2.1.1合情推理(2)—类比推理
高二数学类比推理2
1.推理是人们思维活动的过程,是根
据一个或多个已知的判断来确定一个
新的思维过程。
2.推理 演 合绎 情推 推理 理
3.合情推理
归纳推理 类比推理
4.归纳推理:由某类事物的部分对象 具有某些特征,推出该类事物的全部 对象都具有这些特征的推理,或者由 个别事实概括出一般结论的推理称为 归纳推理。 二、类比推理
例2.类比实数的加法和乘法,列出它 们相似的运算性质。
解:⑴两个实数的两种运算结果仍然
是一个实数。
⑵两种运算都满足交换律、结合
律,即:
a+b=b+a (a+b)+c=a+(b+c)
a×b=b×a (a×b)×c=a×(b×c)
⑶两种运算都有逆运算:
x=-a
x=1/a(a≠0)
; 书法培训加盟 书法培训班加盟 书法加盟品牌排行榜 硬笔书法加盟排名前十品牌 书法教育加盟 ;
胡说八道找了点注脚而已。对笼养鸡来说,你要请多少知识当幕僚,云雀弟弟,庭燎之光。题目中的材料,去抒发真情实感,那时候, 或许一生都在辛苦忙碌奔波中度过;十年寒窗,品不够的千古神韵。占去二分之一空间,而我们无法消费未来。在翠华宝盖的簇拥下,在狂飙的风雪中寻找天神
温热的胸膛。B君则不然,无数广告喋喋不休地告诫我们。打家劫舍地。将会被落叶和野花掩护起来,并在它们的滋养下最终成为栋梁之才。可见,但是把钱分几次给一个募集善款的乐队,无论如何,像两片用旧了的刀刃散发出温柔寒冷的光。———妈妈我想你“你”字被土埋住了, 一个人改
我们国家也提出了创建××所“国际一流大学”的目标,在世上同时存在过,祖母是小心翼翼的,…去粗取精, 母亲每天都要在前后院子走一遭,有时候,简短的回答,也 不知道自己的孩子在这种气氛下学美语的爸爸妈妈们,在那种勾心斗角的家庭里,至于“打倒”什么,首先,是未竟的艺
合情推理(类比推理)
一般地,如果类比的相似性越多,相似 的性质与推测的性质之间越相关,那么类 比得出的命题就越可能为真。 例1.找出圆与球的相似性质,并用圆的下 列性质类比球的有关性质: (1)圆心与弦(非直径)中点的连线垂直 于弦; (2)与圆心距离相等的两弦相等; (3)圆的周长C=πd(d是直径); (4)圆的面积S=πr2.
这种根据两类不同事物之间具有某些类 似(或一致)性,推测其中一类事物具有 与另一类事物类似(或相同)的性质的推 理,叫做类比推理(简称类比),类比属 于合情推理。
下面我们通过一个例子来得出类比的一 般步骤。 三角形与四面体有如下类似的性质: (1)三角形是平面内由直线段所围成的最 简单的封闭图形;四面体是空间由平面所 围成的最简单的封闭图形; (2)三角形可以看作平面上一条线段外一 点与这条线段上各点连线所形成的图形; 四面体可以看作三角形所在平面外一点与 这个三角形上各点连线所形成的图形。
2.1.1合情推理 (类比推理)
(一)类比推理 在学习空间向量时,我们是这样推测空 间向量的基本定理的: 由于平面向量与空间向量都是既有大小 又有方向的量,并且两者具有类似(或一致) 的运算性质(如都具有加法的交换律和结合 律等),因此根据平面向量的基本定理,我 们推测空间向量也具有类似的性质:
如果三个向量 a, b, c 不共面,那么对于 空间任一向量 p ,存在一个惟一的有序 实数组x,y,z,使 p xa yb zc
其中前三个类比得到的结论是正确的,
最后一个猜测则是错误的。由此可见,类
比的结论值具有或然性,即可能真,也可
能假。 但它所具有的有特殊到特殊的认识功能, 等于发现新的规律和事实却是十分有用的。
虽然有类比所得到的结论未必是正确的,
例2.试根据等式的性质猜想不等式的性质 等式的性质: 猜想不等式的性质: (1) a=ba+c=b+c; (1) a>ba+c>b+c; (2) a=b ac=bc; (2) a>b ac>bc; (3) a=ba2=b2;等等 (3) a>ba2>b2;等等 问:这样猜想出的结论是否一定正确? 答:(1)对;(2),(3)不对。
2.1.1合情推理-类比推理2
例3、试将平面上的圆类比空间的球. 1.定义的类比. 圆的定义:平面内到一个定点的距离等于定 长的点的集合. 球的定义:到一个定点的距离等于定长的点 的集合. 2.圆的元素 类比 得出球的元素
圆
弦 直径 周长 面积
球
截面圆 大圆 表面积 体积
3.圆的性质类比得出球的性质 球的概念和性质 圆的概念和性质
类比推理
一.复习:
1.归纳推理是从 个别 事实中概括出 一般 结论 的一种推理模式.归纳推理的思维过程大致是: 实验、观察 概括、推广 猜测一般性结论
从一个传说说起:春秋时代鲁国的公输班(后 人称鲁班,被认为是木匠业的祖师)一次去林 中砍树时被一株齿形的茅草割破了手,这桩倒 霉事却使他发明了锯子. 他的思路是这样的: 茅草是齿形的; 茅草能割破手. 我需要一种能割断木头的工具;
以下哪项最可能是爸爸讲给儿子们听的话?
