关于单片机英文文献(上)
单片机 外文翻译 外文文献 英文文献 51系列单片机的结构和功能

单片机外文翻译外文文献英文文献 51系列单片机的结构和功能Structure and function of the MCS-51Structure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system areall the same. 8051 daily representatives- 51 serial one-chip computers .An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM(128B/256B),it use not depositting not can reading /data that write,such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. ( 5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, andcan according to count or result of timing realize the control of thecomputer. ( 6) Five cut off cutting off the control system of thesource . ( 7) One all duplexing serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. ( 8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertas now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc.. The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarilies of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loopback ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside . The same as general microprocessor, it is the busiest register. Helpremembering that agreeing with A expresses in the order. The controller includes the procedure counter , the order is depositted, the order decipher, the oscillator and timing circuit, etc. The procedurecounter is made up of counter of 8 for two, amounts to 16. It is a byte address counter of the procedure in fact, the content is the next IAthat will carried out in PC. The content which changes it can change the direction that the procedure carries out . Shake the circuit in 8051one-chip computers, only need outer quartz crystal and frequency to finely tune the electric capacity, its frequency range is its 12MHZ of 1.2MHZ. This pulse signal, as 8051 basic beats of working, namely the minimum unit of time. 8051 is the same as other computers, the work in harmony under the control of the basic beat, just like an orchestra according to the beat play that is commanded.There are ROM (procedure memory , can only read ) and RAM in 8051 slices (data memory, can is it can write ) two to read, they have each independent memory address space, dispose way to be the same with general memory of computer. Procedure 8051 memory and 8751 slice procedure memory capacity 4KB, address begin from 0000H, used for preserving the procedure and form constant. Data 8051- 8751 8031 of memory data memory 128B, address false 00FH, use for middle result to deposit operation, the data are stored temporarily and the data are buffered etc.. In RAM of this 128B, there is unit of 32 byteses that can be appointed as the job register, this and general microprocessor is different, 8051 slice RAM and job register rank one formation the same to arrange the location. It is not very the same that the memory of MCS-51 series one-chip computer and general computer disposes the way in addition. General computer for first address space, ROM and RAM canarrange in different space within the range of this address at will, namely the addresses of ROM and RAM, with distributing different address space in a formation. While visiting the memory, corresponding and only an address Memory unit, can ROM, it can be RAM too, and by visiting the order similarly. This kind of memory structure is called the structure of Princeton. 8051 memories are divided into procedure memory space and data memory space on the physics structure, there are four memory spaces in all: The procedure stores in one and data memory space outside data memory and one in procedure memory space and one outside one, the structure forms of this kind of procedure device and data memory separated form data memory, called Harvard structure. But use the angle from users, 8051 memory address space is divided into three kinds: (1) In the slice, arrange blocks of FFFFH , 0000H of location , in unison outside the slice (use 16 addresses). (2) The data memory address space outside one of 64KB, the address isarranged from 0000H 64KB FFFFH (with 16 addresses ) too to the location. (3) Data memory address space of 256B (use 8 addresses). Three above-mentioned memory space addresses overlap, for distinguishing and designing the order symbol of different data transmission in the instruction system of 8051: CPU visit slice, ROM order spend MOVC ,visit block RAM order uses MOVX outside the slice, RAM order uses MOV to visit in slice.8051 one-chip computer have four 8 walk abreast I/O port, call P0,P1, P2 and P3. Each port is 8 accurate two-way mouths, accounts for 32pins altogether. Every one I/O line can be used as introduction and exported independently. Each