手机射频讲解分析
05113052RDPHS手机射频基础知识
![05113052RDPHS手机射频基础知识](https://img.taocdn.com/s3/m/7ab9590c102de2bd97058869.png)
指标标称值:10mW。
2)邻道功率(Adjacent channel power) :
邻道功率是指手机工作于发射状态(Burst)下,以距离中心 频率f KHz的频率点为中心的96KHz带宽内,0.625ms内的平均 功率。其单位用nW表示。针对PHS手机,其邻道功率应在中心频 率的600KHz处,900KHz处测试。
6
3.4 锁相环路及使用器件
手机的锁相环电路为手机提供上、下变频的本振信号,其中 鉴相电路在AN6591中实现,VCO、滤波电路外加。其中一本振 频率为1650MHz~1686MHz,锁相时间为600us左右,二本振频率 固定为233.15MHz,其锁相时间为600us左右。
使用器件有:松下的VCO(ENF-VK1),maruwa的VCO (MVF-1668-27-C1433),飞利浦的高频三极管(BFR92AW), 东芝的变容管(HUV355B )。
指标要求:上升沿: ≤13us;下降沿: ≤13us。
4)载波关断泄漏功率(Carrier off time leakage power ):
载波关断泄漏功率是指在没有发射信号时,在相应的发射频 段内的功率辐射。单位用nW表示。
指标要求:≤80nW
13
4. PHS手机的射频技术指标(3)
5)发射杂散(Transmission spurious):
手机发射机工作时,在其RF频道的带内外的任何RF杂散辐射 的峰值功率电平。单位用nW或uW表示。
这些杂散辐射包括:谐波辐射、分(频)谐波辐射、寄生辐射 以及互调产物辐射等
指标要求:带内≤250nW;带外≤2.5uW。
手机射频基础知识
![手机射频基础知识](https://img.taocdn.com/s3/m/1463b935f111f18583d05ad9.png)
4
射频基础知识
射频= Radio Frequency (RF) → 无线
中波广播 短波广播 RFID 调频广播 (无线)电视 遥控模型 个人移动通信 WLAN, Bluetooth(ISM Band)
530-1700 kHz 5.9-26.1 MHz 13 MHz 88-108 MHz 54-88, 174-220 MHz 72 MHz 900MHz, 1.8, 1.9, 2 GHz 2.4-2.5GHz, 5-6GHz
DCS1800 手机发:1710~1785MHz;手机收:1805~1880MHz。
• GSM的调制方式是BT=0.3的GMSK,调制速率为 270.833千波特,0.3表示了高斯滤波器的带宽和比特率 之间的关系。 • 在GSM中,数据的比特率被选择为正好是频偏的4倍, 这可以减小频谱的扩散,增加信道的有效性。
7
传输线
• 同轴线或同轴电缆(coaxial cable) • 平行双线(twin-lead, two wire) • 微带线(microstrip)
8
波动方程和特性阻抗
9
元器件和寄生参数
– 分立无源元件的高频模型 电阻、电容和电感的阻抗在高频时往往与它们的标称值有很大的 偏差,这时寄生元件造成的,它们降低了元件的品质因数和自谐 振频率 – 自谐振频率 频率高到一定的程度,元件的阻 抗会由原来的感性变成容性或由 容性变成感性,这说明寄生效应 已经占据主导地位,元件无法再 工作。例如右图中一个电感电抗 随频率的变化。
1 复帧 = 26 TDMA帧(120ms) 0 1 24 25 0
1 复帧 = 51 TDMA帧(3060/13ms) 1 49 50
1 TDMA帧 = 8 时隙(120/26 = 4.615ms) 0 1 2 3 4 5 6 7
手机射频部分核心电路分析
![手机射频部分核心电路分析](https://img.taocdn.com/s3/m/7543380f3968011ca30091b5.png)
中频
分频器
环路滤波
鉴相器
CPU
压控震荡器
基准时钟
三 .举例说明:
• 如果要产生一个60信道的发射频率,在手机启 动发射瞬间,CPU将输出发射始能信号TX-EN 给中频,中频各组供电都满足(RE-REG SFOUT,)的情况下,在其内部的TX-VCO会产 生一个震荡频率,此频率分频后与基准频率存 在着起始频差,这个频差相对来说很大,鉴相 器输出的差拍信号就很高,但这个信号很容易 被环路滤波电路抑制,所以加到VCO输入端的 电压很小,控制建立不起来;当频差减小到一 定值时,鉴相器输出的误差电压是上下不对称 的差频波,其平均分量(直流电平)将不为零, 通过环路滤波电路后,对VCO进行调节,使它 向所需频率靠拢,直至等于所需频率902M。 (鉴相器内TX-CP的产生变化过程如下图):
四 。维修实例
• 1 。故障表现:一台V3开机能打电话, 但放一会儿(大约30秒种左右)就没信 号了。重新开机故障依旧,也是开始能 上网能打电话,但一会就没信号了。
• 2 。分析思路:开机时能打电话,说明射 频部分没什么大问题,可能某个元器件 变值了,也可能是某个控制信号不稳定 引起的。现在最好是将手机设在接收发 射状态测其波形,且维持一段时间,看 有什么发生变化了。
输出
分频器 f/n
一 .PLL的基本工作原理
• PLL在开机,换频或由开环到闭环时处与失 锁状态,在这个状态中,VCO(压控震荡器) 将产生一个频率,这个频率分频后和基准频率 会有一个频差,它在鉴相器PD内与基准频率完 成相位比较,鉴相器会输出一个上下不对称的 稳定差拍波,其平均分量为一个衡定直流电压。 此电压经LPF(低通滤波电路),滤除掉干扰 成分和高频成分后得到一个纯净的直流控制电 压,这个电压再去控制VCO,使VCO的平均频 率向所需频率靠拢,最终输出一个精准稳定的 所需要的频率。
手机射频电路分析与维修演示文稿
![手机射频电路分析与维修演示文稿](https://img.taocdn.com/s3/m/6b19063030126edb6f1aff00bed5b9f3f90f7242.png)
4、中频放大器
1)中频放大电路的主要任务是放大中频信号,手机的灵 敏度、选择性等技术指标主要取决于中频放大器。
2)手机中频放大器大多集成在射频IC中。 3)中频放大器的工作电源要求很高,一般都是专用供电。
第十五页,共107页。
5、解调电路
接收电路从空中接收到载有低频信息的高频已调波(电磁 波),不能直接送入人耳,因为人耳听不到高频,所以要 将低频信号通过非线性电路(混频器)从高频载波提取下 来,还原出来,才能将声音送入人耳,将文字、图像送入 人眼。这种还原的过程叫解调。 解调是调制的逆过程。多数手机往往都是对零中频进行正 交解调。经解调后,得到接收基带信号(RXI/Q信号),该 信号的(GSM手机)中心频率为67.707kHz(CDMA手机 为615kHz)。其中RXI信号为同相支路信号,RXQ信号为 正交支路信号,它们之间的相位相差90,所以称为正交。
4.1.1 接收电路的形式
手机的超外差式变频接收机有3种基本形式: 1、超外差一次变频接收电路 2、超外差二次变频接收电路 3、直接变频线性接收电路
第四页,共107页。
1、超外差一次变频接收电路
第五页,共107页。
超外差一次变频接收电路工作原理
天线感应到的无线蜂窝信号(电磁波),经天线电路和 射频滤波器进入接收电路,接收到的信号首先由低噪声放 大器进行放大,放大后的信号再经射频滤波器后,被送到 混频器。在混频器中,射频信号与射频VCO信号进行混频 (差频射频信号-射频VCO信号),得到接收中频信号, 中频信号经中频放大后,在中频处理模块内进行RXI/Q解 调,解调所用的参考信号来自接收中频VCO。该信号首先 在中频处理电路中被分频(/N),然后与接收中频信号进 行 混 频 ( 差 频 中 频 信 号 - 中 频 VCO 分 频 信 号 ) , 得 到 67.707kHz的RXI/Q信号(基带信号)。
手机射频介绍(理论实操)
![手机射频介绍(理论实操)](https://img.taocdn.com/s3/m/afe28cd50b4c2e3f562763e5.png)
使用频率: GSM900,DCS1800,PCS1900.
