2.1.2-1指数函数及其性质

合集下载

课件12:2.1.2. 第1课时 指数函数及其性质

课件12:2.1.2. 第1课时 指数函数及其性质
2.1.2 第1课时 指数函数及其性质
新知初探
知识点一 指数函数的定义 函数__y_=__a_x_ (a>0 且 a≠1)叫做指数函数,其中 x 是自变量. 指数函数解析式的 3 个特征 (1)底数 a 为大于 0 且不等于 1 的常数. (2)自变量 x 的位置在指数上,且 x 的系数是 1. (3)ax 的系数是 1.
A.y=(-3)x B.y=-3x C.y=3x-1
D.y=13x
解析:根据指数函数的定义 y=ax(a>0 且 a≠1)可知只有 D 项正确.
答案:D
3.函数 f(x)= 2x1-1的定义域为(
)
A.R B.(0,+∞) C.[0,+∞)
D.(-∞,0)
解析:要使函数有意义,则 2x-1>0,∴2x>1,∴x>0. 答案:B 4.已知集合 A={x|x<3},B={x|2x>4},则 A∩B=( )
跟踪训练 2 (1)已知 1>n>m>0,则指数函数①y=mx,②y=nx 的 图象为( )
(2)若 a>1,-1<b<0,则函数 y=ax+b 的图象一定在( ) A.第一、二、பைடு நூலகம்象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限
解析:(1)由于 0<m<n<1,所以 y=mx 与 y=nx 都是减函数,故排除 A、B,作直线 x=1 与两个曲线相交,交点在下面的是函数 y=mx 的图象,故选 C. (2)∵a>1,且-1<b<0,故其图象如右图所示.
跟踪训练 1 (1)若函数 y=(3-2a)x 为指数函数,则实数 a 的 取值范围是________; (2)下列函数中是指数函数的是________.(填序号) ①y=2·( 2)x ②y=2x-1 ③y=2πx ④y=xx

2014高中数学 2-1-2-1 指数函数及其性质课件 新人教A版必修1

2014高中数学 2-1-2-1 指数函数及其性质课件 新人教A版必修1

函数 y=(2a2-3a+2)·x 是指数函数,求 a 的值. a
[解析] y = (2a2 - 3a + 2)·x 是 指 数 函 数 , 则 有 a
2a2-3a+2=1, a>0且a≠1,
1 ∴a= . 2
2
利用指数函数的性质比较大小
学法指导:比较幂大小的方法 (1)对于底数相同但指数不同的两个幂的大小的比较,可 以利用指数函数的单调性来判断. (2)对于底数不同,指数相同的两个幂的大小比较,可利 用指数函数的图象的变化规律来判断. (3)对于底数不同且指数不同的幂的大小的比较,则应通 过中间值来比较.


(5)比较大小,用“<”或“>”连接下列每组中的两个数. ①3
-2
<3
+1
-1
12 ②23
a+2;
<

11 2 2

-2.8
③0.4a
> 0.4
④1.1a 3 > 1.1a
⑤0.2-4 > 0.4-4.
2 2 (6)已知3a>3b,则
1 1 (3)当a<0时,n并不能取任意实数,如n= 2 , 4
时an
没有意义;
(4)当a=0时,n取 零或负数 没有意义. (5)实数幂的运算性质:ar·s=ar a
+s
ar ar-s;(ab)r= ;as=
arbr ;其中a>0,b>0,r、s∈R.
2.如果y=f(x)在D上是增函数,则对任意x1,x2∈D且 x1<x2,有f(x1) < (填“>”、“<”或“=”)f(x2),y=f(x)的图象从 左至右逐渐 上升 (填“上升”或“下降”).

§2.1.2-1指数函数及其性质(一)

§2.1.2-1指数函数及其性质(一)
解:① 函数y 1.7 在(, )是增函数, 又 2.5 3,
x
1 6

1 5
1.72.5 1.73
4 ②、 3
1 5
3 4
1 5
3 4 4 3
2013-1-15
1 6

1 5
1 1 3 函数y 在R是减函数, , 又 6 5 4
二、新 课
前面我们从两列指数和三个实例抽象得到两个函数:
1.指数函数的定义: 函数y = ax(a0,且a 1)叫做指数函数, 其中x是自变量 .函数的定义域是R . 思考:为何规定a0,且a1?

1 y 2 与y 2
x
x
这两个函数有 何特点?
0
2013-1-15
2
x
函数值??什 么函数?
2013-1-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 5
§2.1.2-1指数函数及其性质(一)
一、复习引入:
引例3 、认真观察并回答下列问题:
(1).一张白纸对折一次得两层,对折两次得4层,对折3 次得8层,问若对折 x 次所得层数为y,则y与x 的函数 关系是: x
由 1-a 0,得 a 1 x 0 即 a a
x x
重庆市万州高级中学 曾国荣 wzzxzgr@ 21
当 a 1时,x 0;当 0 a 1时,x 0
2013-1-15
§2.1.2-1指数函数及其性质(一)
4、练习: (1).比较大小:
①、1.01 与 1.01
12
§2.1.2-1指数函数及其性质(一)
指数函数的图象和性质:
在同一坐标系中分别作出如下函数的图像: x

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质

数学新课标人教A版必修1教学课件:2.1.2.1 第1课时 指数函数的图象及性质
数由小变大.(2)指数函数的底数与图象间的关系可 概括记忆为:在第一象限内,底数自下而上依次增 大.
必修1 第二章 基本初等函数(I)
栏目导引 第二十二页,编辑于星期日:十一点 三十五分。
3.如图所示是指数函数的图象,已
知 a 的值取 2,43,130,15,则相应曲线 C1,C2,
C3,C4 的 a 依次为( )
必修1 第二章 基本初等函数(I)
栏目导引 第四页,编辑于星期日:十一点 三十五分。
1.指数函数的概念 函数y=ax(a>0,且a≠1,x∈R)叫做指数函数,其中 x为自变量. 2.指数函数的图象和性质
a>1
0<a<1
图象
必修1 第二章 基本初等函数(I)
栏目导引 第五页,编辑于星期日:十一点 三十五分。
栏目导引 第三页,编辑于星期日:十一点 三十五分。
(4)当a=0时,n取__零__或__负__数__没有意义. 如果y=f(x)在D上是增函数,则对任意x1, x2∈D且x1<x2,有f(x1)<(填“>”、“<”或 “=”)f(x2),y=f(x)的图象从左至右逐渐__上__升 (填“上升”或“下降”).
(4)∵-233<0,4313>430=1,3412<340=1, ∴-233<3412<4313.12 分
必修1 第二章 基本初等函数(I)
栏目导引 第二十八页,编辑于星期日:十一点 三十五分。
[题后感悟] 比较幂的大小的常用方法: (1)对于底数相同,指数不同的两个幂的大小比 较,可以利用指数函数的单调性来判断.(2)对 于底数不同,指数相同的两个幂的大小比较, 可以利用指数函数图象的变化规律来判断.(3)

人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

人教版高中数学必修一2.1.2《指数函数及其性质》word教材分析1

《指数函数及其性质》一、教材分析(一)教材的地位和作用人民教育出版社《普通高中课程标准实验教科书••数学(1)》(人教A版)$2.1.2“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。

作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用, 又对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,也为今后研究其他函数提供了方法和模式。

指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究。

(二)课时划分指数函数的教学在中共分三个课时完成。

指数函数的图象及其性质,指数函数及其性质的应用(1),指数函数及其性质的应用(2)。

这是第一课时“指数函数的图象及其性质”。

“指数函数”第一课时是在学习了指数与指数幂的运算基础上学习指数函数的概念和性质,通过学习指数函数的定义,图象及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