port includes a latch (namely special function register ), one exports the driver and a introduction buffer . Make data can latch when outputting, data can buffer when making introduction , but four function of passway these self-same. Expand among the system of memory outside having slice, four port these may serve as accurate two-way mouth of I/O in common use. Expand among the system of memory outside having slice, P2 mouth see high 8 address off; P0 mouth is a two-way bus, send the introduction of 8 low addresses and data / export in timesharingOutput grade , P3 of mouth , P1 of P1 , connect with inside haveload resistance of drawing , every one of they can drive 4 Model LS TTL load to output. As while inputting the mouth, any TTL or NMOS circuit can drive P1 of 8051 one-chip computers as P3 mouth in a normal way . Because draw resistance on output grade of them have, can open a way collector too or drain-source resistance is it urge to open a way, do not need to have the resistance of drawing outerly . Mouths are all accurate two-way mouths too. When the conduct is input, must write the corresponding port latch with 1 first . As to 80C51 one-chip computer, port can only offer milliampere of output electric currents, is it output mouth go when urging one ordinary basing of transistor to regard as, should contact a resistance among the port and transistor base , in order to the electricity while restraining the high level from exporting P1~P3 Being restored to the throne is the operation of initializing ofan one-chip computer. Its main function is to turn PC into 0000Hinitially , make the one-chip computer begin to hold the conduct procedure from unit 0000H. Except that the ones that enter the system are initialized normally,as because procedure operate it make mistakes or operate there aren't mistake, in order to extricate oneself from a predicament , need to be pressed and restored to the throne the key restarting too. It is an input end which is restored to the throne the signal in 8051 China RST pin. Restore to the throne signal high level effective , should sustain 24 shake cycle (namely 2 machine cycles ) the above its effective times. If 6 of frequency ofutilization brilliant to shake, restore to the throne signalduration should exceed 4 delicate to finish restoring to the throne and operating. Produce the logic picture of circuit which is restored to the throne the signal:Restore to the throne the circuit and include two parts outside in the chip entirely. Outside that circuit produce to restore to the throne signal (RST ) hand over to Schmitt's trigger, restore to the throne circuit sample to output , Schmitt of trigger constantly in each S5P2 , machine of cycle in having one more , then just got and restored to the throne and operated the necessary signal insidly. Restore to the throne resistance of circuit generally, electric capacity parameter suitablefor 6 brilliant to shake, can is it restore to the throne signal high level duration greater than 2 machine cycles to guarantee. Being restored to the throne in the circuit is simple, its function is veryimportant. Pieces of one-chip computer system could normalrunning,should first check it can restore to the throne not succeeding. Checking and can pop one's head and monitor the pin with theoscillograph tentatively, push and is restored to the throne the key, the wave form that observes and has enough range is exported (instantaneous), can also through is it restore to the throne circuit group holding value carry on the experiment to change.Another name of MCS is embedded micro-controller, because it can be embedded into any micro-or small-scale equipment or equipment. At present, the single-chip embedded systems and Internet connectivity is a trend. However, Internet has been used as a fat server, thin machine technology users. This technology on the Internet to store and access large amounts of data is appropriate, but for control of embedded devices has become the "sledgehammer cracking a nut," the. Embedded devices to achieve and Int ernet connection, we need the Internet to the traditional theory and practice of embedded devices are reversed. In order to make complex or simple embedded devices, such as single-chip microcomputer-controlled machine tools, single-chip microcomputer-controlled door locks, can be practical and Internet connection, requires specialized equipment for the embedded microcontroller design a web server to embed devices can be connected to Internet, and through a standard Web browser to process control.At present, in order to single-chip microcomputer as