计量经济学实验报告范文
计量经济学实验报告
计量经济学实验报告实验报告实验课程名称:计量经济学实验案例1:近年来,中国旅游业⼀直保持⾼速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作⽤⽇益显现。
中国的旅游业分为国内旅游和⼊境旅游两⼤市场,⼊境旅游外汇收⼊年均增长22.6%,与此同时国内旅游也迅速增长。
改⾰开放20多年来,特别是进⼊90年代后,中国的国内旅游收⼊年均增长14.4%,远⾼于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
解题过程:⾸先,通过Eviews,得出回归模型:Y=-274.377+0.013X2+5.438X3+3.272X4+12.986X5-563.108X6tc=-0.208 t2=1.031 t3=3.940 t4=3.465 t5=3.108 t6=-1.753R^2=0.995 F=173.354 DW=2.311从估计结果来看,模型可能存在多重共线性。
因为在OLS下,R^2^2与F值较⼤,⽽各参数估计量的t检验值较⼩,说明各解释变量对Y的联合线性作⽤显著,但各个解释变量存在共线性从⽽使得它们对Y的独⽴作⽤不能分辨,故t检验不显著。
应⽤Eviews,写下命令:cor X2 X3 X4 X5 X6。
得到相关系数矩阵。
可以从中看出五个经济变量之间两两简单相关系数⼤都在0.80以上,甚⾄有的在0.96以上。
表明模型存在着严重的多重共线性。
从⽽为了消除多重共线性,这⾥采⽤逐步回归法。
第⼀步,⽤每个解释变量分别对被解释变量做简单回归。
得:Y=-3462+0.0842X2 t=8.666 R^2=0.903 F=75Y=-2934+9.052X3 t=13 R^2=0.956 F=173Y=640+11.667X4 t=5.196 R^2=0.771 F=27Y=-2265+34.332X5 t=6.46 R^2=0.839 F=42Y=-10897+2014X6 t=8.749 R^2=0.905 F=77根据R^2统计量的⼤⼩排序,可见重要程度依次为X3, X6, X2, X5, X4。
计量经济学实验报告及心得体会
从回归估计的结果来看,D.W= 1.931058模型拟合较好。可决系数R=0.901826,表明城镇居民人均消费支出的变化的90.1826%可由人均可支配收入的变化来解释。从斜率项的t检验值来看,大于5%显著性水平下自由度为n-2=29的临界值t(29)=2.05,且该斜率值满足0<0.674007<1,符合经济理论中边际消费倾向在0与1之间的绝对收入假说
【实验软件】EVIEWS软件
【实验要求】选择方程建立一元线性回归方程,做散点图,并进行一元线性回归分析,经济,拟合优度,参数显著性,和方程显著性等检验。
【实验过程】
1.普通最小二乘法估计:
(1)启用EVIEWS软件→file→new→workfile,选择“workfile frequeney”的类型为“undated or irreqular”,在“start date”中输入“1”,在“end date”中输入“31”,单击“ok”。
.【实验小结】
(1)建立模型:本例中我们假设拟建立如下一元回归模型:Y=
Dependent Variable: Y
Method: Least Squares
Date:04/07/12Time:19:37
Sample: 1 31
Included observations: 31
Variable
Coefficient
【实验软件】EVIEWS软件
【实验要求】选择方程建立多元线性回归方程,并进行多元线性回归分析,经济,拟合优度,参数显著性,和方程显著性等检验。
《计量经济学》实验报告三
实验时间:2012-04-07系别:经济管理系专业班级:09国贸本一
学 号:姓名: 成 绩:
【实验名称】实验三p61课后习题一元回归分析及检验、预测
计量经济学回归模型实验报告(大全)
计量经济学回归模型实验报告(大全)第一篇:计量经济学回归模型实验报告(大全)回归模型分析报告背景意义:教育是立国之本,强国之基。
随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。
一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。
本报告将从这两个方面进行分析。
我国1991 年~2013 年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。
试建立教育经费收入Y 关于人均国内生产总值指数 X 1 和年末城镇人口数 X 2的回归模型,并进行回归分析。
年份教育经费收入Y(亿元)人均国内生产总值指数X 1(1978 年=100)年末城镇人口数X 2(万人)1991 731.50282 256.67 31203 1992 867.04905 289.72 32175 1993 1059.93744 326.32 33173 1994 1488.78126 364.91 34169 1995 1877.95011 400.6 35174 1996 2262.33935 435.76 37304 1997 2531.73257 471.13 39449 1998 2949.05918 503.25 41608 1999 3349.04164 536.94 437482000 3849.08058 577.64 45906 2001 4637.66262 621.09 48064 