二、学情分析(一)有利因素通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个层面:知识层面:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能层面:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

情感层面:学生对数学新内容的学习有相当的兴趣和积极性。

(二)不利因素本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。

第二章 2.1 2.1.2(一)指数函数

第二章 2.1 2.1.2(一)指数函数

2.1.2指数函数及其性质(一)学习目标 1.理解指数函数的概念,了解对底数的限制条件的合理性.2.掌握指数函数图象的性质.3.会应用指数函数的性质求复合函数的定义域、值域.知识点一指数函数思考细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?这个函数式与y=x2有什么不同?梳理一般地,叫做指数函数,其中x是自变量,函数的定义域是. 特别提醒:(1)规定y=a x中a>0,且a≠1的理由:①当a<0时,;②当a=0时,;③当a>0时,x可以取;④当a=1时,a x=1 (x∈R),无研究价值.因此规定y=a x中a>0,且a≠1.(2)要注意指数函数的解析式:①底数.②指数函数的自变量必须位于的位置上.③a x的系数必须为.④指数函数等号右边不能是多项式,如y=2x+1不是指数函数.知识点二指数函数的图象和性质指数函数y=a x(a>0,且a≠1)的图象和性质如下表:1.y =x x (x >0)是指数函数.( × )2.y =a x +2(a >0且a ≠1)是指数函数.( × )3.因为a 0=1(a >0且a ≠1),所以y =a x 恒过点(0,1).( √ ) 4.y =a x (a >0且a ≠1)的最小值为0.( × )类型一 求指数函数的解析式例1 已知指数函数f (x )的图象过点(3,π),求函数f (x )的解析式.跟踪训练1 已知指数函数y =(2b -3)a x 经过点(1,2),求a ,b 的值.类型二 求指数函数与其他函数复合所得函数的定义域、值域 命题角度1 f (a x )型例2 求下列函数的定义域、值域. (1)y =3x 1+3x ;(2)y =4x -2x+1. 跟踪训练2 求下列函数的定义域与值域. (1)y =1-⎝⎛⎭⎫12x;(2)y =a x -1a x +1(a >0,且a ≠1).命题角度2 a f (x )型 例3 求函数y =32x -1-19的定义域、值域.反思与感悟 y =a f (x )的定义域即 的定义域,求y =a f (x )的值域可先求 的值域,再利用y =a t 的单调性结合t =f (x )的范围求y =a t 的范围. 跟踪训练3 求下列函数的定义域、值域:11(1)0.3;x y -=(2)y =类型三 指数函数图象的应用 命题角度1 指数函数整体图象例4 在如图所示的图象中,二次函数y =ax 2+bx +c 与函数y =⎝⎛⎭⎫b a x的图象可能是( )反思与感悟 函数y =a x 的图象主要取决于 .但前提是a >0且a ≠1. 跟踪训练4 已知函数f (x )=4+a x+1的图象经过定点P ,则点P 的坐标是( )A .(-1,5)B .(-1,4)C .(0,4)D .(4,0) 命题角度2 指数函数局部图象例5 若直线y =2a 与函数y =|2x -1|的图象有两个公共点,求实数a 的取值范围. 反思与感悟 指数函数是一种基本函数,与其他函数一道可以衍生出很多函数,本例就体现了指数函数图象的“原料”作用.跟踪训练5 函数y =a |x |(a >1)的图象是( )1.下列各函数中,是指数函数的是( ) A .y =(-3)x B .y =-3x C .y =3x -1D .y =⎝⎛⎭⎫13x2.若函数y =(2a -1)x (x 是自变量)是指数函数,则a 的取值范围是( )A .a >0且a ≠1B .a ≥0且a ≠1C .a >12且a ≠1D .a ≥123.函数f (x )=a x-b的图象如图所示,其中a ,b 均为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <04.函数23x y -=的值域是________. 5.函数f (x )=1-2x +1x +3的定义域为________.1.判断一个函数是不是指数函数,关键是看解析式是否符合y =a x (a >0,且a ≠1)这一结构形式,即a x 的系数是1,指数是x 且系数为1.2.指数函数y =a x (a >0,且a ≠1)的性质分底数a >1,0<a <1两种情况,但不论哪种情况,指数函数都是单调的.3.由于指数函数y =a x (a >0,且a ≠1)的定义域为R ,即x ∈R ,所以函数y =a f (x )(a >0,且a ≠1)与函数f (x )的定义域相同.4.求函数y =a f (x )(a >0,且a ≠1)的值域的方法如下: (1)换元,令t =f (x ),并求出函数t =f (x )的定义域; (2)求t =f (x )的值域t ∈M ;(3)利用y =a t 的单调性求y =a t 在t ∈M 上的值域.一、选择题1.若函数f (x )=(a 2-3a +3)a x 是指数函数,则( ) A .a =1或a =2 B .a =1 C .a =2D .a >0且a ≠12.函数y =a x -a (a >0且a ≠1)的大致图象可能是( )3.设指数函数f (x )=a x (a >0且a ≠1),则下列等式中不正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (nx )=[f (x )]n (n ∈Q )D .[f (xy )]n =[f (x )]n [f (y )]n (n ∈N *)4.设f (x )=⎩⎪⎨⎪⎧x 2,x <0,2x ,x ≥0,若方程f (x )=a (a 为实常数)有2个根,则a 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D .[1,+∞)5.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( ) A .x 轴 B .y 轴 C .直线y =xD .直线y =-x6.已知函数f (x )=(a 2-1)x ,若x >0时总有f (x )>1,则实数a 的取值范围是( ) A .1<|a |<2 B .|a |<2 C .|a |>1D .|a |> 27.若函数f (x )=12x +1,则此函数在(-∞,+∞)上( )A .单调递减且无最小值B .单调递减且有最小值C .单调递增且无最大值D .单调递增且有最大值8.如图所示,面积为8的平行四边形OABC 的对角线AC ⊥CO ,AC 与BO 交于点E .若指数函数y =a x (a >0,且a ≠1)的图象经过点E ,B ,则a 等于( )A. 2B.3 C .2 D .3 二、填空题9.函数y =32-2x 的定义域是________.10.已知5a =0.3,0.7b =0.8,则ab 与0的大小关系是________.11.给出函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥3,f (x +1),x <3,则f (x )的值域为________.三、解答题12.求下列函数的定义域和值域.(1)y =(2)y =5-x -1.13.已知x ∈[-3,2],求f (x )=14x -12x +1的最小值与最大值.四、探究与拓展14.若函数f (x )=a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则一定有(a -1) b ____0.(填“>”“<”“=”) 15.已知函数y =131-⎪⎭⎫ ⎝⎛x(1)画出函数的图象(简图); (2)由图象指出函数的单调区间;(3)由图象指出当x 取何值时函数有最值,并求出最值.。

2.1.2指数函数及其性质教案doc

2.1.2指数函数及其性质教案doc

2.1.2指数函数及其性质一、教学目标知识与技能:理解指数函数的概念、意义和性质,会画具体指数函数的图象。

过程与方法:利用实际背景,通过自主探索,培养学生观察、分析、归纳等抽象思维能力,通过具体的函数图象归纳出指数函数的性质,体会数形结合和分类讨论思想以及从特殊到一般的抽象概括的方法 。

情感、态度与价值观:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,充分发挥学生的主观能动性,培养他们勇于提问、善于探索的数学思维品质。