the core of embedded systems and Internet connected companies, there are many morestudies in this area. More typical in this regard have emWare and TASKING company. Embedded systems companies EmWare network program - EMIT technology. This technology consists of three main parts: the emMicro, emGateway and web browser. Which, emMicroembedded devices is a 1K-byte memory capacity accounted for only a very small web servers; emGateway stronger as a function of the user or server, and it is used to achieve more than the management of embedded devices, as well as standard access the Internet communications, as well as the support of a web browser. Web browsers use to display and embedded emObjicts data transmission between devices. If sufficient resources embedded devices, while at the same time emMicro and emGateway into embedded devices, to achieve direct access to the Inter net. Otherwise, it will require a web browser emGateway and each other. EmWare's EMIT software technology using standard Internet protocol for 8-bit and 16-bit embedded devices to manage, but costs much less traditional. At present, single-chip applications, a new problem: This is how to make the 8-bit, 16-bit single-chip microcomputer to control the product, or embedded products or equipment to achieve the interconnection and the Internet? TASKING is now to solve this problem means. The company has emWare of EMIT software packages and related supporting integration, the formation of an integrated development environment, to provide users with convenient development. Embedded Internet Union ETI (embed the Internet Consortium) is to work closelywith the development of embedded Internet solutions. Results in the near future there will be published.中文译文51系列单片机的结构和功能51系列单片机是英特尔公司生产的具有一定结构和功能的单片机产品。
单片机英文资料英文文献

泛广了到得渐逐也 PSD 和器制控微在构结佛哈�度速线水流器理处高提并�宽字的同不用 使上据数和令指在了为来年近 。了置装制控来部内置装入植统系机片单把的易容很以可就样 这 。机算计作工成制片芯持支部外的型小最合配易容很般一者前为因是同不片芯元单理处央 行进源资展扩及以备设围外与来用有还�器时计/时定的多更者或个一��器储存机随�器 储存据数、�存闪者或器储存读只�器储存序程�心核器理处央中个一�分部本基个四的需 必所统系式入嵌了义定地楚清构结种这�的构结曼伊诺·冯于基是都机片单的在现数多大绝 。呼称 中型用通与机片单说。上片芯路电成集个单在成集被都些这有所——口端出输/入输的信通
.s0791 eht ni noi tcudortni rieht ecnis smetsys deddebme ni ralupop ylhgih eb ot devorp evah dna spihc etarapes gnisu smetsys tnelaviuqe ecudorp ot dedeen eb dluow taht ecaps BCP dna gniriw fo tnuoma eht dna spihc fo rebmun eht secuder yllaci tsard noitargetni sihT sretrevnoc latigid-ot-golana edulcni ynam tiucric CR ro rotanoser ,latsyrc gnimit ztrauq a rof rotallicso na netfo - rotareneg kcolc egarots margorp rof yromem hsalF ro MORPEE ,MORPE ,MOR egarots atad rof MAR godhctaw dna sremi t sa hcus slarehpirep tcennocretni metsys rof krowteN aerA rellortnoC dna ecafretnI larehpireP laireS ,C²I ekil secafretni snoi tacinumm oc laires rehto )sTRAU( strop laires sa hcus secafretni tuptuo/tupni srossecorp tib-46 ro -23 detaci tsihpos ot srossecorp tib-4 elpmis dna llams m orf gnignar - tinu gnissecorp lartnec :serutaef gniwoll of eht h tiw yln ommoc ,tiucric detargetni elgnis a si rellortnocorcim A .ngised ot sdael dnert sihT .)draob tiucric eht tset dna elbmessa ot deriuqer robal eht secuder dna ,draob tiucric repaehc dna rell ams a swolla yllacipyt spihc rewef gnivah ,slarehpirep lanretxe + UPC a fo tsoc eht naht erom ylthgils si slarehpirep detargetni sah taht UPC a fo tsoc eht fi nevE( .el ohw a sa metsys deddebme eht fo tsoc ten desaerced ni stluser netfo tub ,pihc taht fo ts oc eht sesaercni tinu a sa meht gnitset dna pihc elgnis a no slarehpirep rehto dna yromem eht gnitargetnI .egakcap repaehc ,rellams hcum a ni decalp eb nac pihc eht ,snip rewef deen yeht esuaceB .UPC eht sa pihc emas eht no yromem elital ov-non dna MAR eh t lla etargetni yeht esuaceb ,sub atad a ro sub sserdda na evah ton od srellortnocorcim ,sUPC esoprup-lareneg ot tsartnoc nI .taht etanimile neve nac stniartsnoc rewop ro tsoc ereves dna ,edoid gni ttime- thgil elgnis a si namuh a yb elbadaer ecived O/I yl no eht ,netfO .secived cinortcele rehto ro srotsiser elbairav ,sehctiws daer dna ,segatlov ro syaler ,srotom cirtcele lortnoc yam yehT .retupm oc lanosrep a fo secived O/I elbazingocer rehto ro ,sretnirp ,sksid ,sneercs ,sdraobyek kcal smetsys deddebme tsom ,elpmaxe roF .smetsys tuptuo/tupni lausunu tub elpmis eriuqer yam dna htgnel margorp dna yromem rof stnemeriuqer laminim sah yllausu metsys deddebme nA .erutcurtsarfni dna ,selcihev ,secnailppa ,skcolc ,senohpelet sa hcus ,yrenihcam rehto ni deddebme era yadot esu ni smetsys retupmoc f o y tirojam ehT .)CP a ni desu dnik eht( rossecorporcim esoprup-lareneg a ot tsartnoc ni ,ssenevi tceffe-tsoc dna ycneiciffus-fles gnizisahpme rossecorporcim fo epyt a si tI .pihc-a-no- retupmoc a si )UCM ro( rellortnocorcim A
