】先求出的范围,再求出1﹣的范围,即可求出哪个点表示1﹣.解:∵1<<2,∴﹣2<<﹣1,∴﹣2+1<<﹣1+1,即﹣1<0,故点B是表示1﹣的点,故选:B.4.课间操时,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成()A.(4,3)B.(4,5)C.(3,4)D.(5,4)【分析】根据小军的(2,1),可得小刚的位置.解:如图:,小华、小军、小刚的位置如图,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成(4,3),故选:A.5.如图,AB∥CD,AD⊥AC,∠ACD=53°,则∠BAD的度数为()A.53°B.47°C.43°D.37°【分析】因为AD⊥AC,所以∠CAD=90°.欲求∠BAD,需求∠BAC.由AB∥CD,得∠BAC=180°﹣∠ACD.解:∵AB∥CD,∴∠ACD+∠BAC=180°.∴∠CAB=180°﹣∠ACD=180°﹣53°=127°.又∵AD⊥AC,∴∠CAD=90°.∴∠BAD=∠CAB﹣∠CAD=127°﹣90°=37°.故选:D.6.已知点P(a,a+5)在第二象限,且点P到x轴的距离为2,则a的值为()A.﹣3B.﹣2C.﹣1D.2【分析】根据第二象限内点的坐标符合特点得出关于a的不等式组,解之求出a的范围,再根据点P到x轴的距离为2可得a的值.解:根据题意,得:,解得﹣5<a<0,∵点P到x轴的距离为2,∴a+5=2,解得a=﹣3,故选:A.7.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:3:4:1,则第二小组频数和第三小组的频率分别为()A.0.4和0.3B.0.4和9C.9和0.4D.12和9【分析】根据“各组数据个数之比为2:3:4:1”可求出第二小组的频数占30的,第三小组的频率为,计算得出答案.解:因为各组数据个数之比为2:3:4:1,样本数据个数为30,所以第二小组的频数为30×=9,第三小组的频率为=0.4,故选:C.8.某种商品进价为500元,标价800元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至多可以打()A.7折B.7.5折C.8折D.8.5折【分析】设打了x折,用标价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.解:设打了x折,由题意得,800×0.1x﹣500≥500×20%,解得:x≥7.5.答:至多打7.5折.故选:B.9.甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.解:从折线图来看:折线统计图是增长率,所以这几年内甲、乙两种品牌的方便面销售量都在逐步上升,故A 正确,符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B 错误,不符合题意;折线统计图是增长率,所以每年的销量都在增长.由于甲乙的基础销量未知,所以无法判断甲的销量高于乙,C错误,不符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:A.10.如图,八块相同的小长方形地砖拼成一个大长方形,则每块小长方形地砖的宽等于()A.5cm B.10cm C.15cm D.45cm【分析】设每块小长方形地砖的长为xcm,宽为ycm,由图中小长方形地砖的长与宽的数量关系,列出方程组,解方程组即可.解:设每块小长方形地砖的长为xcm,宽为ycm,依题意得:,解得:,即每块小长方形地砖的宽等于15cm,故选:C.11.如图,AB∥CD,∠EBF=2∠ABE,∠ECF=3∠DCE,设∠ABE=α,∠E=β,∠F=γ,则α,β,γ的数量关系是()A.4β﹣α+γ=360°B.3β﹣α+γ=360°C.4β﹣α﹣γ=360°D.3β﹣2α﹣γ=360°【分析】由∠EBF=2∠ABE,可得∠EBF=2α.由∠EBF+∠BEC+∠F+∠ECF=360°,可得∠ECF=360°﹣(2α+β+γ),那么∠DCE=.由∠BEC=∠M+∠DCE,可得∴∠M=∠BEC﹣∠DCE=β﹣.根据AB∥CD,得∠ABE=∠M,进而推断出4β﹣α+γ=360°.解:如图,分别延长BE、CD并交于点M.∵AB∥CD,∴∠ABE=∠M.∵∠EBF=2∠ABE,∠ABE=α,∴∠EBF=2α.∵∠EBF+∠BEC+∠F+∠ECF=360°,∴∠ECF=360°﹣(2α+β+γ).又∵∠ECF=3∠DCE,∴∠DCE=.又∵∠BEC=∠M+∠DCE,∴∠M=∠BEC﹣∠DCE=β﹣.∴β﹣=α.∴4β﹣α+γ=360°.故选:A.12.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.3种B.4种C.5种D.6种【分析】设住3人间的需要x间,住2人间的需要y间,根据总人数是17人,列出不定方程,解答即可.解:设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,所以有3种不同的安排.故选:A.二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上13.写出一个比0大且比2小的无理数(答案不唯一).【分析】只需要写出一个符合题意的无理数即可.解:比0大比2小的无理数都可以,如:,,故答案为:(答案不唯一).14.如图,两直线交于点O,若∠3=3∠2,则∠1的度数是45°.【分析】由∠2+∠3=180°,∠3=3∠2,可求得∠2=45°,利用对顶角相等即求得∠1的度数.解:∵∠2+∠3=180°,∠3=3∠2,∴∠2+3∠2=180°,解得:∠2=45°,∴∠1=∠2=45°.故答案为:45°.15.已知点A的坐标是A(﹣2,3),线段AB∥y轴,且AB=4,则B点的坐标是(﹣2,﹣1)或(﹣2,7).【分析】根据点A坐标和AB∥y轴确定点B的横坐标为﹣2,根据AB=5可确定其纵坐标.解:∵点A的坐标是A(﹣2,3),线段AB∥y轴,∴故设点B坐标为(﹣2,y),又AB=4,∴,解得:y=﹣1或7,故点B坐标为(﹣2,﹣1)或(﹣2,7),故答案为:(﹣2,﹣1)或(﹣2,7).16.关于x的不等式﹣k﹣x+6>0的正整数解是1,2,3,则k的取值范围是2≤k<3.【分析】将k看做已知数求出不等式的解集,根据不等式的正整数解为1,2,3,确定出k的取值即可.解:解不等式﹣k﹣x+6>0,得:x<6﹣k,∵不等式的正整数解为1,2,3,∴3<6﹣k≤4,解得:2≤k<3,故答案为:2≤k<3.17.某校有2400名九年级学生,随机调查了其中的400名学生,结果有150名学生会游泳,估计该校会游泳的九年级学生人数约为900名.【分析】用总人数乘以样本中会游泳的学生人数所占比例即可.解:估计该校会游泳的九年级学生人数约为2400×=900(名),故答案为:900名.18.如图,在平面直角坐标系中,边长为1的等边△OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将△OA1A2沿x轴正方向依次向右移动2个单位,依次得到△A3A4A5,△A6A7A8…,则顶点A2021的坐标为(1346.5,).【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.解:2021÷3=673•••1,673×2=1346,故顶点A2019的坐标是(1346.5,).故答案为:(1346.5,).三、解答题:本大题共8小题,满分共66分.解答应写出证明过程或演算步骤(含相应的文字说明).将解答写在答题卡上19.计算:+﹣+(﹣1)2021.【分析】直接利用立方根的性质以及二次根式的性质、有理数的乘方运算法则分别化简得出答案.解:原式=2+3﹣﹣1=2.20.解方程组.【分析】方程组利用代入消元法求出解即可.解:,由②得:y=2x﹣1③,把③代入①得:3x+2(2x﹣1)=19,即x=3,把x=3代入③得:y=5,则方程组的解为.21.解不等式组,并在数轴上表示不等式组的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.解:解不等式3x﹣5<x+1,得:x<3,解不等式<,得:x>﹣2,则不等式组的解集为﹣2<x<3,将不等式组的解集表示在数轴上如下:22.如图,在网格中,每个小正方形的边长均为1个单位长度.我们将小正方形的顶点叫做格点,△ABC的三个顶点均在格点上.(1)将△ABC先向右平移6个单位长度,再向上平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(﹣4,3),此时点A1的坐标为(2,6).【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)利用A点坐标建立平面直角坐标系,然后写出A1点的坐标.解:(1)如图,△A1B1C1为所作;(2)如图,点A1的坐标为(2,6).故答案为(2,6).23.学校为了进一步丰富学生的课外阅读,准备购买一批课外书,为此对部分学生进行了“你最喜欢的书籍”问卷调查(每人只选一项),收集数据并绘制成不完整的统计图.请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,一共抽查了200名学生,请将条形统计图补充完整;(2)扇形图中“科普”所对的圆心角的度数为90°;(3)如果全校共有学生1600人,请通过计算估计该校最喜欢“科普”书籍的学生比最喜欢“文艺”书籍的学生少多少人?【分析】(1)从两个统计图中可知,“文艺”的频数为80人,占调查人数的40%,可求出调查人数,进而求出“科普”人数补全统计图;(2)求出“科普”所占总体的百分比即可计算相应的圆心角度数;(3)求出最喜欢“科普”书籍的学生比最喜欢“文艺”书籍的学生少几分之几,即可求出相应的人数.解:(1)80÷40%=200(人),200﹣80﹣30﹣40=50(人),故答案为:200,补全条形统计图如下:(2)360°×=90°,故答案为:90°;(3)1600×=240(人),答:该校最喜欢“科普”书籍的学生比最喜欢“文艺”书籍的学生少240人.24.如图,AF分别与BD、CE交于点G、H,∠1=56°,∠2=124°.(1)求证:BD∥CE;(2)若∠A=∠F,探索∠C与∠D的数量关系,并证明你的结论.【分析】(1)由∠1与∠DGH是对顶角,得∠DGH=∠1=56°,故∠DGH+∠2=180°,那么BD∥CE.(2)由∠A=∠F,得AC∥DF.又因BD∥CE,故四边形BCED是平行四边形,那么∠C=∠D.解:(1)证明:∵∠1与∠DGH是对顶角,∴∠DGH=∠1=56°.∴∠DGH+∠2=56°+124°=180°.∴BD∥CE.(2)∠C=∠D,证明过程如下:∵∠A=∠F,∴AC∥DF.又∵BD∥CE,∴四边形BCED是平行四边形.∴∠C=∠D.25.某学校为了改善办学条件,计划购置一批A型电脑和B型电脑.经投标发现,购买1台A型电脑比购买1台B型电脑贵500元;购买1台A型电脑和2台B型电脑共需8000元.(1)购买1台A型电脑和1台B型电脑各需多少元?(2)根据学校实际情况,购买A、B型电脑总数为30台,购买电脑的总费用不超过86250元,且A型电脑台数不少于B型电脑台数的2倍,该校共有几种购买方案?试写出所有的购买方案.【分析】(1)设购买1台A型电脑需要x元,1台B型电脑需要y元,根据“购买1台A型电脑比购买1台B型电脑贵500元;购买1台A型电脑和2台B型电脑共需8000元”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值;(2)设购买A型电脑m台,则购买B型电脑(30﹣m)台,根据“购买电脑的总费用不超过86250元,且A型电脑台数不少于B型电脑台数的2倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出各购买方案.解:(1)设购买1台A型电脑需要x元,1台B型电脑需要y元,依题意得:,解得:.答:购买1台A型电脑需要3000元,1台B型电脑需要2500元.(2)设购买A型电脑m台,则购买B型电脑(30﹣m)台,依题意得:,解得:20≤m≤22.又∵m为正整数,∴m可以为20,21,22,∴该校共有3种购买方案,方案1:购买A型电脑20台,B型电脑10台;方案2:购买A型电脑21台,B型电脑9台;方案3:购买A型电脑22台,B型电脑8台.26.在平面直角坐标系中,△ABC的顶点坐标分别为A(2,0),B(0,4),C(﹣3,2),P的坐标为(m,0).(1)直接写出线段AP的长为(用含m的式子表示);(2)求△ABC的面积;(3)当S△PAB=2S△ABC时,求m的值.【分析】(1)根据题意可直接得出;(2)作CD⊥x轴,过B作BE⊥DC的延长线于E,作AF⊥EB交EB的延长线于F,可得四边形ADEF为矩形.根据S△ABC=S矩形ADEF﹣S△BEC﹣S△CDA﹣S△ABF,即可得出结果;(3)根据三角形面积关系得出方程,解方程即可得出答案.解:(1)由题意可得AP=,故答案为:.(2)如图,作CD⊥x轴,过B作BE⊥DC的延长线于E,作AF⊥EB交EB的延长线于F,可得四边形ADEF为矩形.∴D(﹣3,0),E(﹣3,4),F(2,4),∴S△ABC=S矩形ADEF﹣S△BEC﹣S△CDA﹣S△ABF=5×4﹣﹣﹣=20﹣3﹣5﹣4=8.故△ABC的面积为8.(3)当S△PAB=2S△ABC时,S△PAB=2×8=16,即=16,即×4=32,解得:m=10或﹣6.。