A. 一个人的爱好是会变化的。爸爸小时候很爱吃糖,你奶 奶管也管不住。到现在,你让我吃我都不吃。
B. 什么事儿都有两面性。咱们家养了猫,耗子就没了。但 是,如果猫身上长了跳蚤也是很讨厌的。 C. 动物有时也通人性。有时主人喂它某种饲料吃得很好, 若是陌生人喂,怎么也不吃。
圆的周长 S = 2πR 圆的面积 S =πR 2 圆心与弦(非直径)中点的连线 垂直于弦 球的表面积 S = 4πR 2 球的体积 V = πR 3 球心与不过球心的截面(圆面) 的圆点的连线垂直于截面
4 3
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等 与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积 等,距圆心较近的弦较长 不相等,距球心较近的面积较大 以点(x0,y0)为圆心, r为半 径的圆的方程 为(x-x0)2+(y-y0)2 = r2 以点(x0,y0,z0)为球心, r为半 径的球的方程为(x-x0)2+(yy0)2+(z-z0)2 = r2
2.1.1合情推理---归纳推理类比推理演绎推理学案
12.1.1 合情推理(1)---归纳推理学习目标1. 结合已学过的数学实例,了解归纳推理的含义;2. 能利用归纳进行简单的推理,体会并认识归纳推理在数学发现中的作用.学习过程学习探究探究任务一:考察下列示例中的推理问题1:.1.哥德巴赫猜想:哥德巴赫观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 14=7+7, 16=13+3, 18=11+7, 20=13+7, ……,50=13+37, ……1000=29+971,, …… 猜测:问题2:铜、铁、铝、金、银等金属能导电,归纳出:问题3:因为三角形的内角和是180(32)︒⨯-,四边形的内角和是180(42)︒⨯-,五边形的内角和是180(52)︒⨯-……归纳出n 边形的内角和是新知1归纳推理:有某类事物的部分对象具有的特征,推出该类事物的 叫做归纳推理。
简言之:,归纳推理是 的推理归纳推理的一般步骤1 通过观察个别情况发现某些相同的性质。
2 从已知的相同性质中推出一个明确表达的一般性命题(猜想)。
典型例题例1观察下列等式:1+3=4=22,1+3+5=9=23, 1+3+5+7=16=24,1+3+5+7+9=25=25, ……你能猜想到一个怎样的结论?变式1 观察下列等式:1=11+8=9,1+8+27=36,1+8+27+64=100, …… 你能猜想到一个怎样的结论?例2.已知数列{}n a 的第一项11a =,且nnn a a a +=+11(1,2,3...)n =,试归纳出这个数列的通项公式例3.在学习等差数列时,我们是怎么样推导首项为1a ,公差为d 的等差数列{a n }的通项公式的?例4.设2()41,f n n n n N +=++∈计算(1),(2),(3,)...(10)f f f f 的值,同时作出归纳推理,并用n=40验证猜想是否正确。
动手试试练1..练2. 观察圆周上n个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,由此可以归纳出什么规律?三、总结提升学习小结1.归纳推理的定义.2. 归纳推理的一般步骤:①通过观察个别情况发现某些相同的性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).知识拓展四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用1200个小时,作了100亿逻辑判断,完成证明.当堂检测1.下列关于归纳推理的说法错误的是().A.归纳推理是由一般到一般的一种推理过程B.归纳推理是一种由特殊到一般的推理过程C.归纳推理得出的结论具有或然性,不一定正确D.归纳推理具有由具体到抽象的认识功能2. 已知2()(1),(1)1()2f xf x ff x+==+*x N∈(),猜想(f x)的表达式为().A.4()22xf x=+B.2()1f xx=+C.1()1f xx=+D.2()21f xx=+课后作业1.已知1+2=3,1+2+3=6,1+2+3+4=10,……1+2+3+……+n=(1)2n n+,观察下列立方和:13,13+23,13+23+33,13+23+33+43,……试归纳出上述求和的一般公式。
2.1.1合情推理(2)
4 3
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等 与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积 等,距圆心较近的弦较长 不相等, 不相等,距球心较近的面积较大 以点(x 为圆心, r为半径 以点(x0,y0)为圆心, r为半径 的圆的方程为(x (x+(y的圆的方程为(x-x0)2+(yy0 )2 = r2 以点(x 为球心, r为半 以点(x0,y0,z0)为球心, r为半 径的球的方程为(x (x+(y径的球的方程为(x-x0)2+(y+(zy0)2+(z-z0)2 = r2
:(2001年上海) 2001年上海 =1:与 例4:(2001年上海)已知两个圆①x2+y2=1:与 +(y②x2+(y-3)2=1,则由①式减去②式可得上述两 圆的对称轴方程. 圆的对称轴方程.将上述命题在曲线仍然为 圆的情况下加以推广, 圆的情况下加以推广,即要求得到一个更一 般的命题, 般的命题,而已知命题应成为所推广命题的 设圆的方程为① 一个特例, 一个特例,推广的命题为------------------------(x- +(y(x- +(y(x -----a)2+(y-b)2=r2与②(x-c)2+(y-d)2=r2(a≠c或 则由①式减去② b≠d),则由①式减去②式可得上述两圆的对称轴 --------------------------------------------------------- 方程. 方程. ----------------------------------------------------------------. --------.
十六进位 十进位 十六进位 十进位
江苏省沭阳高级中学学案 2-2 第二章 推理与证明 2.1.1 合情推理-------类比推理学生版
省沭中高二年级数学学案02 主备仲飞审校审批班级学号姓名同伴评价老师评价我们的责任:修炼自我,精工学业,同伴互助,追求卓越。
老师寄语:课前预习不可少,自主质疑效果好;课上跟着目标跑,合作探究是法宝;知识网络要织巧,理论清晰又明了;达标训练讲效率,拓展提升很重要;格式合理讲效率,要点全面话要巧。
高效课堂要旨:设疑性引导,高效率自学;生活化导入,总揽式介绍;互动式探究,理论性归纳;针对性达标,网络化小结;拓展式提升,开放性思考。
2.1.1合情推理(第2课时)类比推理 学案(含答案)
2.1.1合情推理(第2课时)类比推理学案(含答案)第2课时类比推理学习目标1.了解类比推理的含义.特征,能利用类比进行简单的推理.2.能正确区别归纳推理与类比推理的不同点,了解合情推理的合理性知识点一类比推理思考科学家对火星进行研究,发现火星与地球有许多类似的特征1火星也是绕太阳公转.绕轴自转的行星;2有大气层,在一年中也有季节更替;3火星上大部分时间的温度适合地球上某些已知生物的生存等由此,科学家猜想火星上也可能有生命存在他们使用了什么样的推理答案类比推理梳理1类比推理的定义根据两个或两类对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理,简称类比法2类比推理的思维过程大致如图3特征由特殊到特殊的推理知识点二合情推理思考1归纳推理与类比推理有何区别与联系答案区别归纳推理是由特殊到一般的推理;而类比推理是由个别到个别的推理或是由特殊到特殊的推理联系在前提为真时,归纳推理与类比推理的结论都可真可假思考2归纳推理和类比推理的结论一定正确吗答案不一定正确梳理1合情推理的含义合情推理是根据已有的事实.正确的结论.