单片机外文文献

A: Fundamentals of Single-chip MicrocomputerT h e s i n g l e-c h i p m i c r o c o mp u t e r i s t h e c u l m i n a t i o n o f b o t h t h e d e v e l o p me n t o f t h e d i g i t a l c o mp u t e r a n d t h e i n t e g r a t e d c i r c u i t a r g u a b l y t h e t o w m o s t s i g n i f i c a n t i n v e n t i o n s o f t h e20t h c e n t u r yT h e s e t o w t y p e s o f a r c h i t e c t u r e a r e f o u n d i n s i n g l e-c h i p m i c r o c o m p u t e r.S o me e m p l o y t h e s p l i t p r o g r a m/d a t a m e mo r y o f t h e H a r v a r d a r c h i t e c t u r e,s h o w n i n F i g.3-5A-1,o t h e r s f o l l o w t h e p h i l o s o p h y, w i d e l y a d a p t e d f o r g e n e r a l-p u r p o s e c o mp u t e r s a n d m i c r o p r o c e s s o r s,o f m a k i n g n o l o g i c a l d i s t i n c t i o n b e t w e e n p r o g r a m a n d d a t a m e mo r y a s i n t h e P r i n c e t o n a r c h i t e c t u r e,s h o w n i n F i g.3-5A-2.I n g e n e r a l t e r m s a s i n g l e-c h i p m i c r o c o m p u t e r i s c h a r a c t e r i z e d b y t h e i n c o r p o r a t i o n o f a l l t h e u n i t s o f a c o m p u t e r i n t o a s i n g l e d e v i c e, a s s h o w n iFig.3-5A-1 A Harvard typeFig3-5A-3. Principal features of a microcomputerRead only memory (ROM)R O M i s u s u a l l y f o r t h e p e r m a n e n t, n o n-v o l a t i l e s t o r a g e o f a n a p p l i c a t i o n s p r o g r a m.M a n y m i c r o c o m p u t e r s a n d m i c r o c o n t r o l l e r s a r e i n t e n d e d f o r h i g h-v o l u m e a p p l i c a t i o n s a n d h e n c e t h e e c o n o m i c a l m a n u f a c t u r e o f t h e d e v i c e s r e q u i r e s t h a t t h e c o n t e n t s o f t h e p r o g r a m m e m o r y b e c o m m i t t e d p e r m a n e n t l y d u r i n g t h e m a n u f a c t u r e o f c h i p s.C l e a r l y,t h i s i m p l i e s a r i g o r o u s a p p r o a c h t o R O M c o d e d e v e l o p m e n t s i n c e c h a n g e s c a n n o t b e m a d e a f t e r m a n u f a c t u r e .T h i s d e v e l o p m e n t p r o c e s s m a y i n v o l v e e m u l a t i o n u s i n g a s o p h i s t i c a t e d d e v e l o p m e n t s y s t e m w i t h a h a r d w a r e e m u l a t i o n c a p a b i l i t y a s w e l l a s t h e u s e o f p o w e r f u l s o f t w a r e t o o l s.S o m e m a n u f a c t u r e r s p r o v i d e a d d i t i o n a l R O M o p t i o n s b y i n c l u d i n g i n t h e i r r a n g e d e v i c e s w i t h(o r i n t e n d e d f o r u s e w i t h)u s e r p r o g r a m m a b l e m e m o r y.T h e s i m p l e s t o f t h e s e i s u s u a l l y d e v i c e w h i c h c a n o p e r a t e i n a m i c r o p r o c e s s o r m o d e b y u s i n g s o m e o f t h e i n p u t/o u t p u t l i n e s a s a n a d d r e s s a n d d a t a b u s f o r a c c e s s i n g e x t e r n a l m e m o r y.T h i s t y p e o f d e v i c ec a n b e h a v e f u n c t i o n a l l y a s t h e s i n g l e c h i p m i c r o c o m p u t e r f r o m w h i c h i t i sd e r i v e d a l b e i t w i t h r e s t r i c t e d I/O a n d a mo d i f i e d e x t e r n a l c i r c u i t. T h e u s e o f t h e s e R O M l e s s d e v i c e s i s c o m m o n e v e n i n p r o d u c t i o n c i r c u i t s w h e r e t h e v o l u m e d o e s n o t j u s t i f y t h e d e v e l o p m e n t c o s t s o f c u s t o m o n-c h i p R O M[2];t h e r e c a n s t i l l b e a s i g n i f i c a n t s a v i n g i n I/O a n d o t h e r c h i p s c o mp a r e d t o a c o n v e n t i o n a l m i c r o p r o c e s s o r b a s e d c i r c u i t.M o r e e x a c t r e p l a c e m e n t f o r R O M d e v i c e s c a n b e o b t a i n e d i n t h e f o r m o f v a r i a n t s w i t h 'p i g g y-b a c k'E P R O M(E r a s a b l e p r o g r a m m a b l e R O M)s o c k e t s o r d e v i c e s w i t h E P R O M i n s t e a d o f R O M。
单片机的外文文献及中文翻译

SCM is an integrated circuit chip,is the use of large scale integrated circuit technology to a data processing capability of CPU CPU random access memory RAM,read-only memory ROM,a variety of I / O port and interrupt system, timers / timer functions (which may also include display driver circuitry,pulse width modulation circuit,analog multiplexer,A / D converter circuit)integrated into a silicon constitute a small and complete computer systems.SCM is also known as micro—controller (Microcontroller), because it is the first to be used in industrial control。
Only a single chip by the CPU chip developed from a dedicated processor。