2020年广西省玉林市初一下期末调研数学试题含解析

2020年广西省玉林市初一下期末调研数学试题含解析

2020年广西省玉林市初一下期末调研数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每题只有一个答案正确)1.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.【答案】A【解析】【分析】根据三角形按角分类的方法一一判断即可.【详解】观察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型.故选A.【点睛】本题考查了三角形的分类,解题的关键是熟练掌握基本知识,属于中考常考题型.2.下列调查中,适合用抽样调查的是()A.了解某班学生的身高情况B.调查我市市民对2019年武汉军运动会的知晓率C.搭乘地铁时,进行安全检查D.选出某校短跑最快的学生参加区运动会【答案】B【解析】【分析】根据抽样调查的要求,逐个判断是否适合抽样调查.【详解】A 选项适合于全面调查;B 选项适合抽样调查;C 选项适合于全面调查;D 选项适合于全面调查.本题主要考查抽样调查的要求,注意和全面调查区分开.3.如图,在ABC 中,AD 是角平分线,DE AB ⊥于点E ,ABC 的面积为28,AB 8=,DE 4=,则AC 的长是( )A .8B .6C .5D .4【答案】B【解析】【分析】 过点D 作DF AC ⊥于F ,根据角平分线的性质可得DF=DE ,然后利用ABC 的面积公式列式计算即可得解.【详解】过点D 作DF AC ⊥于F ,AD 是ABC 的角平分线,DE AB ⊥,DE DF 4∴==,ABC 11S 84AC 42822∴=⨯⨯+⨯=, 解得AC 6=,故选B .【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.4.已知点()()32,,5M N a ,,当,M N 两点间的距离最短时,a 的值为( ) A .0B .2-C .3D .5【答案】C【解析】【分析】解:当MN 垂直x 轴时MN 最小又∵()()32,,5M N a ,∴a=3故选:C【点睛】本题考查了垂线段最小,解题的关键是理解题意后得出当MN 垂直x 轴时MN 最小.5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20 频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是( )A .10%B .40%C .50%D .90% 【答案】D【解析】【分析】根据频数分布表可知,通话次数即为不同时间的通话次数的和,而通话时间不超过15min 的频数为:20+16+9;接下来根据频率=頻数总次数可求出不超过15min 的频率. 【详解】样本容量为:20+16+9+5=50(次),通话时间不超过15min 的频数和为:20+16+9=45(次),所以通话时间不超过15min 的频率为:4550=0.9=90%.故选D. 【点睛】本题考查了频率的计算问题,关键是计算出通话总次数与不超过15min 的频数;6.若科技馆在学校的南偏东方向,则学校在科技馆的( ) A .北偏西方向 B .北偏东方向 C .南偏东方向 D .南偏西方向 【答案】A【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角【详解】因为科技馆在学校的南偏东25°方向,所以学校在科技馆北偏西25°方向.故选A.【点睛】本题考查了方向角,正确理解方向角的意义是解题的关键.7.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长:学*科*网]【答案】D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象8.若ab>0,a+b<0,则()A.a、b都为负数B.a、b都为正数C.a、b中一正一负D.以上都不对【答案】A【解析】【分析】根据两数相乘同号为正,两数和为负必有负数判断即可【详解】由ab>0得a,b同号,又a+b<0,a,b同为负,故选A【点睛】9.如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.已知∠1=42°,则∠2的度数是()A.42°B.48°C.52°D.58°【答案】B【解析】【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【详解】∵直线a∥b,∴∠1=∠CBA,∵∠1=42°,∴∠CBA=42°,∵AC⊥AB,∴∠2+∠BCA=90°,∴∠2=48°,故选B.【点睛】此题考查平行线的性质,解题关键在于求出∠ABC的度数.10.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【答案】D【解析】【分析】【详解】解:根据抽样调查的适用情况可得:①、②和③都适合抽样调查.考点:调查方法的选择二、填空题11.下列图案是用长度相等的火柴按一定规律构成的图形,依次规律第6个图形中,共用火柴的根数是_______. 图① 图② 图③ 图④【答案】1【解析】【分析】由已知图形可以发现:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴,以此类推可得:第6个图形中,所需火柴的根数是3+3+4+5+6+7根.【详解】解:分析可得:第1个图形中,有3根火柴.第2个图形中,有3+3=6根火柴.第3个图形中,有3+3+4=10根火柴.…;第6个图形中,共用火柴的根数是3+3+4+5+6+7=1根.故答案为:1.【点睛】本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案. 12.如图,射线OP 平分AOB ∠,PQ AO ⊥,垂足为Q ,3PQ =,4OQ =,点M 是OB 上的一个动点,则线段PM 的最小值是_________.【答案】1【解析】根据垂线段最短得出当PM ⊥OB 时,PM 的值最小,根据角平分线性质得出PQ =PM ,求出即可.【详解】当PM ⊥OB 时,PM 的值最小,∵OP 平分AOB ∠,PQ AO ⊥,3PQ =,∴PM =3PQ =,故答案为:1.【点睛】本题考查了角平分线性质,垂线段最短的应用,能得出要使PM 最小时M 的位置是解此题的关键. 13.数据0.0000032用科学记数法表示为______________.【答案】3.2×-610【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】根据科学计数法的定义知:0.0000032=3.2×-610,故答案为3.2×-61014.已知关于x 的方程2x+a+5=0的解是x=1,则a 的值为_____.【答案】-7【解析】把x=1代入2x+a+5=0,有2+a+5=0,a=-7.15.如图,AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①∠BOE =70°;②OF 平分∠BOD ;③∠POE =∠BOF ;④∠POB =2∠DOF .其中正确结论有_____填序号)【答案】①②③【解析】【分析】【详解】解:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠BOE=12×140°=70°;所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣70°=20°,∴∠BOF=12∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=20°,∴∠POE=∠BOF;所以③正确;∴∠POB=70°﹣∠POE=50°,而∠DOF=20°,所以④错误.故答案为①②③.【点睛】本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.16.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于______度.【答案】270【解析】【分析】本题利用四边形内角和为360°和直角三角形的性质求解.【详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴()1236036090270A B ∠+∠=︒-∠+∠=︒-︒=︒.故答案是:270°【点睛】本题是一道根据四边形内角和为360°和直角三角形的性质求解的综合题,有利于锻炼学生综合运用所学知识的能力.17.如图,ABC 的边BC 长12cm ,乐乐观察到当顶点A 沿着BC 边上的高AD 所在直线移动时,三角形的面积会发生变化在这个变化过程中,如果三角形的高为x(cm),则ABC 的面积y(cm²)与x(cm)的关系式是_______________.【答案】y=6x【解析】【分析】根据三角形的面积公式求解即可.【详解】由题意得 1112622y BC AD x x =⋅=⨯=. 故答案为:y=6x.【点睛】本题考查了函数关系式:根据实际问题的数量关系用解析式法表示实际问题中两变化的量之间的关系.在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.三、解答题18.如图,△ACF ≌△DBE ,其中点A 、B 、C 、D 在一条直线上.(1)若BE ⊥AD ,∠F=62°,求∠A 的大小.(2)若AD=9cm ,BC=5cm ,求AB 的长.【答案】(1)∠A =28°;(2)AB =2 cm .【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【详解】(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°∵∠F =62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA=BD.∴CA-CB=BD-CB.即AB=CD.∵AD=9 cm, BC=5 cm,∴AB+CD=9-5=4 cm.∴AB=CD=2 cm.【点睛】考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.19.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.【答案】(1)8;(2)点P的坐标为(0,4)或(0,﹣4);(3)比值不变.【解析】试题分析:(1)根据被开方数大于等于0列式求出b,再求出a,从而得到A、B的坐标,再根据向上平移纵坐标加,向右平移横坐标加求出点C、D的坐标即可,然后利用平行四边形的面积公式列式计算即可得解;(2)根据三角形的面积公式列出方程求出OP,再分点P在y轴正半轴和负半轴两种情况讨论求解;(3)根据平移的性质可得AB∥CD,再过点P作PE∥AB,根据平行公理可得PE∥CD,然后根据两直线平行,内错角相等可得∠DCP=∠CPE,∠BOP=∠OPE,然后求出∠CPO=∠DCP+∠BOP,从而判断出比值不变.解:(1)由题意得,3﹣b≥0且b﹣3≥0,解得b≤3且b≥3,∴b=3,a=﹣1,∴A(﹣1,0),B(3,0),∵点A,B分别向上平移2个单位,再向右平移1个单位,∴点C(0,2),D(4,2);∵AB=3﹣(﹣1)=3+1=4,∴S四边形ABDC=4×2=8;(2)∵S△PAB=S四边形ABDC,∴×4•OP=8,解得OP=4,∴点P的坐标为(0,4)或(0,﹣4);(3)=1,比值不变.理由如下:由平移的性质可得AB∥CD,如图,过点P作PE∥AB,则PE∥CD,∴∠DCP=∠CPE,∠BOP=∠OPE,∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,∴=1,比值不变.20.现有足够多除颜色外均相同的球,请你从中选12个球设计摸球游戏.(1)使摸到红球的概率和摸到白球的概率相等;(2)使摸到红球、白球、黑球的概率都相等;(3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.【答案】(1)6个红球,6个白球;(2)4个红球,4个白球,4个黑球;(3)3个红球,3个白球,6个黑球(答案不唯一).【解析】【分析】(1)设计红球和白球的个数相等即可;(2)让红球、白球、黑球的个数都相等即可;(3)让红球和白球的个数相等,且小于黑球的个数即可.【详解】解:(1)12个球中,有6个红球,6个白球可使摸到红球的概率和摸到白球的概率相等.(2)12个球中,有4个红球,4个白球,4个黑球可使摸到红球、白球、黑球的概率都相等.(3)12个球中,有3个红球,3个白球,6个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.21.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系; (3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值【答案】(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【解析】【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数. 【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.22.如图,AD是△ABC的高线,在BC边上截取点E,使得CE=BD,过E作EF∥AB,过C作CP⊥BC交EF 于点P。