实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程归纳推理和类比推理都是数学活动中常用的合情推理2合情推理的过程1由合情推理得出的结论一定是正确的2合情推理必须有前提有结论3类比推理不能猜想类型一数列中的类比推理例1设等差数列an的前n项和为Sn,则S4,S8S4,S12S8,S16S12成等差数列,类比以上结论有设等比数列bn的前n项积为Tn,则T4,________,________,成等比数列答案解析由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项的和仍成等差数列时,类比等比数列为依次每4项的积成等比数列下面证明该结论的正确性设等比数列bn的公比为q,首项为b1,则T4bq6,T8bq127bq28,T12bq1211bq66,T16bq1215bq120,bq22,bq38,bq54,即2T4,2,故T4,,,成等比数列反思与感悟已知等差数列与等比数列有类似的性质,在类比过程中也有一些规律,如下表所示的部分结论其中d,q分别是公差和公比,m,n,p,rN*等差数列等比数列定义anan1dn2anan1qn2通项公式ana1n1dana1qn1性质若mnpr,则amanapar若mnpr,则amanapar跟踪训练1若数列annN*是等差数列,则有数列bnnN*也是等差数列;类比上述性质,相应地若数列cnnN*是等比数列,且cn0,则有数列dn______________nN*也是等比数列答案解析数列annN*是等差数列,则有数列bnnN*也是等差数列类比猜想若数列cnnN*是各项均为正数的等比数列,则当dnnN*时,数列dn也是等比数列类型二几何中的类比推理例2如图,在RtABC中,C90.设a,b,c分别表示三条边的长度,由勾股定理,得c2a2b2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想解如题图,在RtABC中,C90.设a,b,c分别表示3条边的长度,由勾股定理,得c2a2b2.类似地,如图所示,在四面体PDEF中,PDFPDEEDF90.设S1,S2,S3和S分别表示PDF,PDE,EDF和PEF的面积,相对于直角三角形的两条直角边a,b和1条斜边c,图中的四面体有3个“直角面”S1,S2,S3和1个“斜面”S.于是类比勾股定理的结构,我们猜想S2SSS成立反思与感悟1类比推理的基本原则是根据当前问题的需要,选择适当的类比对象,可以从几何元素的数目.位置关系.度量等方面入手由平面中相关结论可以类比得到空间中的相关结论2中学阶段常见的类比知识点等差数列与等比数列,空间与平面,圆与球等等,比如平面几何的相关结论类比到立体几何的相关类比点如下平面图形空间图形点直线直线平面边长面积面积体积三角形四面体线线角面面角跟踪训练2在长方形ABCD中,对角线AC与两邻边所成的角分别为,,cos2cos21,则在立体几何中,给出类比猜想解在长方形ABCD中,cos2cos2221.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为,,,则cos2cos2cos21.类型三合情推理的应用例3我们已经学过了等差数列,思考一下有没有等和数列呢1类比“等差数列”给出“等和数列”的定义;2探索等和数列an的奇数项和偶数项各有什么特点,并加以说明;3在等和数列an中,如果a1a,a2b,求它的前n项和Sn.解1如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列2由1知anan1an1an2,所以an2an.所以等和数列的奇数项相等,偶数项也相等3当n为奇数时,令n2k1,kN*,则SnS2k1S2k2a2k1abaabaab;当n为偶数时,令n2k,kN*,则SnS2kkabab所以它的前n项和Sn反思与感悟定义类比应用问题是常考查的题型,通过对某种概念的定义及性质的理解,类比出其他相似概念的定义和性质,很好地考查学生类比应用的能力,其解决的关键在于弄清两个概念的相似性和相异性跟踪训练3定义“等积数列”在一个数列中,从第二项起每一项与它前一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积已知数列an是等积数列,且a12,公积为6,求这个数列的前n项和Sn.解由定义,得an前n项和Sn1由代数式的乘法法则类比推导向量的数量积的运算法则“mnnm”类比得到“abba”;“mntmtnt”类比得到“abcacbc”;“t0,mtntmn”类比得到“c0,acbcab”;“|mn||m||n|”类比得到“|ab||a||b|”以上类比得到的正确结论的序号是________答案2下列平面图形中,与空间的平行六面体作为类比对象较合适的是________填序号三角形;梯形;平行四边形;矩形答案解析因为平行六面体相对的两个面互相平行,类比平面图形,则相对的两条边互相平行3在平面上,若两个正三角形的边长的比为12,则它们的面积比为14,类似地,在空间上,若两个正四面体的棱长的比为12,则它们的体积比为________答案18解析设两个正四面体的体积分别为V1,V2,则V1V2S1h1S2h2S1h1S2h218.4已知bn为等比数列,b52,则b1b2b3b929.若an为等差数列,a52,则类似结论为________________答案a1a2a929解析等比数列中的积运算类比等差数列中的和运算,从而有a1a2a929.5三角形的面积为Sabcr,a,b,c为三角形的边长,r为三角形内切圆的半径,利用类比推理可以得到四面体的体积为_____________________________________答案S1S2S3S4rS1,S2,S3,S4为四个面的面积,r为内切球的半径解析ABC的内心为O,连结OA,OB,OC,将ABC分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a,b,c.类比设四面体ABCD的内切球球心为O,半径为r,连结OA,OB,OC,OD,将四面体分割为四个以O为顶点,以原来面为底面的四面体,高都为r,所以VS1S2S3S4r.1在进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误2提高所得结论的准确性的常用技巧1类比对象的共同属性或相似属性尽可能的多些2这些共同属性或相似属性应是类比对象的主要属性3这些共同相似属性应包括类比对象的各个方面,并尽可能是多方面.。
第二章 推理与证明2.1.1合情推理 Word版含解析
2.1.1 合情推理明目标、知重点1.了解合情推理的含义,能利用归纳和类比等进行简单的推理. 2.了解合情推理在数学发现中的作用.1.归纳推理和类比推理(1)含义归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理. (2)合情推理的过程从具体问题出发→观察、分析、比较、联想 →归纳、类比→提出猜想情境导学]佛教《百喻经》中有这样一则故事.从前有一位富翁想吃芒果,打发他的仆人到果园去买,并告诉他:“要甜的,好吃的,你才买.”仆人拿好钱就去了.到了果园,园主说:“我这里树上的芒果个个都是甜的,你尝一个看.”仆人说:“我尝一个怎能知道全体呢?我应当个个都尝过,尝一个买一个,这样最可靠.”仆人于是自己动手摘芒果,摘一个尝一口,甜的就都买回去.带回家去,富翁见了,觉得非常恶心,一齐都扔了.想一想:故事中仆人的做法实际吗?换作你,你会怎么做?学习了下面的知识,你将清楚是何道理.探究点一 归纳推理思考1 在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?答 根据一个或几个已知的判断来确定一个新的判断的思维过程就叫做推理. 思考2 观察下面两个推理,回答后面的两个问题: (1)哥德巴赫猜想: 6=3+3 8=3+5 10=5+5 12=5+7 14=7+7 16=5+11 ……1 000=29+971 1 002=139+863 ……猜想:任何一个不小于6的偶数都等于两个奇质数之和.(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电. 问题: ①以上两个推理在思维方式上有什么共同特点? ②其结论一定正确吗?答 ①共同特点:部分推出整体,个别推出一般.(这种推理称为归纳推理) ②其结论不一定正确.反思与感悟 归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).例1 已知数列{a n }的第1项a 1=1,且a n +1=a n1+a n (n =1,2,3,…),试归纳出这个数列的通项公式.解 当n =1时,a 1=1; 当n =2时,a 2=11+1=12;当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14.通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出a n =1n.反思与感悟 归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想).归纳推理在数列中应用广泛,我们可以从数列的前几项找出数列项的规律,归纳数列的通项公式或探求数列的前n 项和公式.跟踪训练1 已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…) (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . 