火花光谱仪结构原理及调试应用
光谱仪的原理、功能以及分类【详尽版】
光谱仪的原理光谱仪的主要功能以及具体的分类内容来源网络,由SIMM深圳机械展整理更多相关展示,就在深圳机械展!光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。
光谱仪的主要功能它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。
因此,光谱仪器应具有以下功能:(1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。
(2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。
(3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。
要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。
主要分类根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。
本设计是一套利用光栅分光的光谱仪,其基本结构如图。
光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。
一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。
为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。
分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。
如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。
光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。
光谱仪的工作原理
光谱仪的工作原理光谱仪是一种用于分析光的仪器,它能够将光分解成不同波长的成份,并测量它们的强度。
光谱仪广泛应用于物理、化学、生物、医学等领域,用于研究物质的组成、结构和性质。
光谱仪的工作原理主要包括光源、光栅或者棱镜、光电探测器和数据处理系统。
1. 光源:光谱仪通常使用可见光或者紫外光作为光源。
常见的光源包括白炽灯、氘灯、氙灯等。
光源发出的光经过适当的准直和滤波处理后,成为一束单色或者宽谱的光。
2. 光栅或者棱镜:光栅和棱镜是光谱仪中用于分散光的元件。
光栅是一种具有平行刻纹的光学元件,当入射光通过光栅时,不同波长的光会以不同的角度被分散出来。
棱镜则通过折射原理将光分散成不同波长的光。
3. 光电探测器:光电探测器用于测量光的强度。
常见的光电探测器包括光电二极管(Photodiode)、光电倍增管(Photomultiplier Tube)等。
当光通过光栅或者棱镜分散后,不同波长的光会在探测器上形成不同的光强信号。
4. 数据处理系统:光电探测器输出的光强信号通过放大、滤波和模数转换等处理后,送入数据处理系统进行进一步的分析和处理。
数据处理系统可以是计算机或者专门的光谱仪分析仪器。
通过对光谱进行处理,可以获得物质的光谱图象,并进一步分析物质的成份和特性。
光谱仪的工作过程如下:1. 光源发出的光经过准直和滤波处理后,成为一束单色或者宽谱的光。
2. 光通过光栅或者棱镜分散成不同波长的光,不同波长的光以不同的角度被分散出来。
3. 分散后的光通过光电探测器,探测器将不同波长的光转换为相应的电信号。
4. 光电探测器输出的电信号经过放大、滤波和模数转换等处理后,送入数据处理系统。
5. 数据处理系统对光谱进行进一步的分析和处理,可以绘制出物质的光谱图象,并通过对光谱的分析,获得物质的成份和特性。
光谱仪的工作原理基于光的波长和频率之间的关系,不同物质对光的吸收、散射和发射具有特定的光谱特征。
通过测量和分析物质的光谱,可以了解物质的组成、结构和性质,从而在科学研究和实际应用中发挥重要作用。
火花直读光谱仪
火花直读光谱仪火花直读光谱仪(规格型号:MAXx;生产厂家:德国SPECTRO公司;)火花直读光谱仪是对金属材料中元素进行快速定量分析的有力工具。
该分析技术具有分析速度快,准确度高,操作简便的特点,使其在钢铁厂,各种金属冶炼厂,铸造厂等得到了广泛应用,主要包括对金属冶炼和加工过程中的工艺控制,进厂原料检验,中间产品和成品的检测。
国内有3000多台仪器在使用。
SPECTRO公司推出的全新SPECTROMAXx 新型金属分析仪大大提高了分析性能,增强了灵活性,操作更为简便。
根据用户要户要求量身定制,十种标准基体:铁、铝、铜、镍、钴、镁、钛、锡、铅和锌,可以与五种贵金属基体:金、银、铂、钯、钌组合配置。
金属中所有重要元素都可以检测,包括痕量C﹑P﹑S和N元素。
最多可设置十种基体(包括铁基,铝基,铜基,镍基,铬基,钛基,镁基,锌基,锡基和铅基)中的几十种元素的工作曲线。
涵盖了常见金属中的各种非金属和金属元素的定量分析。
SPECTROMAXx应用范围非常广泛,尤其适合压铸、熔铸,钢铁或有色金属行业的炉前金属分析要求,进、出厂材料检验以及汽车、机械制造等行业的金属材料分析。
SPECTROMAXx操作简单、方便。
