第五章 固体表面与界面

合集下载

第5章 气固界面

第5章 气固界面
Colloid and Surface Chemistry
第五章 气固界面
1
5.1 固体表面的特性
固体表面上的原子或分子与液体一样,受力也 是不均匀的。 固体与液体的一个重要不同点,是液体分子易 于移动,而固体分子几乎是不移动的。 液体表面——易于波动,有自动缩小的趋势,形成 光滑均匀的表面; 固体表面——很难变形,不易缩小,是不均匀的。 即使从宏观上看似乎很光滑,但从原子水平上看是 凹凸不平的。
弯曲液面上的蒸汽压 Kelvin公式
2 Vm RT ln p r
r *
p
凸液面,蒸汽压较平液面的高;凹液面,蒸汽压较平液面的低; 对于孔性固体构成,孔中液面与孔外液面的曲率不同。在 形成凹形液面的情况下,孔中液体的平衡蒸气压低于液体 的正常蒸气压。故在体系蒸气压低于正常饱和蒸气压时即 可在毛细管中发生凝结。此即所谓毛细凝结现象。
——Langmuir吸附等温式 式中a称为吸附系数,它的大小代表了固体 表面吸附气体能力的强弱程度。
32
ap q 1 ap
以q 对p 作图,得:
33
两种极限情况
1.当 p 很小或 吸附很弱时, ap <<1,q = ap, q 与 p 成线性关系。 2.当p很大或 吸附很强时, ap>>1,q =1, q 与 p无关, 吸附已铺满单分子层。
van der waals引力将气体分子吸附到表面上的。因为分子之 间也有van der waals力,故气相中的分子撞在被吸附的分子 上面时也有被吸附的可能。即吸附可以是多分子层的。这是 BET理论与Langmuir理论的主要不同点。 第一层吸附与第二层吸附,因为相互作用的对象不同, 故吸附热也不同,第二层及以后各层的吸附热接近于凝聚热。 41

武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。

2)界面:相邻两个结晶空间的交界面称为“界面”。

3)相界面:相邻相之间的交界面称为相界面。

有三类: S/S;S/V; S/L。

产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。

所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。

这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。

1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。

这是一种理论上的结构完整的二维点阵平面。

它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。

这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。

2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。

这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。

根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。

(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。

为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。

高二物理竞赛课件:固体表面及界面接触现象之表面态

高二物理竞赛课件:固体表面及界面接触现象之表面态
子的各一个价电子组成共价键。
晶体表面,晶格突然断裂,最外层的Si原子
出现未配对电子,即存在一个未饱和的键,称为
悬挂键。பைடு நூலகம்
悬挂键上的电子对应的能量状态称为表面态。
从能量高低的角度考虑,表面态的能量高于价带中的电子能量(体内配
对价键上的电子能量)低于导带中的电子能量(晶格空间的准自由电子的能
量状态),因此它的能量值必定在禁带范围内。
微分电容
其中:
() = [+ − − + () − ()൧
讨论非简并情况,满足玻尔兹曼分布,则
B
B
其中np0和pp0分别表示半导体内部热平衡电子浓度和热平衡空穴浓度。
外电场垂直作用于热
平衡P型半导体表面
层所满足的泊松方程。
B
B
电荷密度 QS 0 E0 。
• 金属和半导体的表面存在一定的电荷分布。
空间电荷区
• 空间电荷区的存在可以屏蔽外电场,使其不能深入半导体内部(空间电荷区存在
内建电场)。
由于表面层内存在电场,必然存在势能。附加了电势能后,
半导体表面层内的能带必然发生变化。下面以P型半导体为
例分析。
电子电势:
电势:
外加电场:
E ( x)
电场方向由半导体表
面指向半导体内部。
dV ( x)
dx
qV ( x)
半导体表面与体内之间的电
势差称为半导体的表面势。
空穴电势的变化
情况与电子相反。
空间电荷区出现附加的静电势能,使电子在半导体内部
和表面层的势能不相同,则相应的能带发生变化。
这种半导体表面空间电荷区
表面能带
悬挂键的密度很高

第五章_固体表面吸附(固-气界面吸附)

第五章_固体表面吸附(固-气界面吸附)
De : 一孤对粒子从无穷远至键合离子间的平衡距离 re 的结合能; r: 孤对原子中表面一原子与吸附质原子间任意的距离。 a:双原子分子的弹力系数。
③化学吸附具有选择性
如:CO在金属表面上的吸附
O C MM
OO CC MM
NO + 1/2O2 CH2=CH2 + 1/2O2
NO2 O
NO只在Pt上吸附 只用Ag作催化剂。
无选择性;吸附热与气体凝聚热相近;吸附速度快;多层吸附。
(2)相互作用势能
设 f 代表作用力,r 为粒子间距离,U(r)为粒子间相互作用势能,有:
f U (r) r

r
U(r)
f dr
永久偶极矩相互作用势能为:
U (r)
2 3
12 22
3k Tr 6
诱导偶极矩相互作用势能为:
Ui(r)
( i 2 12
使体相中某些组分在表面区产生富集的现象。 其特点为组成随表面吸附质不同而变化。
如:Ag-Pd合金,吸附CO时,体相中的Pd可通过扩散到达 表面与CO形成羰基键,从而使表面富Pd。除去CO后,表面 组成由回到原来的状态。
第二节 物理吸附和化学吸附
1、物理吸附与Lennard-Jone势能曲线
(1)物理吸附特点
S
RT
则:
p
或: bp
b(1 )
1 bp
若有两种气体存于表面而发生竞争吸附时:
则:
A
பைடு நூலகம்
bA pA 1 bA pA bB
pB
B
bB pB 1 bA pA bB
pB
如果吸附解离成两个碎片,且各占据一个吸附位置,则:
f ( ) (1 )2 f '( ) 2