认识到数学来源于生活,并且服务于生活。

二、教学重点和难点重点:指数函数的概念和性质。

难点:用数形结合的方法,从具体到一般的探索、概括指数函数的性质。

三、教学过程(一) 创设情境、导入新课老师:在本章的开始,给出了两个问题:问题一:据国务院发展研究中心2000年发表的《未来20年我国前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001--2020年,各年的GDP 可望为2000年的多少倍?问题二:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”。

根据此规律,人们获得了碳14含量P 和死亡年数t 的之间对应关系.关系,为引出指数函数的模型 xa y =(a>0,a ≠1)做准备,以利于学生体会指数函数的概念来自于生活,并且服务于生活。

(二) 师生互动、探究新知1.指数函数的定义老师:提出探究问题1:上述问题中的两个对应关系能否构成函数关系? 提出探究问题2:上述两个函数有什么样的共同特征?学生:通过思考讨论不难得出探究1的结论:能够构成函数关系。

引导学生通过观察得出两个函数的共同特征:(1)幂的形式都一样;(2)幂的底数都是一个正常数; (3)幂的指数都是一个变量。

老师:如果可以用字母a 代替其中的底数,那么上述两式就可以表示成x a y =的形式,自变量在指数位置,我们把具有这种形式的函数叫做指数函数。

新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

新人教A版必修1高中数学2.1.2-1指数函数及其性质导学案

高中数学 2.1.2-1指数函数及其性质导学案 新人教A 版必修1学习目标:1、理解指数函数的定义 2、掌握指数函数的图象和性质 学习重点:指数函数性质的应用 学习过程:一、情景体验、获得新知1、一张纸对折1次,厚度变为原来的2倍;对折2次,厚度变为原来的 倍;对折3次,厚度变为原来的2倍;对折4次,厚度变为原来的____ 倍;对折次,厚度变为原来的______倍。

2、指数函数的概念____________________ 练习:1、下列函数中是指数函数的是________ ① ② ③ ④ ⑤ ⑥2、函数是指数函数,则a=_________二、指数函数的图象与性质1、图象:在直角坐标系中作出下列函数的图象(1)(2)2、指数函数的图象和性质练习:1、 若a>1,-1<b<0,则函数的图象一定在第_____象限 2、 比较大小(1) ,(2),(3) ,一、选择题(每小题5分,共20分)1.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 22.若⎝ ⎛⎭⎪⎫142a +1<⎝ ⎛⎭⎪⎫143-2a,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞ B.()1,+∞C .(-∞,1) D.⎝⎛⎭⎪⎫-∞,123.设函数f(x)定义在实数集上,它的图象关于直线x =1对称,且当x≥1时,f(x)=3x -1,则有( )A .f(13)<f(32)<f(23)B .f(23)<f(32)<f(13)C .f(23)<f(13)<f(32)D .f(32)<f(23)<f(13)4.如果函数f(x)=(1-2a)x 在实数集R 上是减函数,那么实数a 的取值范围是( )A .(0,12)B .(12,+∞)C .(-∞,12)D .(-12,12)5.已知集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x +1<4,x∈Z,则M∩N 等于( )A .{-1,1}B .{-1}C .{0}D .{-1,0} 6.设14<⎝ ⎛⎭⎪⎫14b <⎝ ⎛⎭⎪⎫14a<1,那么( )A .a a <a b <b aB .a a <b a <a bC .a b <a a <b aD .a b <b a <a a二、填空题(每小题5分,共10分)7.已知函数f(x)=a -12x +1,若f(x)为奇函数,则a =____8.函数y =2-x 2+ax -1在区间(-∞,3)内递增,求a 的取值范围.9.设a>0,f(x)=e x a +ae x (e>1),是R 上的偶函数,则a =________.10.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.三、解答题(每小题10分,共20分)11.根据下列条件确定实数x 的取值范围:a<⎝ ⎛⎭⎪⎫1a 1-2x(a >0且a ≠1).12.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性...13.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.。

2-1-2-1 指数函数及其性质(第1课时)

2-1-2-1 指数函数及其性质(第1课时)

第22页
第二章
2.1 2.1.2 第1课时
第 6页
第二章
2.1 2.1.2 第1课时
高考调研
新课标A版 ·数学 ·必修1
1.
指数函数y=ax(a>0且a≠1),图像的高低与a的取值有何关 系?
第 7页
第二章
2.1 2.1.2 第1课时
高考调研
新课标A版 ·数学 ·必修1
答:指数函数y=ax的图像如图所示.在第一象限内,自左 向右顺时针依次递减! 如上图中底数的大小关系为0<a4<a3<1<a2<a1. 在第一象限的图像可简记为“底大图高”.
【答案】 C
第18页
第二章
2.1 2.1.2 第1课时
高考调研
新课标A版 ·数学 ·必修1
探究2
利用“入木三分”中的“底大图高”法判断.
第19页
第二章
2.1 2.1.2 第1课时
高考调研
新课标A版 ·数学 ·必修1
思考题2
如图所示,曲线C1,C2,C3,C4分别是指数函数y=ax,y= bx,y=cx,y=dx的图像,则a,b,c,d与1的大小关系是 ________________.
【答案】
2 a -3a+3=1, 由条件知,a必须满足 a>0且a≠1
⇒a=2.
C
第15页
第二章
2.1 2.1.2 第1课时
高考调研
新课标A版 ·数学 ·必修1
(2)指数函数y=f(x)的图像经过点(2,4),求f(-1)= ________.
【解析】
x
设f(x)=ax,∵过点(2,4),∴4=a2解得a=2.
1x 1 2x 1 x (4)y=2 =( ) ,(5)y=( ) =( ) . 2 2 4

人教A版必修一2.1.2.1指数函数及其性质

人教A版必修一2.1.2.1指数函数及其性质

探究要点一:对指数函数定义的理解 1.定义域是R 因为指数的概念已经扩充到有理数和无理数,所以在底数a>0的前提下,x可以是 任意实数.
3.形式化的严格性 在指数函数的定义表达式y=ax(a>0且a≠1)中,ax前的系数必须是1,自变量x在指 数的位置上,否则,不是指数函数.比如y=2ax,y=ax+1,y=ax+1等,都不是指数函数.
2.1.2 指数函数及其性质
第1课时 指数函数的图象及性质
1.指数函数的定义 函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量.
2.指数函数的图象和性质
4.函数f(x)=ax的图象经过点(2,4),则f(-3)的值是___________. 解析:由于f(x)=ax过(2,4),所以4=a2, 解得a=2或a=-2(舍去), 所以指数函数的解析式为f(x)=2x.
类型一:指数函数的概念 【例1】 下列函数中,哪些是指数函数?
规律方法:判断一个函数是否为指数函数只需判定其解析式是否符合y=ax(a>0,且 a≠1)这一结构形式,其具备的特点为:
变式训练1-1:(2010年中山高一检测)下列函数中,指数函数的个数是( ①y=-3x;②y=3x+1;③y=3x;④y=x3 (A)0 (B)1 (C)2 (D)3 解析:①中3x的系数不是1, ∴不是指数函数; ②中指数不是x而是x+1, ∴不是指数函数; ④中底数是变量, ∴不是指数函数; ③是指数函数.故选B.