采用新技术设计的火花台,实现单标样智能逻辑描迹和标准化。
操作者可将更多的精力投入到样品分析中,大大缩短了准备时间。
配套设施:采用快速读出系统、特殊设计的光学系统、独特的ICAL只能逻辑校正系统、高性能CCD检测器,SPECTROMAXx直读光谱仪融合了比以往更快速、更精确的最新金属分析技术。
优化的氩气流可有效避免火花台污染。
独特的ICAL智能逻辑校正系统同时实现智能逻辑描迹和标准化,并且大大节约了再校准过程时间。
机壳设计合理,便于快速安装和更换部件。
仪器机身右侧配有一个抽屉可存放控制样品和配件,如:样品夹具等。
全新的Windows SPECTRO SPARK ANALYZER MX 软件可完全满足用户需求——是一种设定和监控光谱仪功能的简便手段和专业界面。
光谱仪工作原理简述
光谱仪工作原理简述
光谱仪是一种用于分析光的波长及强度的仪器。
其工作原理是通过将入射光分散成不同波长的成分,然后测量每个波长的光强度。
光谱仪通常由以下几个部分组成:入射装置、分散装置、检测装置和数据处理装置。
1. 入射装置:将待测光进入光谱仪,通常使用凸透镜或反射镜来使光线聚焦,确保光线准确进入仪器。
2. 分散装置:通过使用光栅或光棱镜等分散设备,将入射光分散成不同波长的光。
这些光经过分散后,以不同角度进入检测装置。
3. 检测装置:用于测量每个波长的光强度。
常见的检测方式包括光电二极管和光电倍增管。
当光线进入检测器时,检测器会产生电流或电压信号,该信号的强度与光线的强度成正比。
4. 数据处理装置:将检测器输出的信号经过放大、滤波等处理后,转化为数字信号,并由计算机进行进一步处理和分析。
计算机可以绘制光谱图,计算峰值波长、峰值强度等光谱参数。
综上所述,光谱仪工作原理是通过分散装置将入射光分散成不同波长的光,并使用检测装置测量每个波长的光强度,最后由数据处理装置进行信号处理和分析。
S3火花直读光谱仪说明书
传承自1942年的意大利精密仪器公司S3火花直读光谱仪LINEE STAMPAGGIO LAMIERA SISTEMI·DI RADDRIZZATURA·STRUMENTI PROVE MATERIALI1.分析范围 (03)2.优势说明 (05)3.公司介绍 (13)4.客户名单 (21)5.技术参数 (29)6.仪器安装要求 (34)7.售后服务条款 (35)1.分析范围用户提供标样,厂家现场增加测量上限分析范围用户提供标样,厂家现场增加测量上限分析范围用户提供标样,厂家现场增加测量上限1、圆柱体测断面,截取一小段,放入线材适配器(下图),固定好位置,放在样品台上检测;一套7个2、比较细的线材,或管材,放入管材适配器(下图),即可检测;3、对于不规则样品,可使用减径环(下图);氮化硼减径环内径尺寸为:3、5、8mm;2.优势说明1.同级别直读光谱仪中最稳定的精度为了获得最佳的检测精度,GNR研发团队通过几十年的技术积累,采用了多种行业最领先的技术来达到这一目的。
a.采用单块标样的智能校准法+波长实时校准由于光学器件会受到空气污染,谱线的光强度(图1中谱线的高度)会变化,而谱线高度代表着元素含量,因此谱线高度的忽高忽低会影响测样结果的稳定性。
一般直读光谱仪需要用5-9块标样来做全校准,而GNR的智能校准算法可以精确计算每个待测元素的每条谱线的高度变化,做到最精密的校准。
GNR通过几十年累计的测试数据来拟合元素之间的关联,从而用一块标样的校准来达到多块标样校准的效果。
由于温度的变化及仪器环境的震动等原因,谱线会发生水平方向的漂移,这同样会导致含量的忽高忽低,因而影响测样结果的稳定性。
波长实时校准可以在每次激发预燃烧时精确计算每个待测元素的每条谱线的最新像素点,确保准确检测元素的谱线位置,从而达到最稳定的测样精度。
图1.智能校准费+波长实时校准效果图(双击图片显示动态图)b.分辨率最高的COMS检测器CMOS与CCD对比CMOS CCD封装外形如上图,24P和CMOS非常类似,22P像素40963648单个像素尺寸7*200um8*200um单个器件感光长度28.672mm29.184mm感光灵敏度650V/(lx.s)160V/(lx.s)暗电流电压(TYP)0.1mV2mVGNR采用了CMOS作为最新款直读光谱仪的检测器,相比较之前的CCD,在元器件性能上有如下的性能提升:首先这两款元器件(CMOS和CCD)采用了想类似的芯片封装,在结构上除了CMOS 是24针脚,CCD是22针脚以外,其他几乎完全一致。
火花等离子体光谱分析技术在元素分析中的应用
火花等离子体光谱分析技术在元素分析中的应用火花等离子体光谱分析技术(Spark Plasma Spectroscopy,SPS)是一种重要的元素分析方法,它可以用来分析样品中的元素种类和含量。
该技术的原理是利用火花电极产生的高温等离子体在特定条件下发射各种元素的特征光谱线,然后通过光谱仪检测并分析光谱线的强度和位置,从而确定样品中各元素的含量和种类。
SPS技术已广泛应用于金属、非金属、化学、环境等领域,成为了重要的元素分析手段之一。
SPS技术的优点在于具有无损分析、快速、高灵敏度、不同元素之间不会相互干扰等特点。
在样品处理方面,该技术仅需样品的粉末或固体片状,处理和制备时间短,并且不需要太多的人力和财力成本。
