零序电压,零序电流.负序电流.正序电流怎么理解
什么叫零序电压
什么叫零序电压、零序电流???正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。
正序、负序、零序
正序、负序、零序什么是正序、负序、零序?对于非电气专业的人来说,这个问题或许困扰了许久。
就我个人感觉来讲,当初在学校学的时候也困惑了很久,确实不是非常好理解。
用最简单的语言概括如下:当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。
正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
(ABC)负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
(BAC)零序:ABC三相相位相同,哪一相也不领先,也不落后。
系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统有正序、负序和零序分量。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序、负序和零序分量。
对称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。
对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。
在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为三组三相对称的分量。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:I A=Ia1+Ia2+Ia0--------------------------------------------○1I B=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0------------○2I C=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0-------------○3对于正序分量:Ib1=α2 Ia1,Ic1=αI a1对于负序分量:Ib2=αIa2,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°,有α2=1∠240°,α3=1,α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(I A+αI B+α2 I C)I2=Ia2= 1/3(I A+α2 I B+αI C)I0=Ia0= 1/3(I A +I B +I C)以上3个等式可以通过代数方法或物理意义(方法)求解。
什么是正序、负序、零序电流
3)求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。下面的方法就与正序时一样了。
通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。
在这里再说说各分量与谐波的关系。由于谐波与基波的频率有特殊的关系,故在与基波合成时会分别表现出正序、负序和零序特性。但我们不能把谐波与这些分量等同起来。由上所述,之所以要把基波分解成三个分量,是为了方便对系统的分析和状态的判别,如出现零序很多情况就是发生单相接地,这些分析都是基于基波的,而正是谐
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平
移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅是负序电流,什么是零序电流
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。
零序、正序、负序电流
欢迎阅读当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。
正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:ABC三相相位相同,哪一相也不领先,也不落后。
的。
因为不管另一侧的接法如何,在这一侧加以零序电压时,总不能把零序电流送入变压器。
所以只有当变压器的绕组接成星形,并且中性点接地时,从这星形侧来看变压器,零序电抗才是有限的(虽然有时还是很大的)。
对于输电线路,零序电抗与平行线路的回路数,有无架空地线及地线的导电性能等因素有关。
零序电流在三相线路中是同相的,互感很大,因而零序电抗要比正序电抗大,而且零序电流将通过地及架空地线返回,架空地线对三相导线起屏蔽作用,使零序磁链减少,即使零序电抗减小。