The first design is by a large number of peripherals and CPU on a chip in the computer system, smaller, more easily integrated into a complex and demanding on the volume control device which。
单片机外文文献+介绍

Microcomputer SystemsElectronic systems are used for handing information in the most general sense; this information may be telephone conversation, instrument read or a company‟s accounts, but in each case the same main type of operation are involved: the processing, storage and transmission of information. in conventional electronic design these operations are combined at the function level; for example a counter, whether electronic or mechanical, stores the current and increments it by one as required. A system such as an electronic clock which employs counters has its storage and processing capabilities spread throughout the system because each counter is able to store and process numbers.Present day microprocessor based systems depart from this conventional approach by separating the three functions of processing, storage, and transmission into different section of the system. This partitioning into three main functions was devised by V on Neumann during the 1940s, and was not conceived especially for microcomputers. Almost every computer ever made has been designed with this structure, and despite the enormous range in their physical forms, they have all been of essentially the same basic design.In a microprocessor based system the processing will be performed in the microprocessor itself. The storage will be by means of memory circuits and the communication of information into and out of the system will be by means of special input/output(I/O) circuits. It would be impossible to identify a particular piece of hardware which performed the counting in a microprocessor based clock because the time would be stored in the memory and incremented at regular intervals but the microprocessor. However, the software which defined the system‟s behavior woul d contain sections that performed as counters. The apparently rather abstract approach to the architecture of the microprocessor and its associated circuits allows it to be very flexible in use, since the system is defined almost entirely software. The design process is largely one of software engineering, and the similar problems of construction and maintenance which occur in conventional engineering are encountered when producing software.The figure1.1 illustrates how these three sections within a microcomputer are connected in terms of the communication of information within the machine. The system is controlled by the microprocessor which supervises the transfer of information between itself and the memory and input/output sections. The external connections relate to the rest (that is, the non-computer part) of the engineering system.Fig.1.1 Three Sections of a Typical MicrocomputerAlthough only one storage section has been shown in the diagram, in practice two distinct types of memory RAM and ROM are used. In each case, the word …memory‟ is rather inappropriate since a computers memory is more like a filing cabinet in concept; information is stored in a set of numbered …boxes‟ and it is referenced by the serial number of the …box‟ in question.Microcomputers use RAM (Random Access Memory) into which data can be written and from which data can be read again when needed. This data can be read back from the memory in any sequence desired, and not necessarily the same order in which it was written, hence the expression …random‟ access memory. Another type of ROM (Read Only Memory) is used to hold fixed patterns of information which cannot be affected by the microprocessor; these patterns are not lost when power is removed and are normally used to hold the program which defines the behavior of a microprocessor based system. ROMs can be read like RAMs, but unlike RAMs they cannot be used to store variable information. Some ROMs have their data patterns put in during manufacture, while others are programmable by the user by means of special equipment and are called programmable ROMs. The widely used programmable ROMs are erasable by means of special ultraviolet lamps and are referred to as EPROMs, short for Erasable Programmable Read Only Memories. Other new types of device can be erased electrically without the need for ultraviolet light, which are called Electrically Erasable Programmable Read Only Memories, EEPROMs.The microprocessor processes data under the control of the program, controlling the flow of information to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor.The microprocessor processes data under the