固体表面与界面行为

固体表面与界面行为
第2晶界构型车小节不讲
2、晶界构型 晶界形状也由表面张力相互关系决定 多晶体结构,多晶体晶界形状 (1)固-固-固相 晶界交汇处均为固相,此时
多晶体面中,每一个晶界相交角度均为120°所有晶体断面的有 规律六角形状,晶界以120°相等,能量D趋于最稳定系统的总 界面能最小,且晶应当是平直的。
(2)固-固-气相 (3)固-固-液相
由此式得,曲面附加压力引饱和蒸气压变化曲面半径越小引起 蒸汽变化与愈大。
6-6 润湿分相分布
1、润湿 表面与界面之间形成液-固-气,固-固-液,固-固-气三种体
系,其中转为重要的是液-固-气系统 润湿:液体与固体接触,使固体表面能下降的现象。 润滑角θ :液体表面张力γLV与固—液界面张力γSL之间夹角。 γSV,γSL,γLV,分别为液-固-气、固-液,固-气之界面张力
晶界应力与热彭胀系数Δ α 温度变化原底d成正比,如热膨胀为各向同性即Δα =0,τ =0。 如产生应力则晶粒越大,应力愈大强度越差,搞热冲击性也差。
6-6弯曲表面
1、弯曲表面附加压力 表面张力的存在造成弯曲表面上产生附加压力
如右图一根毛细管向其中吹气在管端形成一半径为气泡压力 增大,气泡体积增大相应表面积增加,阻碍其体积增加的阻力 为由于扩大表面积所需总表面能为克服此表面张力环境做功为
γAγB :A、B两界面的表面能 γAB :AB之间的表面能
粘附功:剥开单位粘附面积所需作功,粘附功W大则VAB小,
两者结合粘附牢固 相似表面易于粘附,一般金属排登陆艇它们之间的吸附层且
具足够的塑性变形可出现率固粘附即为冷焊。
4、实际表面结构 硅酸盐表面由于吸附都带有硅酸基团,吸附水而成水膜。
6-5 晶界
T↑表面能V0↓介质不同,表面能数值不同

材料科学基础专业英语

材料科学基础专业英语
共格孪晶界 coherent twin boundary
晶界迁移 grain boundary migration
错配度 mismatch
驰豫 relaxation
重构 reconstruction
表面吸附 surface adsorption
表面能 surface energy
极性分子 Polar molecule
量子数 quantum number
价电子 valence electron
范德华键 van der waals bond
电子轨道 electron orbitals
点群 point group
对称要素 symmetry elements
面缺陷 interface defect
体缺陷 volume defect
位错排列 dislocation arrangement
位错线 dislocation line
刃位错 edge dislocation
螺位错 screw dislocation
混合位错 mixed dislocation
界面能 interfacial free energy
应变能 strain energy
晶体学取向关系 crystallographic orientation
惯习面 habit plane
第六章相图
相图 phase diagrams
相 phase
组分、组元component
投影图 Projection drawing
浓度三角形 Concentration triangle
冷却曲线 Cooling curve