类型二:指数函数的图象问题 【例2】 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b, c,d与1的大小关系是( )
(A)a<b<1<c<d (C)1<a<b<c<d

必修一2-1-2-1指数函数的图像和性质

必修一2-1-2-1指数函数的图像和性质

在R上是 增函数 .
想一想:观察同一直角坐标系中函数 y=2 ,y=3 ,y=4
1 1 x y=3 ,y=4x 的图象如图所示,能得到什么规律?
x
x
x
1 ,y=2x,
提示 (1)当 a>1 时, a 的值越大, 图象越靠近 y 轴, 递增速度越快. (2)当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减的速度越快. (3)底互为倒数时,图象关于 y 轴对称,即 y=a 与 y 轴对称.
否符合 y=ax(a>0 且 a≠1)这一形式,即底数为常数,指数只能 是 x,且 ax 的系数为 1.
课前探究学习
课堂讲练互动
活页规范训练
【变式 1】 若函数 y=(4-3a)x 为指数函数, 求实数 a 的取值范围. 解 若函数 a≠1, 所以实数 a
4 的取值范围是aa<3且a≠1 4-3a>0, x y=(4-3a) 为指数函数,则 4-3a≠1,
课前探究学习
课堂讲练互动
活页规范训练
2.指数函数的图象与性质
a>1
0<a<1
图象
定义域R;值域
(0,+∞) .
图象过定点 (0,1)
性质 当x>0时, y>1 ; 当x<0时,
,即x=0时,y=1
当x>0时, 0<y<1 ;
0<y<1
. 当x<0时, y>1 . 在R上是 减函数 .
课前探究学习 课堂讲练互动 活页规范训练
[思路探索] 先判断 a,b,c,d 与 1 的大小,再判断 a 与 b、c 与 d 的大小.

人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案

人教版高中数学必修一2-1-2《指数函数及其性质》公开课教案

课题:指数函数及其性质2.1.2 指数函数及其性质一、教学目标:1.理解指数函数的概念,掌握指数函数的图象和性质.2.通过教学,掌握研究函数性质的思路方法,如类比、从特殊到一般等,增强学生识图用图的能力.3.在指数函数的学习过程中,培养学生观察、分析、归纳等思维能力,体会分类讨论思想、数形结合等数学思想. 二、教学重点、难点:教学重点:指数函数的定义、图象和性质.教学难点:指数函数定义、图象和性质的发现总结。

三、教学过程:1.创设情境引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……以此类推,1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为y =2x ,*x N .引例2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”则截取x 次后,木棰剩余量y 与x 的函数关系式是什么?生: y 与 x 之间的关系式,可以表示为1()2x y = ,*x N ∈.问题1: 观察函数12()2xxy y ==与的解析式,这两个函数是不是我们以前学习的一次、二次、反比例函数?这两个函数的解析式有何共同特征?生:不是以前学习的一次、二次、反比例函数,他们的共同特征都是xy a =的形式. 问题2: 你能模仿以前学习的一次、二次、反比例函数的定义,给出这一新型函数的定义吗?学生回答xy a =,若回答不出,教师因势利导,然后板书课题:指数函数及其性质. 2. 指数函数的定义一般地,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R .(归纳指数函数的定义,学生可能归纳不全,如想不到限制条件0a >且1a ≠,师直接说即可.)问题3: 在指数函数的定义中,为什么规定底数0a >且1a ≠呢? 生:(1)若0a =,则当0x >时,0xa =;当0x ≤时,xa 无意义;(2)若a <0,则对x 的某些值,可使xa 无意义,如12,2a x =-=; (3)若1a =,则无论x 取何值,它总是1,没有研究的价值.师:以上同学解释得都有一定道理但不够,底数a 范围的确定,是为了保证a 在这个范围内取值时,这一类函数的定义域永远是相同的.师:请大家来看下面一组练习:判断下列函数是不是指数函数?(学生回答)1(1)3x y += (2)3x y = (3)3x y =- 3(4)y x =(5)x y x =(6)x y π= (7)(3)x y =- ()()821xy a =-1(2a >且1)a ≠ 规律总结:指数函数的特征:(1)幂的系数为1;(2)底数是一个正的不等于1常数;(3)指数为自变量x .3. 指数函数的图象师:问题4:要研究一种新函数,如何研究?生:定义—图象—性质-应用师:问题5:研究一个函数,主要研究它的哪些性质呢? 生:定义域、值域、特殊点、单调性、最值、奇偶性.师:既然我们明晰了研究函数的思路和方法,那请你画指数函数(0,1)xy a a a =>≠且的图象.生:不知道底数a ,画不出来.师:那我们先画哪个指数函数的图象呢? 生:画12()2xxy y ==与的图象.师:请大家画出以下四个指数函数的图象.()()()()112 2()2133 4()3x x x xy y y y ==== 由学生分组上黑板画图,然后师生一起订正。

指数函数及其性质教案

指数函数及其性质教案

2.1.2-1指数函数的概念教案【教学目标】1. 理解指数函数的概念,能画出具体指数函数的图像;2. 在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;3. 通过类比,回顾归纳从图象和解析式两个角度研究函数性质的方法;4. 感受数学思想方法之美,体会数学思想方法只重要 【教学重难点】教学重点:指数函数概念、图象和性质教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质 【教学过程】1、创设情境、提出问题师:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,……,按这样的规律,50号同学该准备多少粒米? 学生:回答粒数师:如果改成1号同学准备2粒米,2号同学准备4粒米,3号同学准备8粒米,4号同学准备16粒米,……,按这样的规律,51号同学该准备多少粒米? 师:大家能否估计一下50好同学准备的米有多重吗?教师公布事先估算的数据:51号同学准备的大米约有1.2亿吨师:1.2亿吨是什么概念?相当于2007~2008年度我国全年的大米产量!以上两个问题中,每位同学所需准备的米粒数用y 表示,每位同学的座号数用x 表示,y 与x 之间的关系分别是什么?学生很容易得出y=2x 和y =2x (*x N ∈)学生可能漏掉x 的范围,教师要引导学生思考具体问题中x 的取值范围。

2、新知探究(1)指数函数的定义师:在本章开头的问题中,也有一个与y =2x类似的关系式 1.073xy =(*x N ∈且x20≤)请思考以下问题①y =2x(*x N ∈)和 1.073xy =(*x N ∈且x20≤)这两个解析式有什么共同特征?②他们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?引导学生观察,两个函数中底数是常数,指数是自变量. 师:把这两个函数归为一般形式就是我们今天要学习的函数,我们把它称作指数函数.(2)让学生讨论并给出指数函数的的定义。