平行架设的两回三相架空输电线路中通过方向相同的零序电流时,不仅第一回路的任意两相对第三相的互感产生助磁作用,而且第二回路的所有三相对第一回路的第三相的互感也产生助磁作用,反过来也一样.这就使这种线路的零序阻抗进一步增大。
零序电流在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0如果在三相四线中接入一个电流互感器,这时感应电流为零。
当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+I b+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。
这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。
度,C相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
正序、负序、零序电流电压的概念
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A 相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。
在这里再说说各分量与谐波的关系。
正序-负序和零序
在电机负序控制中,主要关注的是三相电源的负序电压和 电流。通过控制电机的输入电压和电流的相位和幅值,可 以实现电机的负序启动、运行和停止。
电机零序控制
在电机零序控制中,主要关注的是三相电源的零序电压和 电流。通过控制电机的输入电压和电流的相位和幅值,可 以实现电机的零序启动、运行和停止。
行信号处理。
03
零序
零序的定义
零序的定义
01
在三相交流电系统中,如果三相的相电压或相电流的大小相等,
且相位相同,则该状态被称为零序。
零序的数学表示
02
在数学上,零序可以用向量表示,其大小等于其他两相的向量
和,方向与中性线相同。
零序的产生
03
在三相交流电系统中,当三相负载对称且三相电压或电流相等
时,就会产生零序。
正序的应用场景
正序的应用场景:正序主要应用于电力系统中的正常运行状态,如家庭用电、工业用电等。
在家庭用电中,我们通常使用的是单相交流电,而单相交流电本质上就是正序状电力供应,通常使用三相交流电,且为了保证电力系统的稳定运行,需要保持三相交流电的正序状态。 此外,在电力系统中的继电保护、同步发电机的运行等方面,也需要用到正序的概念。
在电气保护中的应用
正序保护
正序保护主要用于检测和切除三相电路中的正序故障,如相间短路等。通过比较三相电压 或电流的正序分量,可以判断是否存在正序故障,并采取相应的保护措施。
负序保护
负序保护主要用于检测和切除三相电路中的负序故障,如单相接地短路等。通过比较三相 电压或电流的负序分量,可以判断是否存在负序故障,并采取相应的保护措施。
负序无功补偿主要用于补偿三相电路 中的负序无功功率。通过在三相电路 中分别补偿负序无功功率,可以提高 电路的功率因数,减小线路损耗。
正序负序零序的理解-整理完整
正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。
总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。
有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。
对称分量法参考借用了东南大学电器工程学院的PPT的图片。
作图法用CAD的平移很方便,求3分点位置还网上查了下。
****************.,欢迎补充、更正、交流。
1:不过我仍没有了解三相不平衡的各种保护方法。
零序保护倒是理解,用开口三角即可。
负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。
2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。
计算程序需要输入每相的幅值与相角。
不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。
4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。
欢迎推荐文章。
一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。
正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。
对于理想的电力系统,只有正序分量。
以电压为例。
对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。
如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。