无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面

无机材料物理化学固体表面与界面在材料科学的世界中,无机材料物理化学是一个极其重要的研究领域,特别是在固体表面与界面方面的研究。

这些研究涵盖了各种无机材料,包括金属、非金属、半导体和绝缘体等,它们的表面和界面行为对材料的性质和性能有着深远的影响。

我们来看看固体表面的物理化学。

固体表面是一个具有特殊结构和性质的相,它与相邻的介质(如气体、液体或另一种固体)相互作用。

这种相互作用会影响材料的润湿性、吸附性、反应性以及电子传输等性质。

例如,通过改变表面的粗糙度或化学活性,我们可以控制材料表面的润湿性,进而影响其与液体的相互作用。

界面在无机材料中同样扮演着重要的角色。

在无机材料中,界面可以是两种不同材料之间的接触面,也可以是同一材料不同晶面之间的接触面。

这些界面上的原子排列和电子结构会不同于体相材料,从而影响材料的物理和化学性质。

例如,石墨烯和氮化硼之间的界面可以影响电子传输和热导率。

我们还研究了固体表面和界面在光电、催化、储能等领域的应用。

这些应用需要我们对材料的表面和界面性质有深入的理解,才能实现高效的能量转化和优异的性能。

例如,在太阳能电池中,我们需要优化半导体材料的表面结构以增加光吸收和载流子分离效率;在催化剂中,我们需要理解表面结构对反应活性的影响以设计高效的催化剂。

无机材料物理化学中的固体表面与界面研究为我们提供了理解和控制材料性质的新途径。

通过深入了解材料的表面和界面性质,我们可以设计出具有优异性能的新材料,并优化其在能源、环保、信息技术等领域的应用。

在过去的几十年中,纳米科技的发展取得了令人瞩目的成就。

无机纳米材料,作为一种重要的纳米科技领域,具有许多独特的物理、化学和机械性质,因此在许多领域具有广泛的应用前景。

然而,由于其表面能高,无机纳米材料容易团聚和稳定性差,这限制了其实际应用。

为了解决这些问题,表面修饰改性成为了一种有效的手段。

通过对无机纳米材料进行表面修饰改性,可以有效地提高其稳定性、相容性和生物活性,从而进一步拓展其应用范围。

《固体表面与界面》课件

《固体表面与界面》课件
《固体表面与界面》PPT 课件
在这个课件中,我们将探讨固体表面与界面的基本概念、化学反应、能量状 态、结构和性质,以及它们对材料性能的影响。同时,我们将展望这一领域 的应用前景和研究方向。
什么是固体表面和界面
固体表面的概念
探索固体表面的特征、结构和功能。
固体界面的概念
介绍固体与其它物质交界面的特性和重要性。
1
固体交界面的结构和性质
了解固体交界面的特征、结构和性质。
2
固体界面的分类及影响因素来自介绍不同类型的固体界面及其受影响的因素。
3
固体界面对材料性能的影响
讨论固体界面对材料性能的重要影响。
应用前景和研究方向
固体表面和界面在材料科学中的重要性
展示固体表面和界面在材料科学研究和应用中的重要性。
固体表面和界面材料的应用前景
探索固体表面自由能的含义和受影响的因素。
3 表面润湿性的原理
解释表面润湿性的基本原理和影响因素。
固体表面结构和性质
固体表面结构的研究方法
介绍常用的固体表面结构研究 方法。
固体表面结构与性质的 关系
探讨固体表面结构与性质之间 的关联。
固体表面对材料性能的 影响
分析固体表面对材料性能的重 要影响。
固体界面与材料性能
固体表面化学反应
1
表面化学反应的概念
了解发生在固体表面的化学反应的基本原理。
2
表面化学反应的机理及分类
探讨不同类型的表面化学反应的机制和分类。
3
表面反应速率与反应条件的关系
分析表面反应速率与反应条件之间的关联。
固体表面的能量状态
1 固体表面的表观能
介绍固体表面的表观能概念及其重要性。
2 表面自由能的概念及影响因素

固体表面与界面

固体表面与界面

S
V
L
液体在固体表面的铺展
1
对于铺展润湿,常用铺展系数SL/S来表示体系自由能的变化,如
2
若S≥0,则ΔG≤0,液体可在固体表面自动展开。
注意:上述条件均是指在无外力作用下液体自动润湿固体表面的条件。有了这些热力学条件,即可从理论上判断一个润湿过程是否能够自发进行。但实际上却远非那么容易,上面所讨论的判断条件,均需固体的表面自由能和固一液界面自由能,而这些参数目前尚无合适的测定方法,因而定量地运用上面的判断条件是有困难的。尽管如此,这些判断条件仍为我们解决润湿问题提供了正确的思路。
01
毛细管凝结造成回潮现象:
03
工艺影响——陶瓷生坯的回潮现象
02
固体与液体接触后,体系的吉布斯自由能降低时称为润湿
润湿的定义:
润湿是一种流体从固体表面置换另一种流体的过程。最常见的润湿现象是一种液体从固体表面置换空气,如水在玻璃表面置换空气而展开。 1930年Osterhof和Bartell把润湿现象分成附着润湿、浸渍润湿和铺展润湿三种类型。
毛细管引力与曲面半径成反比而与表面张力成正比。
冬天水泥地面易冻裂与毛细管凝结水的存在有关。
04
陶瓷生坯中有很多毛细孔,易形成毛细管凝结,其蒸气压低而不易被排除,造成回潮,若不预先充分干燥,入窑将易炸裂;
05
若r < 0,P < P0,则在指定温度下环境蒸气压为P0时,该蒸气压对平面液体未达饱和,但对管内凹面液体可能已呈过饱和,此蒸气将在毛细管内凹面上凝聚成液体——毛细管凝结。
工艺意义—— 喷雾干燥法
对于液体:液滴呈凸面,r > 0,则P > P0;且r↓,P↑,意味着其蒸发速率越快。陶瓷工业中利用这一原理,开发出喷雾干燥法技术,用于将泥浆制成干粉料。