在检测方面,SPS技术还可以对样品进行非破坏性检测,因此非常适用于各种复杂样品的分析,如金属材料、陶瓷、矿物、水质、纺织品、垃圾和粉尘等。
SPS技术在金属分析中的应用SPS技术在金属分析中应用非常广泛,可以分析各种金属材料中的元素种类和含量。
对于构成复杂和多元合金的金属材料,这种技术可以快速、准确地分析出其中的各种元素含量,如不锈钢中的钼、铬、镍、钛等元素;铝合金中的镁、硅、铜等元素;和其他合金中的各种元素。
因此,SPS技术具有非常广泛的实际应用价值。
SPS技术在其他领域的应用SPS技术除了在金属领域的应用外,在其他领域的应用也开始逐渐展现出来。
在环境监测方面,该技术可以对水体、大气、土壤中的重金属、有机物等进行分析,以检测环境质量状况。
在化学分析方面,SPS技术可以用来分析常见的元素,如硫、氮、氧、碳等等。
在土壤学领域,该技术可以用来评估土壤中的重金属含量和其分布状况,以研究土壤化学性质和土壤污染情况。
总之,SPS技术是一种极具潜力的元素分析技术。
其在金属领域的应用已经非常成熟,而在化学、环境、土壤领域的应用还有待于进一步的探索和开发。
对于实验室和工业生产中需要对多元合金等复杂材料进行分析的场合,SPS技术可以提供高质量、安全、快速的测试方案和结果,为各种领域的科学和技术创新提供了重要的支持。
火花放电原子发射光谱分析法
火花放电原子发射光谱分析法1 范围本标准规定了火花放电原子发射光谱法的术语和定义、原理、仪器设备、材料、样品、取样及制样方法、测量条件的设置、定量分析方法、仪器的选择和安装条件、准确度、分析误差及其监控、安全防护。
本标准适用于火花放电原子发射光谱分析方法的应用、研究、人员培训等。
2 原理将制备好的金属块状样品在火花光源的作用下与对电极之间发生放电,在高温和惰性气氛中产生等离子体。
被测元素的原子被激发时,电子在原子内不同能级间跃迁,当由高能级向低能级跃迁时产生特征谱线。
通过确定这种特征谱线的波长和强度,可对各元素进行定性和定量分析。
3 仪器设备3.1 仪器仪器由激发系统、光学系统、测光系统和控制系统组成,如图1所示。
图1 火花放电原子发射光谱仪器组成3.1.1 激发系统3.1.1.1 光源发生器光源发生器是产生火花放电,使试样通过放电,从而蒸发、激发发光的装置。
3.1.1.2 发光部件发光部件是使被分析样品激发并发光的部分,由火花室、样品电极和对电极组成。
火花室与光室连接,有一电极架用于装载块状样品、棒状样品和对电极。
火花室的供气系统能置换分析间隙和聚焦透镜之间的空气,并为分析间隙提供所需的气体气氛。
样品电极和对电极作为一对电极使用,通过工作气体的离子使样品激发发光。
3.1.2 光学系统光学系统的作用是将被激发样品发出的不同波长的复合光进行色散变成单色光。
光学系统的主要组成包括聚焦透镜、入射狭缝系统、分光元件和出射狭缝系统。
3.1.2.1 聚焦透镜把光源的光聚集起来,并使之射入光室的装置。
一般使用单透镜成像法。
单透镜成像法是在入射狭缝的前面放置一个聚光透镜。
使光源的光聚集起来,均匀照射于入射狭缝上,并在准直镜上形成光源的像。
3.1.2.2 入射狭缝系统由入射狭缝和调节其位置的装置组成。
狭缝宽度一般使用固定宽度。
3.1.2.3 分光元件分光元件通常有光栅和棱镜两类,一般使用光栅。
采用光栅的光学系统中,不同的光栅可采用不同的光学结构。
火花光谱仪的使用中常见问题解析
火花光谱仪的使用中常见问题解析火花光谱仪是一种常用的分析仪器,广泛应用于金属材料分析、环境监测、食品安全等领域。
然而,在实际的使用过程中,我们常常会遇到一些问题。
本文将对火花光谱仪的使用中常见的问题进行解析,并提供相应的解决方法。
首先,火花光谱仪在分析过程中出现的信号不稳定问题是比较常见的。
造成信号不稳定的原因有很多,可能是样品制备不均匀,也可能是仪器本身存在问题。
解决这个问题的一种方法是检查样品制备方法,确保样品的均匀性和纯度。
另外,还可以进行仪器的检修和校准,确保仪器各部分的工作状态正常。
此外,合理选择激发电流和积分时间,也可以在一定程度上提高信号的稳定性。
其次,火花光谱仪在使用过程中可能会出现峰形不对称的问题。
峰形不对称可能是由于气氛或渣滓的影响造成的。
解决这个问题的一种方法是定期清洁仪器中的气氛道和渣滓箱,并确保样品的制备过程中没有渣滓的污染。
此外,还可以适量调整激发电流和积分时间,以获得更加均匀的峰形。
此外,火花光谱仪在分析过程中还可能会出现噪声较大的问题。
这个问题的解决方法往往要根据具体情况而定。
首先,可以通过增大放大倍数或增加积分时间的方式来提高信噪比。
其次,可以检查和清洁光路系统,以排除激光光束的散射和漏光等问题。
此外,噪声问题也可能与仪器本身的质量有关,因此,在购买光谱仪时,要选择质量可靠、性能稳定的产品。
另外,在实际的火花光谱分析中,有时可能会遇到杂质干扰的问题。
杂质干扰可能是由于样品本身的复杂性导致的,也可能是仪器的灵敏度不足引起的。
对于样品复杂性导致的干扰,可以通过对样品进行预处理、稀释或选择其他分析方法的方式进行解决。
对于仪器灵敏度不足引起的干扰,可以考虑采用更高灵敏度的火花光谱仪或其他分析方法。
此外,还有一些问题是与火花光谱仪的维护和保养有关的。
例如,灰尘对光学系统的影响,可能会导致信号强度降低和峰形变形等问题。
解决这个问题的方法是定期清洁光学系统,并确保仪器放置在清洁、干燥的环境中。
火花直读光谱仪HX-750