2002 5480.02776 672.99 50212 2003 6208.2653 735.84 52376 2004 7242.59892 805.2 54283 2005 8418.83905 891.31 56212 2006 9815.30865 998.79 58288 2007 12148.0663 1134.67 60633 2008 14500.73742 1237.48 62403 2009 16502.7065 1345.07 64512 2010 19561.84707 1480.87 66978 201123869.29356 1613.61 69079 2012 28655.30519 1730.18 71182 2013 30364.71815 1853.97 73111 资料来源:中经网统计数据库。
计量经济实验报告多元(3篇)
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学实验报告(一)
计量经济学实验报告(一)
一、实验背景
计量经济学实验是一种采用经济理论和方法来设计实验的经济研究方法。
经济实验的主要目的是检验经济理论,比如检验假设和改进预测。
它还可以用于定性评价和定量评价政策方案和市场动态,以及验证行为经济学理论。
二、实验内容
本次实验通过一组独立的在线调查来研究人们对收入分配政策的态度。
调查中,受访者被要求就14种不同的收入分配政策支持、反对和中立做出反应。
这14种收入分配政策包括财政公平政策、税收和补贴政策、劳动力市场政策和参与机会政策等。
以及根据态度的强度来改变互动形式,不同类型的回答有不同的加分,比如更强烈的支持会比中立的有更多分数。
三、实验结果
实验结果显示,在14种收入分配政策中,受访者大部分表示支持或者反对。
最受支持的是劳动力市场政策,而最受反对的是税收和补贴政策。
同时,实验还发现,这14种收入分配政策受实验者支持或反对的原因大部分是经济实惠:如果一个政策能够为普通大众带来经济实惠,这个政策很可能受到受访者的支持。
此外,一些政策因其有助于实现平等收入而受到支持。
四、实验结论
本次实验结论清楚地表明,受访者支持或反对收入分配政策跟经济实惠有关。
当人们普遍受益于收入分配政策时,他们很可能支持这种政策。
另外,实验还发现,有些政策受支持的原因还在于它们有助于实现平等收入的目的。
本次实验不仅对计量经济学的理论和方法提供了有价值的信息,而且还为构建经济实证提供了重要的参考意见。
可以认为,经过本次实验的进一步检验和优化,可以发现更详细、更准确的数据,以便进一步检验和发展计量经济学的理论与方法。
计量经济学实验报告1(共6篇)
篇一:计量经济学实验报告 (1)计量经济学实验基于eviews的中国能源消费影响因素分析学院:班级:学号:姓名:基于e views的中国能源消费影响因素分析一、背景资料能源消费是指生产和生活所消耗的能源。
能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。
能源是支持经济增长的重要物质基础和生产要素。
能源消费量的不断增长,是现代化建设的重要条件。
我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。
随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。
同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。
可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。
在20世纪的最后二十年里,中国国内生产总值(gdp)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为0.5左右。
然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。
鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。
由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。
二、影响因素设定根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。
对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。
另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。
计量经济学实验报告范文
计量经济学实验报告范文一:各地区农村居民家庭人均纯收入与家庭人均消费支出的数据(单位:元)地区Y X9439.63 6399.27天津7010.06 3538.314293.43 2786.773665.66 2682.573953.1 3256.154773.43 3368.164191.34 3065.444132.29 3117.4410144.62 8844.886561.01 4786.158265.15 6801.63556.27 2754.045467.08 4053.474044.7 2994.494985.34 3621.573851.6 2676.413997.48 30903904.2 3377.385624.04 4202.32 广西3224.05 2747.473791.37 2556.563509.29 2526.73546.69 2747.272373.99 1913.712634.09 2637.182788.2 2217.622644.69 2559.592328.92 2017.212683.78 2446.53180.84 2528.76 新疆3182.97 2350.58二.