✓GSM: Group Special Mobile---中国 ✓DCS: Data Communication System---中国 ✓PCS: Personal Communication System---美国
行业进步
GSM手机知识培训
SEC.SCORE
培训目的:使学员了解手机发展历程和通 讯技术以及GSM手机电路结构分析 培训方式:课程讲授 考核方式:提交培训心得,试题测试
行业进步
1
课程刚要
一: GSM发展历程 二: GSM通讯技术 三: GSM手机组成及原理 四: V3手机电路结构与分析
行业进步
2
一: GSM发展历程
❖
信道数目:GSM:124(1--124);DCS:374(512--885)
❖ 信道间隔频率:200KHZ
❖ 功率等级GSM:15(5--19);DCS :16(0--15)
❖
灵敏度:GSM:-102dBm/BER<2%;DCS: -100dBm/BER<2%
❖ 频率误差:<±0.1ppm
❖ RMS--均方根相位误差:<5°
❖ 峰值相位误差:<20°
行业进步
24
二、手机原理
❖1. 开机原理 ❖2. 接收原理 ❖3. 发射原理
行业进步
25
1. 开机原理
❖ 当接上电池或电源供电时,电源管理器得到稳定的工作电压,32KHz开始 振荡,只要后备电池有足够的供电电压,32KHz就会一直处于工作状态, 按下开机键,电源管理器的一脚得到一个持续的高电平,内部检测到该电 平做出开机动作送出各路的工作,13MHz得到这个电压开始工作输出 13MHz信号,经过中频处理器整形放大后送往CPU,CPU得到13MHz后通 过串行总线控制电源输出复位信号对CPU、FLASH、和弦进行复位,CPU 复位以后会先访问内部ROM并根据内部ROM的程序发出一路信号至I/O连
手机射频讲解分析
![手机射频讲解分析](https://img.taocdn.com/s3/m/034011b033d4b14e8424682e.png)
通常用于表示衰减或增益的量。
对电压比: 20lg V 对功率比:10lg P
Vo
Po
dBm是一个绝对功率值,它是一定功率与一毫瓦
的相对值。
(dBm) 10lg
P
dBc是一个差值,它表 1mW
示两个功率值的差。
P1
(dBc) 10lg P1
P2
P2
2019/10/15
RF Training
28
2019/10/15
RF Training
返回
12
基本构成电路分析
鉴相器(Phase Detector) 电荷泵——环路低通滤波器 (Charge Pump——Loop Filter ) 压控振荡器(Voltage Controlled Oscillator) 分频器(DIV)
2019/10/15
射频电路中各典型功能模块的分析是 我们讨论的主要内容。
2019/10/15
RF Training
2
2019/10/15
RF Training
3
Outline
收发器(Transceiver) 锁相环(PLL) 功率控制环路(APC) 收发双工器(Diplexer) 衰减网络(Attenuation) 匹配网络(Matching) 滤波网络(Filter) 平衡网络(Balance) 其它
环路低通滤波器(LPF)
由PFD的输出信号需经过低通滤波器再去控制 VCO。一般采用电阻、电容构成积分形式的低 通滤波器,它可以为单阶或多阶滤波器。它的 通频带由电阻、电容参数决定,它的截止速度 取决于其阶数。
2019/10/15
RF Training
15
环路低通滤波器(Low Pass Filter)
手机射频电路分析
![手机射频电路分析](https://img.taocdn.com/s3/m/dca80f8cab00b52acfc789eb172ded630b1c98e2.png)
针对互调干扰的优化设计。在某款手机射频前端电路中,发现存在严重的互调干扰问题。通过深入分析,发现问题的根源在于某个非线性器件。针对这一问题,我们采用了高性能的线性化技术,对该器件进行了优化,从而有效抑制了互调干扰的产生。
针对邻道干扰的优化设计。在某款手机射频接收机中,发现存在邻道干扰问题。为了解决这个问题,我们采用了高性能的数字滤波器,对接收信号进行了处理。通过调整滤波器的参数,实现了对邻道干扰的有效滤除,提高了接收机的抗干扰能力。
频率调制(FM)
通过改变载波的相位来传递信息。优点是抗干扰能力强,传输效率高,缺点是实现复杂,对同步要求高。
相位调制(PM)
通过改变载波的振幅来传递数字信息。优点是实现简单,缺点是抗干扰能力差,传输效率低。
ASK(振幅键控)
通过改变载波的频率来传递数字信息。优点是抗干扰能力强,信号质量稳定,缺点是占用频带宽,传输效率低。
滤除带外杂散信号,确保发射信号的频谱纯净。
对射频信号进行放大,以满足发射功率要求。
控制信号发射与接收的切换,保证通信质量。
03
CHAPTER
射频前端模块详解
根据手机应用场景和频段需求,选择合适的天线类型,如PIFA、单极子、偶极子等。
天线类型
匹配网络设计
天线性能评估
通过优化天线与射频前端之间的匹配网络,实现最佳的天线性能,包括阻抗匹配、带宽优化等。
带外干扰
03
优化发射机性能
通过优化发射机的功率控制、调制方式等参数,可以减少发射机产生的带外辐射,降低对周围设备的干扰。
01
合理规划频谱资源
通过合理的频率规划和分配,减少相邻信道之间的干扰,提高频谱利用率。
02
采用高性能滤波器
在接收端采用高性能滤波器,可以有效滤除带外干扰和邻道干扰,提高信号接收质量。
《手机射频电路原理》课件
![《手机射频电路原理》课件](https://img.taocdn.com/s3/m/d5cf269eac51f01dc281e53a580216fc700a53a1.png)
信号放大
对发射信号进行功率放大,提 高信号的传输距离和接收灵敏 度。
信号发射与接收
通过天线将调制后的信号发射 出去,并接收来自基站的信号
,进行解调和处理。
手机射频电路的重要性
重要性
通话质量
手机射频电路是实现手机通信功能的关键 部分,其性能直接影响手机的通话质量、 信号强度、数据传输速率等。
射频电路的信号处理能力和稳定性决定了 通话的音质、语音清晰度和无杂音干扰等 关键因素。
调制解调器
调制解调器是实现调制和解调功能的电路,通常集成在手机的主芯 片中。
频谱的利用与控制
频谱资源
01
无线通信频谱是有限的资源,需要合理分配和利用。
频谱控制
02
为了防止干扰和保证通信质量,需要对频谱进行控制和管理。
频谱感知
03
手机需要具备感知周围频谱的能力,以便选择最佳的通信信道
。