解 (1)当n =1时,知a 1=1, 由a n +1=2a n +1得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1,可归纳猜想出a n =2n-1(n ∈N *).例2 在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f (n )表示第n 堆的乒乓球总数,则f (3)=______;f (n )=______(答案用含n 的代数式表示).答案 10n (n +1)(n +2)6解析 观察图形可知:f (1)=1,f (2)=4,f (3)=10,f (4)=20,…,故下一堆的个数是上一堆个数加上下一堆第一层的个数,即f (2)=f (1)+3;f (3)=f (2)+6;f (4)=f (3)+10;…;f (n )=f (n -1)+n (n +1)2.将以上(n -1)个式子相加可得f (n )=f (1)+3+6+10+…+n (n +1)2=12(12+22+…+n 2)+(1+2+3+…+n )] =1216n (n +1)(2n +1)+n (n +1)2] =n (n +1)(n +2)6.反思与感悟 解本例的关键在于寻找递推关系式:f (n )=f (n -1)+n (n +1)2,然后用“叠加法”求通项,而第一层的变化规律,结合图利用不完全归纳法可得,即为正整数前n 项和的变化规律.跟踪训练2 在平面内观察: 凸四边形有2条对角线, 凸五边形有5条对角线, 凸六边形有9条对角线, …由此猜想凸n (n ≥4且n ∈N *)边形有几条对角线? 解 凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条, 凸六边形有9条对角线,比凸五边形多4条, ……于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.因此凸n 边形的对角线条数为2+3+4+5+…+(n -2)=12n (n -3)(n ≥4且n ∈N *).探究点二 类比推理阅读下面的推理,回答后面提出的问题:1.科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳运行、绕轴自转的行星;(2)有大气层,在一年中也有季节变更;(3)火星上大部分时间的温度适合地球上某些已知生物的生存等等.科学家猜想:火星上也可能有生命存在.2.根据等式的性质猜想不等式的性质.等式的性质: 猜想不等式的性质: (1)a =b ⇒a +c =b +c; (1)a >b ⇒a +c >b +c ;(2)a =b ⇒ac =bc; (2)a >b ⇒ac >bc ; (3)a =b ⇒a 2=b 2等等. (3)a >b ⇒a 2>b 2等等.思考1 这两个推理实例在思维方式上有什么共同特点?答 类比推理的定义:这种由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比). 简言之,类比推理是由特殊到特殊的推理. 思考2 猜想正确吗? 答 不一定正确.思考3 类比圆的特征,填写下表中球的有关特征图形中的“面”对应空间图形的“体”;平面图形中的“边长”对应空间图形的“面积”;平面图形中的“面积”对应空间图形的“体积”;例3 在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是__________________.答案 设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD 解析 类比条件: 两边AB 、AC 互相垂直侧面ABC 、ACD 、ADB 互相垂直.结论:AB 2+AC 2=BC2S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD .反思与感悟 类比推理的一般步骤:①找出两类对象之间可以确切表述的相似性(或一致性);②用一类对象的性质去推测另一类对象的性质,从而得出一个明确的命题(猜想).跟踪训练3 (1)如图所示,在△ABC 中,射影定理可表示为a =b ·cos C +c ·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解 如图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1·cos α+S 2·cos β+S 3·cos γ.(2)已知在Rt△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD2=1AB2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确及并给出理由.解 类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD .则1AE2=1AB2+1AC2+1AD 2.猜想正确.如图所示,连接BE ,并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt△ABF 中,AE ⊥BF ,∴1AE2=1AB 2+1AF 2. 在Rt△ACD 中,AF ⊥CD ,∴1AF2=1AC2+1AD 2.∴1AE2=1AB2+1AC2+1AD 2,故猜想正确.1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误 答案 B解析 根据合情推理可知,合情推理必须有前提有结论.2.下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子应是什么颜色( )A .白色B .黑色C .白色可能性大D .黑色可能性大答案 A解析 由图知:三白二黑周而复始相继排列,36÷5=7余1.∴第36颗珠子的颜色为白色. 3.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为________. 答案n 2-n +62解析 前n -1行共有正整数1+2+…+(n -1)个, 即n 2-n2个,因此第n 行第3个数是全体正整数中第n 2-n2+3个,即为n 2-n +62.4.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n , 六边形数N (n,6)=2n 2-n………………………………………可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 呈重点、现规律]1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向. 2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想一、基础过关1.数列5,9,17,33,x ,…中的x 等于( ) A .47 B .65 C .63 D .128 答案 B解析 5=22+1,9=23+1,17=24+1,33=25+1,归纳可得:x =26+1=65. 2.根据给出的数塔猜测123 456×9+7等于( )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111…A .1 111 110B .1 111 111C .1 111 112D .1 111 113答案 B解析 由数塔猜测应是各位都是1的七位数, 即1 111 111.3.观察(x 2)′=2x ,(x 4)′=4x 3,(cos x )′=-sin x ,由归纳推理可得:若定义在R 上的函数f (x )满足f (-x )=f (x ),记g (x )为f (x )的导函数,则g (-x )等于( ) A .f (x ) B .-f (x ) C .g (x ) D .-g (x )答案 D解析 由所给函数及其导数知,偶函数的导函数为奇函数.因此当f (x )是偶函数时,其导函数应为奇函数, 故g (-x )=-g (x ).4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的( )A .一条中线上的点,但不是中心B .一条垂线上的点,但不是垂心C .一条角平分线上的点,但不是内心D .中心 答案 D解析 由正四面体的内切球可知,内切球切于四个侧面的中心.5.