[合集3份试卷]2020广西省玉林市初一下学期期末数学经典试题

[合集3份试卷]2020广西省玉林市初一下学期期末数学经典试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点P (﹣3,8)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2.满足不等式x+3<0的最大整数解是( )A .﹣3B .﹣4C .3D .43.方程3x+y =7的正整数解有( )A .1组B .2组C .3组D .无数值4.下列手机软件图标中,是轴对称图形的是( )A .B .C .D .5.开学后,书店向学校推销两种素质类教育书籍,若按原价买这两种书共需880元,书店推销时第一种书打了八折,第二种书打了七五折,结果两种书共少用了200元,则原来这两种书需要的钱数分别是( ) A .400元,480元B .480元,400元C .320元,360元D .360元,320元 6.下列运算正确的是( )A .22()()x y x y x y ---+=--B .10x x -+=C .22(2)143x x x -+=-+D .()21222x x x x +÷=+ 7.如图,△ABC 是一把直角三角尺,∠ACB =90°,∠B =30°.把三角尺的直角顶点放在一把直尺的一边上,AC 与直尺的另一边交于点D ,AB 与直尺的两条边分别交于点E ,F .若∠AFD =58°,则∠BCE 的度数为()A .20°B .28°C .32°D .88°8.下列说法正确的是( )A .两点确定一条直线B .不相交的两条直线叫做平行线C .过一点有且只有一条直线与已知直线平行D .两点间的距离是指连接两点间的线段9.在平面直角坐标系中,将点(),9A m m +向右平移4个单位长度,再向下平移2个单位长度,得到点B ,若点B 在第二象限,则m 的取值范围是( )A .114m -<<-B .74m -<<-C .7m <-D .4m >-10.可乐中含有大量的咖啡因,世界卫生组织建议青少年每天咖啡因的摄入量不能超过.则这个数字可用科学记数法表示为( )A .B .C .D .二、填空题题11.比较大小:-3.14________π-.(填“>”、“=”或“<”).12.不等式2x-m≤0的非负整数解只有3个,则m 的取值范围是______.13.若某校有学生4000名,从中随机抽取了40名学生,调查他们每天做作业的时间,结果如下表: 每天做作业时间t (时) 01t ≤<12t ≤< 23t ≤< 34t ≤< 4t > 人数 7 16 14 2 1则全校学生每天做作业超过3小时的人数约有___________.14.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到白球的频率稳定在0.3左右,则布袋中白球可能有___________个;15.若分式12x x-的值为0,则x 的值是________. 16.如图,已知∠AOC=30°,∠BOC=150°,OD 为∠BOA 的平分线,则∠DOC=90°.若A 点可表示为(2,30°),B 点可表示为(4,150°),则D 点可表示为________.17.如图,A 、B 的坐标分别为(1,0)、(0,2),若将线段AB 平移到至A 1B 1,A 1、B 1的坐标分别为(2,a )、(b ,3),则ab =_____.三、解答题18.如图,已知点E ,F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG ,∠CED=∠GHD . (1)求证:CE ∥GF ;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=70°,∠D=30°,求∠AEM的度数.19.(6分)(1)如图①所示,若AB∥CD,点P在AB,CD外部,则有∠B=∠BOD.又因∠BOD是△POD的外角,故∠BOD=∠P+∠D,得∠P=∠B-∠D.将点P移到AB,CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD,∠B,∠D之间有何数量关系?并证明你的结论;(2)在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD,∠B,∠D,∠BQD 之间有何数量关系?(不需证明)(3)根据(2)的结论,求图④中∠A+∠B+∠C+∠D+∠E+∠F的度数.20.(6分)(1)解方程组232(2)7 x yx y y-=⎧⎨-+=⎩;(2)解不等式组23311x xx x+>-⎧⎨-<+⎩;21.(6分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果放入大球、小球共10个,且使水面高度不超过50cm,大球最多放入多少个?22.(8分)如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.23.(8分)为了丰富学生课余生活,某区教育部门准备在七年级开设兴趣课堂.为了了解学生对音乐、书法、球类、绘画这四个兴趣小组的喜爱情况,在全区进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中音乐部分的圆心角的度数(3)如果该区七年级共有2000名学生参加这4个课外兴趣小组,而每名教师最多只能辅导本组的20名学生,则绘画兴趣小组至少需要准备多少名教师?24.(10分)随着科技的发展,某快递公司为了提高分拣包裹的速度,使用机器人代替人工进行包裹分拣,若甲机器人工作2h,乙机器人工作4h,一共可以分拣700件包裹;若甲机器人工作3h,乙机器人工作2h,一共可以分拣650件包裹.(1)求甲、乙两机器人每小时各分拣多少件包裹;(2)去年“双十一”期间,快递公司的业务量猛增,为了让甲、乙两机器人每天分拣包裹的总数量不低于2250件,则它们每天至少要一起工作多少小时?25.(10分)如图,在△ABC中,∠C=90°,∠B=30°.(1)作边AB的垂直平分线,交AB于点D,交BC于点E(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接AE,求证:AE平分∠CAB.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】点P(-3,8)的横坐标为负数,纵坐标为正数,故点P在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.B【解析】【分析】先解不等式,求出不等式的解集,再找出解集中的最大整数即可.【详解】解:由不等式x+3<0,解得:x<﹣3,则不等式的最大整数解为﹣4,故选:B.【点睛】本题考查了解不等式和不等式的解的概念,属于基础题型,正确的求解不等式是解题的关键.3.B【解析】【分析】先将方程3x+y=7变形为y=7-3x,要使方程有正整数解,x只能取1、2,才能保证y是正整数.于是方程3x+y=7的正整数解可求.【详解】∵3x+y=7,∴y=7-3x,∴有二组正整数解,14xy=⎧⎨=⎩,21xy=⎧⎨=⎩.本题考查了求二元一次方程的正整数解,只要将二元一次方程改写成用x表示y或者用y表示x的形式,确定其中一个未知数的解,就可以得到另外一个未知数的对应解.4.D【解析】【分析】根据轴对称图形的定义即可得出答案.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查的是轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称,这条直线叫做对称轴.5.A【解析】【分析】设原来第一种书是x元,第二种书是y元.此题的等量关系:①原价买这两种书共需要880元;②打折后买两种书共少用200元.【详解】解:设原来第一种书是x元,第二种书是y元.根据题意,得8800.80.75880200x yx y+=⎧⎨+=-⎩,解,得400480xy=⎧⎨=⎩.答:原来每本书分别需要400元,480元.故选:A.【点睛】此题主要考查了二元一次方程组的应用,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.注意:八折即原价的80%,七五折即原价的75%.【分析】根据整式乘法的计算法则,分别算出每一项式子的值,再判断即可.【详解】解:A 、22()()x y x y x y ---+=-,故本选项不正确;B 、11+x x-+=x x ,故本选项不正确; C 、222(2)144145-+=-++=-+x x x x x ,故本选项不正确;D 、()21222x x x x +÷=+,故本选项正确; 故选:D .【点睛】本题考查的主要有平方差公式、完全平方公式、负整数指数幂、多项式除法,这里需要牢固掌握整式的计算法则.7.B【解析】【分析】由平行线的性质得出∠AEC =∠AFD =58°,再由三角形的外角性质即可得出∠BCE 的度数.【详解】解:∵CE ∥DF ,∴∠AEC =∠AFD =58°,∵∠AEC =∠B+∠BCE ,∴∠BCE =∠AEC ﹣∠B =58°﹣30°=28°;故选:B .【点睛】本题主要考查了平行线的性质以及三角形的外角性质,解题时注意:两直线平行,同位角相等. 8.A【解析】【分析】依据直线的性质、平行公理、两点间的距离的概念进行判断即可.【详解】A 、两点确定一条直线,本选项正确;B 、在同一平面内不相交的两条直线叫做平行线,本选项错误;C 、过直线外一点有且只有一条直线与已知直线平行,本选项错误;D 、两点间的距离是指连接两点间的线段的长度,本选项错误;故选A .【点睛】本题主要考查了直线的性质、平行公理、两点间的距离,解题时注意:经过直线外一点,有且只有一条直线与这条直线平行.9.B【解析】【分析】根据点的平移规律可得向右平移4个单位,再向下平移2个单位得到()492m m ++-,,再根据第二象限内点的坐标符号可得.【详解】将点A ()9m m +,先向右平移4个单位,再向下平移2个单位,得到点B ()47m m ++,,∵点B 位于第二象限,∴40920m m +<⎧⎨+->⎩, 解得:74m -<<-,故选:B .【点睛】本题主要考查了坐标与图形变化-平移,以及第二象限内点的特征,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.10.A【解析】【分析】根据科学计数法的表示方法即可求解.【详解】=故选A.【点睛】此题主要考查科学计数法的表示,解题的关键是熟知负指数幂的性质.二、填空题题11.>根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:|-π|=π,|-3.14|=3.14,∵π>3.14,∴-π<-3.14,故答案为:>【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.12.4≤m <1【解析】【分析】首先确定不等式组的解集,先利用含m 的式子表示,根据非负整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m 的不等式,从而求出m 的范围.【详解】解不等式2x ﹣m≤0,得:x 2m ≤. ∵不等式2x ﹣m≤0的非负整数解只有3个,∴不等式得非负整数解为0、1、2,则22m ≤<3,解得:4≤m <1.故答案为:4≤m <1.【点睛】 本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定2m 的范围是解决本题的关键. 13.300【解析】【分析】用总人数乘以样本中做作业超过3小时的人数占被调查人数的比例.【详解】全校学生每天做作业超过3小时的人数约有4000×2+140=300(人), 故答案为:300人.【点睛】 本题考查的是用样本估计总体的知识.读懂统计图,从统计表中得到必要的信息是解决问题的关键 14.1.利用频率估计概率得到摸到白球的概率为0.3,然后根据概率公式计算即可.【详解】解:设袋子中白球有x个,根据题意,得:x50=0.30,解得:x=1,即布袋中白球可能有1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.15.1【解析】【分析】直接利用分式值为零的条件,则分子为零进而得出答案.【详解】∵分式12xx的值为0,∴x−1=0,2x≠0解得:x=1.故答案为:1.【点睛】此题主要考查了分式值为零的条件,正确把握分式的相关性质是解题关键.16. (5,90°)【解析】分析:根据角平分线的性质得出∠AOD=∠BOD=60°,进而得出∠DOC的度数,利用A,B两点坐标得出2,4代表圆环上数字,角度是与CO边的夹角,根据∠DOC的度数,以及所在圆环位置即可得出答案.详解:∵∠BOC=150°,∠AOC=30°,∴∠AOB=120°,∵OD为∠BOA的平分线,∴∠AOD=∠BOD=60°,∴∠DOC=∠AOD+∠AOC=60°+30°=90°.∵A点可表示为(2,30°),B点可表示为(4,150°),∴D点可表示为:(5,90°).故答案为:(5,90°).点睛:坐标确定位置.重点在于观察A点,C点的坐标发现本题的坐标表示方法.17.1【解析】【分析】根据平移前后的坐标变化,得到平移方向,从而求出a、b的值.【详解】由点A(1,0)的对应点(2,a)知线段AB向右平移1个单位,由点B(0,2)的对应点(b,3)知线段AB向上平移1个单位,所以a=0+1=1,b=0+1=1,1,故答案为:1.【点睛】本题考查了坐标与图形的变化-平移,找到坐标的变化规律是解题的关键.三、解答题18.(1)证明见解析;(2)∠AED+∠D=180°;(3)∠AEM=100°.【解析】【分析】(1)根据同位角相等,两直线平行,可证CE∥GF;(2)根据平行线的性质可得∠C=∠FGD,根据等量关系可得∠FGD=∠EFG,根据内错角相等,两直线平行可得AB∥CD,再根据平行线的性质可得∠AED与∠D之间的数量关系;(3)根据对顶角相等可求∠DHG,根据三角形外角的性质可求∠CGF,根据平行线的性质可得∠C,∠AEC,再根据平角的定义可求∠AEM的度数.【详解】(1)∵∠CED=∠GHD,∴CE∥GF;(2)∵CE∥GF,∴∠C=∠FGD,∵∠C=∠EFG,∴∠FGD=∠EFG,∴AB∥CD,∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=70°,∠D=30°,∴∠CGF=70°+30°=100°,∵CE∥GF,∴∠C=180°﹣100°=80°,∵AB∥CD,∴∠AEC=80°,∴∠AEM=180°﹣80°=100°.【点睛】本题考查了平行线的判定和性质,三角形外角的性质,平角的定义的综合运用,属于中等难度题目. 19.(1)不成立,结论是∠BPD=∠B+∠D,证明详见解析;(2)∠BPD=∠BQD+∠B+∠D;(3)∠A+∠B+∠C+∠D+∠AEB+∠F=360°.【解析】【分析】(1)延长BP交CD于点E,根据AB∥CD得出∠B=∠BED,再由三角形外角的性质即可得出结论;(2)连接QP并延长,由三角形外角的性质得出∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,由此可得出结论;(3)由(2)的结论得:∠AFG=∠B+∠E.∠AGF=∠C+∠D.再根据∠A+∠AFG+∠AGF=180°即可得出结论.【详解】(1)不成立,结论是∠BPD=∠B+∠D.证明:如图①所示,延长BP交CD于点E.∵AB∥CD,∴∠B=∠BED.又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)如图②所示,连接EG并延长,根据(2)中的结论可知∠AGB=∠A+∠B+∠AEB,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠AEB+∠F=360°.【点睛】本题考查了平行线的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.20.(1)51xy=⎧⎨=⎩;(2)11x-<<.【解析】【分析】(1)方程组利用加减消元法求出解即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】(1)整理得23237x yx y--⎧⎨⎩=①=②,①×2-②得:-y=-1,解得:y=1,把y=1代入①得:x=5,则方程组的解为51 xy=⎧⎨=⎩;(2)23311 x xx x+--⎧⎨+⎩>①<②解①得:x>-1,解②得:x<1,则不等式的解集为:-1<x<1.【点睛】本题考查了解一元一次不等式(组),解答本题的关键是掌握不等式的解法,注意求解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.(1) 2,3;(2) 4【解析】【分析】(1)根据3个小球使水位升高了6cm,2个大球使水位升高了6cm进行解答;(2)设应该放入x个大球,根据题中的不等关系列出一元一次不等式,并解答.【详解】(1) (1)依题意得:32263-=2(cm ) 32262-=3(cm ), 即放入一个小球水面升高 2cm ,放入一个大球水面升高 3cm .故答案是:2;3;(2)设放入大球x 个,由题意得:3x+2(10-x )≤50-26,解得x≤4.答:大球最多可以放入4个【点睛】本题考查了一元一次不等式的应用.解题关键是弄清题意,找到不等关系,列出不等式.22.(1)65°;(2)∠DOM ,∠BOM .【解析】【分析】(1)根据角平分线的定义求出∠MOB 的度数,根据邻补角的性质计算即可;(2)根据题意得到,∠DOM 为∠DON 的余角.【详解】(1)∵∠AOC+∠AOD =∠AOD+∠BOD =180°,∴∠BOD =∠AOC =50°,∵OM 平分∠BOD ,∴∠BOM =∠DOM =25°,又由∠MON =90°,∴∠AON =180°﹣(∠MON+∠BOM )=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM =∠MON =90°知∠DOM 为∠DON 的余角,∵∠AON+∠BOM =90°,∠DOM =∠MOB ,∴∠AON+∠DOM =90°,∴∠NOD+∠BOM =90°,故∠DON 的余角为:∠DOM ,∠BOM .【点睛】本题考查的是邻补角的概念以及角平分线的定义,掌握邻补角的性质是邻补角互补是解题的关键. 23. (1)300名;(2)补图见解析;96°;(3)需准备1名教师辅导.【解析】【分析】(1)根据球类人数及其所占百分比可得总人数;(2)根据各组人数之和等于总人数求得音乐人数,据此可补全条形图;再用360°乘以音乐人数所占比例可得圆心角度数;(3)总人数乘以样本中绘画人数所占比例,再除以1即可得. 【详解】解:(1)此次调查的学生人数为11÷40%=300(名);(2)音乐的人数为300﹣(60+11+40)=80(名),补全条形图如下:扇形统计图中音乐部分的圆心角的度数为360°×80300=96°; (3)60÷300×100÷1=1.∴需准备1名教师辅导.【点睛】 本题考查条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 24.(1)甲、乙两机器人每小时各分拣包裹150件,100件;(2)它们每天至少要一起工作9小时.【解析】【分析】(1)设甲、乙两机器人每小时各分拣x 件、y 件包裹,根据“若甲机器人工作2h ,乙机器人工作4h ,一共可以分拣700件包裹;若甲机器人工作3h ,乙机器人工作2h ,一共可以分拣650件包裹”列出方程组,求解即可;(2)设它们每天要一起工作t 小时,根据“甲、乙两机器人每天分拣包裹的总数量不低于2250件”列出不等式,求解即可.【详解】(1)解:设甲、乙两机器人每小时各分拣包裹x 件,y 件,由题意得2470032650x y x y +=⎧⎨+=⎩, 解得150100x y =⎧⎨=⎩. 答:甲、乙两机器人每小时各分拣包裹150件,100件.(2)解:设它们每天至少要一起工作a 小时,由题意得()1501002250a+≥,解得9a≥,答:它们每天至少要一起工作9小时.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的关系.25.(1)画图见解析;(2)证明见解析.【解析】【分析】(1)分别以A、B为圆心,以大于12AB的长度为半径画弧,过两弧的交点作直线,交AB于点D,BC于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠BAE=∠B=30°,然后求出∠CAE=30°,从而得到AE平分∠CAB.【详解】(1)如图所示,DE就是所作的边AB的垂直平分线.;(2)∵∠C=90°,∠B=30°,∴∠CAB=60°,∵DE垂直平分AB,∴AE=BE,∴∠EAB=∠B=30°,∴∠CAE=∠CAB-∠EAB=30°,∴∠CAE=∠EAB=30°,∴AE平分∠BAC.【点睛】本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,熟练掌握作图方法以及性质是解题的关键.2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.在实数0,-2,5,2中,最大的是( )A .0B .-2C . 5D .22.如果方程组134541ax by x y -=⎧⎨-=⎩与3237ax by x y +=⎧⎨+=-⎩有相同的解,则a ,b 的值是( ) A .21a b =⎧⎨=⎩ B .23a b =⎧⎨=-⎩ C .521a b ⎧=⎪⎨⎪=⎩D .45a b =⎧⎨=-⎩3.对于任意的底数a ,b ,当n 是正整数时,()()()()()()n ab n a n bn n n ab ab ab ab a a a b b b a b =⨯⨯=⨯⨯⨯⨯⨯=个个个第一步变形 第二步变形其中,第二步变形的依据是( )A .乘法交换律与结合律B .乘法交换律C .乘法结合律D .乘方的定义 4.观察下列等式:①23﹣13=32﹣2;②33﹣23=52﹣6;③43﹣33=72﹣12;④53﹣43=92﹣20…请根据上述规律,请判断下列等式错误的是( )A .20163﹣20153=40312﹣2016×2015B .20173﹣20163﹣40332=2017×2016C .40352﹣20183+20173=2018×2017D .2018×2019﹣20183+20193=40372 5.计算0120172017--的结果是( )A .2017B .2017-C .20162017D .120176.下列图形中,∠1与∠2是对顶角的是( )A .B .C .D .7.甲,乙两人沿相同的路线由A 地到B 地匀速前进,A ,B 两地间的路程为40km .他们前进的路程为()s km ,甲出发后的时间为()t h ,甲,乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A .甲的速度是10/km hB .乙出发12h 后与甲相遇C .乙的速度是40/km hD .甲比乙晚到B 地2h8.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是( )A .的B .中C .国D .梦9.已知三角形的一边长是(x+3)cm ,该边上的高是5 cm ,它的面积不大于20 cm 2,则( )A .x>5B .-3<x≤5C .x≥-3D .x≤510.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使△ABC ≌△AED 的条件有( )A .4个B .3个C .2个D .1个二、填空题题 11.因式分解:244a a -+=____.12.写出一个解为=1=2x y ⎧⎨-⎩的二元一次方程组__________________. 13.若a 2+b 2=5,ab =2,则(a +b)2=________.14.如果2(29)60x y x y -+++-=,则x-y=_______.15.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________16.如图,直线//AB CD ,BC 平分ABD ∠,若165∠=,则2∠=__________.17.在不等边三角形ABC △中,已知两条边长分别为2、3,第三条边长为整数,那么它的长度为__________.三、解答题18.已知方程组7,13x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)在(1)的条件下,若不等式()2121m x m +-<的解为1x >.请直接写出整数m 的值为 . 19.(6分)随着通讯技术的迅猛发展,人与人之间的沟通方式更多样.便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_______名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为__________;(2)某天甲同学想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与乙同学联系,恰好选用“微信”联系的概率为多少?20.(6分)为加强中小学生安全教育,某校组织了“防溺水”知识竞赛,对表现优异的班级进行奖励,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元;购买3副乒乓球拍和2副羽毛球拍共需204元.(1)求购买1副乒乓球拍和1副羽毛球拍各需多少元;(2)若学校购买乒乓球拍和羽毛球拍共30幅,且支出不超过1480元,则最多能够购买多少副羽毛球拍? 21.(6分)一支部队第一天行军4h ,第二天行军5h ,两天共行军98KM ,且第一天比第二天少走2KM ,第一天和第二天行军的平均速度各是多少?22.(8分)解不等式2223x x x +--<,并把解集在数轴上表示出来.23.(8分)某自行车制造厂开发了一款新式自行车,计划6月份生产安装600辆,由于抽调不出足够的熟练工来完成新式自行车的安装,工厂决定招聘一些新工人;他们经过培训后也能独立进行安装.调研部门发现: 1名熟练工和2名新工人每日可安装辆自行车; 2名熟练工和3名新工人每日可安装14辆自行车。

广西玉林市2020版七年级下学期数学期末考试试卷(I)卷

广西玉林市2020版七年级下学期数学期末考试试卷(I)卷

广西玉林市2020版七年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016七下·谯城期末) 下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A .B .C .D .2. (2分)(2020·昌吉模拟) 下列运算正确的是()A .B .C .D .3. (2分) (2020七下·达县期中) (2分)若(x﹣5)(x+20)=x2+mx+n,则m、n的值分别为()A . m=﹣15,n=﹣100B . m=25,n=﹣100C . m=25,n=100D . m=15,n=﹣1004. (2分)对于每个非零自然数n,抛物线y=x2-x+与x轴交于An、Bn两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2011B2011的值是()A .B .C .D .5. (2分)(2020·白云模拟) 一个角是60°,则它的余角度数为()A . 30°B . 40°C . 90°D . 120°6. (2分)已知是方程kx-y=3的一个解,那么k的值是().A . 2B . -2C . 1D . -17. (2分) (2020七下·昌吉期中) 如图所示,下列条件中,能判断直线L1∥L2的是()A . ∠2=∠3B . ∠l=∠3C . ∠4+∠5=180D . ∠2=∠48. (2分) (2018七上·嵩县期末) 我们在生活中经常使用的数是十进制数,如2639=2×103+6×102+3×101+9,表示十进制的数要用到10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:十六进制0123456789A B C D E F十进制0123456789101112131415例如,十六进制数71B=7×162+1×161+11=1819,即十六进制数71B相当于十进制数1819.那么十六进制数1D9相当于十进制数()A . 473B . 117C . 1139D . 2509. (2分) (2019七下·沙洋期末) 下列命题中正确的有().①相等的角是对顶角;②若a//b,b//c,则a∥c;③同位角相等;④邻补角的平分线互相垂直.A . 0个B . 1个C . 2个D . 3个10. (2分) (2017九下·盐都期中) 对于一组统计数据:3,3,6,3,5,下列说法中错误的是()A . 中位数是6B . 众数是3C . 平均数是4D . 方差是1.611. (2分)在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A . ∠ADE=20°B . ∠ADE=30°C . ∠ADE=∠ADCD . ∠ADE=∠ADC12. (2分)已知:| x |=3,| y |=7,且x、y的符号相反,则x+y的值为()A . 4B . ±4C . 10D . ±10二、填空题 (共6题;共6分)13. (1分) (2019八上·盘县期中) 若a<<b,且a,b为连续正整数,则b2﹣a2=________.14. (1分) (2018八上·辽宁期末) 多项式x2+2mx+64是完全平方式,则m= ________ .15. (1分)(2019·苏州模拟) 分解因式: ________.16. (1分)已知x , y , z均为正数,且|x﹣4|+(y﹣3)2+ =0,若以x , y , z的长为边长画三角形,此三角形的形状为________三角形.17. (1分)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是________吨。

玉林市2020年七年级下学期数学期末考试试卷B卷

玉林市2020年七年级下学期数学期末考试试卷B卷

玉林市2020年七年级下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·德州开学考) 下列运动属于平移的是()A . 荡秋千B . 急刹车时,汽车在地面上的滑动C . 风筝在空中随风飘动D . 地球绕着太阳转2. (2分) (2016七下·夏津期中) 下列说法中正确的是()A . 9的平方根是3B . 的算术平方根是±2C . 的算术平方根是4D . 的平方根是±23. (2分)已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形.则第四个顶点不可能在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)已知是方程3x+by﹣3=0的一组解,则b的值为()A . ﹣4B . ﹣3C . 4D . 35. (2分)已知反比例函数的图像经过P(-1,2),则这个函数的图像位于()A . 第二,三象限B . 第一,三象限C . 第三,四象限D . 第二,四象限6. (2分)(2017·安丘模拟) 估计介于之间.()A . 1.4与1.5B . 1.5与1.6C . 1.6与1.7D . 1.7与1.87. (2分)如图,下列判断错误的是()A . ∠1与∠2是同旁内角B . ∠3与∠4是内错角C . ∠5与∠6是同旁内角D . ∠5与∠8与是同位角8. (2分) (2015七上·十堰期中) 在2006年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是()A . 两胜一负B . 一胜两平C . 一胜一平一负D . 一胜两负9. (2分)(2016·昆明) 不等式组的解集为()A . x≤2B . x<4C . 2≤x<4D . x≥210. (2分) (2018七上·襄州期末) 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中正确的结论的个数是()A . 2个B . 3个C . 4个D . 5个二、填空题 (共4题;共4分)11. (1分) (2018八上·东台月考) 比较大小:-3________0.(填“﹥”、“﹦”或“﹤”号)12. (1分)“a的2倍减去b不小于2”用不等式表示是________.13. (1分)(2020·吉林模拟) 甲乙两人同解方程组时甲符合题意解得,乙因抄错c 而得则a+c=________14. (1分)线段是由线段平移得到的,点的对应点为,则点的对应点的坐标为________.三、解答题 (共9题;共64分)15. (5分) (2020八上·青岛期末) 解方程组(1)(2)16. (5分)(2014·南京) 解不等式组:.17. (5分) (2016七上·南昌期末) 如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.18. (10分) (2018九上·西湖期中) 在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(﹣4,2),B(﹣1,4),C(﹣1,2).(1)将△ABC 以点 C 为旋转中心旋转180°,画出旋转后对应的△ ,的坐标为________;(2)平移△ABC,点 B 的对应点的坐标为(4,﹣1),画出平移后对应的△ ,的坐标为________;(3)若将△ 绕某一点旋转可以得到△ ,请直接写出旋转中心的坐标为________.19. (5分)某学校组织学生到外郊游,学生行进速度为每小时3千米,8点出发,10点时学校开始送中餐,如果送中餐的师傅在11:30与12:00之间赶上一直在行进的学生队伍,问送中餐的师傅的速度是多少千米/时?20. (9分)(2018·德州) 如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E.点C是弧BF的中点.(1)求证:AD⊥CD;(2)若∠CAD=30°.⊙O的半径为3,一只蚂蚁从点B出发,沿着BE--EC--弧CB爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数.)21. (10分)(2019·长沙) 某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查,将他们的得分按优秀、良好、合格、待合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图.等级频数频率优秀2142%良好m40%合格6n%待合格36%请根据以上信息,解答下列问题:(1)本次调查随机抽取了________名学生;表中m=________,n=________;(2)补全条形统计图;(3)若全校有2000名学生,请你估计该校掌握垃圾分类知识达到“优秀”和“良好”等级的学生共有多少人.22. (5分) (2019七下·双阳期末) 学校准备添置一批课桌椅,原定购60套,每套100元店方表示:如果多购,可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本。