火花直读光谱仪HX-750型一、产品概况:HX-750火花直读光谱仪,秉承南京华欣分析仪器制造有限公司多年来的高品质传统以及数十年的开发设计经验,并融合当代的流行设计理念,是华欣公司最新推出的光电倍增管专业直读光谱仪。
对于化验室固体金属样品所要求的快速精确分析,南京华欣分析仪器制造有限公司HX-750火花直读光谱仪是您的最佳选择。
HX-750火花直读光谱仪凝聚了20年来被证明成熟而有效的光谱分析技,对于固体金属样品分析,光电倍增管技术具有对光谱信息的高灵敏度﹑高准确性以及寿命长的特征。
我们提供的12通道HX-750型直读光谱仪包括了完整的计算机系统,一套工厂校准曲线,并提供现场安装、用户培训及一年的全面质量保修服务。
根据用户分析需要,可为用户增加分析通道,增加分析基体。
也可为用户增加工厂校准曲线,或用户使用自己的标准样品建立分析曲线,极大地满足了用户使用要求。
二、火花直读光谱仪应用范围:火花直读光谱仪是分析黑色金属及有色金属成份的快速定量分析仪器。
本仪器广泛应用于冶金、机械及其他工业部门,进行冶炼炉前的在线分析以及中心实验室的产品检验,是控制产品质量的有效手段之一。
能对金属材料中化学元素成份作精确检测;可对铁基、铝基、铜基、镍基等广泛元素作精确定量●光学系统:(OPtics)主光路部分包括:2400刻线/mm的标准光栅;稳定可靠的750mm焦距罗兰圆出缝架。
折返式前光路设计,使光路结构更加紧凑;方便可拆卸的光窗及入射狭缝设计,使维护清洁更加简单。
出射狭缝采用德国高精度加工中心整体加工,包括所有可能用到的120个分析通道精确定位,可以满足各种基体元素分析;这种设计方式,为以后增加通道带来方便。
铝合金整体光学室与特制加热恒温设计,确保光学室系统长期稳定性。
氩气流冲洗确保光学系统洁净,减少定期检修次数。
根据应用不同,光学室可以用真空及非真空状态。
●光源:(Source)HX-750型火花直读光谱仪,采用全固态免维护激发光源,使得分析结果非常稳定,单脉冲火花检测技术,激发光源激发频率在100-1000Hz,可一次性读取所有分析通道的1000次脉冲火花数据。
火花直读光谱仪的工作原理
火花直读光谱仪的工作原理
火花直读光谱仪的工作原理是利用样品经过电弧或火花放电激发后产生的原子发射光谱,通过光栅分光和光电转换,测量各元素的特征谱线强度,然后计算出各元素的含量。
具体来说,火花直读光谱仪的主要结构包括激发系统、色散系统、检测系统和计算机控制与软件系统。
激发系统用于产生电弧或火花放电,使样品中的元素被激发并发射光谱;色散系统用于将发射光谱分成不同的波长;检测系统用于测量各元素的特征谱线强度;计算机控制与软件系统用于处理信号,计算各元素的含量,并显示结果。
斯派克光谱仪电路控制原理和操作注意事项
斯派克光谱仪电路控制原理和操作注意事项一、光谱仪结构简介直读光谱仪包括五个部分:光学系统、光源系统、电子读出系统、Ar气冲洗系统、N2气循环系统1、光学系统火花台(光)→石英镜(UV光室没有)→快门(shutter)→石英镜→光纤(紫外光室没有)→入射狭缝→入射折射片(描迹)→光栅(分光)→出射折射片→出射狭缝→反射镜(光电管位置重叠时用)→光电倍增管(-1000VDC)光电转换→电子读出系统2、电子读出系统光电管→光电流线→EK8509积分板(在一定时间内取平均值)→EK9115(数模转换板)→(模拟信号转为数字信号)EK9809下级工控机→奔腾586计算机→查曲线→读出含量EK8864 15V AC EK8530→±12VDCEK1002→-1000VDC→光电倍增管220V 供UV光室高压(-1000VDC)(2A)5V电源→±5VDC仪器总保险:左为6.3A,右为3.15A(面向仪器背面)EK9115±5VDC 供给EK8509EK9809EK8808(SAFT板)±12VDC供给EK8864的white light3、SOURCE 3000光源系统包括点火系统、光源框架、EK9824板和SAFT系统。
(1)四个红灯:不激发并在‘READY’状态时,3、4灯亮。
①FR(freqnency):频率信号300HZ②PA(parameter):光源参数(预燃时间,曝光时间,冲洗时间,INDEX)③ER(ERROR):光源错误(安全信号)Door open(门开),Clamp up(夹子抬起),Argon low(Ar气低)④DO(可以工作)(2)四根光纤①频率接收(F)(拔下此光纤,可以不激发并观察分析流程)②参数接收(P)③、④(T)UV室和空气室SAFT探测光纤(3)SAFT系统① EK8804(dummy短路板)② EK8807(SAFT放大板)③ EK9127(SAFTΠ放大板)④ EK8808(SAFT控制板(4)SOURCE3000和EK9008板与计算机的联系光纤3 光光纤1光纤4 光光纤2光4. Ar气冲洗系统①Ar气阀体包括Ar气压力传感器,AF(分析流量)电磁阀、CF(常流量)电磁阀、快门(shutter)电磁阀,blende(与spark3、spark2有关、火花内档光板Mask)电磁阀,Ar气流量计(左边)(直接进入火花台)75 – 100 l/h,Ar气流量计(右边)(在紫外光室快门后面进入)200 – 250 l/h。
浅议火花源直读光谱仪测定不锈钢中C、Mn、Cr、Ti、Si、P、Ni、Mo、S各..