参数估计:Dependent Variable: X Method: Least Squares Date: 11/11/11 Time: 08:22 Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-StatisticProb.C 179.1916 221.5775 0.808709 0.4253Y 0.719500 0.045700 15.74411 0.0000R-squared 0.895260Mean dependent var3376.309Adjusted R-squared 0.891649S.D. dependent var1499.612S.E. of regression 493.6240Akaike info criterion15.30377Sum squared resid 7066274.Schwarz criterion15.39628Log likelihood -235.2084F-statistic247.8769Durbin-Watson stat 1.461684Prob(F-statistic)0.000000 根据回归结果,则模型估计的结果为:Xˆi=179.1916 + 0.719500 Y i(0.808709 ) (15.74411)R2=0.895260 F= 247.8769三.检验模型的异方差:(一)图形法1)绘制e t2对Yt的散点图即E2对Yt的散点图:2)判断:由此散点图可知残差平方e i2对解释变量Y 的散点图主要分布在图像中的下三角部分,大致可以看出残差平方e i2随着Yi的变动成增大的趋势,因此,模型很可能存在异方差,但是否确实存在异方差还寻妖进一步的检验。
计量经济学实训报告范文
一、实训背景随着我国经济的快速发展,经济学研究越来越注重实证分析。
计量经济学作为经济学的重要分支,已经成为经济学研究的重要手段。
为了提高学生对计量经济学理论的理解和应用能力,我们学院组织了本次计量经济学实训。
二、实训目的1. 帮助学生理解计量经济学的基本原理和方法;2. 培养学生运用计量经济学方法进行实证分析的能力;3. 提高学生运用统计软件进行数据处理和分析的能力;4. 增强学生团队合作意识和沟通能力。
三、实训内容本次实训主要分为以下几个部分:1. 计量经济学基本原理讲解:包括回归分析、多元线性回归、非线性回归、时间序列分析等基本概念和方法。
2. 实证案例分析:选取实际经济问题,运用计量经济学方法进行分析,包括数据收集、模型设定、参数估计、模型检验等。
3. 统计软件操作:学习并熟练运用计量经济学常用软件,如EViews、Stata等,进行数据处理和分析。
4. 团队合作与沟通:学生分成小组,共同完成实训任务,培养团队合作意识和沟通能力。
四、实训过程1. 第一阶段:讲解计量经济学基本原理和方法,学生进行自学和笔记。
2. 第二阶段:教师选取实际经济问题,学生分组进行讨论,确定研究问题、数据来源和模型设定。
3. 第三阶段:学生运用统计软件进行数据处理和分析,完成实证研究。
4. 第四阶段:各小组进行成果展示,其他小组成员进行提问和评价。
五、实训结果1. 学生对计量经济学基本原理和方法有了更深入的理解;2. 学生的实证分析能力得到提高,能够运用计量经济学方法进行实际问题的分析;3. 学生的统计软件操作能力得到提高,能够熟练运用EViews、Stata等软件进行数据处理和分析;4. 学生的团队合作意识和沟通能力得到提升。
六、实训总结1. 计量经济学实训对于提高学生的实证分析能力具有重要意义;2. 在实训过程中,学生需要充分发挥自己的主观能动性,积极学习理论知识,并注重实际操作;3. 教师应注重引导学生进行团队合作,培养学生的沟通能力;4. 学校应加强计量经济学软件资源的建设,为学生提供更好的学习环境。
计量经济学》实验报告
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济学实验报告(范例)
时
时
即是说,当第一步 时, 个别值置信度95%的预测区间为(5694.81,7415.45)元。当第二步 时, 个别值置信度95%的预测区间为(8757.09,10626.07)元。
在“E ”框中,点击“Forecast”可得预测值及标准误差的图形如图2.14:
图3
实验结果和收获
6032.40
9189.36
6334.64
7614.36
6245.40
6788.52
6958.56
11137.20
7315.32
6822.72
7238.04
6610.80
5944.08
7240.56
8079.12
6330.84
6151.44
6170.52
6067.44
6899.64
1:
图1
从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:
6360.24
5413.08
4598.28
5827.92
6952.44
5278.04
5064.24
5042.52
6104.92
5636.40
12463.92
9337.56
6679.68
5234.35
6051.06
6524.52
6260.16
6100.56
13249.80
8177.64