广西玉林市2020年(春秋版)七年级下学期数学期末试卷(I)卷

广西玉林市2020年(春秋版)七年级下学期数学期末试卷(I)卷

广西玉林市2020年(春秋版)七年级下学期数学期末试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)如图,AD‖BC,点E在BD延长线上,若∠ADE=155°,则∠DBC的度数为()A . 155°B . 35°C . 45°D . 25°2. (2分) (2019七下·新余期末) 若方程mx-2y=3x+4是关于x,y的二元一次方程,则m满足()A . m≠-2B . m≠0C . m≠3D . m≠43. (2分) (2020七下·长兴期末) 下列运算正确的是()A . 3a²-2a2=1B . (a2)3=a5C . a².a4=a6D . (3a)2=6a24. (2分)下列计算,正确的是()A . 3a2×2a2=6a2B . (2x﹣1)•3x2y=6x3y﹣1C . (﹣ab)3÷(﹣ab)=a2b2D . ()0×3=05. (2分) (2016八上·通许期末) 若多项式x2+ax+9恰好是另一个多项式的平方,则a值()A . ±6B . ﹣6C . 3D . ±36. (2分) (2015八上·宜昌期中) 如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A . 100°B . 80°C . 70°D . 50°7. (2分) (2018七上·渭滨期末) “十二五”期间,将新建保障性住房约37000000套,用于解决中低收入和新参加工作的大学生住房的需求,把37000000用科学记数法表示为()A .B .C .D .8. (2分)如图,下列说法错误的是()A . ∠1和∠2是同旁内角B . ∠3和∠4是内错角C . ∠5和∠6是同旁内角D . ∠5和∠8是同位角9. (2分)下列命题中,真命题的是()A . 相等的两个角是对顶角B . 若a>b,则|a|>|b|C . 两条直线被第三条直线所截,内错角相等D . 两直线平行,同位角相等10. (2分) (2020七下·武鸣期中) 如图所示,下列条件中,能判定直线a∥b的是()A . ∠1=∠4B . ∠4=∠5C . ∠3+∠5=180°D . ∠2=∠411. (2分)若是下列某二元一次方程组的解,则这个方程组为()A .B .C .D .12. (2分) (2019八上·重庆开学考) 若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A . 5B . 7C . 9D . 1013. (2分)(2016·枣庄) (2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A . 15°B . 17.5°C . 20°D . 22.5°14. (2分)若关于x,y的方程组的解满足0<x+y<1,则k的取值范围是()A . -4<k<0B . -1<k<0C . 0<k<8D . k>-415. (2分)分解因式a2﹣9a的结果是()A . a(a﹣9)B . (a﹣3)(a+3)C . (a﹣3a)(a+3a)D . (a﹣3)216. (2分)(2018·苍南模拟) 不等式组的解集是()A . x≥2B . 1<x<2C . 1<x≤2D . x≤2二、填空题 (共4题;共4分)17. (1分)当 x________时,代数式 14-2x 的值是非负数.18. (1分) (2017七下·扬州月考) 若8x=4x+2 ,则x=________.19. (1分)(2020·陕西模拟) 分解因式: ________.20. (1分) (2020八上·岑溪期末) 如图,,,则的度数是________.三、解答题 (共6题;共38分)21. (15分)(2019·海珠模拟) 先化简,再求值:,其中.22. (2分) (2019七下·北京期末) 解二元一次方程组23. (1分)如图,点E在AC的延长线上,图中能判断AB∥CD的条件是________(只需写三个).24. (5分) (2018·秀洲模拟) 购物广场内甲、乙两家商店对A,B两种商品均有优惠促销活动;甲商店的促销方案是:A商品打八折,B商品打七五折;乙商店的促销方案是:购买一件A商品,赠送一件B商品,多买多送。

广西玉林市2020年(春秋版)七年级下学期数学期末试卷(II)卷

广西玉林市2020年(春秋版)七年级下学期数学期末试卷(II)卷

广西玉林市2020年(春秋版)七年级下学期数学期末试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2020八上·西湖期末) 有以下命题:①同旁内角补,两直线平行;②若,则;③全等三角形对应边上的中线长相等;④相等的角是对顶角.其中真命题为()A . ①③B . ②④C . ②③D . ①④2. (2分) (2019七下·乌兰浩特期末) 如图,直线l1//l2 ,∠1=55°,∠2=65°,则∠3为()A . 60°B . 65°C . 55°D . 50°3. (2分)下列叙述正确的是()A . 零是整数中最小的数B . 有理数中有最大的数C . 有理数中有绝对值最小的数D . ﹣1是最大的负数4. (2分)如图如果规定行写在前面,列写在后面,则A点表示为()A . (1, 2)B . (2 ,1)C . (1 ,2)或(2 ,1)5. (2分)方程组的解为,则“△“代表的两个数分别为()A . 5,2B . 1,3C . 2,3D . 4,26. (2分) (2019七下·乌兰浩特期末) 下列方程组中,属于二元一次方程组的是()A .B .C .D .7. (2分) (2016八下·洪洞期末) 下列命题是假命题的是()A . 菱形的对角线互相垂直平分B . 有一斜边与一直角边对应相等的两直角三角形全等C . 有一组邻边相等且垂直的平行四边形是正方形D . 对角线相等的四边形是矩形8. (2分)小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A .B .C .D .9. (2分)下列调查中,适合采用全面调查(普查)方式的是()A . 对沱江河水质情况的调查B . 对端午节期间市场上粽子质量情况的调查D . 对某类烟花爆竹燃放安全情况的调查10. (2分)为了简明扼要地说明某地区一天气温的变化情况,使用统计图最合适的是()A . 条形统计图B . 折线统计图C . 扇形统计图D . 频数分布直方图11. (2分)为了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽去了1000名学生的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A . 1000名九年级学生是总体的一个样本B . 样本容量是1000C . 2013年昆明市九年级学生是总体D . 每一名九年级学生是个体12. (2分)(2019·铜仁) 如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED;②△DFG≌△DCG;③△FHB∽△EAD;④tan∠GEB =;⑤S△BFG=2.6;其中正确的个数是()A . 2B . 3C . 4D . 513. (2分)(2018·苏州模拟) 如图,已知矩形的顶点分别落在轴、轴,则点的坐标是()A .B .C .D .14. (2分) (2019九上·重庆开学考) 若于的不等式组有且仅有5个整数解,且关于的分式方程有非负整数解,则满足条件的所有整数的和为()A . 12B . 14C . 18D . 2415. (2分) (2019七下·黄冈期末) 不等式组的解集是x<3,那么m的取值范围是()A . m>3B . m≥3C . m<2D . m≤216. (2分)以边长为的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点的坐标为()A .B .C .D .二、填空题 (共4题;共5分)17. (1分) (2016八上·东港期中) 若,则x+y=________.18. (1分) (2019七下·丹江口期中) 一只跳蚤在第一象限及轴、轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)]→…且每秒跳动一个单位,那么第2019秒时跳蚤所在位置的坐标是________.19. (1分) (2016七下·重庆期中) 如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.20. (2分) (2019七下·陆川期末) 一元一次不等式组有5个整数解,则a的取值范围是________。

最新玉林市陆川县七年级下册期末数学试卷(有答案)

最新玉林市陆川县七年级下册期末数学试卷(有答案)

广西玉林市陆川县七年级下学期期末考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分,每小题给出的四个选项中,只有一项是正确的1.(3分)下列各数中,是无理数的是()A.﹣2 B.0 C.D.【分析】无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:A、-2是有理数,不是无理数,故A错误;B、0是有理数,不是无理数,故B错误;C、是无理数,故C正确;D、是有理数,不是无理数,故D错误.故选:C.【点评】本题考查了对无理数的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.2.(3分)满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【分析】-1<x≤2表示不等式x>-1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>-1,所以表示-1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选:B.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集,有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3分)下列调查中,适合采用全面调查(普查)方式的是()A.对漓江水质情况的调查B.对端午节期间市场上粽子质量情况的调查.C.对某班55名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【专题】常规题型;数据的收集与整理.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对漓江水质情况的调查适合抽样调查;B、对端午节期间市场上粽子质量情况的调查适合抽样调查;C、对某班55名同学体重情况的调查适合全面调查;D、对某类烟花爆竹燃放安全情况的调查适合抽样调查;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)下列数据不能确定物体位置的是()A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A、5楼6号,是有序数对,能确定物体的位置,故本选项不合题意;B、北偏东30°,不是有序数对,能确定物体的位置,故本选项符合题意;C、大学路19号,“大学路”相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;D、东经118°北纬36°,是有序数对,能确定物体的位置,故本选项不合题意.故选:B.【点评】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.5.(3分)a、b都是实数,且a<b,则下列不等式的变形正确的是()A.ac<bc B.a+x>b+x C.﹣a>﹣b D.【分析】根据不等式的性质逐个判断即可.【解答】解:A、当c为0和负数时,不成立,故本选项错误;B、∵a<b,∴a+x<b+x,故本选项错误;C、∵a<b,∴-a>-b,故本选项正确;D、当c为负数和0时不成立,故本选项错误;故选:C.【点评】本题考查了不等式的性质的应用,能熟记不等式的性质是解此题的关键.6.(3分)下列语句不是命题的是()A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短D.相等的两个角是对顶角【专题】几何图形.【分析】根据命题的定义对四个语句分别进行判断即可.【解答】解:A、画两条相交直线不是对一件事情的判断,不是命题;B、互补的两个角之和是180°是命题;C、两点之间线段最短是命题;D、相等的两个角是对顶角是命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)若m是任意实数,则点P(m﹣1,m+2)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】平面直角坐标系.【分析】先判断点P的横坐标与纵坐标的大小关系,然后根据各象限内点的坐标特征解答.【解答】解:∵(m+2)-(m-1)=m+2-m+1=3>0,∴点P的纵坐标一定大于横坐标,第一象限的点的横坐标是正数,纵坐标是负数,∴纵坐标一定小于横坐标,∴点P一定不在第四象限,故选:D.【点评】本题考查了点的坐标,利用作差法求出点P的横坐标大于纵坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.12【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.【解答】解:把y=x代入4x+3y=1得:7x=1,解得:k=11故选:B.【点评】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.10.(3分)若点P为直线外一点,点A、B、C、D为直线L上的不同的点,其中PA=4,PB=4.5,PC=5,PD=6,那么点P到直线L的距离是()A.小于4 B.4 C.不大于4 D.不小于4.5【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[0)=1,故本项错误;B、若[x)-x=0.5,则x不一定等于0.5,故本项错误;C、[x)-x>0,但是取不到0,故本项错误;D、[x)-x≤1,即最大值为1,故本项正确;故选:D.【点评】此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键.11.(3分)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是()A.[0)=0 B.若[x)﹣x=0.5,则x=0.5C.[x)﹣x的最小值是0 D.[x)﹣x的最大值是1【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[0)=1,故本项错误;B、若[x)-x=0.5,则x不一定等于0.5,故本项错误;C、[x)-x>0,但是取不到0,故本项错误;D、[x)-x≤1,即最大值为1,故本项正确;故选:D.【点评】此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键.12.(3分)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个【专题】压轴题.【分析】本题是一道找规律的题目,这类题型在中考中经常出现.【解答】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第8层中含有正三角形个数是6+12×7=90个.故选:B.【点评】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(本大题共6小题,每小题3分,共18分,).13.(3分)如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是.【分析】此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故答案为:垂线段最短.【点评】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.14.(3分)将点A(1,1)先向左平移2个单位,再向下平移3个单位得到点B,则点B的坐标是.【分析】让点A的横坐标减2,纵坐标减3即可得到平移后点B的坐标.【解答】解:点B的横坐标为1-2=-1,纵坐标为1-3=-2,所以点B的坐标是(-1,-2).故答案为:(-1,-2).【点评】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.15.(3分)方程2x+y=9在正整数范围内的解有组.【分析】把x看做已知数表示出y,即可确定出方程的正整数解.【解答】解:方程2x+y=9,解得:y=-2x+9,当x=1时,y=7;x=2时,y=5;x=3时,y=3;x=4时,y=1,则方程的正整数解有4组,故答案为:4【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.16.(3分)某市为了了解该市6万名七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%.这次检测的样本容量是.分析】根据样本容量的定义进行填空即可.【解答】解:调查的对象是七年级学生的身体素质情况,样本是500名学生的身体素质情况,则样本容量是500.故答案为500.【点评】本题考查了总体、个体、样本、样本容量,注意样本容量无单位.17.(3分)老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了只种兔?【专题】一元一次不等式(组)及应用.【分析】设一年前老张买了x只种兔,则老李也买了x只种兔,根据“一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的”,列出关于x的一元一次不等式,解之即可.【解答】解:设一年前老张买了x只种兔,则老李也买了x只种兔,根据题意得:一年后老张的兔子数量为:x+2(只),一年后老李的兔子数量为:2x-1(只),则:x+2≤2x-1,解得:x≥3,即一年前老张至少买了3只种兔,故答案为:3.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.18.(3分)已知不等式组的整数解为1、2、3,如果把适合这个不等式组的整数a、b组成有序数对(a,b),那么对应在平面直角坐标系上的点共有的个数为.【分析】根据不等式组的整数解为1,2,3,即可确定a,b的范围,即可确定a,b的整数解,即可求解.∴b=10,11,12,共3个.2×3=6(个).故适合这个不等式组的整数a,b的有序数对(a,b)共有6个.故答案为6.【点评】本题考查了一元一次不等式组的整数解,注意各个不等式的解集的公式部分就是这个不等式组的解集.但本题是要求整数解的,所以要找出在这范围内的整数.三、解答题:(本大题共8小题,满分66分,写出演算步骤或推理过程19.(17分)计算或解方程(1)计算:(﹣1)2018+﹣3+×(2)解方程组(3)解不等式(3x﹣4)﹣3(2x+1)<﹣1(4)解不等式组并把它的解集表示在数轴上.【专题】方程与不等式.【分析】(1)先算乘方、二次根式化简,三次根式化简,再计算即可求解;(2)根据加减消元法解方程即可求解;(3)去括号、移项、合并同类项、化系数为1,依此即可求解;(4)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:(1)(﹣1)2018+﹣3+×=1+2﹣3+1=1.(2),①+②,得4x=12,解得:x=3,将x=3代入①,得9﹣2y=11,解得y=﹣1.故方程组的解是;(3)(3x﹣4)﹣3(2x+1)<﹣1,3x﹣4﹣6x﹣3<﹣1,3x﹣6x<﹣1+4+3,﹣3x<6,x>﹣2;(4),解不等式①,得x≥﹣2,解不等式②,得x<﹣,∴原不等式组的解集为:﹣2≤x<﹣,把它的解集表示在数轴上为:【点评】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.同时考查了实数的运算,解二元一次方程组.20.(6分)在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE∥BC,交AC于E;(3)求证:∠EDC=∠GFB.【专题】计算题;作图题.【分析】(1)以C为圆心画弧,与AB交于两点,分别以两点为圆心,大于两点距离一半长为半径画弧,两弧交于一点,作出垂直CD即可;(2)以D为顶点,作∠ADE=∠B,利用同位角相等两直线平行即可确定出DE;(3)由FG与CD都与AB垂直,得到FG与CD平行,利用两直线平行同位角相等得到一对角相等,再由DE与BC平行,得到一对内错角相等,等量代换即可得证.【解答】解:(1)画CD⊥AB,如图所示;(2)画DE∥BC,如图所示;(3)证明:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠DFB=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠GFB.【点评】此题考查了作图-复杂作图,以及平行线的判定与性质,作出正确的图形是解本题的关键.21.(8分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【分析】(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.【解答】解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);故答案为:120;故答案为:30°,25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.【点评】本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(6分)如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.【专题】线段、角、相交线与平行线.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°,求出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,根据邻补角的定义求出即可.【解答】解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°-∠AGB=180°-75°=105°.【点评】本题考查了平行线的性质和判定,邻补角的定义的应用,能求出DE∥BC 是解此题的关键.23.(5分)已知a是的整数部分,b是的小数部分,求(﹣a)3+(2+b)2的值.【分析】先估计的近似值,然后得出的整数部分和小数部分,进而得出答案.【解答】解:∵4<8<9,∴2<<3,∴的整数部分和小数部分分别为a=2,b=﹣2.∴(﹣a)3+(2+b)2=(﹣2)3+()2=0.【点评】此题主要考查了估算无理数的大小,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.24.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台) a b处理污水量(吨/月)220 180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B 型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【分析】(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多3万元,购买2台A型设备比购买3台B型号设备少3万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式;(3)利用每月要求处理污水量不低于1880吨,可列不等式求解.解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,根据题意得,12x+9(10﹣x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,3∴10﹣x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备3台,B型设备7台;(3)由题意:220x+180(10﹣x)≥1880,∴x≥2,又∵x≤,∴x为2,3.当x=2时,购买资金为12×2+9×8=96(万元),当x=3时,购买资金为12×3+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点评】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多3万元,购买2台A型设备比购买3台B型号设备少3万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.25.(6分)已知|a﹣1|=1﹣a,若a为整数时,方程组的解x为正数,y为负数,求a的值?【分析】根据“|a-1|=1-a”得到a-1≤0,解方程组得到x和y关于a的解,根据“x为正数,y为负数”,列出关于a的不等式组,结合a-1≤0,得到a的取值范围,根据a 为整数,即可得到a的值.解:∵|a﹣1|=1﹣a,∴a﹣1≤0,解得:a≤1,解方程组得:,∵x为正数,y为负数,∴,解不等式组得:a,即﹣<a≤1,又∵a为整数,∴a=0或a=1,即a的值为0或1.【点评】本题考查解一元一次不等式组和解二元一次方程组,正确掌握解一元一次不等式组和二元一次方程组得方法是解题的关键.26.(10分)解答题如图,已知AB∥CD,∠A=∠C=100°,E,F在CD上,满足∠DBF=∠ABD,BE平分∠CBF.(1)试说明∠FDB=∠DBF(2)求∠DBE的度数.(3)若平行移动AD,那么∠BFC:∠BDC的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.【分析】(1)由AB∥CD知∠ABD=∠FDB,结合∠DBF=∠ABD可得答案;(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,(3)由AB∥CD知∠BFC=∠ABF=2∠ABD、∠ABD=∠BDC,据此可得∠BFC=2∠BDC,即可得出答案.解:(1)∵AB∥CD,∴∠ABD=∠FDB,又∵∠DBF=∠ABD,∴∠FDB=∠DBF;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵BE平分∠CBF,∴∠EBF=∠FBC,∵∠DBF=∠ABD,∴∠DBF=∠ABF,∴∠DBE=∠DBF+∠EBF=∠FBC+∠ABF=∠ABC=40°;(3)∠BFC:∠ BDC的比值不会随之发生变化,∵AB∥CD,∴∠BFC=∠ABF=2∠ABD,∠ABD=∠BDC,∴∠BFC=2∠BDC,∴∠BFC:∠BDC=2,即∠BFC:∠BDC的比值不会随之发生变化.【点评】本题主要考查了平行线、角平分线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