浅议火花源直读光谱仪测定不锈钢中C、Mn、Cr、Ti、Si、P、Ni、Mo、S各元素含量不确定度的评定白红昆(昆明中铁大型养路机械集团有限公司工程研究中心,昆明650215)摘 要:在实验的基础上,本文通过采用火花放电原子发射光谱法对不锈钢中C、Mn、Cr、Ti、Si、P、Ni、Mo、S等元素含量的检测,分析和计算出检测过程中测量不确定度各分量,对各元素的扩展不确定度最终予以评定。
为提高实验室检测能力提供了可靠的参考依据。
关键词:测量不确定度、测量不确定度评定、火花源直读光谱仪、不锈钢、元素1 前言利用火花源直读光谱仪对不锈钢中各元素的含量进行测定,已经在炼钢、机械制造等SPECTRO LAB M10型直读光谱仪(产地:德国)。
2.2 Cr、Ti不确定度选用的光谱分析标准物质为光谱控样YSBS37364-10 1Cr1℃,最大温度变化±1℃;相对湿度:20-80% 3 直读光谱仪对数据的处理采用全自动操作,测试结果直接显示在计算机其中:x—仪器显示各元素化学成份平均值; y—被测量样品各元素化学成份值。
M10型直读光谱仪在出厂前,已经通过对一系列标准样工作曲线进行校正目前,行业得到了广泛的应用。
在实际检测过程中,由于受到制样过程、标准物质、仪器设备、检测环境等因素的影响,测量结果与被测量的真值之间往往存在着一定的偏差。
为提高测量结果的准确度,有必要对测量结果进行不确定度评定,提高测量数据的可靠性、准确性。
本文通过火花放电原子发射光谱法对不锈钢中C、Mn、Cr、Ti、Si、P、Ni、Mo、S等元素含量的检测,探讨对测量不确定度如何进行科学、合理的分析和计算,以及评定过程所需参数的采集方法和计算方法,使评定结果具有了较高的可行性和准确性。
2 实验部分 2.1 主要仪器测试仪器为 选用样品测定C、Mn、8Ni9Ti ;测定Si、P、Ni、Mo不确定度选用的光谱分析标准物质为光谱控样YSBS37361-10 00Cr17Ni14Mo2;测定S不确定度选用的光谱分析标准物质为冶金标准样品YSBS37201-09 38CrMoAl 。
火花直读光谱仪的简介与基本配置
火花直读光谱仪简介火花直读光谱仪是分析黑色金属及有色金属成份的快速定量分析仪器。
本仪器广泛应用于冶金、机械及其他工业部门,进行冶炼炉前的在线分析以及中心实验室的产品检验,是控制产品质量的有效手段之一。
概述光谱仪( Spectroscope)又称分光仪。
以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。
其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。
以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。
分为单色仪和多色仪两种。
是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线。
应用火花直读光谱仪是进行冶炼炉前的在线分析以及中心实验室的产品检验,是控制产品质量的有效手段之一。
火花直读光谱仪用电弧(或火花)的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,并打印出各元素的百分含量。
火花直读光谱仪是一种炉前元素快速分析仪器,其光源为低压直流快速火花光源。
仪器整机结构、分光系统、电器系统、分析软件及电磁兼容性等方面,都充分考虑到用户现场的需求,经不断研究、实验、优化而来,使性能指标能满足用户现场长期使用的要求。
采用曲率半径为750mm的光栅,光栅常数为2400,一级光谱线色散率为0.55nm/mm。
因此,RG-N68在性能和尺寸上达到了一个很好的平衡。
光学系统采用帕型-龙格结构,波长范围170nm~510nm。
RG-N68采用优化设计的挂缝技术,涵盖了常用的112条分析谱线,使仪器具有极大的分析基体适应性及通道适应性。
不同的波段采用不同的光电倍增管及不同宽度出缝,最多可配置48个分析通道。
直读光谱仪之火花直读光谱仪技术方案
直读光谱仪的元素检测及鉴定技术方案火花直读光谱仪又称直读分光计,是光谱仪一种。
进一步提高分析性能,降低运行费用。
新型分为台式和落地式两种配置,有三种不同波段测试范围可选。
金属中所有重要元素都可以检测,包括痕量C﹑P﹑S和N元素。
最多可设置十种基体(包括铁基,铝基,铜基,镍基,铬基,钛基,镁基,锌基,锡基和铅基)中的几十种元素的工作曲线。
涵盖了常见金属中的各种非金属和金属元素的定量分析。
应用范围非常广泛,尤其适合压铸、熔铸,钢铁或有色金属行业的炉前金属分析要求,进、出厂材料检验以及汽车、机械制造等行业的金属材料分析。
直读光谱仪工作原理工作原理:光谱仪固定式金属分析仪是采用了原子发射光谱学的分析原理。
火花台上的样品通过电弧或火花放电激发生成原子蒸气,该蒸气中的原子与离子被激发后产生发射光谱。
发射光谱通过光导纤维进入到光谱仪的分光室中,色散成各光谱波段。
根据每个元素发射的波长范围,通过光电倍增管可以测量出每个元素的最佳谱线。
每种元素的发射光谱谱线强度正比于样品中该元素的含量,通过光谱仪内部预先存储的校正曲线可测定其含量,并直接以百分比浓度显示出来。
光谱仪在激发光谱时,需要在氩气气氛中进行,因此对火花架是有要求的。
在予冲洗过程中,要把激发室内空气排尽。
在予燃和积分时间内,要把蒸发出来的金属蒸气通过出口通道排出仪器外,要获得稳定的光谱仪线强度和耗氩量最省。
因此要求供氩系统能够提供稳定的氩气压力和流量。
要减少空气对直读光谱仪氩气管道和金属蒸气对透镜的污染。
直读光谱仪电极架为封闭式。
主要由一个铝合金样品台和一个高压陶瓷套装零件粘合成火花台。
上面有金属盖板承受样品,陶瓷套内装置对电极,陶瓷套便成为两个放电电极的绝缘体。
为保证操作安全,样品接负极,它与地等电位,而对电极接正极。
火花台通过一个绝缘板与金属支架和分光室连接,火花台与分光室间装有一聚光镜,成为分光室与电极架的分界,既增强对入射狭缝的照明,又阻止空气,氩气泄漏到分光室。
电火花光谱仪原理
电火花光谱仪原理电火花光谱仪呀,这可是个超有趣的东西呢!咱们先来说说它是怎么工作的吧。