11715.60
对回归系数的t检验:针对 和 ,由表2.6中还可以看出,估计的回归系数 的标准误差和t值分别为: , ; 的标准误差和t值分别为: , 。取 ,查t分布表得自由度为 的临界值 。因为 ,所以不能拒绝 ;因为 ,所以应拒绝 。这表明,城市人均年可支配收入对人均年消费支出有显著影响。
计量经济学实验报告(完成)
实验报告课程名称:计量经济学实验项目:我国国内资金利用研究学生姓名:曾健超学号:200973250131班级:0901班专业:国际经济与贸易指导教师:刘潭秋2011 年 06 月计量经济学实验报告实验时间:2011年6月24日实验地点:一教10楼实验目的:使用Eviews软件,将多元线性回归模型的理论和方法应用于我国的资金来源的研究分析。
实验原理:改革开放以来,我们国家经济持续显著的增长,经济发展一片大好。
经济的持续快速增长需要资本的不断注入,所以我对我们国家的近15年的资金利用做了一个研究。
随着资金的源源不断的涌入,我们国家的资金构成大致分成五个部分,国家预算内资金,国内贷款,利用外资,自筹资金和其他资金。
这五个部分基本上构成了我国资金来源的全部,我选取了改革开放30年来中的15个年份,具有一定的代表性。
资金是经济发展的血液,对我国的资金来源的构成做一个研究十分必要。
在这个实验中,选取国家预算内资金为被解释变量Y,解释变量为国内贷款X1利用外资X2,自筹资金X3,其他资金X4,对我国的资金利用的各部分之间的关系做一个细致的研究。
一、计量经济学模型:根据变量之间的关系,我们假定回归模型为:Y=β0+β1X1+β2X2+β3X3+β4X4+U其中Y表示我国的国家内预算资金,X1、X2、X3、X4分别代表国内贷款,利用外资,自筹资金,其他资金, 0表示在不变的情况下,资金利用的固定部分,β1β2、β3、β4、分别代表我国资金利用的各部分的权数,U 代表随机误差项。
由式子可知,我国资金利用的后面四个部分每增长1个百分点,国家预算内资金会如何变化。
二、验证方法选择:多元线性计量经济学模型的初步估计与分析、异方差检验、序列相关检验、多重共线性检验三、实验步骤:1、基本假设:设国家预算内资金为被解释变量Y,解释变量为国内贷款X1,国外资金X2,自筹资金X3,其他资金X4,U是随机干扰项,代表所有的影响因素。
【精品】《计量经济学》实验报告
【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。
二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。
三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。
(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。
四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。
五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。
(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。
(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。
计量经济学实验报告范例
计量经济学期末实验报告实验名称:中国交通邮政运输仓储业发展对工业影响的研究姓名:学号:班级:指导教师:时间:二○一一年六月中国交通邮政运输仓储业发展对工业影响的研究一、经济理论背景交通邮政运输仓储业作为第三产业中的领头行业,是国民经济的重点战略产业,是整个联系整个国民经济的纽带,他的发展对于国民经济的运行起着至关重要的作用。
而工业作为整个国民经济的命脉,他的发展对于一个国家经济实力的壮大有着极其重要的作用。
那么如此重要的两个产业之间究竟存在着何种关系?本文试图从实证角度,利用计量经济法,根据年度资料建立我国交通邮政运输业与工业关系模型,来阐述二者究竟存在着何种关系。
二、指标选取和数据搜集(一)中国交通邮政运输仓储业发展对工业的影响的选择和指标的选取中国交通邮政运输仓储业。
交通邮政运输仓储业在现代社会的地位日益重要,他成为了贯通整个国民经济发展的纽带,是这一行业将整个工业体系的各个部门相互联系起来,将其构建成一个整体,推动着整个国家的工业向前发展。
本文考虑了两个影响因素,共有二个时序变量:即中国交通邮政运输仓储业、工业产值。
本文采用线性回归的方法,建立直线模型,对中国交通邮政运输仓储业与工业之间关系进行线性回归分析,通过对整个模型的分析,来判断中国交通邮政运输仓储业对工业影响程度的大小,最后得出结论,提出政策意见。
(二)数据资料表1:中国交通邮政运输业及其影响因素数据表单位(亿元)注:数据来源:《国家统计年鉴》(三)建立模型Y=b0+b1X+U三、实验过程(一)回归模型参数估计表2:中国交通邮政运输仓储业对工业影响的回归分析估计结果为i Yˆ=563.3847+7.307256Xi(0.966237)(59.03784)R2=0.992878 F=3485.466该模型可决系数为R2=0.992878,R2=0.992594可决系数很高,数据的拟合优度很好。
F检验值3485.466,明显显著。
(二)处理异方差根据怀特检验,white统计量为11.41366,p值为0.003323<0.05,模型存在异方差,如上图所示。
计量经济学实验报告
计量经济学实验报告计量经济学实验报告引言计量经济学是经济学中的一门重要学科,它通过运用数学和统计学的方法来研究经济现象,并对经济理论进行实证分析。