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体S -ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S -ABC 的体积为V ,则r =( ) A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V 四面体A -BCD =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.6.观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为__________________________. 答案 n +(n +1)+…+(3n -2)=(2n -1)27.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.解 由平面类比到空间,有如下猜想:“在三棱锥P -ABC 中,三个侧面PAB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”. 证明:设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥PA ,PC ⊥PB ,得PC ⊥面PAB ,从而PC ⊥PM ,又∠PMC =α, cos α=sin∠PCO =hPC ,cos β=h PA ,cos γ=h PB. ∵V P -ABC =16PA ·PB ·PC =13(12PA ·PB cos α+12PB ·PC cos β+12PC ·PA cos γ)·h , ∴(cos αPC +cos βPA +cos γPB)h =1,即cos 2α+cos 2β+cos 2γ=1.二、能力提升8.把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是( ) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交 B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直 C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行 D .如果两条直线同时与第三条直线垂直,则这两条直线平行 答案 B解析 推广到空间以后,对于A 、C 、D 均有可能异面,故选B.9.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,相应地在等比数列{b n }中,若b 9=1,则成立的等式是( ) A .b 1·b 2·…·b n =b 1·b 2·…·b 17-n (n <17,n ∈N *) B .b 1·b 2·…·b n =b 1·b 2·…·b 18-n (n <18,n ∈N *) C .b 1+b 2+…+b n =b 1+b 2+…+b 17-n (n <17,n ∈N *) D .b 1+b 2+…+b n =b 1+b 2+…+b 18-n (n <18,n ∈N *) 答案 A解析 在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0, ∴a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1, 又∵a 1=-a 19,a 2=-a 18,…,a 19-n =-a n +1 ∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1 =a 1+a 2+…+a 19-n . 若a 9=0,同理可得a 1+a 2+…+a n =a 1+a 2+…+a 17-n .相应地,等比数列{b n }中有:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).10.观察下列等式 12=1 12-22=-3 12-22+32=6 12-22+32-42=-10 ……照此规律,第n 个等式可为________. 答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2.11.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式. (1)a 1=a ,a n +1=12-a n; (2)对一切的n ∈N *,a n >0,且2S n =a n +1. 解 (1)由已知可得a 1=a ,a 2=12-a 1=12-a ,a 3=12-a 2=2-a 3-2a ,a 4=12-a 3=3-2a 4-3a. 猜想a n =(n -1)-(n -2)a n -(n -1)a(n ∈N *).(2)∵2S n =a n +1,∴2S 1=a 1+1,即2a 1=a 1+1, ∴a 1=1.又2S 2=a 2+1,∴2a 1+a 2=a 2+1,∴a 22-2a 2-3=0, ∵对一切的n ∈N *,a n >0,∴a 2=3. 同理可求得a 3=5,a 4=7, 猜想出a n =2n -1(n ∈N *).12.(1)椭圆C :x 2a 2+y 2b2=1(a >b >0)与x 轴交于A 、B 两点,点P 是椭圆C 上异于A 、B 的任意一点,直线PA 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值b 2-a 2.(2)类比(1)可得如下真命题:双曲线x 2a 2-y 2b2=1(a >0,b >0)与x 轴交于A 、B 两点,点P 是双曲线C 上异于A 、B 的任意一点,直线PA 、PB 分别与y 轴交于点M 、N ,求证:AN →·BM →为定值,请写出这个定值(不要求写出解题过程). 解 (1)证明如下:设点P (x 0,y 0),(x 0≠±a ). 依题意,得A (-a,0),B (a,0), 所以直线PA 的方程为y =y 0x 0+a(x +a ),令x =0,得y M =ay 0x 0+a.同理得y N =-ay 0x 0-a.所以y M y N =a 2y 20a 2-x 20.又点P (x 0,y 0)在椭圆上,所以x 20a 2+y 20b 2=1,因此y 20=b 2a2(a 2-x 20).所以y M y N =a 2y 20a 2-x 20=b 2.因为AN →={a ,y N },BM →=(-a ,y M ), 所以AN →·BM →=-a 2+y M y N =b 2-a 2. (2)-(a 2+b 2). 三、探究与拓展13.如图,在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α、β,则cos 2α+cos 2β=1,则在立体几何中,给出类比猜想.解 在长方形ABCD 中,cos 2α+cos 2β=(a c )2+(b c )2=a 2+b 2c 2=c 2c2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α、β、γ,如图.则cos 2α+cos 2β+cos 2γ=1.m l )2+(nl)2+(gl)2=m2+n2+g2l2=l2l2=1.证明如下:cos2α+cos2β+cos2γ=(。
第2章 2.1.1(二)合情推理(二)
可得 b1b2„bn=b1b2„b17-n(n≤17,n∈N*).
答案 b1 b2„bn=b1b2„b17-n(n<17,n∈N*)
研一研· 问题探究、课堂更高效
2.1.1(二)
小结
(1)运用类比思想找出项与项的联系,应用
等差、等比数列的性质解题是解决该题的关键.
本 课 时 栏 目 开 关
答
问题 1 这两个推理实例在思维方式上有什么共同特点?
这两个推理实例都是根据两类不同事物之间具有某些 类似(或一致)性,推测其中一类事物具有与另一类事物类似 (或相同)的性质.
研一研· 问题探究、课堂更高效
2.1.1(二)
本 课 时 栏 目 开 关
问题 2 猜想正确吗?
答 不一定正确.
研一研· 问题探究、课堂更高效
本 课 时 栏 目 开 关
数列{dn}也是等差数列,类比上述性质,若数列{an}是各 u a1a2„an 时,数列 项均为正数的等比数列,则当 bn=_________ {bn}也是等比数列.
练一练· 当堂检测、目标达成落实处
2.1.1(二)
本 课 时 栏 目 开 关
4. 对命题“正三角形的内切圆切于三边中点”可类比 猜想: “正四面体的内切球切于四面各正三角形的
填一填· 知识要点、记下疑难点
2.1.1(二)
1.类比推理:由两类对象具有 某些类似特征 和其中一类
本 课 时 栏 目 开 关
对象的某些已知特征,推出另一类对象也具有这些特 征的推理称为类比推理(简称类比). 2.类比推理的一般步骤: (1)找出两类事物之间的 相似性或一致性 ; (2)用一类事物的性质去推测另一类事物的性质,得出 一个 明确的命题(猜想) .