它就像是一个超级侦探,专门用来发现材料里都藏着哪些元素。
它的原理有点像变魔术哦。
当电火花在样品上“滋滋”地放电的时候,就像是在给样品做一个超级刺激的按摩。
这一按摩可不得了,样品里的原子就像被叫醒的小精灵一样,变得特别活跃。
这些活跃起来的原子呢,它们会发出各种各样颜色的光,就像一场小小的烟火表演在微观世界里上演。
而且每种元素的原子发出来的光颜色还不一样呢,就像每个人都有自己独特的指纹一样。
比如说,钠原子可能发出一种很特别的黄色光,铁原子又会是另外一种颜色的光。
然后呢,光谱仪就像一个超级敏锐的眼睛,它能够把这些不同颜色的光都分辨出来。
它有一些特别的装置,就像是不同颜色的小盒子,能够把光按照颜色和波长分开。
这样一来,它就能知道这个样品里到底有哪些元素了。
这就好比是在一堆五颜六色的糖果里,能够准确地挑出草莓味、柠檬味等等各种口味的糖果一样。
这东西在好多地方都特别有用呢。
在工厂里,如果要检测金属材料的质量,电火花光谱仪就大显身手啦。
它能快速地告诉工人师傅这个金属里面有没有杂质,是不是符合标准。
就像一个严格又可靠的质检员。
在科研领域,它也是科学家们的好帮手。
科学家们研究新的材料的时候,就靠它来发现材料里到底有哪些元素,比例是多少。
不过呢,这个电火花光谱仪也不是那么好伺候的。
它需要一个很稳定的环境,就像人需要一个舒适的家一样。
温度、湿度要是不合适,它可能就会闹小脾气,检测的结果就可能不太准确啦。
而且操作它的人也得有点小本事,得像对待宝贝一样小心翼翼地操作,不然它也会罢工的哦。
总的来说,电火花光谱仪的原理虽然有点复杂,但是它真的是一个超级厉害的仪器。
它就像一个神秘的小盒子,打开了微观世界里元素的秘密之门,在工业、科研等好多领域都默默地做着巨大的贡献呢。
火花直读光谱仪的误差分析和应用技巧
火花直读光谱仪的误差分析和应用技巧摘要:由于科学技术的发展,工业企业对材料化学成分的控制要求越来越高,而传统化学分析方法速度慢,分析范围小,极大地制约了工业企业的发展,而火花直读光谱仪具有速度快、准确度高、操作简单、分析范围广等优点,是化学分析方法无法比拟的,可以实现及时准确分析,在满足生产要求的同时保证产品质量。
因此,逐渐受到广大用户的欢迎。
火花直读光谱仪的测量误差受很多因素的影响,下面简单介绍其工作原理和应用技巧,并对测量误差进行详细分析,以使广大使用者更好、更准确地使用火花直读光谱仪。
关键词:火花直读光谱仪;误差分析;应用一、工作原理火花直读光谱仪采用的是原子发射光谱分析法,工作原理是用电火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征谱线,样品被激发产生的光,通过入射狭缝照在光栅上,各元素所产生的特征波长光被光栅完全分离开来,并沿着不同的路径通过各自的出射狭缝,照在每个元素对应的光电倍增管上,各光电倍增管根据得到的光强,产生相应的电信号,经数据处理系统处理计算,得到每个元素对应的含量,通过显示系统显示出来。
二、光谱仪设备的选择1、分析基体的选择,分析不同的金属所需用选择的分析基体不同,一般分为:铁基、铝基、铜基等十种,根据所需分析的物质进行选用购置,我公司目前使用铁基。
2、分析元素的选择,光谱仪理论上可以分析化学周期表中的大部分元素,但是针对不同的分析元素和样品选择不同的仪器和参数。
关于建材生产企业,一般选取国家标准要求检测的元素即可,在资金预算充足的情况下,可根据实际多选分析通道,达到多元素分析的目的,我公司目前配备的光谱仪有26条通道,可分析26中元素。
3、光谱仪型号的选择,同厂家不同型号光谱仪的选择一般体现在元素分析精度、分析性能、检测能力的区别,根据所需分析精度、检测能力等,选取最佳性价比进行选购,防止设备购置性能过剩情况发生。
三、误差分析火花直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受许多因素的影响,下面就误差的种类、来源和避免误差的技巧进行分析。
火花源原子发射光谱分析
a为常数(与蒸发、激发过程等有关),考虑到发射光谱中 存在着自吸现象,需要引入自吸常数 b ,则:
I acb
lg I blg c lg a
发射光谱分析的基本关系式,称为塞伯-罗马金公式(经验 式)。自吸常数 b 随浓度c增加而减小,当浓度很小,自吸 消失时,b=1。
B 内标法和分析线对
⑴ 色散率 把不同波长的光分散开的能力(dl/dλ) dλ指两条波 长之差,dl为屏幕上分开的距离 随着每毫米光栅线数目增多而增大。其次,线色散率 随光栅衍射的级次m增加而增大
⑵ 分辨率R ∝光栅刻数·焦距/狭缝宽度 指摄谱仪的光学系统能够正确分辨出紧邻两条谱线的 能力。一般常用两条可以分辨开的光谱线波长的平均 值λ与其波长差dλ之比值来表示 R= λ/ dλ=Nm N——光栅总刻线数 m——光谱级数
❖ (5) 分析线和内标线附近背景应尽量小,且 无干扰元素存在,以提高信噪比。
二 光谱仪的基本结构
❖ 光电光谱仪基本上由以下四部分组成:光 源系统、色散系统、检测系统和控制与数 据处理系统。光源系统使试样激发发光, 色散系统将复合光色散成各元素的谱线, 检测系统用光电法来测量各元素的谱线强 度,控制与数据处理系统将信号换算成为 元素百分含量表示出来。
❖ 但当原子受到外界能量(如热能、电能等) 的作用时,原子由于与高速运动的气态粒子 和电子相互碰撞而获得了能量,使原子中外 层的电子从基态跃迁到更高的能级上,处在 这种状态的原子称激发态。
❖ 每一条所发射的谱线的波长,取决于跃迁前 后两个能级之差。由于原子的能级很多,原 子在被激发后,其外层电子可有不同的跃迁, 但这些跃迁应遵循一定的规则,因此对特定 元素的原子可产生一系列不同波长的特征光 谱线(或光谱线组),这些谱线按一定的顺 序排列,并保持一定的强度比例。原子的各 个能级是不连续的(量子化)。电子的跃迁 也是不连续的这就是原子光谱是线状光谱的 根本原因。
通用测试仪器大全之光谱分析仪(特性,工作原理,使用方法,应用范围)
通用测试仪器大全之光谱分析仪(特性,工作原理,使用方法,应用范围)什么是光谱分析仪?根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。