零序正序负序电流的区别
零序正序负序电流的区别
零序电流是指两相电流之间的电流,它不通过消费设备,而是流经地线传递到母线上,用于消除过载或短路等负荷引起的电流不平衡。
零序电流不会引起电动势,但它会影响电网的电磁辐射,因此零序电流应尽可能小。
正序电流指的是系统中,在正常使用状态下,电流流向和电压正向方向一致的电流。
这种电流会产生电磁辐射,消费电器处也会产生功率损失。
负序电流是电流流动方向和电压反向的电流,它通常由电动机、变压器和其他电动设备产生。
由于负序电流的流向和电压反向,它会产生反动势,使系统发生反激造成系统热失衡。
- 1 -。
5分钟教你正确理解电力系统中的正序负序零序
2.3 作图求负序
(1) 保持 A 相不动, B 相顺时针转 120 度 OB’, C 相逆时针转 120 度 OC’, 得到新的向量图。
(2) 对新的向量图进行图解零序时进行的操作,得到向量 OC", (3) 取 OC"向量幅值的三分之一即为负序分量的 A 相
2.1 作图求零序
把三个向量相加求和。 即 A 相不动,B 相的原点平移到 A 相的顶端(箭头处), 同方法把 C 相的平移到 AB’的顶端。 此时作 o 点到 C’向量,这个向量就是三相 向量之和。取此向量幅值的三分之一,向量 o0, 这就是零序分量。
2.2 作图求正序
(1) 保持 A 相不动,然后 B相逆时针转 120 度 OB’,C相顺时针转 120 度 OC’, 得到新的向量图。
3
3
IA
四 三相电压向量和为零
对称的三相系统,其 3 相电压向量之和为零。
( 1)用三角函数
sin( α+β)=sin αcosβ+cosαsin β sin( α- β)=sin αcosβ-cos αsin β A 相电压 U sin α B 相电压 U sin( α -120) C相电压 U sin( α +120) Ua+U b+U c =U(sin α+sin( α-120)+sin( α+120)) =U(sin α +(sin αcos120-cos αsin120)+ (sin α cos120+cosαsin120) ) =U(sin α +2sin αcos120) =U(sin α +2sin α(-0.5))=0
零序电流正序电流负序电流
零序电流正序电流负序电流
零序电流、正序电流和负序电流是交流电力系统中常见的电流分量。
这些电流分量对于电力系统的运行和保护具有重要意义。
零序电流是指三相电流之和为零的电流分量。
在正常情况下,零序电流应该为零,因为三相电流的相位相差 120 度,它们的和应该为零。
然而,当系统中发生接地故障时,零序电流会不为零,并且会通过接地电阻或接地线返回电源。
零序电流保护是一种常见的保护方式,可以用于检测接地故障,并及时切断故障电路,以保护设备和人员的安全。
正序电流是指三相电流相位相差 120 度的电流分量。
正序电流是电力系统正常运行时的主要电流分量,它的大小和相位关系反映了系统的负载情况和功率因数。
正序电流保护也是一种常见的保护方式,可以用于检测系统中的短路故障,并及时切断故障电路,以保护设备和人员的安全。
负序电流是指三相电流相位相差 180 度的电流分量。
负序电流通常是由于系统中的不对称负载或故障引起的。
负序电流会对电力系统的运行产生不良影响,例如导致电机过热、降低功率因数等。
因此,负序电流保护也是一种常见的保护方式,可以用于检测系统中的不对称故障,并及时切断故障电路,以保护设备和人员的安全。
总之,零序电流、正序电流和负序电流是交流电力系统中重要的电流分量,它们对于电力系统的运行和保护具有重要意义。
在电力系统的设计和运行中,需要充分考虑这些电流分量的影响,并采取相应的保护措施,以确保系统的安全和稳定运行。
正序、负序、零序判别
零序电压,零序电流.负序电流.正序电流怎么理解对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;因此,零序电流通常作为漏电故障判断的参数。
负序电流则不同,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;其常作为电机故障判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:三相不平衡与零序电流不可混淆呀!三相不平衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的。
前面好几位把两者混淆了吧!正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
正序、负序、零序电流的关系及相关保护
正序、负序、零序电流的关系及保护对称分量法零序、正序、负序的理解与计算1、求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端箭头处。