信号的传播与衰减
负责信号的接收和发送的核心组件
详细描述
射频收发器是手机射频电路中的核心组件,负责信号的接收和发送。它能够将信 号从模拟信号转换为数字信号,或者从数字信号转换为模拟信号,确保手机能够 进行无线通信。
功率放大器
总结词
放大信号的组件
详细描述
功率放大器是手机射频电路中的重要组件,用于放大信号的功率。在发射信号时,功率放大器将信号放大到足够 的功率,以便能够有效地传输。在接收信号时,功率放大器对微弱的信号进行放大,使其能够被进一步处理。
信号接收
手机通过天线接收射频信 号,经过解调过程从中提 取出低频信号。
调制与解调
调制是将低频信号转换为 适合传输的射频信号,解 调则是将射频信号还原为 原始的低频信号。
手机射频电路原理分析67页PPT
![手机射频电路原理分析67页PPT](https://img.taocdn.com/s3/m/92a13adf76c66137ef061927.png)
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
55、 为 中 华 之 崛起而 读书。 ——周 恩来
手机射频
![手机射频](https://img.taocdn.com/s3/m/c052ecdc7f1922791688e84a.png)
什么是手机射频简单地说,手机射频(RF)就是收发信息或通话过程中,信号的接收和发送所必需的那部分影响手机射频的两个因素手机射频的2个影响因素主要为1.天线的集成度,现在的手机为了外观小巧,很多天线集成在手机内部,对射频有影响,为了达到良好的效果,手机要更大的射频功率以维持正常工作,这样的话,会对人体产生一定的影响2.接收机的特性对手机射频也有音响,差的接收机会让用户收听到低质量的声音,使用户丢失基站信息并且造成呼叫断线.GSM手机射频系统分析与研究文章首先介绍了GSM手机的RF部分功能,从最原始的二次模拟变频开始,到现在出现的零中频方式,再到最新的采用DSP技术的数字低中频二次变频,分析了几种变频方法的优缺点,其中提出的最后一种数字变频方式更有利于现在新技术的应用,而且已有类似方案出现,而且在国内被一些厂家采用.在信号调制方面,对上变频的过程中的GMSK信号调制做出详细分析,结分别对不同压缩带宽的GMSK调制信号在误码率方面的影响做出比较分析,提出对现有的GMSK(BT=0.3)的调制方式改进在技术上实现的可能性,希望能在兼顾误码率效果和邻道干扰方面寻求一种更好的动态平衡效果,保证通信质量.1 引言GSM数字移动通信系统是由欧洲主要电信运营者和制造厂家组成的标准化委员会设计出来的,它是在蜂窝系统的基础上发展而成.随着大规模集成电路器件和微处理器技术的发展以及表面贴装工艺的广泛应用,蜂窝移动通信有了实现的技术基础.我国陆地公用蜂窝数字移动通信网GSM通信系统采用900MHz频段: 905~915(移动台发、基站收) 950~960(基站发、移动台收),后来扩展到1.8GHz频段的DCSI800, 1710~1785(移动台发、基站收) 1805~1880(基站发、移动台收),因为后来扩展到1.8GHz频段只是在载波频段上不同,所以本文在很多时候主要针对900MHz频段进行讨论,文中结合了现今MOTOR,ADI,SILICOND等一些 GSM射频方案,在信号调制方面进行分析.2.1 传统的二次变频简介与分析传统GSM蜂窝手机是一个工作在双工状态下的收发信机.一部移动电话总的包括射频部分、基带部分;其中射频部分包括接受和发射部分,基带部分包括数字逻辑,电源管理和显示部分.射频系统由射频接收和射频发射两部分组成.射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能.手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络.射频电路则包含接收机射频处理、发射机射频处理和频率合成单元.传统的机型很多采用二次变频,若接收机射频电路中有两个混频电路,则该接收机是超外差二次变频接收机.超外差二次变频接收机的方框图如图1所示.图1 超外差二次变频接收机二次变频接收机多了二个混频器及一个VCO,这个VCO在一些电路中被叫做IFVCO或VHFVCO.诺基亚手机、爱立信手机、三星、松下和西门子等手机的接收机电路基本上都属于这种电路结构.在这种接收机电路中,若RXI/Q解调是锁相解调, 则解调用的参考信号通常都来自基准频率信号.这中采用二次变频的方法在第一次混频,即下变频多采用71MHz.这种模式有其自身的缺陷,成本很高;需要很多的分立的元件;存在镜像干扰的问题;在多模多频的情况下,如中国就是采用900MHz和1800MHz,如果是出口的手机还需要更多的中频率滤波器,因为有些国家就是用的850MHz,和1900MHz.2.2 零中频优缺点分析后来随着发展又出现直接变频的方式,现在国内,以国际上很多采用的是直接一次变频的方式,主要是采用零中频方式.在这一方面做的好的有ADI公司,一次变频如图2有其自身的好处如:更高的集成度,减少了中频滤波器,中频锁相环路,中频频率为零,不存在镜像干扰问题,但是它也有其自身的缺限,直流分量和低频干扰信号将会影响接收信号,现今ADI已有AD6539等IC产品出来.图2 零中频接收机2.3 数字低中频采用为解决上面的一系列问题采用隔离型数字低中频.如图3,这样还是保证了其高的集成度;同样也没有中频滤波器,中频锁相环路,消除了镜像干扰,150KHz中频滤波很好的带宽选择性,由于每信道为200KHz,这样很好的消除了直流分量和低频干扰的问题.还可以防止本振荡的自身耦合和混频对接受信号的干扰.但是他就增加一个数字混频器.这样对如手机的PCB布板是很有很大好处的,因为很多手机主板都是用的6层板,少量的是用的是8层板,除了地线,和几个从LDO出来的电源线外,多数信号线采用的4mil线宽,当然射频接受的I/Q信号线就采用的8mil,从天线开关出来向耦合器和天线走的布线就考虑很多了,线宽,走向,虽然有匹配网络来满足50欧姆功率传输功率匹配,但是一开始的走向影响是很大的,一旦布下去就最好不要经常改动,如果是同样的RF方案的话,最好追寻一种最好的布线就不要经常动了.因为在很多RF测试中和EMC测试的时候,是要花很多时间的,这样做很大的增加开发周期.所以如果外围电路得不到简化的话,射频性能很难得到改善,现在国内很多厂家的天线技术都不是很好,阻抗值,方向性都做得不是特别的精确,就算是上面的天线都正常,精确,但是手机有个很大的特点就是 Layout的空间很小,非常有限,所以很多的布线规则,如本振的底下不要走线,时钟信号要与敏感的信号线分开等,而且尽量避免FPC对射频部分的影响.