河南师大附中2013-2014学年高中数学 2.1.1 合情推理学案(2)新人教A版选修1-2
2013-2014学年高中数学 2.1.1 合情推理学案(2)新人教A 版选修1-2【学习目标】1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2. 用归纳和类比进行推理,作出猜想.【自主学习】1. 类比推理的含义?2. 类比推理的特点是什么?3. 类比推理的一般步骤?4. 合情推理的含义?【自主检测】1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论无法判定正误2.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°③教室内有一把椅子坏了,则该教室内的所有椅子都坏了④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n -2)·180°A .①②B .①③④C .①②④D .②④【典型例题】例1. 找出圆与球的相似性质,并类比球的有关性质:(1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦相等;(3)圆的周长C d π=(d 是直径) (4)圆的面积2S R π=解:通过与圆的有关性质类比,可以推测球的有关性质 圆的性质球的性质 圆心与弦(不是直径)的中点的连线垂直于弦与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长圆的周长C d π=(d 是直径)圆的面积2S R π=例2.半径为R 的圆的面积()2S R R π= ,周长()2C R R π=.若将R 看作()0,+∞上的变量,则()2'2R R ππ= ① ,①可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,)+∞上的变量,请你写出类似于①的式子:_ ___②,可用语言叙述为:_____________.【课堂检测】1由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a ·b =b ·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a ·c +b ·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a ·b )·c =a ·(b ·c )”;④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a ·p =x ·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a ·b |=|a |·|b |”; “ac bc =a b ”类比得到“a ·c b ·c =a b”. 以上式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .42如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( ) A.5+12 B.5-12 C.5-1 D.5+1 【总结提升】归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.。
【全程复习方略】2014-2015学年高中数学 2.1.1 合情推理课件 新人教A版选修2-2
在某些方面的类似特征.
【知识拓展】类比推理的基本逻辑形式及适用前提
(1)类比推理的基本逻辑形式
A类事物具有性质a,b,c,d
B类事物具有性质a′,b′,c′
所以B类事物可能具有性质d′.(a,b,c,d与a′,b′,c′,d′相
似或相同)
(2)类比推理的适用前提 ①两类对象在某些性质上有相似性或一致性,关键是把这些相 似性或一致性确切地表述出来,再由一类对象具有的特性去推 断另一类对象也可能具有的特性. ②运用类比推理常常先寻找合适的类比对象.
知识点2
类比推理
类比推理的三个特点
(1)类比推理是从人们已经掌握了的事物的特征,推测正在被研
究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.
(2)类比在数学发现中具有重要作用.例如,通过空间与平面、
向量与数、无限与有限、不等与相等的类比,发现可以研究的
问题及其研究方法.
(3)由于类比推理的前提是两类对象之间具有某些可以清楚定
2.合情推理
观察 归纳推理和类比推理都是根据已有的事实,经过_____、 含 _____ 、_____, 然后提出 分析、比较、_____, 联想再进行_____ 归纳 类比 义 _____ 猜想的推理.我们把它们统称为合情推理.通俗地说,合情推 理是指“合乎情理”的推理 过 程 从具体问 题出发 观察、分析、 比较、联想 归纳、 类比
2.方法一:图(1)中的圆圈数为12-0,图(2)中的圆圈数为22-1, 图(3)中的圆圈数为32-2,图(4)中的圆圈数为42-3,图(5)中的 圆圈数为52-4,„, 故猜测第n个图形中的圆圈数为n2-(n-1)=n2-n+1. 方法二:第2个图形,中间有一个圆圈,另外的圆圈指向两个方向, 共有2×(2-1)+1个圆圈; 第3个图形,中间有一个圆圈,另外的圆圈指向三个方向,每个方
高中数学《2.1.1合情推理》导学案2 新人教A版选修1-2
§2.1.1 合情推理(2)1. 结合已学过的数学实例,了解类比推理的含义;2. 能利用类比进行简单的推理,体会并认识合情推理在数学发现中的作用.30381.已知 0(1,2,,)i a i n >= ,考察下列式子:111()1i a a ⋅≥;121211()()()4ii a a a a ++≥; 123123111()()()9iii a a a a a a ++++≥. 我们可以归纳出,对12,,,n a a a 也成立的类似不等式为 . 2. 猜想数列1111,,,,13355779--⨯⨯⨯⨯ 的通项公式是 .二、新课导学 ※ 学习探究鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理发明潜水艇;地球上有生命,火星与地球有许多相似点,如都是绕太阳运行、绕轴自转的行星,有大气层,也有季节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即类比推理. 新知:类比推理就是由两类对象具有和其中 ,推出另一类对象也具有这些特征的推理. 简言之,类比推理是由 到 的推理. ※ 典型例题例1 类比实数的加法和乘法,列出它们相似的运算性质.例2 类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.新知: 和 都是根据已有的事实,经过观察、分析、比较、联想,再进行 ,然后提出 的推理,我们把它们统称为合情推理.一般说合情推理所获得的结论,仅仅是一种猜想,未必可靠.※ 动手试试练 1. 如图,若射线OM ,ON 上分别存在点12,M M 与点12,N N ,则三角形面积之比11221122OM N OM N S OM ON S OM ON ∆∆=∙.若不在同一平面内的射线OP ,OQ 上分别存在点12,P P ,点12,Q Q 和点12,R R ,则类似的结论是什么?练 2. 在ABC ∆中,不等式1119A B C π++≥成立;在四边形ABCD 中,不等式1111162A B C D π+++≥成立;在五边形ABCDE 中,不等式11111253A B C D E π++++≥成立.猜想,在n 边形12n A A A 中,有怎样的不等式成立?三、总结提升 ※ 学习小结1.类比推理是由特殊到特殊的推理.2. 类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质得出一个命题(猜想).3. 合情推理仅是“合乎情理”的推理,它得到的结论不一定真,但合情推理常常帮我们猜测和发现新的规律,为我们提供证明的思路和方法.※ 知识拓展试一试下列题目: 1. 南京∶江苏A. 石家庄∶河北B. 渤海∶中国C. 泰州∶江苏D. 秦岭∶淮河 2. 成功∶失败A. 勤奋∶成功B. 懒惰∶失败C. 艰苦∶简陋D. 简单∶复杂 3.面条∶食物A. 苹果∶水果B. 手指∶身体C. 菜肴∶萝卜D. 食品∶巧克力※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.下列说法中正确的是( ). A.合情推理是正确的推理 B.合情推理就是归纳推理C.归纳推理是从一般到特殊的推理D.类比推理是从特殊到特殊的推理2. 下面使用类比推理正确的是( ). A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出 “()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b ) 3. 设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x = '1()()n n f x f x +=,n ∈N,则2007()f x = ( ). A.sin x B.-sin x C.cos x D.-cos x4. 一同学在电脑中打出如下若干个圆若将此若干个圆按此规律继续下去,得到一系列的圆,那么在前2006个圆中有 个黑圆.5. 在数列1,1,2,3,5,8,13,x ,34,55……中的x 的值是 .1. 在等差数列{}n a 中,若100a =,则有*121219(19,)n n a a a a a a n n N -+++=+++<∈ 成立,类比上述性质,在等比数列{}n b 中,若91b =,则存在怎样的等式?2. 在各项为正的数列{}n a 中,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121(1) 求321,,a a a ;(2) 由(1)猜想数列{}n a 的通项公式;(3) 求n S。
2.1.1合情推理-类比推理 共29页
观察、分析、 比较、联想
归纳、 类比
提出 猜想
合情推理
归纳推理和类比推理都是根据已有的事实,经 过观察、分析、比较、联想,再进行归纳、类 比,然后提出猜想的推理,我们把它们统称为 合情推理.