注意B相只是平移不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量些时是箭头对箭头这个向量就是三相向量之和。
最后取此向量幅值的三分一。
这就是零序分量的幅值方向与此向量是一样的。
2、求正序分量:对原来三相向量图先作下面的处理,A相的不动B相逆时针转120度C相顺时针转120度因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一这就得到正序的A相用A相向量的幅值按相差120度的方法分别画出B、C 两相。
这就得出了正序分量。
3、求负序分量注意原向量图的处理方法与求正序时不一样。
A相的不动B相顺时针转120度C相逆时针转120度因此得到新的向量图。
下面的方法就与正序时一样了。
对电机回路来说是三相三线线制Ia+Ib+Ic=0三相不对称时也成立。
当Ia+Ib+Ic≠0时必有一相接地对地有有漏电流对三相四线制则为Ia+Ib+Ic+Io=0成立只要无漏电三相不对称时也成立因此零序电流通常作为漏电故障判断的参数。
负序电流则不同其主要应用于三相三线的电机回路在没有漏电的情况下即Ia+Ib+Ic=0三相不对称时也会产生负序电流负序电流常作为电机故障判断注意了Ia+Ib+Ic=0与三相对称不是一回事Ia+Ib+Ic=0时三相仍可能不对称。
注意了三相不平衡与零序电流不可混淆呀三相不平衡时不一定会有零序电流的同样有零序电流时三相仍可能为对称的。
这句话对吗?前面好几位把两者混淆了吧正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时把三相的不对称分量分解成对称分量正、负序及同向的零序分量。
只要是三相系统一般针对三相三线制的电机回路就能分解出上述三个分量有点象力的合成与分解但很多情况下某个分量的数值为零。
对于理想的电力系统由于三相对称因此负序和零序分量的数值都为零。
正确理解电力系统中的正序负序零序
三 计算得出正负零序
以电流为例
( 1)引入复数因子
在正序中, A 相领先 B 相 120 度。由于角度一般以逆时针为正,如电压用向 量表示的话,向量 B 可由向量 A 逆时针旋转 240 度而得,而不是 120 度。 向量 C可由向量 A 逆时针旋转 120 度而得,而不是 240 度。
若 A 相电压表示为 Ue j 0 ,则 B 相电压可表示为 Ue j 240 ,C 相电压可表示为
正序负序与零序
电力 三相不平衡 作图法 对称分量法 1:三相不平衡的的电压(或电流) ,可以分解为平衡的正序、负序和零序 2:零序为 3 相电压向量相加,除以 3 3:正序将 BC相 旋转 120 度到 A 相位置 ,这样 3 个向量相加会较 长 ,3 个向 量相加,除以 3 4:负序将 BC相 旋转 120 度到 A 相相反位置 ,这样 3 个向量相加会较 短 ,3 个向量相加,除以 3
I
0
IC
IA IC
2I A
I
0 C
I
0 A
利用上述公式,已知系统的各相电压及相角,即可用程序求出正负零序。也 就是可以通过编程求正负零序。
( 3)已知正负零序,合成三相电流向量
IA
1 1 1 IA
IB
2
1 IA
IC
21
I
0 A
IA
IA
IA
I
0 A
IB
IB
IB
I
0 B
IC
IC
IC
I
0 C
2I A
二:作图出正负零序
理解及记忆方法 (1)零序,三个向量不动。向量相加后 /3 (2)正序,将 BC相指针拨到与 A 方向大概一致,这样 3 个相加会较长。于 是 B 逆时针拨 120 度,C顺时针拨 120 度。拨后的 3 个向量相加 /3, 即为正序的 A 相 (3)负序,将 BC相位置大概调换,这样 3 个相加会较短。于是 B 顺时针拨 120 度, C 逆时针拨 120 度。拨后的 3 个向量相加 /3, 即为负序的 A 相 求出 A 相后, BC相按正负相序旋 120 度或 240 度。
零序、正序、负序电流解释
零序电流在三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0如果在三相四线中接入一个电流互感器,这时感应电流为零。
当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。
这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。
产生零序电流的两个条件:1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生;2、零序电流有通路。
以上两个条件缺一不可。
因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。