教学设计:2.1.2 指数函数及其性质

教学设计:2.1.2 指数函数及其性质

2.1.2 指数函数及其性质(分2个课时讲解)第1课时指数函数的概念一.教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.③体会具体到一般数学讨论方式及数形结合的思想;2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质.二.重、难点重点:指数函数的概念和性质及其应用.难点:指数函数性质的归纳,概括及其应用.三、学法与教具:①学法:观察法、讲授法及讨论法.②教具:多媒体.教学过程提出问题1.一种放射性物质不断衰减为其他物质,每经过一年剩留量约是原来的84%,求出这种物质经过x年后的剩留量y与x的关系式是_________.(y=0.84x)2.某种细胞分裂时,由一个分裂成两个,两个分裂成四个,四个分裂成十六个,依次类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是_________.(y=2x)提出问题(1)你能说出函数y=0.84x与函数y=2x的共同特征吗?(2)你是否能根据上面两个函数关系式给出一个一般性的概念?(3)为什么指数函数的概念中明确规定a>0,a≠1?(4)为什么指数函数的定义域是实数集?(5)如何根据指数函数的定义判断一个函数是否是一个指数函数?请你说出它的步骤. 活动:先让学生仔细观察,交流讨论,然后回答,教师提示点拨,及时鼓励表扬给出正确结论的学生,引导学生在不断探索中提高自己的应用知识的能力,教师巡视,个别辅导,针对学生共性的问题集中解决.问题(1)看这两个函数的共同特征,主要是看底数和自变量以及函数值. 问题(2)一般性的概念是指用字母表示不变化的量即常量. 问题(3)为了使运算有意义,同时也为了问题研究的必要性.问题(4)在(3)的规定下,我们可以把a x 看成一个幂值,一个正数的任何次幂都有意义. 问题(5)使学生回想指数函数的定义,根据指数函数的定义判断一个函数是否是一个指数函数,紧扣指数函数的形式.讨论结果:(1)对于两个解析式我们看到每给自变量x 一个值,y 都有唯一确定的值和它对应,再就是它们的自变量x 都在指数的位置上,它们的底数都大于0,但一个大于1,一个小于1,0.84与2虽然不同,但它们是两个函数关系中的常量,因为变量只有x 和y .(2)对于两个解析式y =0.84x 和y =2x ,我们把两个函数关系中的常量用一个字母a 来表示,这样我们得到指数函数的定义:一般地,函数y =a x (a >0,a ≠1)叫做指数函数,其中x 叫自变量,函数的定义域是实数集R . (3)a =0时,x >0时,a x 总为0;x ≤0时,a x 没有意义.a <0时,如a =-2,x =21,a x =(-2)21=2-显然是没有意义的.a =1时,a x 恒等于1,没有研究的必要.因此规定a >0,a ≠1.此解释只要能说明即可,不要深化.(4)因为a >0,x 可以取任意的实数,所以指数函数的定义域是实数集R .(5)判断一个函数是否是一个指数函数,一是看底数是否是一个常数,再就是看自变量是否是一个x 且在指数位置上,满足这两个条件的函数才是指数函数. 提出问题(1)前面我们学习函数的时候,根据什么思路研究函数的性质,对指数函数呢? (2)前面我们学习函数的时候,如何作函数的图象?说明它的步骤. (3)利用上面的步骤,作函数y =2x 的图象.(4)利用上面的步骤,作函数y =(21)x的图象. (5)观察上面两个函数的图象各有什么特点,再画几个类似的函数图象,看是否也有类似的特点?(6)根据上述几个函数图象的特点,你能归纳出指数函数的性质吗? (7)把y =2x 和y =(21)x的图象,放在同一坐标系中,你能发现这两个图象的关系吗? (8)你能证明上述结论吗? (9)能否用y =2x 的图象画y =(21)x的图象?请说明画法的理由. 活动:教师引导学生回顾需要研究的函数的那些性质,共同讨论研究指数函数的性质的方法,强调数形结合,强调函数图象在研究函数性质中的作用,注意从具体到一般的思想方法的运用,渗透概括能力的培养,进行课堂巡视,个别辅导,投影展示画得好的部分学生的图象,同时投影展示课本表21,22及图2.12,2.13及2.14,及时评价学生,补充学生回答中的不足.学生独立思考,提出研究指数函数性质的思路,独立画图,观察图象及表格,表述自己的发现,同学们相互交流,形成对指数函数性质的认识,推荐代表发表本组的集体的认识. 讨论结果:(1)我们研究函数时,根据图象研究函数的性质,由具体到一般,一般要考虑函数的定义域、值域、单调性、奇偶性,有时也通过画函数图象,从图象的变化情况来看函数的性质.(2)一般是列表,描点,连线,借助多媒体手段画出图象,用计算机作函数的图象. (3)列表.作图如图1图1(4)列表.作图如图2图2(5)通过观察图1,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是上升的,说明是增函数,图象位于x 轴上方,说明值域大于0.图象经过点(0,1),且y 值分布有以下特点,x <0时0<y <1,x >0时y >1.图象不关于x 轴对称,也不关于y 轴对称,说明函数既不是奇函数也不是偶函数.通过观察图2,可知图象左右延伸,无止境说明定义域是实数.图象自左至右是下降的,说明是减函数,图象位于x 轴上方,说明值域大于0.图象经过点(0,1),x <0时y >1,x >0时0<y <1.图象不关于x 轴对称,也不关于y 轴对称,说明函数既不是奇函数也不是偶函数. 可以再画下列函数的图象以作比较,y =3x ,y =6x ,y =(31)x ,y =(61)x .重新观察函数图象的特点,推广到一般的情形.(6)一般地,指数函数y =a x 在a >1和0<a <1的情况下,它的图象特征和函数性质如下表所示.一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:(7)在同一坐标系中作出y=2x和y=(2)x两个函数的图象,如图3.经过仔细研究发现,它们的图象关于y轴对称.图3(8)证明:设点p(x1,y1)是y=2x上的任意一点,它关于y轴的对称点是p1(-x1,y1),它满足方程y=(21)x=2-x,即点p1(-x1,y1)在y=(21)x的图象上,反之亦然,所以y=2x和y=(21)x两个函数的图象关于y轴对称.(9)因为y=2x和y=(21)x两个函数的图象关于y轴对称,所以可以先画其中一个函数的图象,利用轴对称的性质可以得到另一个函数的图象,同学们一定要掌握这种作图的方法,对以后的学习非常有好处.应用示例例1判断下列函数是否是一个指数函数?y =x 2,y =8x ,y =2·4x ,y =(2a -1)x (a >21,a ≠1),y =(-4)x ,y =πx ,y =6x 3+2. 活动:学生观察,小组讨论,尝试解决以上题目,学生紧扣指数函数的定义解题,因为y =x 2,y =2·4x ,y =6x 3+2都不符合y =a x 的形式,教师强调y =a x 的形式的重要性,即a 前面的系数为1,a 是一个正常数(也可是一个表示正常数的代数式),指数必须是x 的形式或通过转化后能化为x 的形式. 解:y =8x ,y =(2a -1)x (a >21,a ≠1),y =(-4)x ,y =πx 是指数函数;y =x 2,y =2·4x ,y =6x 3+2不是指数函数. 变式训练函数y =23x ,y =a x +k ,y =a -x ,y =(a 2)-2x (a >0,a ≠1)中是指数函数的有哪些? 答案:y =23x =(23)x ,y =a -x =(a 1)x ,y =(a 2)-2x =[(a2)-2]x 是指数函数.例2比较下列各题中的两个值的大小: (1)1.72.5与1.73;(2)0.8-0.1与0.8-0.2;(3)1.70.3与0.93.1.活动:学生自己思考或讨论,回忆比较数的大小的方法,结合题目实际,选择合理的,再写出(最好用实物投影仪展示写得正确的答案),比较数的大小,一是作差,看两个数差的符号,若为正,则前面的数大;二是作商,但必须是同号数,看商与1的大小,再决定两个数的大小;三是计算出每个数的值,再比较大小;四是利用图象;五是利用函数的单调性.教师在学生中巡视其他学生的解答,发现问题及时纠正并及时评价.解法一:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出y =1.7x 的图象,如图4.图4在图象上找出横坐标分别为2.5、3的点,显然,图象上横坐标为3的点在横坐标为2.5的点的上方,所以1.72.5<1.73,同理0.8-0.1<0.8-0.2,1.70.3>0.93.1.解法二:用计算器直接计算:1.72.5≈3.77,1.73≈4.91, 所以1.72.5<1.73.同理0.8-0.1<0.8-0.2,1.7.3>0.93.1.解法三:利用函数单调性,①1.72.5与1.73的底数是1.7,它们可以看成函数y =1.7x ,当x =2.5和3时的函数值;因为1.7>1,所以函数y =1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73; ②0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y =0.8x ,当x =-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y =0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;③因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1.点评:在第(3)小题中,可以用解法一、解法二解决,但解法三不适合.由于1.70.3与0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小,这里的1是中间值. 思考在上面的解法中你认为哪种方法更实用?活动:学生对上面的三种解法作比较,解题有法但无定法,我们要采取多种解法,在多种解法中选择最优解法,这要通过反复练习,强化来实现. 变式训练1.已知a =0.80.7,b =0.80.9,c =1.20.8,按大小顺序排列a ,b ,c . 答案:b <a <c (a 、b 可利用指数函数的性质比较,而c 是大于1的). 2.比较a 31与a 21的大小(a >0且a ≠0).答案:分a >1和0<a <1两种情况讨论.当0<a <1时,a 31>a 21;当a >1时,a 31<a 21.例3求下列函数的定义域和值域:(1)y =241-x ;(2)y =(32)||x -;(3)y =10112-+x x .活动:学生先思考,再回答,由于指数函数y =a x ,(a >0且a ≠1)的定义域是R ,所以这类类似指数函数的函数的定义域要借助指数函数的定义域来求,教师适时点拨和提示,求定义域,只需使指数有意义即可,转化为解不等式. 解:(1)令x -4≠0,则x ≠4,所以函数y =241-x 的定义域是{x ∈R ∈x ≠4},又因为41-x ≠0,所以241-x ≠1,即函数y =241-x 的值域是{y |y >0且y ≠1}.(2)因为-|x |≥0,所以只有x =0. 因此函数y =(32)||x -的定义域是{x ∈x =0}.而y =(32)||x -=(32)0=1,即函数y =(32)||x -的值域是{y ∈y =1}.(3)令12+x x ≥0,得12+x x ≥0,即11+-x x ≥0,解得x <-1或x ≥1, 因此函数y =10112-+x x 的定义域是{x ∈x <-1或x ≥1}.由于12+x x -1≥0,且12+x x≠2,所以112-+x x ≥0且112-+x x ≠1. 故函数y =10112-+x x的值域是{y ∈y ≥1,y ≠10}.点评:求与指数函数有关的定义域和值域时,要注意到充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性,特别是第(1)题千万不能漏掉y >0. 