实验是计量经济学研究中不可或缺的一部分,通过实验可以验证经济理论的有效性,提供实证依据,为政策制定和经济决策提供参考。
本篇文章将介绍一个基于计量经济学方法的实验,以探讨某一特定经济现象的影响因素和机制。
研究背景在当今社会,消费者购买决策是经济活动中的重要环节,而价格是影响消费者购买决策的关键因素之一。
然而,不同的消费者对价格的敏感程度可能存在差异,这可能受到个体的经济状况、心理因素以及市场竞争程度等多种因素的影响。
因此,了解消费者对价格的反应机制对于企业制定定价策略以及政府进行市场监管具有重要意义。
研究目的本实验旨在通过模拟市场环境,探究消费者对价格的反应机制,并分析不同因素对消费者价格敏感度的影响。
实验设计实验采用随机抽样的方法,选取了100名具有不同经济背景和消费习惯的消费者作为实验对象。
实验分为两个阶段进行,第一阶段是价格变动实验,第二阶段是心理因素调查。
第一阶段:价格变动实验在价格变动实验中,我们将随机选取50名消费者,并给予他们一定的购买预算。
然后,我们将分别设定两个不同的价格水平,并观察消费者对不同价格水平下商品的购买行为。
通过对购买行为的观察和数据分析,我们可以得出消费者对价格变动的反应程度。
第二阶段:心理因素调查在心理因素调查中,我们将采用问卷调查的方式,向所有参与实验的消费者提供一份针对价格敏感度的问卷。
问卷中包含了有关个体经济状况、消费心理以及市场竞争程度等方面的问题。
通过问卷调查的结果,我们可以分析不同因素对价格敏感度的影响,并进一步探讨价格敏感度的机制。
实验结果与讨论通过对实验数据的分析,我们得出了以下结论:1. 消费者对价格的敏感度存在差异,有些消费者对价格变动非常敏感,而另一些消费者对价格变动的反应较为迟缓。
2. 个体经济状况是影响消费者价格敏感度的重要因素之一。
计量经济学实验报告完整版范文
评语
教师
评语
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多元线性回归模型
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
日期
6.15
实验
目的
简述本次实验目的:熟悉多元线性回归模型中的解释变量的引入
掌握对计算机过的统计分析和经济分析
实验
பைடு நூலகம்准备
你为本次实验做了哪些准备:了解多元线性回归模型参数的OLS估计,统计检验,点预测以及区间估计,非线性回归的参数估计,受约束回归检验
实验
进度
本次共有3个练习,完成3个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
实验
进度
本次共有1个练习,完成1个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。通过这次实验让我受益匪浅。
计量经济学实验报告1
计量经济学实验报告1
实验名称:消费者行为实验
实验目的:通过本次实验,我们想了解消费者在不同价格下的
购买行为及其对市场供求关系的影响。
实验步骤:
1. 确定实验条件:我们在同一时间段内,在同一地点内展开实验,实验环境保持不变,商品名称为饮料。
2. 设定实验价位:我们将饮料的售价设定为10元、8元、6元、4元及2元五个价位。
3. 开始实验:我们分别让100人在不同价格下购买饮料,记录
下每个价位下的销售量。
4. 数据归集:我们将每个价位下的销售量进行汇总,得到销售
量数据表。
5. 制作图表:根据销售量数据表,我们制作了销量-价格的散点图,并根据数据拟合出销量的价格函数。
6. 结果分析:通过销量数据表和散点图以及销量的价格函数,
我们可以看出在价格上涨的情况下,销售量会随之下降,反之亦然。
实验结论:消费者对物品的需求在很大程度上受到价格的影响,价格上涨会导致销量下降,价格下跌则会导致销量上升。
这一规
律符合市场供求关系的基本原理,即需求量与价格成反比例关系。
实验展望:在今后的实验中,我们将继续探究不同品类、品牌
的商品对消费者行为的影响,并根据实验结果为经济决策提供有
用的数据依据。
计量经济学实训实验报告
一、实验背景计量经济学是经济学的一个重要分支,它运用数学统计方法对经济现象进行分析和研究。
本实验旨在通过实际操作,使学生掌握计量经济学的基本理论和方法,提高学生的实际操作能力。
二、实验目的1. 掌握计量经济学的基本理论和方法;2. 熟悉计量经济学软件的操作;3. 能够运用计量经济学方法分析实际问题;4. 培养学生的团队合作意识和沟通能力。
三、实验内容1. 实验数据来源本实验数据来源于我国某地区的统计数据,包括地区生产总值(GDP)、居民消费水平(C)、投资水平(I)和进出口总额(M)等变量。
2. 实验步骤(1)数据预处理首先,将原始数据导入计量经济学软件,对数据进行清洗和整理。
包括去除缺失值、异常值等。
(2)建立模型根据实验目的,选择合适的计量经济学模型。
本实验采用多元线性回归模型,研究地区生产总值与居民消费水平、投资水平和进出口总额之间的关系。
(3)模型估计利用计量经济学软件对模型进行参数估计,得到模型参数的估计值。
(4)模型检验对估计得到的模型进行检验,包括残差分析、F检验、t检验等。
(5)模型预测根据估计得到的模型,对地区生产总值进行预测。
3. 实验结果与分析(1)模型估计结果通过计量经济学软件,得到多元线性回归模型的估计结果如下:Y = 10000 + 0.5X1 + 0.3X2 + 0.2X3其中,Y为地区生产总值,X1为居民消费水平,X2为投资水平,X3为进出口总额。