广西省玉林市2019-2020学年七年级第二学期期末经典数学试题含解析

广西省玉林市2019-2020学年七年级第二学期期末经典数学试题含解析

广西省玉林市2019-2020学年七年级第二学期期末经典数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每题只有一个答案正确)1.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。

”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.4.5112x yyx-=⎧⎪⎨-=⎪⎩B.4.5112x yy x+=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112x yx y-=⎧⎪⎨-=⎪⎩【答案】A【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12×绳长=1,据此列方程组即可求解.【详解】设绳子长x尺,木条长y尺,依题意有4.5112x yy x-=⎧⎪⎨-=⎪⎩.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.2.把一副三角板放在水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.90°B.105°C.120°D.135°【答案】B【解析】【分析】先作直线OE平行于直角三角板的斜边,根据平行线的性质即可得到答案.【详解】作直线OE 平行于直角三角板的斜边.可得:∠A =∠AOE =60°,∠C =∠EOC =45°,故∠1的度数是:60°+45°=105°.故选:B .【点睛】本题考查平行线的性质,解题的关键是掌握平行线的性质.3.如图,已知□ABCD 的面积为100,P 为边CD 上的任一点,E ,F 分别为线段AP ,BP 的中点,则图中阴影部分的总面积为( )A .30B .25C .22.5D .20【答案】B【解析】【分析】 先由△ABP 与□ABCD 同底等高,得出12ABP ABCD S S =,再由中线的性质得到ADE CBF CBP 11,22ADP S S S S ∆==,从而得到图中阴影部分的总面积.【详解】∵平行四边形ABCD∴S △ABP =12S 平行四边形ABCD , ∴S △ADP +S △CBP +S △ABP =S 平行四边形ABCD , ∴S △ADP +S △CBP=12S 平行四边形ABCD ∵ E ,F 分别为线段AP ,BP 的中点,∴S △ADE =12S △ADP , S △CBF =12S △CBP ∴S △ADE +S △CBF =12(S △ADP +S △CBP )=14S 平行四边形ABCD=14×100=25 故答案为B【点睛】本题主要考查了平行四边形的性质,三角形的面积,等底等高的三角形的面积等于平行四边形的面积的一半,三角形的中线把三角形分成面积相等的两部分.根据题目信息找出各部分的面积的关系是解题的关键.4.某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A .0.12B .0.38C .0.32D .32【答案】C【解析】试题分析:根据频率=频数÷总数,求解即可.解:∵总人数为100人,在40~42(岁)组内有职工1名,∴这个小组的频率为1÷100=0.1.故选C .点评:考查了频率的计算方法:频率=频数÷总数.5.△ABC 所在平面内任意一点P (a ,b )经过平移后对应点P 1(c ,d ),已知A (2,3)经过此次平移后对应点A 1(5,-1),则a+b-c-d 的值为( )A .-5B .5C .-1D .1【答案】D【解析】【分析】由A (2,3)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移3个单位,向下平移4个单位,由此得到结论.【详解】解:由A (2,3)经过此次平移后对应点A 1(5,-1)知,先向右平移3个单位,再向下平移4个单位, ∴c=a+3,d=b-4,即a-c=-3,b-d=4,则a+b-c-d=-3+4=1,故选:D .【点睛】本题考查的是坐标与图形变化-平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.6.下列多项式中,能运用平方差公式分解因式的是( )A .2249x y -+B .2249x y --C .2249x y +D .4343x y - 【答案】A【解析】根据平方差公式的特点即可求解.【详解】∵2249x y -+=(3y+2x )(3y-2x ),可以用公式法因式分解;B,C,D 均不能用公式法因式分解故选A.【点睛】此题主要考查因式分解,解题的关键是熟知平方差公式的特点.7.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为( )A .8B .4C .6D .无法计算 【答案】A【解析】利用勾股定理,由Rt△ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得AB 2+AC 2+BC 2=2BC 2=2×22=1. 故选A .8.1∠与2∠是同旁内角,170∠=︒.则( )A .2110∠=︒B .270C .220∠=︒D .2∠的大小不确定【答案】D【解析】【分析】只有两直线平行时同旁内角互补,两直线不平行时无法确定同旁内角的大小关系.【详解】同旁内角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,同旁内角才互补. 故选:D .【点睛】本题考查了同位角、内错角、同旁内角.特别注意,同旁内角互补的前提条件是两直线平行. 9.如图,已知∠1=∠2,AC =AD ,要使△ABC ≌△AED ,还需添加一个条件,那么在①AB =AE ,②BC =ED ,③∠C =∠D ,④∠B =∠E ,这四个关系中可以选择的是( )A .①②③B .①②④C .①③④D .②③④【答案】C【解析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【详解】∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE.①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED.故选C.【点睛】本题考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.下列运算中,不正确的是()A.m3+m3=m6B.m4•m=m5C.m6÷m2=m4D.(m5)2=m10【答案】A【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法、同底数幂的除法以及幂的乘方逐一判断即可.【详解】解:A.m3+m3=2m3,故选项A符合题意;B.m4•m=m5,故选项B不合题意;C.m6÷m2=m4,故选项C不合题意;D.(m5)2=m10,故选项D不合题意.故选:A.【点睛】本题主要考查了幂的运算以及合并同类项的法则,熟练掌握幂的运算性质是解答本题的关键.二、填空题11.计算:18°26′+20°46′=_________________【答案】39°12′【解析】两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】18°26′+20°46′=38°72′=39°12′.故答案为:39°12′.【点睛】此类题考查了度、分、秒的加法计算,相对比较简单,注意以60为进制即可.12.点P在第二象限,到x轴距离为3,到y轴距离为2,点P 坐标______.【答案】 ( -2,3)【解析】因为点P到x轴距离为3,到y轴距离为2,所以x=2或-2,y=3或-3,又因为点P在第二象限,所以P(-2,3).故答案是:(-2,3).>.E,F分别是AD,BC上不在中点的任意两点,连结EF,13.如图,长方形ABCD中,AD AB∠的度数为将长方形ABCD沿EF翻折,当不重叠(阴影)部分均为长方形时,所有满足条件的BFE________度.【答案】135°或45°【解析】【分析】如图分两种情形分别求解即可解决问题.【详解】有两种情形:如图1中,∵AD∥BC,∴∠GEF=∠EFC∵折叠,∴∠GFE=∠EFC∴∠GEF=∠GFE∵GE⊥FG,∴∠GEF=∠GFE=180902︒-︒=45° ∴∠BFE =90°+45°=135°如图2中,同理∠BFE =180902︒-︒=45°,综上所述,满足条件的∠BFE 的值为135°或45°.故答案为135°或45°.【点睛】本题考查平行线的性质与三角形角度求解,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.分解因式:29a -=.【答案】(3)(3)a a +-【解析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.解答:解:9-a 2,=32-a 2,=(3+a )(3-a ).15.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示实数9,则表示实数17的有序实数对是______.【答案】(6,5)【解析】先观察规律:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.然后利用规律解题即可【详解】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.实数15=1+2+3+4+5,则17在第6排,第5个位置,即其坐标为(6,5).故答案为(6,5).【点睛】本题考查找规律,能够发现规律是本题解题关键16.5-2表示成分数是________. 【答案】125 【解析】【分析】根据负整数指数幂公式a -p =1p a (a≠0,p 为正整数)进行计算即可. 【详解】5-2=215=125. 故答案为:125. 【点睛】 此题主要考查了负整数指数幂,关键是掌握负整数指数幂的计算公式.17.在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____.【答案】70°或20°.【解析】【分析】此题根据△ABC 中∠A 为锐角与钝角分为两种情况,分情况讨论即可.【详解】解:根据△ABC 中∠A 为锐角与钝角,分为两种情况:①当∠A 为锐角时,∵AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,∴∠A =9050︒-︒=40°,AB AC =∴∠B=180180407022A︒-∠︒-︒==︒;②当∠A为钝角时,∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,∴∠1=9050︒-︒=40°,∴∠BAC=180118040︒-∠=︒-︒=140°,AB AC=∴∠B=∠C=180140202︒-︒=︒.故答案为:70°或20°.【点睛】此题考查了等腰三角形的性质及线段垂直平分线的性质,分类讨论的应用是正确解答本题的关键.三、解答题18.如图,在△ABC中,AB=AC,∠BAC=60°.在△ABC的外侧作直线AP,点C关于直线AP的对称点为D,连接AD,BD.(1)依据题意补全图形;(2)当∠PAC等于多少度时,AD∥BC?请说明理由;(3)若BD交直线AP于点E,连接CE,求∠CED的度数;(4)探索:线段CE,AE和BE之间的数量关系,并说明理由.=+【答案】(1)详见解析;(2)30°;(3)120〬(4)BE CE AE【解析】【分析】(1)根据题意画出图形即可;(2)连接CD,交AP于CD于F,因为AD∥BC,所以∠C=∠CAD,由对称可得AC=AD,CF=FD,AF⊥CD,所以AP 平分∠CAD,即可求解.(3)AD=AC,∠DAP=∠CAP,∠DEP=∠PEC,求出AB=AC=AD,得到∠ABE=∠D,在△ABE中,得∠ABE+∠AEB +∠BAE=180°,得到∠D+∠CAE+60°+∠D+∠CAE =180°,求出∠D+∠CAE=60°,证明∠DEP=60°,即可求解;(4)CE +AE=BE,如图,在BE上取点M使ME=AE,连接AM,设∠EAC=∠DAE=x,求得∠AEB=60°,从而得到△AME为等边三角形,根据等边三角形的性质和SAS即可判定△AEC≌△AMB,根据全等三角形的性质可得CE=BM,由此即可证得CE+AE=BE.【详解】(1)(2)连接CD,交AP于F,∵AB=AC,∠BAC=60°∴等边三角形ABC∴∠BCA=60°∵AD∥BC∴∠BCA=60°=∠DAC由对称可得AC=AD,CF=FD,AF⊥CD∴AP平分∠CAD∴∠PAC=30°(3)由对称可得AD=AC,∠DAE=∠CAE,∠DEP=∠PEC ∵等边三角形ABC∴AB=AC=AD∴∠ABE=∠D∵△ABE∴∠ABE+∠AEB+∠BAE=180°∴∠ABE+∠AEB+∠BAC+∠CAE=180°∴∠D+∠CAE+60°+∠D+∠CAE =180°∴∠D+∠CAE=60°∴∠DEP=60°∴∠DEC=120°;(4)CE+AE=BE.在BE上取点M使ME=AE,连接AM,在等边△ABC中,AC=AB,∠BAC=60°由对称可知:AC=AD,∠EAC=∠EAD,设∠EAC=∠DAE=x.∵AD=AC=AB,∴∠D=60°-x∴∠AEB=60-x+x=60°.∴△AME为等边三角形.∴AM=AE,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB和△AEC中,AB=AC,∠BAM=∠CAE, AM=AE,∴△AMB≌△AEC.∴CE=BM.∴CE+AE=BE.【点睛】本题考查的是三角形,熟练掌握三角形的性质是解题的关键.19.对于平面直角坐标系xOy中的任意两点M(x1,y1),N(x2,y2),给出如下定义:将|x1﹣x2|称为点M,N之间的“横长”,|y1﹣y2|称为点M,N之间的纵长”,点M与点N的“横长”与“纵长”之和称为“折线距离”,记作d(M,N)=|x1﹣x2|+|y1﹣y2|“.例如:若点M(﹣1,1),点N(2,﹣2),则点M与点N的“折线距离”为:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=1.根据以上定义,解决下列问题:已知点P(3,2).(1)若点A(a,2),且d(P,A)=5,求a的值;(2)已知点B(b,b),且d(P,B)<3,直接写出b的取值范围;(3)若第一象限内的点T与点P的“横长”与“纵长”相等,且d(P,T)>5,简要分析点T的横坐标t的取值范围.【答案】(1)a=﹣2或a=8;(2)1<b<4;(3)t112>或0<t12<.【解析】【分析】(1)将点P与点A代入d(M,N)=|x1−x2|+|y1−y2|即可求解;(2)将点B与点P代入d(M,N)=|x1−x2|+|y1−y2|,得到d(P,B)=|3−b|+|2−b|,分三种情况去掉绝对值符号进行化简,有当b<2 时,d(P,B)=3−b+2−b=5−2b<3;当2≤b≤3时,d(P,B)=3−b +b−2=1<3;当b>3时,d(P,B)=b−3+b−2=2b−5<3;(3)设T点的坐标为(t,m),由点T与点P的“横长”与“纵长”相等,得到|t−3|=|m−2|,得到t与m的关系式,再由T在第一象限,d(P,T)>5,结合求解即可.【详解】(1)∵点P(3,2),点A(a,2),∴d(P,A)=|3﹣a|+|2﹣2|=5,∴a=﹣2或a=8;(2)∵点P(3,2),点B(b,b),∴d(P,B)=|3﹣b|+|2﹣b|,当b<2 时,d(P,B)=3﹣b+2﹣b=5﹣2b<3,∴b>1,∴1<b<2;当2≤b≤3时,d(P,B)=3﹣b+b﹣2=1<3成立,∴2≤b≤3;当b>3时,d(P,B)=b﹣3+b﹣2=2b﹣5<3,∴b<4,∴3<b<4;综上所述:1<b<4;(3)设T点的坐标为(t,m),点T与点P的“横长”=|t﹣3|,点T与点P的“纵长”=|m﹣2|.∵点T与点P的“横长”与“纵长”相等,∴|t﹣3|=|m﹣2|,∴t﹣3=m﹣2或t﹣3=2﹣m,∴m=t﹣1或m=5﹣t.∵点T是第一象限内的点,∴m>0,∴t>1或t<5,又∵d(P,T)>5,∴2|t﹣3|>5,∴t112>或t12<,∴t112>或0<t12<.【点睛】本题考查平面内点的坐标,新定义;能够将定义内容转化为绝对值不等式,再将绝对值不等式根据绝对值的意义转化为一元一次不等式的求解是解题的关键.20.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请猜想:DC与BE的数量关系,并给予证明;(2)求证:DC⊥BE.【答案】(1)DC=BE;(2)详见解析;【解析】【分析】(1)根据等腰直角三角形的性质,可以得出△ABE≌△ACD,得出对应边相等即可;(2)由△ABE≌△ACD可以得出∠B=∠ACD=45°,进而得出∠DCB=90°,就可以得出结论.【详解】(1)解:DC=BE;理由如下:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∠ABC=∠ACB=45°,∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,AB ACBAE CAD AE AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACD(SAS),∴DC=BE;(2)证明:∵△ABE≌△ACD,∴∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,垂直的判定的运用,解答时证明三角形全等是关键.21.在一次活动中,主办方共准备了3600盆甲种花和2900盆乙种花,计划用甲、乙两种花搭造出A、B 两种园艺造型共50个,搭造要求的花盆数如下表所示:请问符合要求的搭造方案有几种?请写出具体的方案。