变式训练求下列函数的定义域和值域: (1)y =(21)22x x -;(2)y =91312--x ;(3)y =a x -1(a >0,a ≠1). 答案:(1)函数y =(21)22x x -的定义域是R ,值域是[21,+∞);(2)函数y =91312--x 的定义域是[21-,+∞),值域是[0,+∞);(3)当a >1时,定义域是{x |x ≥0},当0<a <1时,定义域是{x |x ≤0},值域是[0,+∞). 知能训练课本P 58练习 1、2. 【补充练习】1.下列关系中正确的是( )A .(21)32<(51)12<(21)31B .(21)31<(21)32<(51)32C .(51)32<(21)31<(21)32D .(51)32<(21)32<(21)31答案:D2.函数y =a x (a >0,a ≠1)对任意的实数x ,y 都有( ) A .f (xy )=f (x )·f (y ) B .f (xy )=f (x )+f (y )C.f(x+y)=f(x)·f(y) D.f(x+y)=f(x)+f(y)答案:C3.函数y=a x+5+1(a>0,a≠1)恒过定点________.答案:(-5,2)拓展提升探究一:在同一坐标系中作出函数y=2x,y=3x,y=10x的图象,比较这三个函数增长的快慢.活动:学生深刻回顾作函数图象的方法,交流作图的体会.列表、描点、连线,作出函数y=2x,y=3x,y=10x的图象,如图5.图5从表格或图象可以看出:(1)x<0时,有2x>3x>10x;(2)x>0时,有2x<3x<10x;(3)当x从0增长到10,函数y=2x的值从1增加到1 024,而函数y=3x的值从1增加到59 049.这说明x>0时y=3x比y=2x的函数值增长得快.同理y=10x比y=3x的函数值增长得快.因此得:一般地,a>b>1时,(1)x<0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x>0时,有a x>b x>1;(4)指数函数的底数越大,x>0时其函数值增长就越快.探究二:分别画出底数为0.2、0.3、0.5的指数函数的图象(图6),对照底数为2、3、5的指数函数的图象,研究指数函数y=a x(0<a<1)中a对函数的图象变化的影响.图5由此得:一般地,0<a<b<1时,(1)x>0时,有a x<b x<1;(2)x=0时,有a x=b x=1;(3)x<0时,有a x>b x>1;(4)指数函数的底数越小,x>0时,其函数值减少就越快.课堂小结1.指数函数的定义.2.指数函数的图象和性质.3.利用函数的图象说出函数的性质,即数形结合的思想(方法),它是一种非常重要的数学思想和研究方法.4.利用指数函数的单调性比较几个数的大小,特别是中间变量法.作业课本P59习题2.1 A组5、6、8、10.第2课时指数函数的应用一.教学目标:1.知识与技能①进一步熟练掌握指数函数的概念、图象、性质;②会求指数形式的函数定义域、值域、最值,以及能判断与证明单调性、奇偶性;③能够利用指数函数的图象和性质比较数的大小,解不等式.2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理.②培养学生观察问题,分析问题的能力.3.过程与方法能够解决指数函数有关的应用问题.二.重、难点重点:指数函数的概念和性质及其应用.难点:能够解决指数函数有关的应用问题.三、学法与教具:①学法:观察法、讲授法及讨论法.②教具:多媒体.教学过程1、复习指数函数的图象和性质提出问题(1)指数函数有哪些性质?(2)利用单调性的定义证明函数单调性的步骤有哪些?(3)对复合函数,如何证明函数的单调性?(4)如何判断函数的奇偶性,有哪些方法?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容.讨论结果:(1)指数函数的图象和性质一般地,指数函数y=a x在底数a>1及0<a<1这两种情况下的图象和性质如下表所示:(4)x >0时,y >1;x <0时,0<y <1(4)x >0时,0<y <1;x <0时,y >1 (5)在R 上是增函数(5)在R 上是减函数(2)依据函数单调性的定义证明函数单调性的步骤是:①取值.即设x 1、x 2是该区间内的任意两个值且x 1<x 2. ②作差变形.即求f (x 2)-f (x 1),通过因式分解、配方、有理化等方法,向有利于判断差的符号的方向变形.③定号.根据给定的区间和x 2-x 1的符号确定f (x 2)-f (x 1)的符号,当符号不确定时,可以进行分类讨论.④判断.根据单调性定义作出结论.(3)对于复合函数y =f (g (x ))可以总结为:当函数f (x )和g (x )的单调性相同时,复合函数y =f (g (x ))是增函数;当函数f (x )和g (x )的单调性相异即不同时,复合函数y =f (g (x ))是减函数;又简称为口诀“同增异减”.(4)判断函数的奇偶性:一是利用定义法,即首先是定义域关于原点对称,再次是考察式子f (x )与f (-x )的关系,最后确定函数的奇偶性;二是作出函数图象或从已知图象观察,若图象关于原点或y 轴对称,则函数具有奇偶性.2、例题讲解例1:(P 66例7)比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )0.10.8-与0.20.8-( 3 ) 1.70.3 与 0.93.1解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出 1.7xy =的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标1.7x y =为2.5的点的上方,所以 2.531.7 1.7<.解法2:用计算器直接计算: 2.51.7 3.77≈ 31.7 4.91≈所以, 2.531.7 1.7<解法3:由函数的单调性考虑因为指数函数 1.7x y =在R 上是增函数,且2.5<3,所以, 2.531.7 1.7< 仿照以上方法可以解决第(2)小题 .注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .思考:1、已知0.70.90.80.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c .2. 比较1132a a 与的大小(a >0且a ≠0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用. 例2(P 67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿经过1年 人口约为13(1+1%)亿经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿经过3年 人口约为13(1+1%)2(1+1%)=13(1+1%)3亿经过x 年 人口约为13(1+1%)x 亿经过20年 人口约为13(1+1%)20亿解:设今后人口年平均增长率为1%,经过x 年后,我国人口数为y 亿,则 13(11%)x y =+当x =20时,2013(11%)16()y =+≈亿答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N ,平均增长率为P ,则对于经过时间x 后总量(1),(1)(x x x y N p y N p y ka K R =+=+=∈像等形如,a >0且a ≠1)的函数称为指数型函数 .思考:P 68探究:(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .(2)如果年平均增长率保持在2%,利用计算器2020~2100年,每隔5年相应的人口数 .(3)你看到我国人口数的增长呈现什么趋势?(4)如何看待计划生育政策?例3设a >0,f (x )=x x ea a e +在R 上满足f (-x )=f (x ). (1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数.活动:学生先思考或讨论,如果有困难,教师提示,引导.(1)求单独一个字母的值,一般是转化为方程,利用f (-x )=f (x )可建立方程.(2)证明增减性一般用定义法,回忆定义法证明增减性的步骤,规范书写的格式.(1)解:依题意,对一切x ∈R 有f (-x )=f (x )成立,即x ae1+ae x =x x e a a e +. 所以)1)(1(x x ee a a --=0对一切x ∈R 成立.由此可得a a 1-=0,即a 2=1. 又因为a >0,所以a =1.(2)证明:设0<x 1<x 2,f (x 1)-f (x 2)=212111x x x x e e e e -+-=)11)((2121--+x x x x e e e =)1(121--x x x e e ·2121)1(x x x x e e ++-. 由x 1>0,x 2>0,x 2-x 1>0,得x 2+x 1>0,12x x e ->0,112x x e +-<0,所以f (x 1)-f (x 2)<0,即f (x )在(0,+∞)上是增函数.点评:在已知等式f (-x )=f (x )成立的条件下,对应系数相等,求出a ,也可用特殊值求解.证明函数的单调性,严格按定义写出步骤,判断过程尽量明显直观.知能训练求函数y =(21)|1+2x |+|x -2|的单调区间.活动:教师提示,因为指数含有两个绝对值,要去绝对值,要分段讨论,同时注意底数的大小,分析出指数的单调区间,再确定函数的单调区间,利用复合函数的单调性学生思考讨论,然后解答.解:由题意可知2与21-是区间的分界点. 当x <21-时,因为y =(21)-1-2x -x +2=(21)1-3x =23x -1=21•8x , 所以此时函数为增函数. 当21-≤x <2时,因为y =(21)1+2x -x +2=(21)3+x =2-3-x =81•(21)x , 所以此时函数为减函数. 当x ≥2时,因为y =(21)1+2x +x -2=(21)3x -1=21-3x =2•(81)x , 所以此时函数为减函数.当x 1∈[21-,2),x 2∈[2,+∞)时,因为2•(81)x 2-81•(21)x 1=12222233x x •-•-- =1233122x x ----,又因为1-3x 2-(-3-x 1)=4-3x 2+x 1=4+x 1-3x 2<0,所以1-3x 2<-3-x 1,即2•(81)x 2<81•(21)x 1. 所以此时函数为减函数. 综上所述,函数f (x )在(-∞,21-]上单调递增,在[21-,+∞)上单调递减. 拓展提升设m <1,f (x )=244+x x,若0<a <1,试求: (1)f (a )+f (1-a )的值; (2))10011000()10013()10012()10011(f f f f ++++ 的值. 活动:学生思考,观察,教师提示学生注意式子的特点,做这种题目,一定要有预见性,即第(2)问要用到第(1)问的结果,联系函数的知识解决.解:(1)f (a )+f (1-a )=24424411+++--a a a a =24444244+++a a a a =aa a 4244244•+++=a a a 422244+++=2424++a a =1. (2))10011000()10013()10012()10011(f f f f ++++ =[)]1001501()1001500([)]1001999()10002([)]10011000()10001([f f f f f f ++++++ =500×1=500.点评:第(2)问是第(1)问的继续,第(1)问是第(2)问的基础,两个问号是衔接的,利用前一个问号解决后一个问号是我们经常遇到的情形,要注意问号与问号之间的联系.课堂小结本节课复习了指数函数的性质,借助指数函数的性质的运用,我们对函数的单调性和奇偶性又进行了复习巩固,利用单调性和奇偶性解决了一些问题,对常考的函数图象的变换进行了学习,要高度重视,在不断学习中升华提高.作业:P 69 A 组第 7 ,8 题 P 70 B 组 第 1,4题。