(2)模型检验结果通过残差分析、F检验和t检验,发现模型估计结果具有较好的拟合效果,可以接受。
(3)模型预测结果根据估计得到的模型,对地区生产总值进行预测。
预测结果如下:当居民消费水平为5000元、投资水平为3000元、进出口总额为2000元时,地区生产总值约为11000元。
四、实验总结1. 通过本次实验,使学生掌握了计量经济学的基本理论和方法,提高了学生的实际操作能力;2. 学生学会了运用计量经济学软件进行数据预处理、模型估计、模型检验和模型预测;3. 培养了学生的团队合作意识和沟通能力。
计量经济学实验报告_4
《计量经济学》课程实验报告1专业国际经济与贸易班级B谢谢谢谢姓名XXX 日期2012.9.28一、实验目的1.学会Eviews工作文件的建立、数据输入、数据的编辑和描述;2.掌握用Eviews软件求解简单线性回归模型的方法;3.掌握用Eviews软件输出结果对模型进行统计检验;4.掌握用Eviews软件进行经济预测。
二、实验内容:根据1978年到2007年的中国居民的人均消费水平和人均GDP的数据,通过模型设定,估计参数,模型检测,回归预测等步骤,分析中国全体居民的消费水平和经济发展的数量关系,对于探寻居民消费增长的规律性。
三、实验数据四:实验步骤:1:模型设定。
由上表分析居民人均消费水平(y)和人均GDP(x)的关系,制作散点图。
从中可以看出居民消费水平(y)和人均GDP(x)大体呈现为线性关系。
2:估计参数:利用软件eviews作简单线性分析的步骤包括以下几方面内容。
建立文件夹,首先双击eviews图标,进入主页。
在其菜单栏中点击File|new|workfile,并选择数据频率为1978和2007.输入数据:在eviews命令框中直接输入“data x y”回车出现“Group”窗口数据编辑框,在对应的“y”,“x”下输入数据。
估计参数。
在eviews命令框中直接键入“LS Y C X”,按回车,即出现回归结果。
Dependent Variable: YMethod: Least SquaresDate: 11/17/12 Time:8:37Sample: 1978 2007Included observations: 30Coefficient Std. Error t-Statistic Prob.C 224.3149 55.64114 4.031457 0.0004X 0.386430 0.007743 49.90815 0.0000R-squared 0.988884 Mean dependent var 2175.067Adjusted R-squared 0.988487 S.D. dependent var 2021.413S.E. of regression 216.8978 Akaike info criterion 13.66107Sum squared resid 1317251. Schwarz criterion 13.75448Log likelihood -202.9161 Hannan-Quinn criter. 13.69095F-statistic 2490.823 Durbin-Watson stat 0.115812Prob(F-statistic) 0.000000若要显示回归结果的图形,在“Equation”框中,点击“Resids”,即出现剩余项、实际值、拟合值的图形:3:模型检测:包括经济意义检测和拟合有度、统计检验。
计量经济学异方差实验报告及心得体会
计量经济学异方差实验报告及心得体会一、实验报告实验步骤:1、设定实验数据:设置自变量X和因变量Y,并人为引入异方差,即error项的方差不恒定。
2、建立回归模型:根据设定的数据,建立回归模型,运用最小二乘法估计模型参数。
3、对回归结果进行分析:通过查看回归系数、残差和残差的图形等,判断是否存在异方差问题。
4、进行异方差检验:利用统计软件进行异方差检验,如White 检验或Breusch–Pagan检验等,获取检验结果。
5、处理异方差问题:根据异方差检验结果,采取相应的处理方法,如使用加权最小二乘法或进行异方差稳健标准误的估计。
6、比较处理前后的回归结果:对处理前后的回归结果进行比较和分析,观察异方差的处理是否有效。
实验结果:在实验过程中,我们设定了一个简单的回归模型,并引入异方差。
经过处理异方差问题后,我们发现被异方差影响的模型的回归系数和标准误均有所变化。
而经过异方差处理后,回归结果更加稳定,模型的预测能力也相应提高。
二、心得体会通过本次实验,我对计量经济学中异方差的概念和影响有了更加深入的了解。
异方差问题存在时,回归模型的估计结果可能会产生偏误,影响模型的准确性。
因此,我们需要进行异方差检验,并采取相应的处理方法。
实验过程中,我们运用了统计软件进行异方差检验和处理,这使得整个分析过程更加简洁和高效。
此外,本次实验还提醒我们在实际研究中要注意可能存在的异方差问题,并及时处理。
在计量经济学领域,处理异方差问题的方法有很多,选择适合实际情况的方法非常重要。
因此,我们需要不断学习和实践,提高自己的计量经济学分析能力。
总之,本次实验对我们深入理解异方差在计量经济学中的重要性起到了很好的引导作用。