无机材料科学基础 第五章固体表面与界面

无机材料科学基础 第五章固体表面与界面

W愈大表示固液界面结合愈牢,即附着润湿愈强。
铺展润湿
cosθ= γSV - γSL γLV θ (A)
θ
(B)
0 90 180
(C)
润湿与液滴的形状 (A) 润湿, θ<90o (B) 不润湿, θ>90o (C)完全润湿, θ=0o ,液体铺开
润湿张力:F= γLV cosθ = γSV - γSL
NaCl 晶 体
图3-1 离子晶体表面的电子云变形和离子重排
说明:
1. 离子晶体MX在表面力 作用下,处于表面层的负 离子X在外侧不饱和,负 离子极化率大,通过电子 云拉向内侧正离子一方的 极化变形来降低表面能。 这一过程称为松弛,它是 瞬间完成的,接着发生离 子重排。
NaCl 晶 体
图3-1 离子晶体表面的电子云变形和离子重排
坯釉结合、陶瓷与金属的封 接等。
定义:固液接触后,体系吉布斯自由焓降低时
就称为润湿。
分类::
按润湿程度
附着润湿 铺展润湿
浸渍润湿
附着润湿 液-气界面(L-g)
固-气界面(S-g)
固体
固-液界面(S-L)
液体
附着润湿的吉布斯自由焓变化为: ΔG1 =γSL -(γLV +γSV )
附着功:W= γLV +γSV - γSL
0

LsU 0 N
(1
nis ) nib
r0 为0K时的表面能; LS 为1m2表面上的原子数; nis、nib分别表示第i个原子在晶体表面和 晶体体内最邻近的原子数; Uo 为晶格能; N 为阿佛加德罗常数。
说明: 实际表面能比理想表面能的值低,原因可能为: (1) 可能是表面层的结构与晶体内部相比发生了改变,表 面被可极化的氧离子所屏 蔽,减少了表面上的原子数。 (2) 可能是自由表面是由许多原子尺度的阶梯构成,使真 实面积比理论面积大。

物理化学界面现象知识点

物理化学界面现象知识点
X ( ) 为界面相的热力学性质。
由此,对于多相系统有:
dU
, ,
(T ( ) ds ( ) p ( ) dV ( ) i dni dAS
i
同理,有界面相时的平衡判据与平衡条件 热平衡条件:
T ( ) T ( ) T ( ) T
( ) B ( )
其中 U ( )、H ( )、A ( )、G ( ) 为界面过剩热力学能、界面 过剩焓、界面过剩亥氏函数和界面过剩吉氏函数。他们都是 广延性质。
所以 X X ( ) X ( ) X ( ) 其中X为系统总的热力学性质 X ( )、X ( ) 为 相的体热力学性质
表面张力、单位面积的表面功、单位面积的表面吉布斯 函数三者的数值 、量纲等同,但它们有不同的物理意义,是 从不同角度说明同一问题。
与液体的表面张力类似,其它界面,如固体表面、液-液界 面、 液-固界面等由于界面层分子受力不对称,也同样存在界 面张力。
(2)表面热力学公式 对一般单相多组分体系,未考虑相界面面积时:
还有一类多孔固体,如多孔硅胶、分子筛、活性炭等,也 2 有很高的比表面。如活性炭比表面可达到 1000 ~ 2000 m /g。在 处理高分散度物质时,若不考虑其界面的特殊性,将会导致错 误的结论。本章将对界面的特殊性质及现象进行讨论与分析。
界面现象本质
表面层分子与内部分子相比,它们所处的环境不同。 体相内部分子所受四周邻近相同分子的作用力是对称的,各 个方向的力彼此抵销(各向同性); 但是处在界面层的分子,一方面受到体相内相同物质分子的 作用,另一方面受到性质不同的另一相中物质分子的作用,其作 用力不能相互抵销,因此,界面层分子由于其处在一不均匀对称 的力场会显示出一些独特的性质。 对于单组分体系,这种特性主要来自于同一物质在不同相中 的密度不同;对于多组分体系,则特性来自于界面层的组成与任 一相的组成均不相同。

第五章-固体表面与界面-固体的表面及其结构--2012中南大学无机材料科学基础课件

第五章-固体表面与界面-固体的表面及其结构--2012中南大学无机材料科学基础课件
5.1 固体的表面及其结构 5.2 界面行为 5.3 粘土-水系统
5.1 固体的表面及其结构
5.1.1 固体的表面 5.1.2 固体的表面结构
5.1.1 固体的表面
1. 理想表面 2. 清洁表面
(1)台阶表面 (2)弛豫表面 (3)重构表面 3. 吸附表面 4. 固体表面能和表面张力 5. 表面偏析 6. 表面力场
对于不同结构的物质,其表面力的大小和影 响不同,因而表面结构状态也会不同。
威尔(Weyl)等学者基于结晶化学原理研 究晶体表面结构,认为晶体质点间的相互作用, 键强是影响表面结构的重要因素,提出晶体表 面双电层模型。
4. 固体界面能和界面张力
界面能:增加界面单位面积体系自由能的增量 (J/m2 )
界面张力:扩张界面单位长度所需要的力(N/m) 界面能与界面张力的单位为等因次。
(J/m2=N·m/m2=N/m)
注意:
界面能(或界面张力)<<两表面的表面能(或 表面张力)之和
两相之间总存在一定的相互作用能; 当两相化学组成或结构相近时,其相互作用能
越明显,则界面能(或界面张力)越小,形成 的界面越稳定。
5. 表面偏析 不论表面进行多么严格的清洁处理,总有
一些杂质由体内偏析到表面上来,从而使固体 表面组成与体内不同,称为表面偏析。
6. 表面力场
固体表面由于质点排列的周期重复性中断,使处于 表面边界上的质点力场对称性破坏,从而表现的剩余键 力,称为固体表面力。
固体表面吸附,就是固体表面力场和被吸引质点力 场相互作用的结果。
依性质不同,表面力可分为: (1)化学力 (2)分子引力
(1)化学力:本质上是静电力
来自表面质点的不饱和价键,并可用表面 能数值来估计,是固体表面产生化学吸附的主 要原因。