必修1教案2.1.2指数函数及其性质(一)

必修1教案2.1.2指数函数及其性质(一)

2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。

高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1

高中数学 2.1.2.1指数函数的定义与简单性质课件 新人教A版必修1

1
32
[走出误区] 易错点⊳忽略分类讨论致求指数型函数值域出错 [典例] [2013·赤壁高一检测]若函数f(x)=ax-1(a>0且a≠1)的定义域和值域都是[0,2],求实数a的值.
a0-1=0, [错解档案] 由题意可知a2-1=2, 解得a= 3.
[误区警示] 虽然结果正确,但解题过程缺少步骤,没有分类讨论的意识.实际上在不知底数a的取 值的情况下,要对a的取值分a>1和0<a<1两种情况讨论.
由指数函数的性质知,y=(13) x-2≤(13)0=1, 且y>0,故此函数的值域为(0,1].
1
31
[规律小结] 1.指数函数的定义 理解指数函数的定义,需注意的几个问题:
(1)因为a>0,x是任意一个实数时,ax是一个确定的实数,所以函数的定义域为实数集R;且ax>0,所 以函数的值域是(0,+∞).
1.底数a与1的大小关系决定了指数函数图象的“升降”;当a>1时,指数函数的图象“上升”;当 0<a<1时,指数函数的图象“下降”.
2.底数的大小决定了图象相对位置的高低:不论是a>1,还是0<a<1,在第一象限内底数越大,函数 图象越靠近y轴.
当a>b>1时, (1)若x>0,则ax>bx>1; (2)若x<0,则1>bx>ax>0. 当1>a>b>0时, (1)若x>0,则1>ax>bx>0; (2)若x<0,则bx>ax>1.
1
16
【跟踪训练1】 函数f(x)=(a2-3a+3)ax是指数函数,则有( )
A.a=1或a=2

高一数学(2.1.2-1指数函数的概念与图象)