经典光谱仪器是建立在空间色散原理上的仪器:新型光谱仪器是建立在调制原理上的仪器。
经典光谱仪器都是狭缝光谱仪器。
调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪。
光学多道OMA(OpTIcal MulTI-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理,存储诸功能于一体。
由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率:使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。
它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。
光谱分析仪工作原理:光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
光谱分析仪的作用:红外光谱仪可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。
红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。
利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。
可用于不同种类高分子材料的鉴别研究等。
光谱分析仪的分类:根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
诚信声明本人声明:我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
本人完全意识到本声明的法律结果由本人承担。
申请学位论文与资料若有不实之处,本人承担一切相关责任。
本人签名:日期:毕业设计(论文)任务书设计(论文)题目:Lab-Spark1000火花光谱仪结构原理与调试应用学院:专业:班级学生:指导教师:1.设计(论文)的主要任务及目标(1) 完成毕业论文(2) 探究实验过程中改变一些条件对实验的影响(3) 能够与他人完成实验、独立完成论文2.设计(论文)的基本要求和内容(1) 完成火花光谱仪结构原理及工艺的总体分析。
(2) 完成火花光谱仪使用方法及调试应用分析。
(3) 掌握岗位操作要点及常见故障处理方法。
(4) 根据所学知识及岗位培训、调研,确定总体方案并撰写总论部分,文字约2000~3000字。
(5) 根据火花光谱仪的结构原理,完成其结构特点分析及工艺流程及调试应用分析。
(6) 根据岗位操作要点及常见故障,阐述常规处理方法要点。
(7) 完成教师指定的工程图或工艺流程图。
(8) 撰写毕业设计论文,约1万字左右。
3.主要参考文献[1] Lab—Spark1000火花直读火花光谱仪说明[2] 人民卫生出版社,《有机光谱分析》 2010年8月[3] 火花光谱2012年技术革新 2012年12月Lab-Spark1000火花光谱仪结构原理与调试应用摘要Lab-Spark1000火花光谱仪是用于检测金属材料中元素含量的分析仪器,广泛应用于冶金﹑铸造﹑机械、金属加工等领域的生产过程控制,中心实验室成品检验。
可用于Fe、Al、Cu、Ni、Co、Mg等多种金属及其合金样品分析。
具有稳定性好、检测限低、快速分析、运行成本低、方便维护、抗干扰能力强等特点。
简单介绍光谱仪的工作原理、内部原理。
Lab-Spark1000火花光谱仪的应用领域及历史。
阐述LAB-1000火花光谱仪调试流程和仪器日常维护、保养注意事项。
详尽叙述光谱仪调试过程中遇到的实际困难与解决方案。
通过调试光谱仪,使自身的动手和自主思考能力得到提升。
关键词:描迹;全局标准化; Lab-Spark1000火花光谱仪;光电倍增管目录前言 (II)第1章. LAB—SPARK1000火花光谱仪工作原理 (3)1.1节光谱分析仪器原理(光源系统、色散系统、检测系统) (3)1.2节光源系统 (3)1.3节色散系统 (4)1.4节检测系统 (4)第2章.火花光谱仪应用范围 (6)2.1节光谱仪发展历史 (6)2.2节光谱仪的发展前景 (8)第3章.火花光谱仪的调试过程 (10)第4章.本人在综合毕业设计过程中所完成的具体工作 (22)第6章 .致谢 (24)第7章 .参考文献 (24)前言广泛应用于冶金、铸造、机械、金属加工、汽车制造、有色、航空航天、兵器、化工等领域的生产过程控制,中心实验室成品检验等,可用于Fe、Al、Cu、Ni、Co、Mg、Ti、Zn、Pb等多种金属及其合金样品分析。
新仪器的使用能力很大程度上依靠软件的功能,而软件的建立与丰富常常依靠原有工作经验和知识的积累。
如目前软件主要用于钢铁冶金等常规分析,对地质、衡有金属和稀土等更为复杂的组成和光谱干扰等方面的应用软件还需逐步开发。
目前,在国际上能够提供利用CCD和CID作为检测元件的商品仪器仅有几家,特点各不相同。
而作为一个新兴的、以高科技手段为起点的德国WAS公司推出的发射光谱技术与相关分析技术互相渗透,拓宽其应用范围,出现了一批很大有新意的光谱测钢中气体成分已进入实用阶段。
各个厂家在氮、氧等的测定方面作了很多研究和改进,特别对低含量氮的测定采取了改进措施。
可以测定低至10 ppm的氮含量,测量精度也达到常规分析方法的要求。
各类发射光谱仪器的操作软件,随着电子计算机技术的发展,普遍采用高性能配置的计算机,开发出在窗口下运行的全新软件,操作起来更加直观可靠。
而且,正在不断推出功能更加强大的操作系统。
第1章. Lab—Spark1000火花光谱仪工作原理试样经激发以后所辐射的光,经入射镜狭缝到色散系统光栅,经过分光镜以后各单色光被聚焦在焦面上形成光谱,在焦面上放置若干个出射狭缝,将分析元素的特定波长引出,分别投射到光电倍增管等接收器上,将光信号转变为电信号,由积分电容储存,当曝光终止时,由测量系统逐个测量积分电容上的电压,根据所测量电压值的大小来确定元素的含量。
传统的火花光谱仪采用单次脉冲法分析,而LAB1000采用单火花的的单次放电数字解析技术以及数据采集积分延时技术进行分析,分析精确度和精密度都得到了提高。