control of the program, controlling the flow ofinformation to and from memory and input/output devices. Some input/output devices are general-purpose types while others are designed for controlling special hardware such as disc drives or controlling information transmission to other computers. Most types of I/O devices are programmable to some extent, allowing different modes of operation, while some actually contain special-purpose microprocessors to permit quite complex operations to be carried out without directly involving the main microprocessor.The microprocessor , memory and input/output circuit may all be contained on the same integrated circuit provided that the application does not require too much program or data storage . This is usually the case in low-cost application such as the controllers used in microwave ovens and automatic washing machines . The use of single package allows considerable cost savings to e made when articles are manufactured in large quantities . As technology develops , more and more powerful processors and larger and larger amounts of memory are being incorporated into single chip microcomputers with resulting saving in assembly costs in the final products . For the foreseeable future , however , it will continue to be necessary to interconnect a number of integrated circuits to make a microcomputer whenever larger amounts of storage or input/output are required.Another major engineering application of microcomputers is in process control. Here the presence of the microcomputer is usually more apparent to the user because provision is normally made for programming the microcomputer for the particular application. In process control applications the benefits lf fitting the entire system on to single chip are usually outweighed by the high design cost involved, because this sort lf equipment is produced in smaller quantities. Moreover, process controllers are usually more complicated so that it is more difficult to make them as single integrated circuits. Two approaches are possible; the controller can be implemented as a general-purpose microcomputer rather like a more robust version lf a hobby computer, or as a …packaged‟ system, signed for replacing controllers based on older technologies such as electromagnetic relays. In the former case the system would probably be programmed in conventional programming languages such as the ones to9 be introduced later, while in the other case a special-purpose language might be used, for example one which allowed the function of the controller to be described in terms of relay interconnections, In either case programs can be stored in RAM, which allows them to be altered to suit changes in application, but this makes the overall system vulnerable to loss lf power unless batteries are used to ensure continuity of supply. Alternatively programs can be stored in ROM, in which case they virtually become part of the electronic …hardware‟ and are often referred to as firmware. More sophisticated process controllersrequire minicomputers for their implementation, although the use lf large scale integrated circuits …the distinction between mini and microcomputers, Products and process controllers of various kinds represent the majority of present-day microcomputer applications, the exact figures depending on one‟s interpretation of the word …product‟. V irtually all engineering and scientific uses of microcomputers can be assigned to one or other of these categories. But in the system we most study Pressure and Pressure Transmitters. Pressure arises when a force is applied over an area. Provided the force is one Newton and uniformly over the area of one square meters, the pressure has been designated one Pascal. Pressure is a universal processing condition. It is also a condition of life on the planet: we live at the bottom of an atmospheric ocean that extends upward for many miles. This mass of air has weight, and this weight pressing downward causes atmospheric pressure. Water, a fundamental necessity of life, is supplied to most of us under pressure. In the typical process plant, pressure influences boiling point temperatures, condensing point temperatures, process efficiency, costs, and other important factors. The measurement and control of pressure or lack of it-vacuum-in the typical process plant is critical.The working instruments in the plant usually include simple pressure gauges, precision recorders and indicators, and pneumatic and electronic pressure transmitters. A pressure transmitter makes a pressure measurement and generates either a pneumatic or electrical