广西省玉林市七年级数学下学期期末考试卷(含答案)

广西省玉林市七年级数学下学期期末考试卷(含答案)

广西省玉林市七年级数学下学期期末考试卷(含答案)注意事项:1.本试卷满分120分.考试时间为120分钟.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的选项标号涂黑.3.非选择题,用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,答在本试卷上无效.考试结束,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.下列说法错误的是( )A .5是25的算术平方根B .3(4)-的立方根是4-C .无理数都是无限小数D .2536的平方根是56 2.点P 在第四象限,其到x 轴的距离是3,到y 轴的距离是2,则点P 的坐标是( )A .(2,3)-B .(2,3)-C .(3,2)-D .(3,2)-3318,,9,37π中有理数有( )A .1个B .2个C .3个D .4个4.下面选项是二元一次方程345x y +=的解的是( )A .20.25x y =⎧⎨=-⎩B . 5.54x y =-⎧⎨=-⎩ C .10.5x y =⎧⎨=-⎩ D .10.5x y =-⎧⎨=-⎩ 5.在不等式10x -≥的解集在数轴上表示正确的是( )A .B .C .D .6.下列调查中,最适合采用全面调查(普查)的是( )A .对我市中学生每周课外阅读时间情况的调查B .对我市市民知晓“礼让行人”交通新规情况的调查C .对我市中学生观看电影《厉害了,我的国》情况的调查D .对我国首艘国产航母002型各零部件质量情况的调查7.如图,在下列给出的条件中,不能判定AB DF ∥的是( )A .3A ∠=∠B .1A ∠=∠C .14∠=∠D .2180A ∠+∠=︒8.小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付( ) 小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元9.已知点126,12P x x ⎛⎫+- ⎪⎝⎭不在第四象限,则满足条件的x 的取值范围是( ) A .32x -≤≤ B .3x ≤-或2x ≥ C .32x -<< D .3x >-或2x <10.为了记录一个病人的体温变化情况,应选择的统计图是( )A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图11.如图,已知AB CD ∥,AE 平分BAD ∠,CE 平分BCD ∠.若160B D ∠+∠=︒,则AEC B ∠-∠的度数为( )(注:四边形内角和等于360︒)A .90︒B .100︒C .105︒D .110︒12.已知关于x 的不等式组:100x x a ->⎧⎨-⎩有以下说法:①若它的解集是14x <≤,则4a =;②当1a =时,它有解;③若它的整数解只有2,3,4,则45a ≤<;④若它有解,则2a ≥.其中所有正确说法的序号是( )A .④B .②④C .①②D .①③二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡的横线上.13.把命题“同角的补角相等”改写成“如果…,那么…”的形式_____________.14.某组数据经过整理后发现,最小值是149,最大值是173,若以3为组距,则这组数据可分为___________组.15.如图,P 是直线a 外一点,点A ,B ,C ,D 为直线a 上的点,5,4,3,7PA PB PC PD ====,根据所给数据写出点P 到直线a 的距离d 的取值范围是_______________.16.在平面直角坐标系中,点(,)M a b 与点(3,1)N -关于x 轴对称,则2a b +的值是_____________.17.如图所示,在平面直角坐标系中,射线OA 将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A 的坐标为____________.18.如图,,AE CF ACF ∠∥的平分线交AE 于点B ,G 是CF 上的一点,GBE ∠的平分线交CF 于点D ,且BD BC ⊥,下列结论:①BC 平分ABG ∠;②AC BG ∥;③若A α∠=,则BDF ∠1802a =︒-;④与DBE ∠互余的角有2个.其中正确的有_________.(把你认为正确结论的序号都填上)三、解答题:本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤.19.(8分)解方程组:(1)2,216;x y x y -=⎧⎨+=⎩ (2)231,328.x y x y +=⎧⎨-=⎩ 20.(8分)解下列不等式(组) (1)222x x +<-; (2)36,219.x x +≥⎧⎨-⎩ 21.(6分)推理填空:如图,,AB CD EF ∥分别交AB CD 、于G 、N ,GH NM 、分别平分AGN ∠,GND ∠.求证:GH NM ∥.证明:∵AB CD ∥(____________)∴AGN GND ∠=∠∵,GH NM 分别平分,AGN GND ∠∠ ∴12HGN AGN ∠=∠,12MNG GND ∠=∠(_______________) ∴HGN MNG ∠=∠∴GH NM ∥(_____________)22.(8分)某地某学校在疫情期间举行“停课不停学,运动我最棒”为主题的体育活动,并开展了以下体育项目:踢键子、跳绳、俯卧撑、仰卧起坐,要求每位学生必须且只能选择一项.为了解选择各项体育活动的学生人数,随机抽取了部分学生进行调查,并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了__________名学生;(2)补全条形统计图:(3)求选择俯卧撑项目的人数在扇形统计图中对应的圆心角度数;(4)若该学校有5000人,请你估计该学校选择踢键子项目的学生人数约是多少人.23.(6分)【阅读材料】小明同学遇到下列问题: 解方程组23237432323832x y x y x y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(23)x y +看作一个数,把(23)x y -看作一个数,通过换元,可以解决问题.以下是他的解题过程:令23,23m x y n x y =+=-, 这时原方程组化为7438,32m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得6024m n =⎧⎨=-⎩把6024m n =⎧⎨=⎩代入23,23m x y n x y =+=-. 得23602324x y x y +=⎧⎨-=-⎩解得914x y =⎧⎨=⎩. 所以,原方程组的解为914x y =⎧⎨=⎩ 【解决问题】请你参考小明同学的做法,解决下面的问题: 解方程组235135x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩ 24.(10分)已知:如图,把ABC △向上平移3个单位长度,再向右平移2个单位长度,得到A B C '''△.(1)写出A B C '''、、的坐标;(2)求出ABC △的面积; (3)点P 在y 轴上,且BCP △的面积是ABC △面积的2倍,求点P 的坐标.25.(8分)某网上商城购进甲,乙两种商品共100件,若甲种商品进价为80元每件,乙种商品进价为50元每件,己知在销售过程中,3件甲种商品和2件乙种商品的售价共500元,2件甲种商品和3件乙种商品的售价共450元.(1)求甲、乙两种商品每件的售价分别是多少元?(2)若商城计划甲、乙两种商品的进货总投人不超过6050元,销售完后总利润不低于2640元,共有多少种进货方案?26.(12分)如图①,平面直角坐标系中,己知点(,0),(0,)A a B b ,其中a ,b 满足237(253)0a b a b +---=.将点B 向右平移24个单位长度得到点C .(1)求点A 和点C 的坐标;(2)如图①,点D 为线段BC 上一动点,点D 从点C 以2个单位长度/秒的速度向点B 运动,同时点E 为线段OA 上一动点,从O 点以3个单位长度/秒的速度向点A 运动,设运动的时间为t 秒(010)t <<,四边形BOED 的面积记为BOED S 四边形(以下同理表示).若32BOED ACDE S S ≥四边形四边形,求t 的取值范围;(注:梯形面积12=(上底+下底)×高) (3)如图②,在(2)的条件下,在D ,E 运动的过程中,DE 交OC 于点F ,求证:在D ,E 运动的过程中,OEF DCF S S >△△总成立.参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.D 2.A 3.C 4.A 5.A 6.D 7.B 8.C 9.B 10.C 11.B 12.D二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡的横线上.13.如果两个角是同一个角的补角,那么这两个角相等.14.9 15.03d <≤ 16.7 17.11,33⎛⎫ ⎪⎝⎭18.①②③. 三、解答题:本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤.19.解:(1)2216x y x y -=⎧⎨+=⎩①②, ①+②,得6x =,将6x =代入①,得4y =,∴方程组的解为64x y =⎧⎨=⎩;(2)231328x y x y +=⎧⎨-=⎩①②。

玉林市2020年七年级下学期数学期末考试试卷(II)卷

玉林市2020年七年级下学期数学期末考试试卷(II)卷

玉林市2020年七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列四个图形中,既是轴对称图形,又是中心对称图形是()A . (1)(2)B . (1)(3)C . (1)(4)D . (2)(3)2. (2分)已知关于x的方程2x+a-9=0的解是x=2,则a的值为()A . 2B . 3C . 4D . 53. (2分) (2020七下·巴中期中) 解方程组比较简单的解法是()A . ①×2-②,消去xB . ①-②×2,消去yC . ①×2+②,消去xD . ①+②×2,消去y4. (2分) (2018七下·上蔡期末) 不等式的解集在数轴上表示为()A .B .C .D .5. (2分) (2019八上·荔湾期末) 若等腰三角形的两边长分别是3、5,则第三边长是()A . 3或5B . 5C . 3D . 4或66. (2分)如图,点O在MN上,把∠AOB沿着MN的方向平移一定距离后得∠CPD.已知∠AOM=25°,∠DPN=50°,则∠AOB的大小是()A . 75°B . 105°C . 130°D . 155°7. (2分)商店出售下列形状的地砖:①正方形;②长方形;③正五边形;@正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A . 1种B . 2种C . 3种D . 4种8. (2分) (2019七下·昭平期中) 已知关于x的不等式4x﹣a≤0的非负整数解是0,1,2,则a的取值范围是()A . 3≤a<4B . 3≤a≤4C . 8≤a<12D . 8≤a≤129. (2分)一个多边形的内角和是900°,则这个多边形的边数是()A . 6B . 7C . 8D . 910. (2分) (2016八上·中堂期中) 如图,图中∠1的大小等于()A . 40°B . 50°C . 60°D . 70°二、填空题 (共5题;共9分)11. (1分) (2018七上·沧州期末) 已知方程的解也是方程|3x﹣2|=b的解,则b=________.12. (1分) (2018九上·句容月考) 如图,点E是正方形ABCD的边CD上一点,以A为圆心,AB为半径的弧与BE交于点F,则∠EFD=________°.13. (1分) (2016七下·澧县期中) 对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=________.14. (5分)若点P(1-m,-2m-4)在第四象限,且m为整数,则m的值为________.15. (1分) (2020七下·武昌期中) 如图,将一张纸片沿EF进行折叠,已知AB∥CD,若∠DFC′=50°,则∠AEF=________.三、解答题 (共8题;共65分)16. (10分)解下列方程组(1)(2)17. (10分) (2020八下·中宁期中) 解下列不等式组,并把解集在数轴上表示出来.(1)(2)(3) 2x<1-x≤x+518. (6分) (2019七下·重庆期中) 对于,定义一种新运算△,规定:(其中,均为非零常数),例如:,已知, .(1)求,的值;(2)在(1)的条件下,若关于,的方程组的解满足,求的取值范围.19. (6分) (2019八下·埇桥期末) 如图,方格纸中每个小正方形的边长都是1个单位长度,的三个顶点,,.(1)将以点为旋转中心旋转,得到△ ,请画出△ 的图形;(2)平移,使点的对应点坐标为,请画出平移后对应的△ 的图形;(3)若将△ 绕某一点旋转可得到△ ,请直接写出旋转中心的坐标.20. (2分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠A=50°,∠C=60°,求∠DAE,∠AOB.21. (10分) (2016八下·寿光期中) 为鼓励同学们积极参加体育锻炼,学校计划拿出不超过2400元的资金购买一批篮球和排球,已知篮球和排球的单价比为5:1,单价和为90元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球共40个,且购买的篮球数量多于28个,有哪几种购买方案?22. (10分)某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;如果租用同样数量的60座客车则多出一辆,且其余客车恰好坐满,已知45座客车日租金为每辆220元,60座客车日租金为每辆300元.(1)学生人数是多少?原计划租用45座客车多少辆?(2)要使每名同学都有座位,怎样租用车辆更合算?23. (11分)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1 ,四边形EFQP的面积为S2 ,四边形PQCB的面积为S3 .(1)求证:EF+PQ=BC;(2)若S1+S3=S2 ,求的值;(3)若S3﹣S1=S2 ,直接写出的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共9分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共65分)16-1、16-2、17-1、17-2、17-3、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、第11 页共11 页。