零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知道系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
(1 ) 求零序分量:把三个向量相加求和。
电力系统正序负序零序的关系
电力系统正序负序零序的关系电力系统是现代社会不可或缺的基础设施之一,它为我们的生活提供了稳定可靠的电力供应。
在电力系统中,正序、负序和零序是三个重要的概念,它们之间存在着密切的关系。
首先,我们来了解一下正序、负序和零序的定义。
正序是指电力系统中三相电压或电流的相位相同、幅值相等的情况。
在正序中,三相电压或电流的相位差为120度,幅值相等,且按照ABC的顺序排列。
负序是指电力系统中三相电压或电流的相位相同、幅值相等,但是相位差为负120度。
零序是指电力系统中三相电压或电流的相位相同、幅值相等,且相位差为0度。
正序、负序和零序之间存在着一定的关系。
首先,正序是电力系统中最常见的情况,它代表了电力系统的正常运行状态。
正序电压和电流的相位相同、幅值相等,使得电力系统中的三相负载能够得到均衡供电。
负序和零序则代表了电力系统中的故障情况。
负序电压和电流的相位相同、幅值相等,但是相位差为负120度,这意味着电力系统中存在着不平衡的负载或故障。
零序电压和电流的相位相同、幅值相等,且相位差为0度,这意味着电力系统中存在着对地短路或故障。
正序、负序和零序的关系还体现在它们的计算方法上。
在电力系统中,正序、负序和零序的计算是通过对三相电压或电流进行分解来实现的。
正序的计算是将三相电压或电流的幅值相加,相位相同;负序的计算是将三相电压或电流的幅值相加,相位差为负120度;零序的计算是将三相电压或电流的幅值相加,相位差为0度。
通过这种计算方法,我们可以得到正序、负序和零序的具体数值,从而判断电力系统中是否存在故障或不平衡的情况。
总之,电力系统正序、负序和零序之间存在着密切的关系。
正序代表了电力系统的正常运行状态,负序和零序则代表了电力系统中的故障情况。
正序、负序和零序的计算方法也有所不同,通过对三相电压或电流的分解,我们可以得到它们的具体数值。
了解正序、负序和零序的关系,对于电力系统的运行和故障诊断具有重要的意义。
只有保持正序的稳定运行,及时发现和处理负序和零序的故障,才能确保电力系统的安全可靠运行。
正序负序零序的理解
正序负序零序的理解
正序、负序、零序是电工、电子工程领域中经常涉及到的概念,但是对于普通人来说,这些术语可能难以理解。
为了帮助普通大众更好地理解正序、负序、零序,本文将从电流和电压的基本概念、正序负序的基本原理、正序负序零序的联系、应用四个方面展开阐述。
首先,我们先阐述电流和电压的基本概念。
电流(electric current)是指电子在某个电路中运动的取向性流动,电压(voltage)是指电路中电流源的势能差。
当电流通过电路的时候,可以获得电压。
接下来,我们讨论正序负序的基本原理。
正序(positive sequence)指的是电流从源头沿着正确的路径流动,而负序(negative sequence)则指电流反向流动,和正序相反。
两者之间的不同在于,正序电流具有正向势能,而负序则具有负向势能。
接着,我们讲解正序负序零序之间的联系。
正序和负序组成了原始两相系统,而零序则是两者之和,因此又称为三相系统。
三相电流具有一个正弦波形,而三相电压的机械角度为120度,即每个相位之间的时间差。
最后,我们讨论正序负序零序的应用。
正序、负序、零序电流在电子产品中得到广泛运用,比如家用电器、照明系统、电视机等。
正序、负序、零序电压可以用来检测电路中的缺陷,或用来保护电路。
此外,对电流的相序分析也可以帮助人们更好地控制电路的运行,保证设备的安全运行。
总结,正序、负序、零序都是电子产品中经常涉及到的概念,其
应用广泛。
通过上文的阐述,读者应该对正序、负序、零序有了更加深入的理解,也更好地掌握了电流和电压的基本概念。
正序负序零序的理解
正序负序零序的理解正序、负序及零序是电工学中比较重要的电路理论知识,有助于我们正确认识和理解电路的运行原理,也是电力电子设备的设计的重要基础。
本文将着重介绍以上三种电路理论的基本概念及理解,希望能够对读者有所帮助。
首先,我们来认识正序电路。
正序电路的正常运行需要的是一个源电压(正电压)与一个放电负载(负电压)之间的电压差,电流可能有正负两个方向运行,从源电压流向负载时是正电流,从负载流向源电压时是负电流。
电压保持恒定,当电路中源和负载之间的阻抗变化时,电流随之变化,从而影响源电压与放电负载之间的电势差。
其次,负序电路。
负序电路是正序电路的反向电路,当正序电路中的源电压与放电负载的电压均是负电压时,电流运行的方向就相反,从放电负载流向源电压时为正电流,从源电压流向放电负载时为负电流。
因此,当电路中的源电压和放电负载的阻抗发生变化时,电流的方向将会发生相反的变化,从而影响源电压与放电负载之间的电势差,这也是负序电路的特点。