这些都不能兼顾,如果说在RF部分能够留出足够的空间的话,就能更多的考虑RF的电路效应,以前都只是在功率传输,点测,和外场EMC的测试效果来分析,如果能留出更多的板内空间来进行EMC分析和微带线的耦合考虑,将会有更好的RF效果,当然前提是这些射频元件的指标都准确.目前Silicon公司有类似IC出现.图3 数字低中频接收机3.1 GMSK调制在GSM系统中的优缺点分析GMSK调制方式的改进,为了获取良好的通信质量(QOS),提高系统的冗余量,降低邻道干扰,在最大程度减小误码率BER,现在有一个矛盾就是在移动通信系统中降低临道干扰和减小误码率BER之间种是有不可同时达到最好状态的矛盾[1].先从GMSK进行分析,GMSK是从MSK 转化过来在前面加了Gaussian-LPF.加此滤波器的作用就是一种预调制,这样可以让数字信号的频谱进一步衰减,来减小对别的频段干扰,尤其是对邻近信道的干扰,通过Agilent公司的ADS(Advanced Design System)仿真软件模拟如图4:其中每信道的带宽为200KHz.图4 GSM单一信道频谱仿真下面对高斯滤波器进行时域分析,其中:B为下降3dB带宽,T为每位码元周期,由于GSM采用TDMA方式所以每信道为8个时隙,每个时隙分给一个用户,共8个用户,显然尽量保持原有系统兼容性,T不能随意更改.3.2 GMSK信号分析所以,我们尽量分析通过修改高斯滤波器从B开始分析,现在国内很多采用BT=0.3的GMSK调制方式,要求是邻道干扰<60dB,随着BT 值的减小邻道干扰将进一步减小,首先必须承认一个事实就是BT值还是能进一步减小,比如,日本就是用的BT=0.25GMSK,目前有下面这些情况;现有的手机都是和基站通信或者和相关基站的直放站通信,不同的基站的发射功率,这主要和某覆盖区的用户密度和数量有一定关系,一般城区用户密度高,所以基站多,每基站相对覆盖范围小,尤其是在商业繁华区,但是乡村的情况正好相反,在很大的范围内用户数量有限制,所以相对基站的覆盖范围都很大,但是不同的区在不同的时间内用户程度会有所变化,一般商业区在非正常工作时期用户的数量会减少,娱乐场所密集的地方在非正常工作时间却会出现用户数量猛增等等,所以种种上述问题,希望研究出一定的动态调节功能,在这里主要是动态调节B,将B定为B(x);虽然在基站架设和信道分配时候就将同信道重复使用时在物理空间上有意识的隔开了距离.因为随着以后的发展,城市的用户密度会更进一步的提高,可能会需要更多的基站,这样在高密度的情况下还保持通信成功就要解决干扰问题,本文主要讨论从减小邻道干扰入手,这样B(x)的值就要下调,同样BER受到影响[3].下图5为GMSK调制信号流程图5 GMSK信号调制流程首先设进入GPLF的NRZ信号[2]为:进入PLF后经过积分器后:最后分別取cos与sin作I、Q调变,再乘上载波(carrier):其中:3.3 码元仿真分析因为GSM的传输速率是270Kb/s,所以每位码元的时间为3.69us.因为现在广泛用的是BT=0.3的传输系统,下面对BT=0.2和BT=0.1时作出分析.下图6是对三种情况的一位码元进行分析,然后从其图形来分析任一位码元的相位图对前后码的影响.下图是对的MATLAB仿真,实际上的图形是只不过是在横坐标上前后移动Tb.由观察得知,当BT乘积越小时,在一个位元区间前面位的相位函数与本位的更贴近,在一个位元区间內的信号会受到更多临近码元的干扰,显然不管是BT等于0.1,0.2还是0.3这位元的对于后面两位的干扰要大于对前面位的干扰,因为相位是增函数.θ(t)可以写成当B(x)T乘积越小时,每一个码元会受到更多的邻近码元的干扰,如果当前码元是N(0),它将最容易受N(-1),N(-2),N(+1),N(+2)的影响.如果我们先以从最简单的分析,只考虑3位的情况,即N(-1),N(0),N(1).下面构造一相位矩正,此矩正列为8,即三位码元的不同组合即从000-->111,行数为取样点数暂设为4已便分析.Pij则为矩正相应的元素,其中1 ≤i≤4,1 ≤j≤8,再根据欲调制的数据去查相应的相位值,对于N(i) , i ≤-2时其相位累积影响基本上都是θref,θref可以用同样建立相位表的方法计算求得,在3位情况时θi'(t)有23种情况,即从000-->111所以θ i(t)=θi'(t)+θref(t) (i-1)*T ≤ t ≤ i *T .当然在实际工程中我们为里精确可以同时一下考虑5或者7位码元,取样点数取到16或者32,相位矩正就被放大,但是这就运算复杂一点,对于一连串的传输的帧格式来说,我们可以用滑动窗的方式来处理,比如8位bit的帧我门如果用五位的窗来分析的话就需要移动4次,本文仅分析了一下3位的窗特性.所以还在B(x)T减小时,码间串扰还是能够一定程度解决的,但是这就要求接收处理的DSP有足够的速度,同时B(x)的值可以减小的同时还应该兼顾一些实际情况,比如说在夜间小区内通信数量少,就可以适当的放宽对B(x)的要求,还是保持0.3,因为毕竟这样可以在BER上有所提高.但是在白天尤其在高密度通信区采用这样的方法对将来如果要增设基站,增加小区密度时,会为GSM传输系统提供更高的冗余量.当然现在也还有一些对于BER的新解决方法,主要是实时BER检测等.4 结束语本文的讨论的内容主要是在移动通讯终端产品设计中应用,主要分析了现有GSM系统中的射频方案,讨论采用数字中频的实际好处.和对GMSK在手机中的调制方法作出分析,提出在技术上可改进的可能.手机射频功率控制环路设计为了保证系统的容量及互操作性,GSM系统规范对手机发射功率的精度、平坦度、发射频谱纯度以及带外杂散信号进行了严格的规定,对手机射频功率放大器功率控制环路的设计提出了很高的要求.本文介绍了功率反馈控制法和电流检测反馈控制法,并对第一种方法给出了详细的设计步骤.GSM系统为时分多址(TDMA)系统,不同的用户在时间轴上被分隔开,每个用户在特定的一个时间间隔(时隙)内接收或发送信息.TDMA系统的该特性极大地提高了频谱利用率,同时也对移动台射频前端的设计提出了极大的挑战.GSM系统要求移动台的发射机以突发方式工作,即只在规定的时隙内开机发送信息,而在其它时隙则处于关闭状态.这种开关工作状态会使发射频谱内含有大量的杂散分量,严重影响其他用户.为保证系统容量和互操作性,必须对移动台发射机的指标提出要求,这在ETSI GSM 11.10系列规范中都有规定.图1 PVT 功率-时间模板为了达到规范要求,移动台发射机信号的上升沿和下降沿不能过于陡峭,而必须是一个缓升和缓降的过程,如图1所示.