signal output that is proportional to the pressure being sensed.In the process plant, it is impractical to locate the control instruments out in the place near the process. It is also true that most measurements are not easily transmitted from some remote location. Pressure measurement is an exception, but if a high pressure of some dangerous chemical is to be indicated or recorded several hundred feet from the point of measurement, a hazard may be from the pressure or from the chemical carried.To eliminate this problem, a signal transmission system was developed. This system is usually either pneumatic or electrical. And control instruments in one location. This makes it practical for a minimum number of operators to run the plant efficiently.When a pneumatic transmission system is employed, the measurement signal is converted into pneumatic signal by the transmitter scaled from 0 to 100 percent of the measurement value. This transmitter is mounted close to the point of measurement in the process. The transmitter output-air pressure for a pneumatic transmitter-is piped to the recording or control instrument. The standard output range for a pneumatic transmitter is 20 to 100kPa, which is almost universally used.When an electronic pressure transmitter is used, the pressure is converted to electrical signal thatmay be current or voltage. Its standard range is from 4 to 20mA DC for current signal or from 1 to 5V DC for voltage signal. Nowadays, another type of electrical signal, which is becoming common, is the digital or discrete signal. The use of instruments and control systems based on computer or forcing increased use of this type of signal.Sometimes it is important for analysis to obtain the parameters that describe the sensor/transmitter behavior. The gain is fairly simple to obtain once the span is known. Consider an electronic pressure transmitter with a range of 0~600kPa.The gain isdefined as the change in output divided by the change in input. In this case, the output is electrical signal (4~20mA DC) and the input is process pressure (0~600kPa). Thus the gain. Beside we must measure Temperature Temperature measurement is important in industrial control, as direct indications of system or product state and as indirect indications of such factors as reaction rates, energy flow, turbine efficiency, and lubricant quality. Present temperature scales have been in use for about 200 years, the earliest instruments were based on the thermal expansion of gases and liquids. Such filled systems are still employed, although many other types of instruments are available. Representative temperature sensors include: filled thermal systems, liquid-in-glass thermometers, thermocouples, resistance temperature detectors, thermostats, bimetallic devices, optical and radiation pyrometers and temperature-sensitive paints.Advantages of electrical systems include high accuracy and sensitivity, practicality of switching or scanning several measurements points, larger distances possible between measuring elements and controllers, replacement of components(rather than complete system), fast response, and ability to measure higher temperature. Among the electrical temperature sensors, thermocouples and resistance temperature detectors are most widely used.DescriptionThe A T89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel‟s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel A T89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.Function characteristicThe A T89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port,kPamAkPa mAkPa kPa mAmA Kr 027.0600160600420==--=on-chip oscillator and clock circuitry. In addition, the A T89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.Pin DescriptionVCC:Supply voltage.GND:Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs.Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.Port 0 also receives the code bytes during Flash programming,and outputs the code bytes during programverification. External pullups are required during programverification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL inputs.When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 2 pins that are externally being pulled low will source current, because of the internal pullups.Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses. In this application, it uses strong internal pullupswhen emitting 1s. During accesses to external data memory that use 8-bit addresses, Port 2 emits the contents of the P2 Special Function Register.Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups.The Port 3 output buffers can sink/source four TTL inputs.When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the A T89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification.RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device. ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory.When the A T89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset.EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage(VPP) during Flash programming, for parts that require12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1.Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.微型计算机控制系统(单片机控制系统)广义地说,微型计算机控制系统(单片机控制系统)是用于处理信息的,这种被用于处理的信息可以是电话交谈,也可以是仪器的读数或者是一个企业的帐户,但是各种情况下都涉及到相同的主要操作:信息的处理、信息的存储和信息的传递。