通过亲自操作和实践,我们能更好地掌握计量经济学分析的方法和技巧,有助于我们在未来的研究和实践中更好地运用和应用计量经济学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学实验报告范文一:各地区农村居民家庭人均纯收入与家庭人均消费支出的数据(单位:元)地区Y X北京9439.63 6399.27天津7010.06 3538.31河北4293.43 2786.77山西3665.66 2682.57内蒙古3953.1 3256.15辽宁4773.43 3368.16吉林4191.34 3065.44黑龙江4132.29 3117.44上海10144.62 8844.88江苏6561.01 4786.15浙江8265.15 6801.6安徽3556.27 2754.04福建5467.08 4053.47江西4044.7 2994.49山东4985.34 3621.57河南3851.6 2676.41湖北3997.48 3090湖南3904.2 3377.38广东5624.04 4202.32广西3224.05 2747.47海南3791.37 2556.56重庆3509.29 2526.7四川3546.69 2747.27贵州2373.99 1913.71云南2634.09 2637.18西藏2788.2 2217.62陕西2644.69 2559.59甘肃2328.92 2017.21青海2683.78 2446.5宁夏3180.84 2528.76新疆3182.97 2350.58 二.参数估计:Dependent Variable: XMethod: Least SquaresDate: 11/11/11 Time: 08:22Sample: 1 31Included observations: 31Variable Coefficient Std. Error t-Statistic Prob.C 179.1916 221.5775 0.808709 0.4253Y 0.719500 0.045700 15.74411 0.0000R-squared 0.895260 Mean dependent var 3376.309 Adjusted R-squared 0.891649 S.D. dependent var 1499.612 S.E. of regression 493.6240 Akaike info criterion 15.30377 Sum squared resid 7066274. Schwarz criterion 15.39628 Log likelihood -235.2084 F-statistic 247.8769 Durbin-Watson stat 1.461684 Prob(F-statistic) 0.000000根据回归结果,则模型估计的结果为:Xˆi=179.1916 + 0.719500 Y i(0.808709 ) (15.74411)R2=0.895260 F= 247.8769三.检验模型的异方差:(一)图形法1)绘制e t2对Yt的散点图即E2对Yt的散点图:2)判断:由此散点图可知残差平方e i2对解释变量Y 的散点图主要分布在图像中的下三角部分,大致可以看出残差平方e i2随着Yi的变动成增大的趋势,因此,模型很可能存在异方差,但是否确实存在异方差还寻妖进一步的检验。
(二)Goldfeld-Quanadt检验删除中间5个观测值后,余下的部分构成了两个样本区间:1—12和19—31,它们的样本个数均是13个。
即n1=n2=131)将定义区间为1—12,则回归结果为:Dependent Variable: YMethod: Least SquaresDate: 11/26/11 Time: 09:36Sample: 1 12Included observations: 12Variable Coefficient Std. Error t-Statistic Prob.C 1111.22294618055409.5749834374642.713112350891950.0218167435054397X 0.4519003215320610.1364277809661623.312377569522630.00784776369040483R-squared 0.523170235034633 Mean dependent var2453.88583333333Adjusted R-squared 0.475487258538097 S.D. dependent var280.755559499988S.E. of regression 203.332306057605 Akaike info criterion13.6185720755703Sum squared resid 413440.266867037 Schwarz criterion13.6993898505349Log likelihood -79.7114324534216 F-statistic10.9718451630769Durbin-Watson stat 2.03039632223662 Prob(F-statistic)0.007847763690404462)将定义区间为19-31则回归结果为:Dependent Variable: YMethod: Least SquaresDate: 11/26/11 Time: 09:41Sample: 19 31Included observations: 13Variable Coefficient Std. Error t-Statistic Prob.C -567.8182 604.7985 -0.938855 0.3680X 0.823005 0.094621 8.697894 0.0000R-squared 0.873057 Mean dependent var 4429.221 Adjusted R-squared 0.861517 S.D. dependent var 1831.121 S.E. of regression 681.4199 Akaike info criterion 16.02687 Sum squared resid 5107665. Schwarz criterion 16.11379 Log likelihood -102.1747 F-statistic 75.65337Durbin-Watson stat2.577712 Prob(F-statistic)0.0000033)根据上面两表求出F 统计量。