1.1节光谱分析仪器原理(光源系统、色散系统、检测系统)光谱仪基本由一下四部分组成:光源系统、色散系统、检测系统和控制与数据处理系统。
光源系统使式样激发发光,色散系统将符合光色散成各元素的谱线,检测系统用光电法来测量各元素的谱线强度,控制与数据处理系统将信号转换为元素百分含量表示出来。
(控制与数据处理系统是电脑上的软件系统,在这里就不介绍了,前三个为仪器本身原理,将着重介绍)1.2节光源系统光源对式样具有两个作用过程。
首先,把式样中的组分蒸发理解为气态原子,然后使这些气态原子激发,使之产生特征光谱。
因此光源的主要作用是对试样的蒸发和激发提供所需要的能量。
最常用的光源有直流电弧、交流电弧、电火花、激发光源、电感耦合等离子体(ICP)焰炬等等。
(1)、直流电弧直流电弧发生器是利用直流电作为激发能源。
常用电压为(150~380)V,电流为(5~30)A。
可变电阻用以稳定和调节电流的大小,电感用来减小电流的波动。
直流电弧的优点:检出限低、谱线亮度强、样品组织结构影响小。
直流电弧的缺点:稳定性差、对样品的破坏比较大,不适合薄样品分析。
(2)、火花光源火花光源的有点:稳定性高、放电参数可调L、C、R可调。
火花光源的缺点:检出限没有直流电弧低、放电参数对火花放电的影响L增加的影响:谱线强度减弱,放电速度减慢,火花变软,电极固定位置重复击穿率高。
C的增加影响:增强谱线强度,放电速度减慢,火花硬度不变。
R增加的影响:谱线强度减弱,放电速度减慢,火花变软,电极固定位置重复击穿率低。
1.3节色散系统色散系统主要器件是光谱仪。
光谱仪是利用色散原件和光学系统将光源发射的复合光按波长排列,并用适当的接收器接收不同波长的光辐射的仪器,安原理可分为两类:棱镜光谱仪和光栅光谱仪。
(1)、棱镜光谱仪这类仪器根据光的折射率随波长改变而改变的原理,将符合光经过冷静后。
把各种不同波长的光互相分开,并依次排列成按波长分布的光。
(2)、光栅摄谱仪光栅摄谱仪应用衍射光栅作为色散元件,利用光的衍射现象进行分光,光栅可以用于由几十埃到几百埃微米的整个光学普域。
光栅是由许多平行,且是等距离分开的槽沟刻画在玻璃表面,或者是一层金属涂镀在玻璃表面,通常都使用铝金属。
一般光栅的刻线数为(900~4500)条/毫米,由激光制造的光栅可达到6000条/毫米。
1.4节检测系统检测器的作用是将单色器分出的光信号进行光电转换,常用光电倍增管做检测器。
(1)、光电倍增管光电倍增管(PMT)是一种具有极高灵度和超快时间响应的光探测器件。
典型的光电倍增管是在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极(阳极)的器件。
原理---------外加负高压到阴极,经过一系列电阻使电压一次均匀发布在各打拿极上,这样就能发生光电倍增作用。
当分光后的光照射到阴极上,阴极向真空中激发出光电子。
这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。
放大后的电子被阳极收集作为信号输出。
因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。
光电倍增管还有快速响应,大面积阴极等特点。
第2章.火花光谱仪应用范围广泛应用于冶金、铸造、机械、金属加工、汽车制造、有色、航空航天、兵器、化工等领域的生产过程控制,中心实验室成品检验等,可用于Fe、Al、Cu、Ni、Co、Mg、Ti、Zn、Pb等多种金属及其合金样品分析。
可对片状、块状以及棒状的固体样品中的非金属元素(C、P、S、B等)以及金属元素进行准确定量分析,分析结果准确,分析精度高。
仪器日常维护简单,运行成本低,故障率低。
2.1节光谱仪发展历史光谱起源于17 世纪,1666 年物理学家牛顿第一次进行了光的色散实验。
他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。
这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。
到 1802 年英国化学家沃拉斯顿发现太阳光谱不是一道完美无缺的彩虹,而是被一些黑线所割裂。
∙1814 年德国光学仪器专家夫琅和费研究太阳光谱中的黑斑的相对位置时.把那些主要黑线绘出光谱图。
∙1826 年泰尔博特研究钠盐、钾盐在酒精灯上光谱时指出,发射光谱是化学分析的基础、钾盐的红色光谱和钠盐的黄色光谱都是这个元素的特性。
∙到1859 年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上第一台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。
∙从1860 年到 1907 年之间、用火焰和电火花放电发现碱金属元素铯 Cs、1861 年又发现铷 Rb 和铊Tl,1868 年又发现铟 In和氦 He∙1869 年又发现氮 N。
1875~1907 年又相继发现镓 Ga,钾 K,铥 Tm,镨 Pr,钋 Pe,钐 Sm,钇 y,镥 Lu 等。
∙1882 年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。
凹面光栅实际上是光学仪器成象系统元件的合为一体的高效元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。
凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。
波耳的理论在光谱分析中起了作用,其对光谱的激发过程、光谱线强度等提出比较满意的解释。
从测定光谱线的绝对强度转到测量谱线的相对强度的应用,使光谱分析方法从定性分析发展到定量分析创造基础。
从而使光谱分析方法逐渐走出实验室,在工业部门中应用了。
∙1928 年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。
最早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。