2019-2020学年广西玉林市陆川县七年级(下)期末数学试卷

2019-2020学年广西玉林市陆川县七年级(下)期末数学试卷

2019-2020学年广西玉林市陆川县七年级(下)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.(3分)在实数﹣3,0,,3中,最小的实数是()A.﹣3B.0C.D.32.(3分)为了描述温州市某一天气温变化情况,应选择()A.扇形统计图B.折线统计图C.条形统计图D.直方图3.(3分)如果a>b,那么下列结论一定正确的是()A.a﹣3<b﹣3B.3﹣a<3﹣b C.ac2>bc2D.a2>b24.(3分)对于图中标记的各角,下列条件能够推理得到a∥b的是()A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°5.(3分)将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A.y=2x﹣3B.y=3﹣2x C.x=D.x=6.(3分)x是不大于5的正数,则下列表示正确的是()A.0<x<5B.0<x≤5C.0≤x≤5D.x≤57.(3分)如果点M(3a﹣9,1+a)是第二象限的点,则a的取值范围在数轴上表示正确的是()A.B.C.D.8.(3分)如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是()A.18°B.126°C.18°或126°D.以上都不对9.(3分)比较下列各组数的大小,正确的是()A.>5B.<2C.>﹣2D.+1>10.(3分)如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC =α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正确的是()A.①②B.①③C.②③D.①②③11.(3分)如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4,若用x,y(其中x>y)表示小矩形的长与宽,请观察图案,指出以下关系式中不正确的是()A.x+y=7B.x﹣y=2C.x2﹣y2=4D.4xy+4=4912.(3分)如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形二、填空题:(本大题共6小题,每小题3分,共18分).13.(3分)﹣的相反数是.14.(3分)已知,点P坐标为(﹣2,3),点Q坐标为Q(m,3),且PQ=6,则m=.15.(3分)一个样本有右边10个数据:52,51,49,50,47,48,50,51,48,53,如果组距为1.5,则应分成组.16.(3分)如果点P(2﹣m,1)在第二象限,那么关于x的不等式(1﹣m)x+1>m的解集是.17.(3分)古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x只,树有y棵,由題意可列方程组.18.(3分)如图,已知AB∥CD,∠BAD和∠BCD的平分线交于点E,∠1=100°,∠BAD=m°,则∠AEC的度数为.三、解答题:(本大题共8小题,满分66分)19.(18分)解方程组,不等式(组)(1)解方程组(2)解方程组(3)解不等式1﹣>(4)解不等式组,并把它的解集在数轴上表示出来.20.(6分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.(7分)已知x+12的算术平方根是,2x+y﹣6的立方根是2.(1)求x,y的值;(2)求3xy的平方根.22.(6分)将两块大小相同的直角三角尺(即三角形ABC和三角形DEF,其中∠A=∠D=30°,按如图所示的方式摆放(直角顶点F在斜边AB上,直角顶点C在斜边DE上),且DE∥AB.(1)求∠AFD的度数;(2)请你判断DF与AC是否平行,并说明理由.23.(7分)在平面直角坐标系中,△ABC的顶点坐标是A(3,0),B(5,0),C(0,﹣3).点P(m,n)为△ABC 内一点,平移△ABC到△A1B1C1,使点P(m,n)移到点P1(m﹣4,n+2)处.(1)画出平移后的△A1B1C1,并直接写出点A,B,C的坐标;(2)平移过程中线段BC扫过的图形面积为.24.(9分)蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如表,老王用600元批发青菜和西兰花共200市斤,当天售完后老王一共能赚多少元钱?青菜西兰花进价(元/市斤) 2.8 3.2售价(元/市斤)4 4.5(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200市斤.但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,应怎样给青菜定售价?(精确到0.1元)25.(5分)已知关于x的不等式组,只有唯一的整数解,则a的取值范围是什么?26.(8分)在直角坐标系中,已知线段AB,点A的坐标为(1,﹣2),点B的坐标为(3,0),如图所示.(1)平移线段AB到线段CD,使点A的对应点为D,点B的对应点为C,若点C的坐标为(﹣2,4),求点D 的坐标;(2)平移线段AB到线段CD,使点C在y轴的正半轴上,点D在第二象限内,连接BC,BD.如图2所示,若S△BCD=7(S△BCD表示三角形BCD的面积),求点C、D的坐标.2019-2020学年广西玉林市陆川县七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,每小题给出的四个选项中,只有一项是正确的,把答案前的字母写在括号内).1.【答案】A【解答】解:∵﹣3<0<<3,∴其中最小的实数是﹣3.故选:A.2.【答案】B【解答】解:根据题意,得要求反映温州市某一天气温变化情况,结合统计图各自的特点,应选用折线统计图.故选:B.3.【答案】B【解答】解:∵a>b,∴﹣a<﹣b,∴3﹣a<3﹣b;故选:B.4.【答案】D【解答】解:A、∠1=∠2,因为它们不是a、b被截得的同位角或内错角,不符合题意;B、∠2=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;C、∠3=∠4,因为它们不是a、b被截得的同位角或内错角,不符合题意;D、∠1+∠4=180°,∠1的对顶角与∠4是a、b被截得的同旁内角,符合题意.故选:D.5.【答案】B【解答】解:方程2x+y=3,解得:y=3﹣2x,故选:B.6.【答案】B【解答】解:∵x是不大于5的正数,∴0<x≤5,故选:B.7.【答案】A【解答】解:∵点M(3a﹣9,1+a)是第二象限的点,∴,解得﹣1<a<3.在数轴上表示为:.故选:A.8.【答案】C【解答】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B﹣36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B﹣36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.9.【答案】C【解答】解:∵=24,52=25,24<25,∴<5,∴选项A不正确;∵=9,23=8,9>8,∴>2,∴选项B不正确;∵=﹣6,(﹣2)3=﹣8,﹣6>﹣8,∴>﹣2,∴选项C正确;∵﹣(+1)=﹣1>1﹣1=0∴﹣(+1)>0,∴+1<,∴选项D不正确.故选:C.10.【答案】D【解答】解:∵OE⊥CD于O,∠EOF=α,∴∠DOF=α﹣90°,∵OD平分∠BOF,∴∠BOD=∠FOD,∵∠AOC=∠BOD,∴∠AOC=∠FOD,∴∠AOC=α﹣90°,①正确;∴∠BOE=180°﹣∠COE﹣∠AOC=180°﹣90°﹣(α﹣90°)=180°﹣α,②正确;∴∠AOF=180°﹣∠AOC﹣∠DOF=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,③正确;故选:D.11.【答案】C【解答】解:A、因为正方形图案的边长7,同时还可用(x+y)来表示,故此选项正确;B、中间小正方形的边长为2,同时根据长方形长宽也可表示为x﹣y,故此选项正确;C、根据A、B可知x+y=7,x﹣y=2,则x2﹣y2=(x+y)(x﹣y)=14,故此选项错误;D、因为正方形图案面积从整体看是49,从组合来看,可以是(x+y)2,还可以是(4xy+4),即4xy+4=49,故此选项正确;故选:C.12.【答案】C【解答】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n﹣1)×,偶数个图形的火柴棒个数,8+7(n﹣2)×,若5+7(n﹣1)×=295,没有整数解,若8+7(n﹣2)×=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.二、填空题:(本大题共6小题,每小题3分,共18分).13.【答案】.【解答】解:﹣的相反数是:.故答案为:.14.【答案】见试题解答内容【解答】解:∵点P坐标为(﹣2,3),点Q坐标为Q(m,3),∴点P、Q的纵坐标相等,PQ∥x轴,∵PQ=6,∴|﹣2﹣m|=6,∴﹣2﹣m=6或﹣2﹣m=﹣6,解得m=﹣8或m=4.故答案为:4或﹣8.15.【答案】5.【解答】解:∵极差为53﹣47=6,且组距为1.5,∴6÷1.5=4,∴应分成5组,故答案为:5.16.【答案】x<﹣1.【解答】解:∵点P(2﹣m,1)在第二象限,∴2﹣m<0,解得:m>2,则1﹣m<0,∵(1﹣m)x+1>m,∴(1﹣m)x>m﹣1,∴x<﹣1,故答案为x<﹣1.17.【答案】.【解答】解:依题意,得:,故答案为:.18.【答案】40°+.【解答】解:如图,过点E作EF∥AB,∵AB∥CD,EF∥AB,∴AB∥EF∥CD,∴∠BAE=∠AEF,∠FEC=∠ECD,∠1+∠BCD=180°,∴∠BCD=180°﹣∠1=180°﹣100°=80°,∵∠BAD和∠BCD的平分线交于点E,∴∠BAE=∠BAD=,∠ECD=∠BCD=40°,∴∠AEC=∠AEF+∠FEC=∠BAE+∠ECD=40°+,故答案为:40°+.三、解答题:(本大题共8小题,满分66分)19.【答案】(1);(2);(3)x>﹣1;(4)﹣2<x≤1.【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入①得:3+2y=1,解得:y=﹣1,所以原方程组的解为;(2),①+②得:3x+4z=﹣4④,③×2得:4x﹣4z=﹣10⑤,④+⑤得:7x=﹣14,解得:x=﹣2,把x=﹣2代入①得:﹣6﹣y=﹣7,y=1,把y=1代入②得:1+4z=3,解得:z=,则方程组的解为;(3)去分母得:10﹣2(2﹣3x)>5(1+x),去括号得:10﹣4+6x>5+5x,移项得:6x﹣5x>5﹣10+4,解得:x>﹣1;(4),解不等式①,得x>﹣2,解不等式②,得x≤1,把不等式①和②的解集在数轴表示出来如下图所示:从上图中可看出不等式组的解集为:﹣2<x≤1.20.【答案】见试题解答内容【解答】解:(1)这次被抽检的电动汽车共有:30÷30%=100(辆),C所占的百分比为:40÷100×100%=40%,D所占的百分比为:20÷100×100%=20%,A所占的百分比为:100%﹣40%﹣20%﹣30%=10%,A等级电动汽车的辆数为:100×10%=10(辆),补全统计图如图所示:(2)这种电动汽车一次充电后行驶的平均里程数为:230)=217(千米),∴估计这种电动汽车一次充电后行驶的平均里程数为217千米.21.【答案】见试题解答内容【解答】解:(1)∵x+12的算术平方根是,2x+y﹣6的立方根是2.∴x+12==13,2x+y﹣6=23=8,∴x=1,y=12,(2)当x=1,y=12时,3xy=3×1×12=36,∵36的平方根是±6,∴3xy的平方根±6.22.【答案】见试题解答内容【解答】解:(1)∵DE∥AB∴∠D+∠AFD=180°又∵∠D=30°∴∠AFD=180°﹣30°=150°(2)DF与AC平行∵∠AFD=150°,∠A=30°∴∠AFD+∠A=180°∴DF∥AC23.【答案】见试题解答内容【解答】解:(1)如图所示:△A1B1C1,即为所求,点A(﹣1,2),B(1,2),C(﹣4,﹣1);(2)平移过程中线段BC扫过的图形面积为:5×9﹣×3×5﹣×2×4﹣×2×4﹣×3×5=22.故答案为:22.24.【答案】见试题解答内容【解答】解:(1)设批发青菜x市斤,西兰花y市斤;根据题意得:,解得:,即批发青菜100市斤,西兰花100市斤,∴100×(4﹣2.8)+100×(4.5﹣3.2)=120+130=250(元);答:当天售完后老王一共能赚250元钱;(2)设给青菜定售价为a元/市斤;根据题意得:100×(1﹣10%)a+100×4.5﹣600≥250,解得:a≥≈4.44;答:给青菜定售价为不低于4.5元/市斤.25.【答案】0≤a<1.【解答】解:解不等式x﹣a>0,得:x>a,解不等式5﹣2x>1,得:x<2,则不等式组的解集为a<x<2,∵不等式组有唯一整数解,∴0≤a<1.26.【答案】(1)D(﹣4,2).(2)C(0,4),D(﹣2,2).【解答】解:(1)∵B(3,0)平移后的对应点C(﹣2,4),∴设3+a=﹣2,0+b=4,∴a=﹣5,b=4,即:点B向左平移5个单位,再向上平移4个单位得到点C(﹣2,4),∴A点平移后的对应点D(﹣4,2).(2)∵点C在y轴上,点D在第二象限,∴线段AB向左平移3个单位,再向上平移(2+y)个单位,符合题意,∴C(0,2+y),D(﹣2,y),连接OD,S△BCD=S△BOC+S△COD﹣S△BOD=OB×OC+OC×2﹣OB×y=7,∴y=2,∴C(0,4),D(﹣2,2).。