图中最上及最下两条曲线称为功率-时间模板,在测试时发射信号在每个时隙的功率-时间关系曲线不能超越这个模板,否则发射频谱纯度将不能满足要求,或者会丢失发射信息.中间曲线为射频功放的增益控制电压,由系统控制单元给出,用以控制射频输出功率.这要求能对发射机中的射频功率放大器实现精确的功率控制,同时,GSM移动台发射机根据系统要求也要能工作于几个功率等级上,这也要求精确的功率控制,为此必须采用反馈控制环路.实现功率控制的方法较多,比较常用的为输出功率检测反馈控制法,该方法直接检测射频输出功率,通过反馈环路实现闭环功率控制.另外一种方法为电流检测反馈控制法,它检测末级功放管的电流,再通过反馈环路实现对输出功率的控制.输出功率检测反馈控制法图2 功率控制环路的数学模型为便于分析,首先给出功率控制环路的数学模型,如图2所示.该反馈控制系统由五大部分组成:1. 比较器:该部件负责比较由系统指令单元送出的控制信号SC与反馈信号SF之间的差别,并乘以增益Ks,给出误差信号SE送到积分器,2. 积分器:由以下的分析将会看出,加入积分器的目的是为了使输出电压Vo仅取决于SC和反馈增益KcKd,而与放大器增益Ka无关,从而改善环路控制特性.3. 放大器:为射频功率放大器,增益可随外加控制电压的变化而变化,增益为Ka.当外加控制电压低于某一特定值Vthreshold时,放大器不导通,无输出信号.4. 耦合器:耦合器为一功率取样部件,可将少量的射频功率取出.增益为Kc=10[-CF/20],其中CF称为耦合系数.5. 检波器:检波器负责将耦合器送来的射频信号进行平均值检波,得到对应的直流电压SF作为反馈信号.检波器的增益为Kd.当控制环路闭合后,SC作为功率控制环路的一个输入来设定输出功率,Vo为功率放大器的输出,耦合器将一部分射频能量取出,经检波器变为反馈信号SF,然后与SC经比较器处理得到误差电压SE,再经积分器得到功率放大器的控制电压.这个过程可以表示为:Vo对时间的变化率可表示为:在稳态时dVo/dt=0,所以此时 Vo="SC/KdKc".这表明射频输出功率仅与控制电压和反馈支路的增益有关,而与Ka无关,这就是带有积分器的反馈控制环路的基本特性.输出功率检测反馈控制电路设计下面以图3所示的实例来说明功率控制环路的详细设计步骤.图3在图3中,D1、D2和R4组成双肖特基二极管检波电路,D1和D2配对使用可以补偿温度系数的影响,本例中检波器的增益为0.45(-7dB),可承受的输入信号范围为-20dBm~+20dBm.R5、C3及U1A组成比较器和积分器,负责比较检波器的输出和控制信号SC,得出误差电压SE并积分.图中增益Kc=10[-CF/20],其中CF为耦合系数.在整个环路的设计中,耦合器的选择及积分器时间常数的确定比较关键,前者选择不当会使耦合信号的幅度超出检波器工作的动态范围,而后者决定了环路是否能在规定的时间内完成开机锁定.GSM规范要求移动台的最小功率等级为5dBm,最大为33dBm(以上值均为天线处测量值).而本实例电路中检波器能检测的最小功率为-20dBm,最大功率为20dBm.在功率控制环路开始工作的初始阶段,系统控制单元必须先给出一个较小的功率控制信号,使环路完成锁定,进入跟踪状态.这个初始功率控制信号称为Vpedestal.Vpedestal不能太大,GSM规范指出该值应比最小功率等级低1-6dB,这里选4dB进行计算:Vpedestal=(Pmin+Loss)-Pmargin=(5dBm+1dB)-4dB=2dBm其中Loss为功率放大器后接器件插入损耗.为了不使反馈的射频信号低于检波器的最低可检测功率,耦合器的耦合系数应留有余量,这里取余量安全因素(Safety Factor)为3dB,综合考虑以上因素,并在最坏情况下计算,可知:CF≤Ppedestal-Pmindet-Safety Factor = 2dBm-(-20dBm)-3dBm= 19dBm同时为了不使检波器过载:CF≥(Pmax+Loss)-Pmaxdet+Safety Factor=(33+1)dBm-20dBm+3dB=17dB其中Pmax为移动台最大发射功率等级(33dBm),Pmaxdet与Pmindet分别为检波器最大及最小可承受功率.GSM规范同时对功率控制环路的锁定时间提出了要求,见图2.在环路刚上电时,射频功放由于其增益控制端的电压没有达到Vthreshold,因此功放无功率输出,环路不闭合.这样积分器的输入就仅为SC,它需要一定时间进行初始化以便达到Vthreshold,使控制环路闭合.在开始的几个微秒时间里,系统指令单元输出一很小的电压Vpedestal,积分器不断对这个恒定电压进行积分,直到达到Vthreshold,功放有输出信号,使环路闭合,这时SC就可以走图中所示的台阶状曲线,直到达到稳定功率输出为止.从图中可知,这一时间实际上就是Vpeddstal状态持续的时间,规范中规定为8微秒.在这段时间中,环路必须利用给出的初始控制信号Vpedestal完成锁定,这实际上对积分器时间常数的选取提出了要求.根据一阶环路的特性,锁定时间可由下式近似得到: Tlock=Vthreshold×C×R/Vpedestal为加快环路的锁定,可在积分器的输出端加入"粗调"电压Voffset,与积分器的输出一起组成功率放大器的控制电压,这是通过图3中的U2A来实现的.此时环路锁定时间变为:Tlock=(Vthreshold-Voffseet)×C×R/Vpedestal电流检测反馈控制功率控制方法为电流反馈控制型,它是通过检测末级功放管的电流来实现功率控制的,如图4所示.图4对应不同的输出功率,射频功放向电源索取不同的电流,从图中可以看出,电流取样电阻检测电流的这种变化,作为反馈信息与SC比较并积分得到功放控制电压,从而实现输出功率的闭环控制.该方法的好处是可以节省元器件(耦合器,检波器及相关外围器件),并简化系统设计.但由于该方法不是直接检测输出功率,射频功放的电流与输出功率的关系比较复杂,与很多时变因素有关,因此控制精度不及功率检测法高.本文小结GSM规范11.10对移动台发射机功率控制环路的精度,跟踪速度和稳定性提出了很高的要求.目前,采用耦合器-检波器的功率检测法,是最常用也是性能最好、适用范围最广的一种功率控制方法.为了保证回路的性能,必须仔细考虑检波器的动态范围和热稳定性、耦合器的选择、积分器时间常数的选择,以及加入"粗调"电压等.手机射频特性测量解决方案及应用手机射频特性测量解决方案包括辐射功率和接收机特性的测量,本文介绍了测试原理和测试系统的组成以及测试过程,同时介绍了在GSM、CDMA等测量中的应用.在现代网络中,好的辐射特性是手机有效工作的关键.