高一数学(2.1.2-1指数函数的概念与图象)
例2 已知函数 f (x) ax (a 0且a 1) 的图象过
点(3,),求 f (0), f (1), f (3) 的值.
例3 求下列函数的定义域:
1
(1) y 5 x1 ;(2) y 2x4 .
理论迁移
例4 比较下列各题中两个值的大小 (1) 1.72.5 与1.73 ; (2) 0.8-0.1与0.8-0.2 ; (3) 1.70.3与0.93.1
例5 若指数函数y=(2a-1)x是减函数, 求实数a的取值范围.
练习: P58练习:2,3. P59习题2.1A组:5,6.
作业:《名师导航》 P32知识演练:1、2、3、4. P33达标练习:1、2、3、4
、5、6、7.
y
的图象:
1
0
x
思考3:函数图象的升降情况如何?由此说明 什么性质?
思考4:图象在y轴左、右两侧的分布情况如何 ?由此说明函数值有那些变化?
思考5:若a>b>1,则函数 y ax与 y bx 的
图象的相对位置关系如何?
y ax
y
y bx
1
0
x
知识探究(四):函数 y ax (0 a 1) 的性质
思考5:设a>0,a≠1,若am=an,则m与n的大 小关系如何?若am>an ,则m与n的大小关系 如何?
理论迁移
例1 判断下列函数是否为指数函数?
(1) y x3 ; (2) y (a2 1)x;(3) y 2x;1 x
(4) y 5x ; (5) y 32 ; (6) y 4x 1
y ax (a 1)
y
y ax (0 a 1)
y
1
0
x
1
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a rs a r r ar b
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂 次数 1次 2次 3次 4次 x次
……
y2
x
细胞 总数
2个 21
4个 22
8个 23
16个 24
2
x
问题 引入
问题2、《庄子· 天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
(1)同底不同指:利用单调性 (2)同指不同底:第一象限底大在上 (3)底指都不同:利用中间量
y ( )x 2
非奇非偶函数
底数越小,向上的方 向越靠近y轴

都是减函数
1 x y( ) 2
1 x y( ) 4 1 x y( ) 3
y 4x y 3x y 2x
ya
x
归纳
指数函数在底数 0 a 1 及 情况下的图象和性质:
a 1 这两种 a 1
y y=ax
都是增函数
非奇非偶函数
底数越大,向上的方 向越靠近y轴

1 x 1 x 1 x 用描点法来作出函数y ( ) 和 y ( 3 ) , y ( 4 ) 的图像. 2 1 x
y( ) 4 1 x y( ) 1 3
图象都在x轴上方(y >0), 向上无限伸展,向下无限 接近于x轴 x∈R 图象都经过点(0,1) f 0 1
8
7
6
1 y 2
x
5
y2
x
4
3
2
1
-6
-4
-2
2
4
6
认识
用描点法来作出函数y 2 和 y 3x , y 4 的图像.
x
x x
图象都在x轴上方(y >0), 向上无限伸展,向下无限 接近于x轴 x∈R
y4 y 3x x y2
图象都经过点(0,1) f 0 1
s
am
a
s
r s r s
(a 0, r , s R) (a 0, r , s R) (a 0, r , s R) (a 0, b 0, r R) (a 0, b 0, r R)
2 a
r
a
r
(3) (a r ) s
(4) (ab) b b r 5 ( a ) r a
3.2
1.7
0.3
0.9
3.1
3
3
2.8
2.8
2.6
2.6
2.4
2.4
2.2
2.2
2
2
1.8
fx = 1.7x
1.8
fx = 0.9x
1.6
1.6
1.4
1.4
1.2
1.2
1
1
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
-2
-1.5
-1
-0.5 -0.2
0.5
1
1.5
2
2.5
-0.5 -0.2
x
应用
(1)1.7 2.5 <
1.7
3
解: ∵函数 y 1.7 x在R上是增函数, 而指数2.5<3. ∴
1.7 2.5< 1.7 3
5 4.5 4 3.5 3
fx = 1.7x
2.5 2 1.5 1
0.5
-2
-1
1
2
3
4
5
6
-0.5
应用
0.1 0.2 ( 2) 0.8 < 0.8
解: ∵函数 y 0.8x在R上是减函数, 而指数-0.1>-0.2
x
√②
y 8
x
√ ③ y (2a 1)

1 ( a 且 a 1 ) 2

y 5
2 x 2 1
y (4)
x
yx
x
x

y 10
1 在同一直角坐标系画出 y 2 , y 的图象, 2
x
x
并思考:两个函数的图象有什么关系?
列表、描点、连线作图
填课本55页表2-1、2-2
0.1 0.2 0 . 8 0 . 8 ∴
1.8
fx = 0.8x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-1.5
-1
-0.5
0.5
1
应用
(3)1.7 0.3
0.9
3.1
解:根据指数函数的性质,得:
1.70.3 1.70 1 且 0.93.1 0.90 1
从而有
3.2
1、求下列函数的定义域:
1 x x 1
(1) y 3 (2) y 5 2、函数y=a2x-3+3恒过定点 (3/2,4) 。
3、如图是指数函数 ① ③
y a,② y b x x y c ,④ y d
x
x
B.b a 1 d c C.1 a b c d
当x 0时,a x无意义! (2)a 0时 对于x的某些数值,可使ax无意义!
1 如y (2) 在x 处无意义! 2
x
(3)a 1时 对于x R,都有ax 1! 是一个常量, 没有研究的必要!
例题
(口答)判断下列函数是不是指 数函数,为什么?

yx
2
√⑤

x
y
§2.1.2指数函数及其性质(1)
前提测评
② a a
n
①m an (a >0) 的运算中n可以是些什么数?实数
n m
m n
a
r

1 a
m n

1
n
(a 0, n, m N , n 1)
(a 0, n, m N , n 1)
③ 指数运算法则: (1) a a
的图象,则a,b,c,d的大小关系是( B ) A. a b 1 c d
D.a b 1 d c
总结:
1. 本节课学习了那些知识? (1)指数函数的定义 (2)指数函数的图象及性质 y ( 1 ) x 2 2.记住两个基本图形: y
y 2x
2
1
y=1
2
-2
-1
o1
x
y
1 y 3
x函数图象 关于y轴对称 1 y a x 与 y ( ) x a 0 且 a 1的图象 a 关于y轴对称 2.第一象限底大在上 1 0
1 y 3
x
1 y 2
x
x
课堂练习
研究
截取 次数
1次
2次
3次
4次
x次
1 x y( ) 2
木棰 剩余
1 尺 2
1 尺 4
1 尺 8
1 尺 16
1 ( )x 尺 2
提炼
1 x y2 y ( ) 2 设问1:以上两个函数有何共同特征 ?
x
(1)均为幂的形式; (2)底数是一个正的常数; (3) 自变量x在指数位置.
定义 :
一般地,函数y a x (a 0, a 1)叫做指数 函数,其中x是自变量,函数的定义域是 R。 思考:为什么规定底数a >0且a ≠1呢? x 当x>0时,a =0! (1)a 0时
(a>1)
0 a 1
y
y=ax
(0<a<1)
图 象
0
(0,1)
y=1 y=1
(0,1)
x
0
x
(1)定义域:R
性 质
(2)值域:(0,+∞) (3)过点(0,1)即x=0时,y=1
(4)在R上是减函数
(4)在R上是增函数
深入探究
你还能发现指数函数图象和底 1 数的关系吗? y
2
0.5
1
1.5
2
2.5
3
3.5
4
-0.4
-0.4
应用
比较下列各题中两个值的大小: 1.6 2.5 0.3 0.5 1.6 1.6 1 1.8 ,1.8 2 0.6 ,0.6 3 1.8 ,2.3 1 3 0.3 3.1 0.2 0.7 2 4 1.7 , 0.9 51.5 ,1.3 , 3 0.5 0.3 0.5 0.3 0.3 0.5 6 0.3 ,0.5 总结:
相关文档
最新文档