最后,我们来认识零序电路。
零序电路也叫平衡电路,也就是电路中源电压和放电负载的电压之差为0,由于零序电路中的源电压和放电负载的电压是相等的,所以电路中电流的方向可以发生变化,从一个方向流入放电负载,再从另一个方向流出源电压,当放电负载或源电压的阻抗发生变化时,电流也会随之变化,影响放电负载和源电压之间的电力差,因此零序电路主要用于消除高压两侧有较大电压差的配电系统中的电流不平衡和电压平衡。
总之,正序电路、负序电路及零序电路都是电工学中比较重要的电路理论知识,对于我们正确认识和理解电路的运行原理和电力电子设备的设计都有着重要的作用。
由于每种电路有其特点和运行规律,所以在实际的电路设计和应用中,应根据实际情况灵活使用这三种电路理论来达到最好的效果,从而发挥其最大的用处。
零序电压,零序电流.负序电流.正序电流怎么理解
零序电压,零序电流.负序电流.正序电流怎么理解正常电流(理想情况):只有正序电流单相接地短路:故障相正序、负序、零序电流相等两相短路:故障点零序电流为零,正序和负序电流互为相反数两相短路接地:故障点正序、负序、零序电流均有三相对称短路:只有正序三相对称接地短路:有正序三相不对称短路:有正序和负序三相不对称接地短路:有正序负序和零序一相断线:断口电流有正序、负序和零序两相断线:断口上各序电流相等对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;当Ia+Ib+Ic≠0时必有一相接地,对地有有漏电流;对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;因此,零序电流通常作为漏电故障判断的参数。
负序电流则不同,其主要应用于三相三线的电机回路;在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;其常作为电机故障判断;注意了:Ia+Ib+Ic=0与三相对称不是一回事;Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:三相不平衡与零序电流不可混淆呀!三相不平衡时,不一定会有零序电流的;同样有零序电流时,三相仍可能为对称的。
前面好几位把两者混淆了吧!正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
正序负序零序的理解
正序负序零序的理解正序负序零序是指直流电的电压或电流的正方向、负方向和零方向的运动方式。
它运用在电力系统的运行中,一般用于电动机的发电、负载供电、变压器检修等应用。
在交流电中,正序负序零序是调控电流以及维护电压和电平的重要方式,其特性决定着电力系统的安全性和稳定性。
本文将对正序负序零序进行详细的介绍,以期为我们更好地理解正序负序零序概念提供参考。
首先,正序负序零序概念的内涵是指直流电的电压或电流的运动方向。
在电力系统的运行中,由于由于负载的不均衡、故障的发生等原因,电流会出现正反两种运动方式,其中正向电流表示从电源到负载的运动方向,反向电流表示从负载到电源的运动方向。
此外,当负载不发电,电流可能会出现零方向,即电流中没有电流的运动方向。
其次,正序负序零序具有重要的特性,其中最重要的是电流的最大限度,也就是我们常说的电流限制。
此外,电压的限制对维护电力系统的稳定性至关重要,有效的调控电压的变化可以最大程度的保证电压的稳定性。
此外,此种运行方式还具有安全性,既可以提高系统的安全性,又可以减少系统故障率。
第三,正序负序零序在电力系统的运行中起重要作用,它可以作为电动机发电、负载供电及变压器检修等应用的重要方式。
在负载供电中,正序负序零序可以有效地调节电源给负载提供的电压,从而达到负载正常运行的目的。
在变压器检修中,可以通过控制电流的方向来确定变压器的运行状态,从而保证变压器的正常运行,及时发现变压器故障。
最后,正序负序零序是指直流电的电压与电流的正方向、负方向和零方向的运动方式,可以用于电动机的发电、负载供电、变压器检修等应用。
通过调控电流以及维护电压和电平,可以提高电力系统的安全性和稳定性,是电力系统关键性维护技术之一。
总之,正序负序零序是直流电的非常重要的维护技术,可以有效的控制电压和电流的方向,提高电力系统的安全性和稳定性,是电力系统重要的维护方式。
正序负序零序的理解对于更好地运用此技术,保护和维护电力系统至关重要,希望本文可以为大家对此有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。
负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。
零序:A,B,C三相相位相同,哪一相也不领先,也不落后。
三相短路故障和正常运行时,系统里面是正序。
单相接地故障时候,系统里有正序,负序和零序分量。
什么叫不对称运行?产生的原因及影响是什么?