目前手机的尺寸越来越小,出现的经常折衷辐射特性的情况,例如以一个很小的尺寸完成有效的天线并同时覆盖蜂窝和PCS频率是非常困难的.一个全面的精确的辐射特性,可以帮助设计师和制造商确定手机在限制的蜂窝网络设计特性范围内工作.通常手机的射频指标测量分为接收机和发射机两部分.对于接收机来说,主要通过测量BER或FER来测量接收机的灵敏度,以及RXQual 和RXLev等参数.对于发射机来说主要测量发射功率以及发射频谱,杂散等参数.这些指标参数通常是先用一个手机天线适配器通过有线的连接方式连接到手机综测仪上,呼叫连接的建立是通过有线的方式.这样天线对于指标的影响是不能体现的.一般地,峰值EIRP不是手机特性的一个好的指标说明.例如,如果手机天线系统的辐射方向图是高有向性的,峰值EIRP则高(由于天线增益在某个方向上高),其他方向则覆盖不好.在蜂窝环境中,天线系统的空间覆盖最大化是最好的.这样用户不用把天线指向某个特殊方向就可以得到好的呼叫特性.另外,人的头部会改变天线的辐射方向图的形状和峰值.因此头部引起的损耗对于频率,设备尺寸和天线设计非常有意义.从场的特性来看,测量头部模型下的平均和峰值EIRP比在空间条件下测量峰值EIRP更有意义.CTIA标准要求测量球坐标下的全向辐射功率,给出了TRP(辐射功率和)的定义,如图1所示.接收机的特性对于整个手机系统也很重要.差的接收机特性会使用户收听到很低质量的声音信号,甚至使用户丢失基站信息并造成终止呼叫.差的接收机灵敏度经常是由于发射机发射的内部噪声和杂散信号回馈到接收机内部造成的.因此,CTIA标准要求:在发射机最大发射功率下测量接收机灵敏度.并要求测量球坐标下的手机的灵敏度,即TIS(全向灵敏度和),图2和公式(1)给出了TIS的定义:大环法的测量方法CTIA规定了一种称为大环法的测量方法,如图3所示.对于TIS测量,需要6个大环切面完成3D球坐标的测量.角围绕垂直转台平面的轴旋转,每隔30度取一个测量点,起始点如图4所示.同样角围绕水平转台平面的轴旋转.对于TRP测量,需要6个大环切面完成3D球坐标的测量.围绕垂直转台平面的轴旋转,每隔15度取一个测量点,起始点如图4所示.手机的射频特性测量不仅要求在无线连接模式下进行,同时要求模拟人的头部对各项指标的影响,图4为人体头部的模型和轴向规定,模型内部需要填充液体,用于模拟人的体液对电磁辐射场的影响.表1是填充液的比例.如果被测手机支持多空中接口技术,可以依此对每个标准进行测量.首先进行空间损耗的测量,然后进行系统信号通路的校准,将校准值记录.选择相应的通信标准,通过综测仪与手机建立呼叫,然后在需要的频率点上进行辐射功率的测量.测试的条件分别在自由空间和增加人头模型两种情况下进行.选择相应的通信标准,通过综测仪与手机建立呼叫,然后在标准规定的频段内取三个频率点,分别为高,中,低,然而进行FER或BER的测量.如果BER或FER超过规定值,增加综测仪的输出功率,直到达到规定的BER或FER.记录相应的被测手机的输出电平.测试方法按照第二部分进行,每个规定的位置上每个频率点都要做灵敏度的测量.TS9970是R&S公司专门用于测量手机的RF特性的测量系统.在实际条件下,对手机发射和接收部分通过空中接口进行RF指标的测量.能够按照上述的方法和定义自动TRP和TIS的测量.TS9970可以支持如下标准:GSM 400, 850, 900, 1800, 1900CDMA / CDMA2000 800, 1900TDMA 800, 1900AMPSGPRSBluetoothW-CDMA (UMTS)同时可以测量固定电平下的BER或FER,以及要求达到的BER时的接收电平.测试系统由手机综测仪CMU200、频谱仪FSx、信号源SMx、RF分路开关以及转台控制器组成.其中手机综测仪CMU200用于通过空中接口与被测手机建立连接,使被测手机处于实际工作状态.频谱仪用于测量当通信连接建立后天线的方向图以及信号通路和空中衰减的校准.信号源用于信号通路和空中衰减的校准.系统构成如下图5所示.TS9970的实际应用我们分别以GSM的辐射功率测量和CDMA的接收机测量为例,介绍TS9970的实际应用.1. GSM1900的辐射功率测量由于GSM1900采用的是恒包络调制技术(GMSK)的TDMA技术,最小的测量功率由一个有效的时隙中心的85%的线性平均给定.多于一个时隙的平均会减小测量精度.一个有效时隙的定义宽度为0.577(10%,频谱分析仪必须设置到零跨度,同时使用视频触发,视频带宽设到300kHz,扫描时间设置到在脉冲中心85%的跨度上至少300个采样点,通常0.65ms的设置对于频谱仪来说是比较适合的.触发电平尽可能的接近噪声本底,而不产生杂散触发,通常高于本底噪声5-10dB比较合适.因为如果GSM的时隙电平接近触发电平,会产生杂散触发,这样减小零数据引起的触发.通过广播控制信道和手机的相关参数,呼叫手机并命令其到语音通道.测试在手机支持的频段上三个不同的频率对进行,如下表定义的频率点:。
手机射频公开课
![手机射频公开课](https://img.taocdn.com/s3/m/f4ab699ab0717fd5360cdc94.png)
三、射频器件解析—功率放大器之loadpull
三、射频器件解析—功率放大器之loadpull
ACP NOTE:
The following slides display the UTRA ACLR data
三、射频器件解析—功率放大器省电技术
可以比较一下下面三张图,绿色和蓝色之间的区域即为浪费的电能,以发热的形式耗费掉,从图中可以看出,ET 技术浪费的能量要比 APT 少很多。 ET 技术的原理是,让功放的供电电压随输入信号的包络变化。从工作方式上来看,ET放大器就是根据输入射频信 号的包络幅度来决定放大器供电电压。当小包络时采用低电压供电,大包络时采用高电压供电。从而使放大器在不 同输入功率时,损耗减小,达到高效率。ET 可改善射频功率放大器的能效,因为它可以追踪所需功率,有别于目 前的固定功率系统,包络跟踪技术被越来越广泛地运用于优化射频 PA 的功率附加效率 (PAE)。ETPA 技术的解决方 式是采用非恒定的 RF 包络和高效的峰均功率比(PAPR),简而言之,ET 技术能够实现自适应功率放大输出。
• Reg1 = 3 • Reg2 = 10 • Constant Pout = 27.5dBm(所有圆的功率都是27.5dBm) • VSWR = 4to1 contours(驻波比限制在4:1的圈以内) • MaxPin = 10dBm(最大输入功率不超过10dBm) • De-embedding = 278699 (SAP), RFIN_L in (J3), LB3 (J6)