材料科学基础05-固体的表面与界面

材料科学基础05-固体的表面与界面

液-液界面
液-固界面
固-固界面
• 固-固界面是固体中的一种缺陷,有其自身的结构 、化学成分和物理化学特性。这种缺陷,从它在 物质中分布的几何特征来看,是二维的,借此区 别于其他晶体缺陷如位错和空位等。
面缺陷 (二维缺陷)
• 晶体材料中存在着许多界面,如(外)表面(surface) 与内界面(interface)等。



0.281nm
0.266nm
图10 NaCl表面层中Na+Βιβλιοθήκη 里;Cl-向外移动并形成双电层
离子极化性能愈大,双电层愈厚,从 而表面能愈低。
如:PbI2表面能最小(130尔格/厘米2 );PbF2次之(900尔格/厘米2);CaF2 最大(2500尔格/厘米2)
2、粉体表面结构
• 粉体:微细的固体微料集合体大小,表面材料工艺 中,原料加工成微细颗粒以利于成型和烧结。
固体的表面
图1 不均匀表面的示意图 • 固体表面的结构和性质在很多方面都与体内不同.晶体内
部的三维平移对称性在晶体表面消失了.把固体表面称为 晶体三维周期结构和真空之间的过渡区域。
固体的表面
• 理想表面 • 清洁表面
– (1)台阶表面 – (2)弛豫表面 – (3)重构表面
• 吸附表面
1、理想表面
• 表面存在大量的活性晶格点:由于打磨,加工表面的局部被扭 曲变形引起,这种表面常常比电解抛光或低温退火预处理后的 表面更活泼 。
• 残余应力 :机加工后,除了表面产生拜尔贝层之外,还存在着 各种残余应力,按其作用范围大小可分为宏观内应力和微观内 应力
2021/8/27
26
• 金属材料在工业环境中被污染的实际表面示意图

第五章 固液界面资料

第五章 固液界面资料

第五章固-液界面要求:掌握Young 方程和接触角;了解粘附功和内聚能,Young-Dupre公式,接触角的测定方法,接触角的滞后现象,以及固体表面的润湿过程;理解固液界面的电性质,即扩散双电层理论,包括:Gouy-Chapman理论,Debye-Hukel 对Gouy-Chapman公式的近似处理,Stern对Gouy-Chapman和Debye-Hukel 理论的发展;理解动电现象,平面双电层之间的相互作用,球状颗粒之间的相互作用;掌握新相形成,即成核理论,以及促进成核的方法。

§5.1 Young方程和接触角1、固体表面的润湿固体被某种液体润湿或不能润湿,叫亲某种液体或疏(憎)某种液体,例如:亲水性(疏油性,疏气性);亲油性(亲气性,疏水性)。

根据水对固体表面的亲、疏性大小,水滴在固体表面,会出现如图5-1所示三种情况。

三相接触周边:液滴在固体表面,会存在固液气三相接触线,将液滴在固体表面铺展平衡时的固液气三相接触线叫三相平衡接触周边。

σ和平衡接触角或接触角θ:三相平衡周边任意一点上的液气界面张力lg σ之间的夹角,叫润湿接触角θ,如图5-2所示。

液固界面张力ls接触角θ可定量描述固体被液体润湿的大小,接触角越小,润湿性越好,接触角越大,润湿性越差。

一般分下面三种情况:(1)θ< 90o 时:被润湿,润湿过程对外做功,有放热现象;(2)θ= 90o时:中等,无现象;(3)θ> 90o 时: 不被润湿,外界对系统做功,有吸热现象。

3、Young 方程如图5-2 所示,润湿周边任意一点上,当润湿达平衡时,其在水平方向上的受力合力应为零,则应有: 0cos lg =-+sg ls σθσσθσσσc o s lg +=ls sg (5-1) 上述方程即为Young 方程,它是研究固液润湿作用的基础方程。