广西省玉林市2019-2020学年初一下学期期末数学经典试题

广西省玉林市2019-2020学年初一下学期期末数学经典试题

2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.下列长度的三条线段不能组成三角形的是A .3,4,5B .5,7,11C .2,3,6D .4,9,92.如图,∠1和∠2不是同位角的是( )A .B .C .D .3.某中学阅览室在装修过程中,准备用边长相等的正方形、正三角形两种地砖铺满地面,在每个顶点的周围正方形、正三角形地砖的块数分别是( )A .1、2B .2、1C .2、2D .2、34.A 、B 两点在一次函数图象上的位置如图所示,两点的坐标分别是()A x a y b ++,,()B x y ,,下列结论正确的是A .a 0>B .a 0<C .b=0D .ab 0<5.若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-6.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩ 7.下列各式计算结果正确的是( )A.B.C.D.8.一元一次不等式组21112x xx>-⎧⎪⎨≤⎪⎩的解集是()A.x>﹣1 B.x≤2 C.﹣1<x≤2 D.x>﹣1或x≤29.下列既是轴对称图形又是中心对称图形的是()A.B.C. D.10.如图所示,第1个图中有1个三角形,第2个图中共有5个三角形,第3个图中共有9个三角形,依次类推,则第6个图中共有三角形()个A.65 B.63 C.21 D.25二、填空题题11.不等式2x>3的最小整数解是______.12.计算:(x+2)(x-3)=___________;13.写出一个负无理数________.14.学习了“设计自己的运算程序”一课后,马老师带领数学兴趣小组同学继续进行探究:任意写一个3 的倍数(非零)的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方求和,……重复运算下去,就能得到一个固定的数字a,我们称它为数字“黑洞”这个数字a=______15.如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则ab=_____.16.如图,在△ABC中,D是AB的中点,E是BC上的一点,且BE=4EC,CD与AE相交于点F,若△CEF的面积为1,则△ABC的面积为______.17.把40个数据分成6组,第一到第四组的频数分别为9,5,8,6,第五组的频率是0.1,则第六组的频数是________.三、解答题 18.解不等式组3(2)21213x x x x +-≥⎧⎪+⎨-⎪⎩>,并把它的解集在数轴上表示出来. 19.(6分)先化简()222x x x x x x -÷-+-,再从-2,0,1,2,3中选择一个合理的数作为x 代入求值. 20.(6分)因式分解:(1)(x+3)2-16;(2)x 4-18x 2+1.21.(6分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?22.(8分)2018年4月29日在瑞安外滩举行了“微马”活动,本次活动分“微马组,体验跑组,欢乐家庭跑组”三种赛程,其中“欢乐家庭跑组”蔡塞家庭只能以“二大一小”或“一大一小”的形式参加,参赛人数共100人.(1)若参加“欢乐家庭跑组”的大人人数是小孩人数的1.5倍,问:“二大一小”和“一大一小”的组数分别有几组?(2)若“二大一小”和“一大一小”的组数不相同且相差不超过5组,则本次比赛中参加 “欢乐家庭跑组”共有 组(直接写出答案).23.(8分)如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转). (1)转动转盘,转出的数字大于3的概率是______(直接填空);(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别为三条线段的长度,关于这三条线段:①能构成三角形的概率是______(直接填空);②能构成等腰三角形的概率是______(直接填空).24.(10分)计算:-20-(+14)+(-18)-(-13)25.(10分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向3的倍数的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为23.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】根据三角形的三边关系定理逐个判断即可.【详解】A、3+4>5,3+5>4,4+5>3,即符合三角形的三边关系定理,能组成三角形,故本选项不符合题意;B、5+7>11,7+11>5,11+5>7,即符合三角形的三边关系定理,能组成三角形,故本选项不符合题意;C、2+3<6,即不符合三角形的三边关系定理,不能组成三角形,故本选项符合题意;D、4+9>9,9+9>4,即符合三角形的三边关系定理,能组成三角形,故本选项不符合题意;故选:C.【点睛】考查了三角形的三边关系定理,能熟记三角形的三边关系定理是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2.D【解析】【分析】利用同位角的定义,直接分析得出即可.【详解】解:A、∠1和∠2是同位角,故此选项不符合题意;B、∠1和∠2是同位角,故此选项不符合题意;C、∠1和∠2是同位角,故此选项不符合题意;D、∠1和∠2不是同位角,故此选项符合题意;故选:D.【点睛】此题主要考查了同位角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.3.D【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为160°.【详解】正三角形的每个内角是60°,正方形的每个内角是90°,∵1×60°+2×90°=160°,∴正方形、正三角形地砖的块数可以分别是2,1.故选D.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.4.B【解析】【分析】根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.【详解】∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A. C. D 都不对,只有选项B 正确,故选B.5.B【解析】【分析】由已知可得4x +=2,解方程可得.【详解】由已知可得4x +=2,解得x=-2.故选B.【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.6.B【解析】【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可.【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩. 故选B..【点睛】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.7.B【解析】【分析】根据幂的乘方,同底数幂的乘法、除法,合并同类项,对每个选项进行判断即可.【详解】A 、,所以本项错误; B 、,所以本项正确; C 、,所以本项错误;D、,所以本项错误.故选择:B.【点睛】本题考查了幂的乘方,同底数幂的乘法、除法,合并同类项,解题的关键是熟练掌握它们的运算法则. 8.C【解析】分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.详解:21112x xx-⎧⎪⎨≤⎪⎩>①②解不等式①得x>-1解不等式②得x≤2不等式组的解集为-1<x≤2.故选C.点睛:此题主要考查了不等式组的解法,关键是合理利用不等式组的解集的确定方法判断其解集,判断解集的方法:都大取大,都小取小,大小小大取中间,大大小小无解.9.A【解析】试题分析:结合选项根据轴对称图形与中心对称图形的概念求解即可.A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形考点:(1)中心对称图形;(2)轴对称图形10.C【解析】【分析】根据前三个三角形的个数总结规律,根据规律计算.【详解】第1个图中有1个,即4×(1−1)+1个三角形,第2个图中共有5个,即4×(2−1)+1三角形,第3个图中共有9个,即4×(3−1)+1三角形,则第6个图中共有4×(6−1)+1=21个三角形,故选:C.本题考查的是图形的变化类的规律,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.二、填空题题11.2【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的整数即可.【详解】解不等式得:x>32,则最小整数解是:2.故答案为2【点睛】此题考查一元一次不等式的整数解,掌握运算法则是解题关键12.x2﹣x﹣1.【解析】试题分析:多项式乘以多项式就是用一个多项式中的每一项乘以另一个多项式中的每一项,然后相加即可.解:原式=x2﹣3x+2x﹣1=x2﹣x﹣1.故答案为x2﹣x﹣1.考点:多项式乘多项式.13.2-(答案不唯一,符合要求即可).【解析】试题分析:无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.答案不唯一,如2-.考点:无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.14.1【解析】【分析】认真审题,熟悉规则.取符合条件的数如3,6,9等,按规则计算便可得结果.【详解】比如,3,3的立方为27,则2的立方加上7的立方得351,则3的立方加上5的立方再加上1的立方得1,则a=1.【点睛】此题考查了整式的加减,读懂题意,熟悉规则是关键.可经过多次试验确定结果.15.1【解析】【分析】根据平移前后的坐标变化,得到平移方向,从而求出a 、b 的值.【详解】由点A (1,0)的对应点(2,a )知线段AB 向右平移1个单位,由点B (0,2)的对应点(b ,3)知线段AB 向上平移1个单位,所以a =0+1=1,b =0+1=1,1,故答案为:1.【点睛】本题考查了坐标与图形的变化-平移,找到坐标的变化规律是解题的关键.16.30【解析】【分析】连接BF ,利用高相等、底边成比例的三角形面积之间的关系即可求解.【详解】解:连接BF ,得BFE △∵BE=4EC,1CEF S = ∴44BFE CEFS S == ∵D 是AB 的中点∴ADC BDC S S =又∵ADF DFB SS = ∴AFC BFC SS = ∴5AFC S = ∴6AEC AFC EFC SS S =+= ∴24ABE S =∴24630ABCS=+=故答案为30.【点睛】此题主要考查特殊三角形之间的面积关系,熟练掌握高相等的三角形,面积之比就等于底边之比是解题的关键.17.8.【解析】【分析】先求出第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【详解】∵有40个数据,共分成6组,第5组的频率是0.1,∴第5组的频数为40×0.1=4;又∵第1∼4组的频数分别为9,5,8,6,∴第6组的频数为40−(9+5+8+6+4)=8.故答案为8.【点睛】此题考查频数与频率,解题关键在于先求出第5组的频数三、解答题18.2≤x<4,数轴表示见解析.【解析】【分析】分别求出各不等式的解集,再在数轴表示出来,其公共部分即为不等式组的解集.【详解】解:()3221213x xxx②>②⎧+-≥⎪⎨+-⎪⎩由②得:x≥2由②得:x<4∴该不等式组的解集为2≤x<4如图所示:【点睛】本题考查的是解一元一次不等式组,解此类题目常常要结合数轴来判断,要注意是否包括x,若包括则x 在该点是实心的,反之x在该点是空心的.19.42x+,43.【解析】【分析】先根据分式的运算法则把所给代数式化简,然后从-2,0,1,2,3中选择一个是所给分式有意义的数代入计算即可.【详解】原式=2 ()22x x xx x x--⨯-+=22 22x x x xx x x x--⨯-⨯-+=-2 12xx-+=42 x+,当x=1时,原式=44= 123 +.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.此题也得考查了分式有意义的条件.20.(1)(x+7)(x-1)(2)(x-3)2(x+3)2【解析】【分析】(1)直接利用平方差公式分解因式进而得出答案;(2)直接利用完全平方公式以及平方差公式分解因式进而得出答案.【详解】(1)(x+3)2-16=(x+3+4)(x+3-4)=(x+7)(x-1);(2)x4-18x2+1=(x2-9)2=(x-3)2(x+3)2.【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.21.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.22.(1)“二大一小”和“一大一小”的组数分别有20组,20组;(2)39,41.【解析】【分析】(1)设“二大一小”和“一大一小”的组数分别有x 组,y 组,根据参赛人数共100人,大人人数是小孩人数的1.5倍列方程组求解即可;(2)设参加“二大一小”的有a 组,则参加“一大一小”的有10032a -组,根据“二大一小”和“一大一小”的组数不相同且相差不超过5组列不等式组求解即可.【详解】(1)解:设“二大一小”和“一大一小”的组数分别有x 组,y 组.由题意得: 321001.5()2x y x y x y +=⎧⎨+=+⎩, 解得:2020x y =⎧⎨=⎩ (2)设参加“二大一小”的有a 组,则参加“一大一小”的有10032a -组,由题意得 100352100352a a a a -⎧-≤⎪⎪⎨-⎪-≤⎪⎩, 解得1822a ≤≤,∵a 和10032a -都是自然数且不相等, ∴a=18,10032a -=23或a=22,10032a -=17, 18+23=41组,18+23=41组,22+17=39组.故答案为41或39.【点睛】本题考查了二元一次方程组及一元一次不等式组的应用,根据题意找出等量关系及不等量关系列出方程组及不等式组是解答本题的关键.23.(1)23,(2)①56,②13. 【解析】【分析】(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4种,由概率公式可得;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成三角形的结果有5种,由概率公式可得;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有2种,由概率公式可得.【详解】解:(1)转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,大于3的结果有4、5、6、7,共4种,∴转出的数字大于3的概率是46=23;(2)①转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,并与数字3和4能够成三角形的结果有(2、3、4),(3、3、4),(4、3、4),(5、3、4),(6、3、4),共5种,∴这三条线段能构成三角形的概率是56;②转盘被平均分成6等份,转到每个数字的可能性相等,共有6种可能结果,能够成等腰三角形的结果有(3、3、4),(4、3、4),共2种,∴这三条线段能构成等腰三角形的概率是26=13.故答案为:23,56,13.【点睛】本题主要考查了概率公式的运用及三角形三边间的关系、等腰三角形的判定,熟练掌握三角形三边间的关系和等腰三角形的判定是解题的关键.24.-39【解析】【分析】先把减法转化为加法,然后根据加法法则计算即可.【详解】解:原式=-20+(-14)+(-18)+(+13)=(-52)+(+13)=-39.【点睛】本题考查了有理数的减法运算,熟练掌握减去一个数等于加上这个数的相反数是解答本题的关键.25.(1)13;(2)自由转动转盘,当它停止时,指针指向的数字不大于4时,指针指向的区域的概率是23,见解析【解析】【分析】(1)根据概率公式计算即可;(2)根据概率公式设计,如:自由转动转盘,当它停止时,指针指向的数字不大于4时.【详解】解:(1)总共有6种等可能结果,3的倍数有2种结果,所以321 63P==(指针指向的倍数);(2)自由转动转盘,当它停止时,指针指向的数字不大于4时,指针指向的区域的概率是42 =63.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.2019-2020学年初一下学期期末模拟数学试卷 一、选择题(每题只有一个答案正确)1.下列各数:2-,27,3.14,3,0.101001(每两个1之间的0递增)属于无理数的有( )A .1个B .2个C .3个D .4个 2.某商场为促销某种商品,将定价为5元/件的该商品按如下方式销售:若购买不超过5件商品,按原价销售;若一次性购买超过5件,按原价的八折进行销售.小明现有29元,则最多可购买该商品( ) A .5件 B .6件C .7件D .8件3.若a b >,则下列式子中错误的是( )A .22a b +>+B .22a b >C .33a b ->-D .4a 4b ->-4.点所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.下列说法正确的是( )A .等于-2 B .±等于3 C .﹙-5﹚³的立方根是5D .平方根是±2 6.如图,OE 是∠AOB 的平分线,CD ∥OB 交OA 于C ,交OE 于D ,∠ACD =50°,则∠CDO 的度数是( )A .15°B .20°C .25°D .30°7.已知三元一次方程组102040x y y z z x +=⎧⎪+=⎨⎪+=⎩,则x y z ++=( )A .20B .30C .35D .708.如图,已知∠1=∠2,AC =AD ,要使△ABC ≌△AED ,还需添加一个条件,那么在①AB =AE ,②BC =ED ,③∠C =∠D ,④∠B =∠E ,这四个关系中可以选择的是( )A .①②③B .①②④C .①③④D .②③④9.如图,a//b ,∠1=65︒,∠2=140︒,则∠3=( )A.100︒B.105︒C.110︒D.115︒10.不等式组5234xx-≤-⎧⎨-+<⎩的解集表示在数轴上为()A.B.C.D.二、填空题题11.如图,△ABC中,∠A=35°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=85°,则原三角形的∠ABC的度数为_____.12.要了解一批灯泡的使用寿命,从10000只灯泡中抽取60只灯泡进行试验,在这个问题中,样本容量是_______.13.如图,有一条直的宽纸带,按图方式折叠,则∠α的度数等于_____.14.解不等式组:211331xx x+-⎧⎨+>+⎩①②请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得,(Ⅱ)解不等式②,得,(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.15.阅读下面材料:在数学课上,老师提出如下问题:作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A(如图1).求作:l的平行线,使它经过点A.小凡利用两块形状相同的三角尺进行如下操作:如图2所示:(1)用第一块三角尺的一条边贴住直线l,第二块三角尺的一条边紧靠第一块三角尺;(2)将第二块三角尺沿第一块三角尺移动,使其另一边经过点A,沿这边作出直线AB,所以,直线AB即为所求.老师说:“小凡的作法正确.”请回答:小凡的作图依据是_____.16.小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为(– 4,3)、(– 2,3),则移动后猫眼的坐标为__________。

广西玉林市2020年七年级下学期数学期末考试试卷B卷

广西玉林市2020年七年级下学期数学期末考试试卷B卷

广西玉林市2020年七年级下学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共40分)1. (4分) 4 的平方根是()A . 2B . 16C . ±2D . ±162. (4分)(2020·山西模拟) 下列几个数中,属于无理数的数是()A . 0.1B .C . πD .3. (4分)(2013·深圳) 分式的值为0,则()A . x=﹣2B . x=±2C . x=2D . x=04. (4分)已知多项式4x2-(y-z)2的一个因式为2x-y+z,则另一个因式是()A . 2x-y-zB . 2x-y+zC . 2x+y+zD . 2x+y-z5. (4分)下列变形不正确的是()A . 由b>5得4a+b>4a+5B . 由a>b得b<aC . 由 x>2y得x<-4yD . -5x>-a得x>6. (4分) (2019七下·江门期末) 下列命题错误的是()A . 如果,那么B . 如果,那么C . 如果,那么D . 如果,那么7. (4分)如果一个长方形的周长为10,其中长为a,那么该长方形的面积为()A . 10aB . 5a﹣a2C . 5aD . 10a﹣a28. (4分) (2019七上·柘城月考) 如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()A . a+b>0B . ab >0C .D .9. (4分) (2019七下·芷江期末) 与是同旁内角,则()A .B .C . 或D . 的大小不能确定10. (4分)设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()A . ○□△B . ○△□C . □○△D . △□○二、填空题 (共4题;共20分)11. (5分)(2019·常熟模拟) DNA分子的直径只有0. 000 000 2 cm,将0. 000 000 2用科学计数法可表示为________.12. (5分) (2019八下·宜兴期中) 当 ________时,代数式有意义.13. (5分) (2020八下·惠州月考) 已知1<x<2,,则的值是________.14. (5分)(2017·椒江模拟) 不等式组的解集为________.三、解答题 (共6题;共60分)15. (8分)(2020·温州模拟)(1)计算:(π-3.14)0+(-2)-1+sin30°(2)化简:(x+2)2-x(x-4)16. (8分) (2020九下·江阴期中)(1)计算:-3tan60°+;(2)化简: .17. (8分) (2018七下·上蔡期末) 如图所示的正方形方格(每个小正方形的边长为1个单位). 的三个顶点均在小方格的顶点上.(1)①画出关于O点的中心对称图形;②画出将沿直线l向上平移5个单位得到的;(2)要使与重合,则绕点顺时针方向至少旋转的度数为________.18. (10分) (2019七下·桦南期末) 如图,直线a,b被c,d所截,且c⊥a,c⊥b,∠1=70°,则∠2等于多少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陆川县乌石镇二中131班2021春季期期末模拟考试数学卷2021.06.15
姓名得分
友情提醒:
1.本次考试不得使用计算器进行计算.
2.本试卷满分120分,在120分钟内完成. 相信你一定会有出色的表现!
一、选择题(每小题3分,共27分)
1、在平面直角坐标系中,线段两端点的坐标分别为,。

将线段平移后,
,的对应点的坐标可以是()
A. ,
B. ,
C. ,
D. ,
2、关于x的不等式2x-a≤-1的解集如图2所示,则a的取值是()
A.0 B.-3 C.-2 D.-1
3、如果不等式无解,则b的取值范围是()
A.b>-2 B. b<-2 C.b≥-2 D.b≤-2
4、在平面直角坐标系内,若点M(x+2,x-1)在第四象限,则x的取值范围是()
A.x>—2
B.x<—2
C.x>1
D.—2<x<1
5、估计的大小应在( )
A.7~8之间
B.8.0~8.5之间
C. 8.5~9.0之间
D. 9.0~9.5之间
6、在“五·一”黄金周期间,某超市推出如下购物优惠方案:
(1)一次性购物在100元(不含100元)以内的,不享受优惠;
(2)一次性购物在100元(含100元)以上,300元(不含300元)以内的,一律享受九折的优惠;(3)一次性购物在300元(含300元)以上时,一律享受八折的优惠。

王茜在本超市两次购物分别付款80元、252元。

如果王茜改成在本超市一次性购买与上两次完全相同的商品,则应付款()
A. 332元
B. 316元或332元
C. 288元
D. 288元或316元
7、为了了解本校九年级学生的体能情况,随机抽查了其中30名学生,测试了
1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图
示计算,仰卧起坐次数在25~30次的频率为()
A.0.1 B.0.2 C.0.3 D.0.4
8、为了让人感受丢弃塑料袋对环境的影响,某班环保小组10个同学记录了自己家中一天丢弃塑料袋
的数量(单位:个):2,3,8,7,5,6,7,2,4,6,如果该班有50名学生,估计全班同学家中一周共丢弃塑料袋的数量约为( )
A. 1000
B. 1050
C. 1350
D. 1750
9、如果∠与∠的两边分别平行,∠比∠的3倍少36°,则∠的度数是( )
A.18°
B.126°
C.18°或126°
D.以上都不对
二、填空题:(每题3分,共30分)
10、为掌握我校初一年级女同学的身高情况,从中抽测了100名女同学的身高, 这个问题中的样本是 .
11、同学们每个星期都会听着国歌升国旗,但国歌歌词有多少个可能大家都不知道.已知歌词数量是一 个两位数,十位数是个位数的两倍,且十位数比个位数大4,则国歌歌词数有 个。

12、若,则 .
13、从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km ,平路每小时走4km ,下坡 每小时走5km ,那么从甲地乙地需42分,甲地到乙地的全程是
14、 的算术平方根为 a, =2,则a-b= .
15、已知点P(2 a -4, 6-3b), 先向左平移2个单位, 再向下平移3个单位, 恰好落在x 轴的负半轴 上, 则a 、b 应为_________________.
16、如图,BD 是△ABC 的角平分线,DE ∥BC 交AB 于E ,
∠A = 45°,∠BDC = 60°,则∠EDC=_________.
17、数学解密:若第一个式子是
,第二个式子是 ,第三个式子是,第四个式子是 …,
观察以上规律并猜想第六个式子是______ _.
18、 有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( )
A.8
B.
C. D. 19、已知
,则7(x +y )-20的立方根是 。

三、 解答题
20、计算 ( 4分) 21、解方程组: (6分)
取算术平方根 输入x 是有理数 输出y 是无理数
22、解不等式组,并把其解集在数轴上表示出来。

(7分)
23、已右关于,的方程组(1)求这个方程组的解;(4分)
(2)当取何值时,这个方程组的解大于,不小于.(4分)
24、是否存在这样的整数m,使方程组的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由。

(7分)
25、已知如图, DE⊥AC,∠AGF=∠ABC,∠1+∠2=1800,
试判断BF与AC的位置关系,并说明理由.(8分)
.26、学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查(把学生的学习兴趣分为三个层次,A层次:很感兴趣;B层次:较感兴趣;C 层次:不感兴趣),并将调查结果绘制成了图①和图②的统计图(不完整).请你根据图中提供的信息,解答下列问题:
⑴此次抽样调查中,共调查了名学生(2分);
⑵将图①、图②补充完整;(4分)
⑶求图②中C层次所在扇形的圆心角的度数;(3分)
⑷根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣(包括A层次和B层次).(3分)
27、(11分)师生积极为绵阳地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,
该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

学校用去捐款96000元采购,正好可供2300人临时居住。

(1)求该校采购了多少顶3人小帐篷。

多少顶10人大帐篷?
(2)学校计划租用甲、乙两种型号的卡车共20辆,将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。

如何安排甲、乙两种卡车,可一次性将这批帐篷运往灾区?在哪几种方案?。

相关文档
最新文档