手机射频由认知到深入
拆解手机—认识手机 画出射频框图—勾勒手机的射频架构 核心射频器件之功率放大器 核心射频器件之射频开关 认识滤波器&双工器在手机中的应用 发射参数调试 接收灵敏度调试 提升用户体验之重流手机拆解
[推荐干货]什么是射频、基带、调制、解调--以手机射频电路为例图解
![[推荐干货]什么是射频、基带、调制、解调--以手机射频电路为例图解](https://img.taocdn.com/s3/m/d876077359fafab069dc5022aaea998fcc2240d4.png)
[推荐干货]什么是射频、基带、调制、解调--以手机射频电路为例图解5G路测视频-100公里,8Gbps 破全球记录5G时代陶瓷天线--GPS陶瓷天线调试方法1.手机射频工作原理与电路分析2.图解手机射频电路的设计原理及应用3.手机里的射频芯片和基带芯片是什么关系?▲图解手机射频电路的设计原理及应用1射频电路组成和特点普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。
其主要负责接收信号解调;发射信息调制。
早期手机通过超外差变频(手机有一级、二级混频和一本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。
更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成在中频内部。
(射频电路方框图)(一)接收电路的结构和工作原理:接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。
该电路掌握重点:(1)、接收电路结构。
(2)、各元件的功能与作用。
(3)、接收信号流程。
电路分析:(1)、电路结构。
接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。
早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。
(接收电路方框图)(2)、各元件的功能与作用。
1)、手机天线:结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。
作用:a)、接收时把基站发送来电磁波转为微弱交流电流信号。
b)、发射时把功放放大后的交流电流转化为电磁波信号。
2)、天线开关:结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。
(图一)(图二)作用:其主要作用有两个:a)、完成接收和发射切换;b)、完成900M/1800M信号接收切换。
逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。
手机射频知识
![手机射频知识](https://img.taocdn.com/s3/m/a9327071f5335a8102d22031.png)
我们知道GMS使用的是GMSK调制,相位误差的大小反映了I、Q类比转换器和高斯滤波器性能的好坏,只有低的相位误差,才能保证在无线链路上的低的误码率。
4:TX功率模板:
由于GSM系统是一个TDMA系统,8个用户共用一个频点,手机只在分配给他的时隙内工作,然后在其他时隙内关闭,如果TX功率边沿出了模板,会影响其他用户,如果TX功率的有用信号的平坦度不够,会影响自己的发射信号质量。
2:TX频率误差:
在手机和基站通信中,一个发射一个接收,这就要求两者能很好的同步,频率误差小,表明频率合成器能很快的切换频率,并且产生的信号频率足够稳定,只有信号稳定,基站和手机才能很好的同步。如果频率误差严重超标,就会引起掉网。一般在频率误差超过700Hz时,就会产生掉网。
3:TX相位误差:
当手机在使用时,由于有多经干扰、多谱勒效应等衰减,手机接收下行链路的信号电平会发生改变,基站将利用手机的RX LEVEL,了解手机接收信号的强弱,如果有临近的RX LEVEL比正在使用的高,基站就会要求手机做越区切换,所以如果RX LEVEL报告有误,就会使该切换时未切换,不该切换时切换,而发生掉网;在 RX QUAL低而RX LEVEL不底时,表明本信道可能存在一个外来干扰信号,基站需要给手机分配新的频点或启用跳频模式。一般来说RX QUAL超过7,RX LEVEL是0时,肯定会掉网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考信号源(Reference signal source):
参考信号源提供与反馈信号鉴相鉴频用的对比输入信号
2018/10/24 RF DBTEL 8
PLL Block Diagram
返回
2018/10/24 RF DBTEL 9
锁相环路的性能
锁相环的基本性能包括捕获过程与同步 (1)捕获过程的性能指捕获带和捕获时间。 捕获带指环路能通过捕获过程而进入同步状态所允许 的最大固有频差 捕获时间是环路由起始时刻到进入同步状态的时刻之 间的时间间隔
我们需要研究其内部各重要节点的频率、 带宽,信号转换的流程等细节
2018/10/24 RF DBTEL 5
2018/10/24
RF DBTEL
返回
6
锁相环(PLL)
锁相环四个基本构成元素 锁相环路的性能 基本构成电路分析 锁相环在手机中应用举例
详见《射频锁相环》
2018/10/24 RF DBTEL 7
RF DBTEL 29
dB------功率比
返 回
2018/10/24
参数计算方法
PC Coupling= 10 lg 0 PI PO 0 Insertion Loss= 10 lg PI
PC * 0 Isolation= 10 lg PI *
Directivity=Coupling-Isolation>0
功率耦合器(Power Coupler)
为了达到功率控制,我们需要使用到的功率 传感器就是功率耦合器,一般为Directional Coupler。 它的主要参数有:详见其LDC Data Sheet 耦合量(Coupling) 插入损耗(Insertion Loss) 隔离度(Isolation) 方向性(Directivity) [单位(dB)] <参数计算方法>
2018/10/24 RF DBTEL 30
计算举例(全用对数计算)
PI :0dBm Coupling=-20dBm PC :20dBm Insertion Loss= -1dBm PO : -1dBm Isolation= -40dBm PI* : 0dBm Directivity= Coupling- Isolation PC* : -40dBm =20dBm