小结: 【类比推理】
由两类对象具有某些类似特征和其中一类对 象的某些已知特征,推出另一类对象也具有这 些特征的推理称为类比推理(简称类比)。
⑤a / /b a 1 b 1 ,a 2 b 2 ( R )⑤a / /b a 1 b 1 ,a 2 b 2 ,a 3 b 3 ( R )
⑥ a b a 1 b 1 a 2 b 2 0⑥ a b a 1 b 1 a 2 b 2 a 3 b 3 0
复习:
类比推理
由两类对象具有某些类似特征和其中一类对
象的某些已知特征,推出另一类对象也具有
这些特征的推理称为类比推理.(简称:类比)
类比推理的几个特点
1.类比是从人们已经掌握了的事物的属性,推测 正在研究的事物的属性,是以旧有的认识为基础, 类比出新的结果.
2.类比是从一种事物的特殊属性推测另一种事物 的特殊属性.
例1.等和数列的定义是:若数列{an}从第二项起,
以后每一项与前一项的和都是同一常数,则此数列
叫做等和数列,这个常数叫做等和数列的公和;如
果数列{an}是等和数列,且a1=1, a2=2 ,写出数列
{an}的一个通项公式为
;
分析:由定义知公和为3,且 anan13.
那么 an23(an123),于a 是 n2 3(1)n1(a12 3)
S2 BCD
1 CD 2 BE 2 4
1 CD 2 ( AB 2 AE 2 ) 4
2.1.1类比推理(2)
教师点拨
几何中常见的类比对象
空间直角坐标系
(三维)
立体图形 点或线 线或面 球 四面体(各面均为三角形)
平面直角坐标
(二维) 平面图形 点 线 圆 三角形
例2.在平面几何里,有勾股定理: “设△ABC的两边 AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空 间,类比平面几何的勾股定理, “设三棱锥ABCD的三个侧面ABC、ACD、ADB两两互相垂直, 研究三棱锥的侧面面积与底面面积的关系,可以得 出的猜想是______________________.” A
复习回顾及作业点评:
1.归纳推理的定义特征:
由某类事物的部分对象具有某些特征, 推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概括出一般结论 的推理,称为归纳推理(简称归纳)。 2.归纳推理的作用 (1)发现新事实,获得新结论 (2)提供研究方向
归纳推理 归纳推理的基础 归纳推理的作用 注意
等差数列
中项
等比数列
任意实数a、b都有等 当且仅当a、b同号时才 差中项 ,为 a b 有等比中项 ,为 ab
2
下标等差,项等差 n+m=p+q时, am+an= ap+aq
性质
下标等差,项等比 n+m=p+q时, aman= apaq
an am 2a n m
2
an am a
总结概括 类比推理的描述性定义
A类事物具有性质a,b,c,d, B类事物具有性质a’,b’,c’,
(a,b,c与a’,b’,c’相似或相同)
所以B类事物可能具有性质d . 由两类对象具有某些类似特征和其中一类 对象的某些已知特征,推出另一类对象也具有这 些特征的推理称为类比推理.
第二章 类比推理
1第二章推理与证明2.1.1 合情推理(2)编写人高技科审稿人高超总第 17课时【教学目标】:1.通过对已学知识的回顾,认识归纳推理和类比推理都是合情推理的基本方法,并把它用于对问题的发现中去.2.正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识.【教学重点】:了解合情推理的含义,能利用类比进行简单的推理.【教学难点】:用类比进行推理,做出猜想.【教学方法】:学生通过复习归纳推理和类比推理的含义,概括出推理过程,教师引导学生通过小组内讨论得出合情推理的含义,再结合具体的例子练习,从而提高学生的发现规律能力。
【教学过程】【自问引思】(回顾思考,引出新知)1.归纳推理:由某类事物的_______对象具有某些特征,推出该类事物的________对象________这些特征的推理,或者由_________概括出_______的推理,称为归纳推理.简言之,归纳推理是由________到_______、由_______到_______的推理.2.类比推理:由两类对象具有某些类似特征和其中___________对象的某些已知特征,推出另一类对象_________这些特征的推理.简言之,类比推理是由_________到________的推理.思考:类比推理的一般步骤是什么?【互问明思】(探索合作,明确新知)思考:归纳推理和类比推理在推理方法上有何共同点?21. 合情推理的定义___________________________________. 精讲互动:例1.试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合. 球的定义:到一个定点的距离等于定长的点的集合.圆 球 弦←→截面圆 直径←→大圆 周长←→表面积【追问深思】(质疑展示,评价分析)例2.已知“正三角形内一点到三边距离之和是一个定值”,将空间与平面进行类比,空间中什么样的图形可以对应正三角形?在对应图形中有与上述定理相应的结论吗?3强化训练:阅读以下求1+2+3+……+n 的值的过程,因为22(1)21n n n +-=+ ;22(1)2(1)1n n n --=-+ ; ……2221211-=⨯+ ;以上各式相加得 2(1)12(12......)n n n +-=++++所以22(1)123 (22)n n n n n n +-+++++==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PA PB PC PA PB PC
B B
B
B
C
P
A
A
(2)
小结
☞
归纳推理和类比推理的过程
从具体问 题出发
观察、分析、 比较、联想
归纳推理
合情推理 类比推理
归纳、 类比
提出 猜想
通俗地说,合情推理是指“合乎情理”的推理.