§5.2 粘附功和内聚能设有α,β两相,其相界面张力为αβσ,如图5-3所示,在外力作用下分离为独立的α,β两相,表面张力分别为βασσ,。

第五章 气—固界面

第五章 气—固界面

(一) Langmuir理论模型 二、Langmuir 吸附等温式—单分子层吸附 1.对于化学吸附,吸附力近似化学键力,故为单 理论 分子层吸附;也包括单层的物理吸附; 2.吸附是局部的,即吸附质分子吸附在固面上的 活化中心上,这些地方具有很强的不饱和力场, 因此具有强烈的吸附气体分子以平和不饱和力场 的能力; 3.吸附热与表面覆盖率无关。按式5-11覆盖率可 S0 V 表示为:
vd k d S o
Ao p
1 2
ka =
Ao p (2πm kT)
1 2
解出覆盖率:
S0 k o (2πm kT) exp( q / kT ) θ= = Ao p S 1+ 1 k o (2πm kT) 2 exp( q / kT )
bp 或 θ= 1 + bp
bp θ= 1 + bp
V = Vm bp 1 + bp p p 1 V Vm b Vm
二、固体的表面结构
(一)固体表面的粗糙度ω 粗糙度ω定义为: ω=真实表面积/理想几何表面积 »1
表5—1 几种表面粗糙度ω 表面 ω 一次清洁玻璃球 二次清洁玻璃球 充分清洁玻璃球 银箔 腐蚀过的银箔 电抛光的钢材 1.6 2.2 5.4 5 15 1.13
(二)表面晶型的无定形化
Vm S
4.不考虑被吸附分子之间的作用力; 5. 吸附平衡是吸附与解吸间的平衡。
单位重量固体,其表面上有 S 个活性基点,其 (二)Langmuir吸附等温式 中有So个已被气体分子所占据,那么吸附速率 可表示为: va k a ( S S o ) 通过分子运动论可以给出: 解吸速率为:
一、固体表面与 第一节 液体表面比较

材料物理化学 表面与界面 习题

材料物理化学 表面与界面 习题

球状较稳定,还是在境界上呈双球冠形较为稳定?
(b)如果 β 在晶界上呈薄膜状,情况又将如何?
解:(a)若设 γ αβ 为 α-β 界面上的表面张力; γ αα 为 α -α 界面上的表面张力。 当 β 相为球冠状存在于晶界上时,如图 5-12-1 示,表面能为:
(γ

A晶


2[
2

r
2 α
β
(1

3)真实表面:它是在清洁表面上有来自体内扩散到表面的杂质和来自表面周围空 间吸附在表面上的质点所构成的表面。根据原子在基底上的吸附位置,一般可分为四种 吸附情况,即顶吸附、桥吸附、填充吸附和中心吸附等。
4、固体表面的驰豫与无机超细粉体性能之间有何关系? 解:由于固相的三维周期性在固体表面处突然中断,表面上原子产生的相对于正常
位置的上、下位移,称为表面弛豫。
材料物理化学
湖南工学院
粉体:微细的固体微料集合体,原料加工成微细颗粒以利于成型和烧结。粉体制备:反 复粉碎形成一系列新表面。而离子极化变形重排畸变有序性降低,随粒子的微细化从表 面增大,无序性增大并向纵深发展,不断影响内部结构,最后使粉体表面结构趋于无定 形化。
一种认为粉体表面层是无定形结构。一种认为粉体表面层是粒度极小的微晶结构。 所以在无机超细粉体上可以发生表面驰豫现象。
解:每 1g 石英所占体积 1/2.65=0.3774cm3/g
一粒石英所占体积
4 / 3 r 3= 4 / 3 π (10 4 ) 3 = 4 .188 10 - 12 cm 3
每克石英含粒子数
0 .3774
= 9 10 10
4 .188 10 12
1 .02 = 0 .3849 cm 3 / g

材料物理化学固体的表面与界面详解演示文稿

材料物理化学固体的表面与界面详解演示文稿
从静电力学原理得ζ电位计算公式:
σ-表面电荷密度; d-扩散层厚度; ε-分散介质介电常数。
影响因素:
a)固相表面电荷密度——σ增大:ζ升高 b)电解质浓度—— 随电解质加入,ζ出现极大值 c)吸附阳离子的影响
第十五页,共81页。
第十六页,共81页。
粘土吸附以下阳离子时, ζ电位


离子电价高,每个离子所平衡的胶核负电荷数越多,胶团 中的电位下降越快,扩散层越薄,ζ降低。
离子交换能力的表征; 主要由吸附量来决定。通常以pH=7时,吸附离子毫克当量
数/100g干粘土表示(单位:毫克当量数/百克干粘 土 );
分为阳离子交换容量和阴离子交换容量,如阳离子交换容
量代表粘土在一定pH条件下的净负电荷数;
吸附量决定于中和表面电荷所需的吸附物的量。
第二十一页,共81页。
影响因素:
第四页,共81页。
1. 粘土与水的结合
结构水——以OH-形成存在于粘土晶格中,约在400~600℃
脱去,可用红外光谱检测。
吸附水——层间结合水,约100~200℃除去,与粘土颗粒的 中 的O或OH以氢键结合的水。 牢固结合水—紧挨粘土表面,通过氢键与粘土离子结合并作 有规则定向排列,又称吸附水膜,其厚度约3~10个水分子
结论:粘土粒子板面带负电,边棱可带正或负电。
第十一页,共81页。
高岭石价键断裂使边棱带正电或负电 酸性介质中(pH<6):边棱带正电; 中性介质中(pH≈7):边棱不带电; 碱性介质中(pH>8):边棱带负电。
粘土正负电荷代数和是粘土净电荷。 由于粘土负电荷远大于正电荷,则主要 带负电荷;
粘土粒子荷电性是粘土-水系统具有 一系列胶体性质的主要原因之一。
第四十六页,共81页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离子晶体表面的电子云变形和离子重排
NaCl