由表1得到残差平方和为∑e t 21=6867037,由表2得到的残差平方和为∑e t22=5107665,根据Goldfeld-Quanadt 检验,F 统计量为 F =∑∑eett 2122=68670375107665=0.7438在α=0.05下,上式中分子、分母的自由度均为10,查F 分布表的临界值F 05.0(10, 10)=2.98,因为F =0.7438<F 05.0(10,10)=2.98,所以不能拒绝原假设。
(三)White 检验根据White 检验构造的辅助函数为:δ2t=α0+α1x t +α2x t2+v t经估计出现的White 估计结果如下:White Heteroskedasticity Test:F-statistic 7.194463 Probability 0.003011 Obs*R-squared10.52295 Probability0.005188Test Equation:Dependent Variable: RESID^2 Method: Least Squares Date: 11/26/11 Time: 09:44Sample: 1 31Included observations: 31VariableCoefficientStd. Errort-StatisticProb.C 69872.27 641389.0 0.108939 0.9140 X -72.02221 248.7240 -0.289567 0.7743 X^20.0203370.0206270.9859720.3326R-squared 0.339450 Mean dependent var 227944.3 Adjusted R-squared 0.292268 S.D. dependent var 592250.3 S.E. of regression 498241.3 Akaike info criterion 29.16732 Sum squared resid 6.95E+12 Schwarz criterion 29.30610 Log likelihood -449.0935 F-statistic 7.194463 Durbin-Watson stat 2.430258 Prob(F-statistic)0.003011从上表可以看出,n R 2=10.52295由White 检验知,在α=0.05下,查χ2分布表,得临界值χ205.0(2)=5.9915,同时X 和X 2的t 检验值也显著。
比较计算的χ2统计量与临界值,因为n R 2=10.52295>χ205.0(2)=5.9915,所以拒绝原假设,不拒绝备择假设,表明模型存在异方差。
四.异方差性的修正运用加权最小二乘(WLS ),选用权数ωt 1=Xt1,ωt 2 =Xt221,ωt 3=Xt1得到的用权数的结果如下:Dependent Variable: Y Method: Least Squares Date: 11/24/11 Time: 22:00Sample: 1 31Included observations: 31Weighting series: W2Variable Coefficient Std. Error t-Statistic Prob.C 787.2847 173.6964 4.532534 0.0001X 0.561472 0.055731 10.07468 0.0000Weighted StatisticsR-squared 0.946060 Mean dependent var 2743.600Adjusted R-squared 0.944200 S.D. dependent var 1165.059S.E. of regression 275.2095 Akaike info criterion 14.13528Sum squared resid 2196468. Schwarz criterion 14.22780Log likelihood -217.0969 F-statistic 101.4992Durbin-Watson stat 2.482750 Prob(F-statistic) 0.000000Unweighted StatisticsR-squared 0.848003 Mean dependent var 3376.309Adjusted R-squared 0.842762 S.D. dependent var 1499.612S.E. of regression 594.6448 Sum squared resid 10254472Durbin-Watson stat 1.741955上表的估计结果如下:Y t=787.2847 + 0.561472X t(4.531534) (10.07468)R2=0.946060,DW=2.482750,F=101.4992括号中数据为t统计量值。