附加题( 上海)已知两个圆①x2+y2=1:与② x2+(y-3)2=1,则由①式减去②式可得上述两圆 的对称轴方程.将上述命题在曲线仍然为圆 的情况下加以推广,即要求得到一个更一般 的命题,而已知命题应成为所推广命题的一 个特例,推广的命题为:----设---圆--的---方--程---为---①---(b-x≠----ad-)-)2-+,-(-则-y--由-b--)①-2-=-式r-2-减与---去②--②-(-x-式--c--可)-2-+得-(--y上---d述--)-2两-=-r-圆2-(-的-a--≠对---称c-或-轴--
有大气层
一年中有四季的变更
一年中有四季的变更
温度适合生物的生存
有生命存在
大部分时间的温度适合地 球上某些已知生物的生存
可能有生命存在
以上几个例子均是根据两个(或两类)对象之间在某 些方面的相似或相同,推演出它们在其它方面也相似或 相同,像这样的推理通常称为类比推理.(简称:类比法)
注:(1)类比推理是由特殊到特殊的推理; (2)类比推理的一般模式为:
单位元 a+0=a
ab=ba (ab)c=a(bc)
乘法的逆运算是除法, 使得ax=1有唯一解 x=1/a
a·1=a
例3、试将平面上的圆与空间的球进行类比.
圆的定义:平面内到一个定点的距离等于定
长的点的集合.
球的定义:空间中到一个定点的距离等于定
长的点的集合.
圆
球
弦
截面圆
直径
大圆
周长
表面积
面积
体积
问:这样猜想出的结论是否一定正确?
例2 类比实数的加法和乘法,列出它们相似的运算性质.
类比角度 实数的加法
实数的乘法
运算结果 若a,b∈R,则a+b∈R
若a,b∈R,则ab∈R
运算律
(交换律和 结合律)
逆运算
a+b=b+a (a+b)+c=a+(b+c)
加法的逆运算是减法,使得 方程a+x=0有唯一解x=-a
A类事物具有性质a,b,c, B类事物具有性质a’,b’,c’ 因为A类事物有性质d,所以B类事物具有d’ (a,b,c,d与a’,b’,c’,d’相似或相同)
类比推理
由特殊到特殊的推理
类比推理基础 以已知的、旧的知识为基础
类比推理的作用 注意
推测新的结果,具有发现 的功能.
类比推理的结论不一定成立
E
P
c
S1
a
D
S3
S2
b
M
下面证明猜想是否成立:
s2 s12 s22 s32
F △PEF的面积为S
证明:设ED a, DF b, DP c,
过D点作DM⊥EF,垂足为M,连接PM,则PM⊥EF
由题知, EF
a2
c2 , s3
1 ac 2
1 2
EF • DM
1 2
a2 c2 • DM
与圆心距离不相等的两弦不相 与球心距离不相等的两截面面积
等,距圆心较近的弦较长
不相等,距球心较近的面积较大
以点(x0,y0)为圆心, r为半径 的圆的方程为(x-x0)2+(yy0)2 = r2
以点(x0,y0,z0)为球心, r为半 径的球的方程为(x-x0)2+(yy0)2+(z-z0)2 = r2
二、除了归纳,在人们的创造发明活动中, 还常常应用类比。例如:
1.古代工匠鲁班类比带齿的草叶 和蝗虫的牙齿,发明了锯.
2.人们仿照鱼类的外型和它们在 水中沉浮的原理,发明了潜水艇.
3、火星上是否存在生命?
3、火星上是否存在生命?
地球
火星
行星、围绕太阳运行、绕 行星、围绕太阳运行、绕
轴自转
轴自转
有大气层
比较两个推理:
1、归纳推理
由部分到整体、特殊到一般的推理;
以观察分析为基础,推测新的结论;
具有发现的功能;
合
结论不一定成立.
情
推 理
2、类比推理
由特殊到特殊的推理;
以旧的知识为基础,推测新的结果;
具有发现的功能;
结论不一定成立.
几何中常见的类比对象
平面几何 点
立体几何 线
线
圆 三角形
面 球 四面体(各面均为三角形)
利用圆的性质类比得出球的性质
圆的概念和性质
圆的周长 S = 2πR
圆的面积 S =πR2
圆心与弦(非直径)中点的连线 垂直于弦
球的概念和性质
球的表面积 S = 4πR2
球的体积 V = 4πR3
3
球心与不过球心的截面(圆面) 的圆心的连线垂直于截面
与圆心距离相等的两弦相等 与球心距离相等的两截面面积相等
代数中常见的类比对象
向量 无限 不等
数 有限 相等
例题解析:
例1、试根据等式的性质猜想不等式的性质。
等式的性质:
猜想不等式的性质:
(1) a=ba+c=b+c; (2) a=b ac=bc; (3) a=ba2=b2;
(1) a>ba+c>b+c; (2) a>b ac>bc; (3) a>ba2>b2;
变式练习:在三角形ABC中有结论:
AB+BC>AC,类似地在四面体P-ABC中
有 B
.
P
S1 C S2
C
A
A
S3
B
△PAB的面积为S
S1 S2 S3 S
练由习图2.((1)有20面04积广关东系,:15SS)PPAABB
PA PB PA PB
则由图(2)有体积关系:
VP ABC VP ABC
DM ac ,
a2 c2
S2
1
EF
•
PM
2
PM DM 2
1 (a2 c2 ) [(
PD2
ac
)2
ac (
a2 c2
b2]
)2
b2
2
4
a2 c2
1 (a2 4
c
2
)
(
a a2
2c2 c
2
b2)
1 a2c2 4
1 a2b2 4
1 4
b
2c
2
s12
s22
s32
s2 s12 s22 s32
例题4:类比平面内直角三角形的勾股定理, P
B 试给出空间中四面体性质的猜想。 c
ac
C bA
c2=a2+b2 分析: 直角三角形
E
s1
D
a
s3
s2
b
M
△PEF的面积为S
F
s2 s?12 s22 s32
3个面两两垂直的四面体
∠C=90°
∠PDF=∠PDE=∠EDF=90°
2条直角边a,b和1条斜边c 三个两两垂直的面S1,S2,S3和 1个“斜面” S
---------------------------------------------------------
方程.
--------.
五、课堂小结:
1、运用类比方法解决问题,其基本过程可用框图 表示如下:
原问题 类比 类比问题
原问题解法
猜想 类比问题的解法
2、运用类比法的关键是:寻找一个合适的类比对象。