注意: (1)极化主要指阴离子极化,但取决于离子极 化性能; (2)重排主要指阳离子配位数降低,负离子外 移,正离子相应内移或外移; (3)离子间距离交替缩短和变长,键强值变得 分散 ; (4)真空表面的能量仍比内部高。
可以预期,对于其它由半径大的负离子与半径小
毛细管引力与曲面半径成反比而与表面张力 成正比。



若r < 0,P < P0,则在指定温度下环境蒸气压为 P0时,该蒸气压对平面液体未达饱和,但对管内 凹面液体可能已呈过饱和,此蒸气将在毛细管内 凹面上凝聚成液体——毛细管凝结。


工艺影响——陶瓷生坯的回潮现象
毛细管凝结造成回潮现象: 陶瓷生坯中有很多毛细孔,易形成毛细管凝结, 其蒸气压低而不易被排除,造成回潮,若不预先 充分干燥,入窑将易炸裂; 冬天水泥地面易冻裂与毛细管凝结水的存在有关。
4、固体表面的几何结构
实验观测表明,固体实际表面是不规则而
粗糙的,存在着无数台阶、裂缝和凹凸不平的
峰谷。这些不同的几何状态同样会对表面性质 产生影响,其中最重要的是表面粗糙度和微裂 纹。
表面粗糙度会引起表面力场变化,进而影响其表面性质。
从色散力的本质可见,位于凹谷深处的质点,其色散力
最大,凹谷面上和平面上次之,位于峰顶处则最小;反之, 对于静电力,则位于孤立峰顶处应最大,而凹谷深处最小。 由于固体表面的不平坦结构,使表面力场变得不均匀, 其活性和其它表面性质也随之发生变化。 其次,粗糙度还直接影响到固体比表面积、内、外表面 积比值以及与之相关的属性,如强度、密度、润湿、孔隙率 和孔隙结构、透气性和浸透性等。
加。可以预料相应的表面双电层厚度将减小。
2、粉体表面结构
粉体在制备过程中,由于反复地破碎,不断形成 新的表面。表面层离子的极化变形和重排使表面晶格 畸变,有序性降低。因此,随着粒子的微细化,比表 面增大,表面结构的有序程度受到愈来愈强烈的扰乱 并不断向颗粒深部扩展,最后使粉体表面结构趋于无 定形化。
SV SL LV cos
SV SL cos LV
θ

这就是著名的Young方程。式中γSV和γLV是与液体的饱和蒸 气成平衡时的固体和液体的表面张力(或表面自由能)。
接触角(润湿角θ):液体表面与固液界面的夹角。
润湿张力(F):固气界面张力与固液界面张力的差值。
V
铺 浸 沾 展 湿
S
L
S
固体进入液体过程
4. 影响润湿的因素
a. 表面粗糙度的影响
将一液滴置于一粗糙表面,
有 或
r ( SV SL ) LV cos '
cos '
r (
SV

LV

SL
)
此即Wenzel方程,是Wenzel于1936年提出来的。式中r被称 为粗糙因子,也就是真实面积与表观面积之比。
如果将两个式子进行比较,可得
cos ' r cos
对于粗糙表面,r总是大于1。
δs.cosθ
V (a) B C D
θ
固体表面的条件。有了这些热力学条件,即可从理
论上判断一个润湿过程是否能够自发进行。但实际
上却远非那么容易,上面所讨论的判断条件,均需
固体的表面自由能和固一液界面自由能,而这些参 数目前尚无合适的测定方法,因而定量地运用上面 的判断条件是有困难的。尽管如此,这些判断条件 仍为我们解决润湿问题提供了正确的思路。
(1)液体润湿管壁:润湿角θ < 90°,则液面 成凹面,△P为负值,液面沿管壁上升——毛细 管引力; (2)液体不润湿管壁:润湿角θ > 90°,则液 面成凸面,△P为正值,液面沿管壁下降。



工艺意义——泥料可塑性及烧结收缩
由于毛细管半径很小,则由于表面张力引起 的毛细管引力可达几十kg/cm2压力,造成陶瓷泥 料可塑性,并推动陶瓷坯体烧结过程进行和形成 收缩。
(1)化学力:本质上是静电力。
当固体表面存在不饱和价键,它将吸附物质到其
表面,吸附剂可能把它的电子完全给予吸附物,使
吸附物变成负离子(如吸附于大多数金属表面上的 氧气);或吸附物把其电子完全给予吸附剂,而变 成吸附在固体表面上的正离子(如吸附在钨上的钠 蒸气)。
(2)分子引力,也称范德华(van der Walls)力,一般是 指固体表面与被吸附质点(例如气体分子)之间相互作 用力。主要来源于三种不同效应: 1)定向作用。主要发生在极性分子(离子)之间。 2)诱导作用。主要发生在极性分子与非极性分子之 间。 3)分散作用。主要发生在非极性分子之间。 对不同物质,上述三种作用并非均等的。例如对于非极 性分子,定向作用和诱导作用很小,可以忽略,主要是 分散作用。
V
γLV
θ
L S
γSL
γSV
液滴在固体表面的接触角
从上面的讨论可以看出,对同一对液体和固体,在 不同的润湿过程中,其润湿条件是不同的。对于铺展润 湿过程,θ=90°完全可作为润湿和不润湿的界限;
θ<90°,可润湿;θ>90°,则不润湿。
三种润湿的共同点是:液体将气体从固体表面挤开,使 原有的固-气(或液-气)界面消失,而代之以固-液 界面。铺展是润湿的最高标准,能铺展则必能附着和浸 渍。
§5.1 固体的表面