压控振荡器一般是由变容二极管为主构成 的谐振回路: 谐振回路的中心频率由其回路的等效L 、C特性决定:
0 1 LC
变容二极管的等效电容量由加在其两端 的电压控制,这样通过电压的变化就能转 换成回路谐振频率的变化,就构成了压控 振荡器VCO。
2018/10/24 RF DBTEL 17
VCO的选择要素
The loop can track better a change in input frequency
2018/10/24 RF DBTEL
15
环路低通滤波器的应用举例
返回
2018/10/24 RF DBTEL 16
压控振荡器 (Voltage Controlled Oscillator )
2018/10/24 RF DBTEL 14
环路低通滤波器(Low Pass Filter )
phase detector
VCO Rz
Cz To further reduce the phase noise of the charge pump Cp R4 C4
To important the transient characteristics
2018/10/24 RF DBTEL
返回
25
Directional Coupler
Insertion Loss
I/P PI
O/P Po
Coupling
PI :Input power PO:Output power PC:Coupling power PI*:Incident Power in wrong direction PC*:Coupling power when incident power in wrong direction
2018/10/24 RF DBTEL 26
O/P PC
dB & dBm & dBc
dB是一个相对值,它是针对一定参考而言的,它 通常用于表示衰减或增益的量。 P V 对电压比: 对功率比: 10 lg 20 lg Po Vo dBm是一个绝对功率值,它是一定功率与一毫瓦 的相对值。 P
( dBm ) 10 lg
2018/10/24 RF DBTEL 22
功率控制环路构成
Po
功率耦合器
Coupling Power
PI
功率放大器
功率 控制 环路
耦合检波信号
Source from VCO
Pc
差值功率 控制信号
检 波 器
2018/10/24
功率 比较 控制器
比较信号
用于用户 设定功率值
RF DBTEL
返回
23
功率放大器(Power Amplifier )
dBc是一个差值,它表 示两个功率值的差。
1mW
P1
P1 ( dBc ) 10 lg P2 P2
2018/10/24
RF DBTEL
27
dB& dBm & dBc 都是对数表示方式,对它们来 讲功率的乘除运算变成了它们的加减运算。 dB& dBm & dBc是可以直接相加减的。例如:
输入X dBm 增益 Y dB 输出Z dBm
2018/10/24
RF DBTEL
31
功率检波器(Power Detector )
功率检波器对Coupler的耦合高频信号进行包络 检波进而得到一个体现耦合信号幅值大小的检 波电压。 我们采用二极管负包络检波电路,后级常为低 通积分电路。例如:
耦合电容Cc 低通 积分 电路 检波电压输出
Coupler 输出
环路噪声性能
噪声包括输入噪声与谐波干扰和内部噪声与谐波干扰,压控 振荡器内部的噪声是主要的噪声源。
环路捕获性能
捕获带越宽越好,捕获时间越短越好,可提高环路的增益K或 者增加滤波器的带宽,但加大环路增益或滤波器带宽往往是与提 高环路的跟踪性能和滤波性能的要求相矛盾。采用辅助捕获的方 法达到目的。包括辅助鉴频和鉴频鉴相,变带宽和变增益等。
收发器(Transceiver)
收发器即调制解调器
调制:发射时基带信号加载到射频信号 解调:接收时射频信号过滤出基带信
Transceiver根据其工作频率可分为:单 频、双频、三频等 Transceiver根据其中频特征可分为有中 频、零中频、近零中频等
以DB2009为例介绍Transceiver UAA3535的内部结构
检波 二极管 D
RF DBTEL
2018/10/24
32
负包络检波的对二极管要求: 检波二极管D以P极为输入端 检波二极管的极电容要求较小的肖特基 二极管,若极电容过大,将会使负包络过 多的耦合流失到低,导致检波效果变差
则输出Z(dBm)=X+Y
2018/10/24
RF DBTEL
28
0dBm=1mW 10dBm=10mW 30dBm=1W
12dB---16 9dB---8 6dB---4 3dB---2 0dB---1 -3dB---1/2=0.5 -6dB---1/4=0.25 -9dB---1/8=0.125 -12dB---1/16=0.0625 -15dB---1/32=0.03125 -18dB---1/64=0.015625
2018/10/24 RF DBTEL
返回
18
分频器(DIV)
锁相环通常用于N倍参考频率的发生器:
f 0 N fr
其中N为分频比,它由环路中分频器DIV提供
参见《分频器》
2018/10/24 RF DBTEL
返回
19
锁相环在手机中应用举例
RX(接收)频率合成器
2018/10/24
RF DBTEL
锁相环四个基本构成元素
鉴相器(PD)鉴频器(FD)鉴相鉴频(PFD):
PD/FD/PFD是一个相位/频率比较装置,用来检测输入信 号与反馈信号之间的相位/频率差
环路滤波器Loop Filter(LP):
LP一般为N阶低通滤波器
电压控制振荡器(VCO):
VCO是一个电压--频率变换装置 ,输出振荡频率应随输 入控制电压线性地变化
Frequency deviation capability >> the max. PLL capture range
(2)环路锁定之后稳态频差等于零,进入同步状态。稳态 相差通常总是存在的,它是一个固定值。
2018/10/24
RF DBTEL
10
环路的跟踪性能
输入信号变化越快,跟踪性能就越差。暂态相位误差和稳态 相位误差的大小,是衡量环路线性跟踪性能好坏的重要标志。
RF DBTEL
2
Outline
收发器(Transceiver) 锁相环(PLL) 功率控制环路(APC) 收发双工器(Diplexer) 衰减网络(Attenuation) 匹配网络(Matching) 滤波网络(Filter) 平衡网络(Balance) 其它
2018/10/24 RF DBTEL 3