任何原因引起电力系统三相对称(正常运行状况)性的破坏,均称为不对称运行。如各相阻抗对称性的破坏,负荷对称性的破坏,电压对称性的破坏等情况下的工作状态。非全相运行是不对称运行的特殊情况。 不对称运行产生的负序、零序电流会带来许多不利影响。 电力系统三相阻抗对称性的破坏,将导致电流和电压对称性的破坏,因而会出现负序电流,当变压器的中性点接地时,还会出现零序电流。 当负序电流流过发电机时,将产生负序旋转磁场,这个磁场将对发电机产生下列影响: ⑴发电机转子发热; ⑵机组振动增大; ⑶定子绕组由于负荷不平衡出现个别相绕组过热。 不对称运行时,变压器三相电流不平衡,每相绕组发热不一致,可能个别相绕组已经过热,而其它相负荷不大,因此必须按发热条件来决定变压器的可用容量。 不对称运行时,将引起系统电压的不对称,使电能质量变坏,对用户产生不良影响。对于异步电动机,一般情况下虽不致于破坏其正常工作,但也会引起出力减小,寿命降低。例如负序电压达5%时,电动机出力将降低10∽15%,负序电压达7%时,则出力降低达20∽25%。 当高压输电线一相断开时,较大的零序电流可能在沿输电线平行架设的通信线路中产生危险的对地电压,危及通讯设备和人员的安全,影响通信质量,当输电线与铁路平行时,也可能影响铁道自动闭锁装置的正常工作。因此,电力系统不对称运行对通信设备的电磁影响,应当进行计算,必要时应采取措施,减少干扰,或在通信设备中,采用保护装置。 继电保护也必须认真考虑。在严重的情况下,如输电线非全相运行时,负序电流和零序电流可以在非全相运行的线路中流通,也可以在与之相连接的线路中流通,可能影响这些线路的继电保护的工作状态,甚至引起不正确动作。此外,在长时间非全相运行时,网络中还可能同时发生短路(包括非全相运行的区内和区外),这时,很可能使系统的继电保护误动作。 此外,电力系统在不对称和非全相运行情况下,零序电流长期通过大地,接地装置的电位升高,跨步电压与接触电压也升高,故接地装置应按不对称状态下保证对运行人员的安全来加以检验。 不对称运行时,各相电流大小不等,使系统损耗增大,同时,系统潮流不能按经济分配,也将影响运行的经济性。
负序电流则不同,其主要应用于三相三线的电机回路;
在没有漏电的情况下(即Ia+Ib+Ic=0),三相不对称时也会产生负序电流;
其常作为电机故障判断;
注意了:
Ia+Ib+Ic=0与三相对称不是一回事;
Ia+Ib+Ic=0时,三相仍可能不对称。
注意了:
三相不平衡与零序电流不可混淆呀!
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。
产生零序电流的两个条件:
1、无论是纵向故障、还是横向故障、还是正常时和异常时的不对称,只要有零序电压的产生;
2、零序电流有通路。
以上两个条件缺一不可。因为缺少第一个,就无源泉;缺少第二个,就是我们通常讨论的“有电压是否一定有电流的问题。
零序公式:3U0=UA+UB+UC,3I0=IA+IB+IC
三相不平衡时,不一定会有零序电流的;
同样有零序电流时,三相仍可能为对称的。
前面好几位把两者混淆了吧!
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,一般针对三相三线制的电机回路,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
两者不能混淆!
三相四线电路中,三相电流的相量和等于零,即Ia+Ib+IC=0
如果在三相四线中接入一个电流互感器,这时感应电流为零。当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流相量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流)
这样互感器二次线圈中就有一个感应电压,此电压加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,如大于动作电流,即使灵敏继电器动作,作用于执行元件掉闸。这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。
两相短路故障时候,系统有正序和负序分量。
两相短路接地故障时,系统有正序,负序和零序分量。
一句话就是系统正常运行的时候三相正弦波形,一旦有一点波形变了,为了便于统一,就把波形变化的化成正的,零的和负的,在他们相互抵消后就是真正的波形了。
总之,零序电流通常作为漏电故障判断的参数;
负序电流常作为电机故障判断;
正序电流对电机运行质量是一种评估。
注意了:
Ia+Ib+Ic=0与三相对称不是一回事;
Ia+Ib+Ic=0时,三相仍可能不对称。
三相不平衡与零序电流不可混淆呀!
三相不平衡时,不一定会有零序电流的;
同样有零序电流时,三相仍可能为对称的。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。下面的方法就与正序时一样了。
零序电压,零序电流.负序电流.正序电流怎么理解
对电机回路来说是三相三线线制,Ia+Ib+Ic=0,三相不对称时也成立;
当Ia+Ib+Ic≠0时有一相接地,对地有有漏电流;
对三相四线制则为Ia+Ib+Ic+Io=0成立,只要无漏电,三相不对称时也成立;
因此,零序电流通常作为漏电故障判断的参数。