一、固体表面特征
1. 固体表面的不均一性 由于制备、加工条件、晶格缺陷、空位或位错造成固体 表面的不均一性。 2. 固体表面力场

固体表面上的吸引作用,是固体的表面力场和被吸 引质点的力场相互作用所产生的,这种相互作用力称为 固体表面力。 依性质不同,表面力可分为:
1)化学力 2)分子引力
若Wi≥0,则ΔG≤0,过程可自发进行。浸湿过程
与粘湿过程不同,不是所有液体和固体均可自发
发生浸湿,而只有固体的表面自由能比固一液的
界面自由能大时浸湿过程才能自发进行。
V S
L
浸湿过程
c. 铺展润湿
置一液滴于一固体表面。恒温恒压下,若此
液滴在固体表面上自动展开形成液膜,则称此
过程为铺展润湿。体系自由能的变化为
G SL LV SV
V
L
S
液体在固体表面的铺展
对于铺展润湿,常用铺展系数SL/S来表示体系自
由能的变化,如
S L / S G SV SL LV
若S≥0,则ΔG≤0,液体可在固体表面自动展开。
注意:上述条件均是指在无外力作用下液体自动润湿
二、晶体表面结构

1. 离子晶体表面结构

威尔(Weyl)等人基于结晶化学原理,研究了晶
体表面结构,认为晶体质点间的相互作用,键强
是影响表面结构的重要因素,提出了晶体的表面
双电层模型。
晶 体
表面离子受 内部离子作用电 子云变形,离子 重排,表面能减 少。表层中的离 子键向共价键过 度,晶体表层被 一层负离子所屏 蔽。
3. 接触角和 Young方程
V 将液滴(L)放在一理想平面(S)上,如果有一相是气
体,则接触角是气一液界面通过液体而与固一液界面所交的 γLV 角。1805年,Young指出,接触角的问题可当作平面固体
L 上液滴受三个界由张力的作用来处理。当三个作用力达到平 γSV γSL 衡时,应有下面关系 S
此外,粗糙度还关系到两种材料间的封接和结合界面间
的吻合和结合强度。
表面微裂纹是由于晶体缺陷或外力作用而产生。微裂纹同样
会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要。
脆性材料的理论强度约为实际强度的几百倍,正是因为存在 于固体表面的微裂纹起着应力倍增器的作用,使位于裂缝尖端的
实际应力远远大于所施加的应力。

二、 润湿与粘附
1. 润湿的定义:
固体与液体接触后,体系的吉布斯自由能降低时称
为润湿 2. 润湿的类型 润湿是一种流体从固体表面置换另一种流体的过程。 最常见的润湿现象是一种液体从固体表面置换空气,
如水在玻璃表面置换空气而展开。
1930年Osterhof和Bartell把润湿现象分成附着润 湿、浸渍润湿和铺展润湿三种类型。
基于X射线、热分析和其它物理化学方法对粉体表 面结构所作的研究测定,提出两种不同的模型。一种 认为粉体表面层是无定形结构;另一种认为粉体表面 层是粒度极小的微晶结构。
3、玻璃表面结构
表面张力的存在,使玻璃表面组成与内部显著不同 在熔体转变为玻璃体的过程中,为了保持最小表面 能,各成分将按其对表面自由能的贡献能力自发地转移 和扩散。 在玻璃成型和退火过程中,碱、氟等易挥发组分自 表面挥发损失。 因此,即使是新鲜的玻璃表面,其化学成分、结构 也会不同于内部。
葛里菲斯(Griffith)建立了著名的玻璃断裂理论,并导出了 材料实际断裂强度与微裂纹长度的关系
2 E R 式中, R为断裂强度,C为微裂纹长度, E为弹性模量,α是表面 C
自由能。
5.2 固体界面及其结构

1. 晶界 结构相同而取向不同的晶体相互接触,其接触界面称为 晶界 2. 晶界的界面能 定义:指晶体内部相同性质的相的晶粒之间的界面能量。
的正离子组成的化合物,特别是金属氧化物如Al2O3、 SiO2等也会有相应效应。而产生这种变化的程度主要取 决于离子极化性能。如:PbI2表面能最小(130尔格/ 厘米2),PbF2次之(900尔格/厘米2),CaF2最大 (2500尔格/厘米2)。这正因为Pb2+与I-都具有大的极 化性能所致。当用极化性能较小的Ca2+和F-依次置换 PbI2中的Pb2+和I-离子时,相应的表面能和硬度迅速增
第五章 固体表面与界面
相关文档
最新文档