单片机外文翻译外文文献英文文献单片机的发展与应用

单片机外文翻译外文文献英文文献单片机的发展与应用THE Application and Development ofMicrocontroller UnitMonolithic integrated circuits are a computer chip. It uses tec hnology will have a data processing ability of the microprocessor (cpu), storage in rom (program memory and data storage ram ), the input, output interfaces circuit (I/O) integration interface i tu rned around with a chip in that small, constitutes a very good and the computer hardware system, where the application under the c ontrol of a monolithic integrated circuits can be accurate, fast and efficient procedures provided in advance to complete the task. So, a monolithic integrated circuits will have a computer chip of all t he functions.Thus, the microprocessor (monolithic integrated circuits has generally cpu )chips are not functional, it can independently com plete modern industrial control required for intelligent control func tions, it is monolithic integrated circuits of the biggest characteristi c.Monolithic integrated circuits, however, and different from mac hines ( a microprocessor chips, the memory chip and input and o utput interfaces chip in with a piece of printed circuit board of a microcomputer ), Monolithic integrated circuits chip in developing ago, it is only a function vlsi will have a strong, If of application development, it is a small microcomputer control system, but it m achine or a personal computer (pc is essential. the difference betw een).Monolithic integrated circuits of the application of chips at the level of application, the user (monolithic integrated circuits lear ners with users understand the structure of the chip )monolithic integrated circuits and instruction system, and the integrated use o f technology and system design to the theory and techniques, in th is particular chip design application, thereby, the chip with a parti cular function.Different monolithic integrated circuits have different hardware and software, or the technical features are different, Character de pends on a hardware chip monolithic integrated circuits the intern al structure of the user to use some monolithic integrated circuits, we must know this type of product whether to meet the needs of the facilities and application of the indicators required. The tech nical features include functional characteristics, control and electric al attributes, These information to manufacturers in the technical manual. Software features refers to an instruction system and devel opment support of the environment, the quality of instruction or monolithic integrated circuits for reference, data processing and log ical processing, output characteristics and to the power input requi rements, etc. Development support of the environment, including th e instructions of compatible and portable. support software (contai ns can support the development and application software and hard ware resources. resources). To take advantage of the model of deve lopment of a monolithic integrated circuits application systems, lea rn its structural features and technological characteristic is require d.Monolithic integrated circuits to control system will ever use o f sophisticated electronic circuit or circuit, a control system to achi eve the software controls and enable intelligent, It is monolithic in tegrated circuits to control areas, such as communications products and household appliances, the instruments and processes to contr ol and control devices, theapplication of more monolithic integrate d circuits sector.Monolithic integrated circuits, of course, the application is not limited to the application or the category of the economic perfor mance is more important it is a fundamental change in the traditi onal methods designed to control and mind control techniques. it i s a revolution is an important milestone.Can say now is the policy, a hundred schools of thought conte nd "monolithic integrated circuits, World chip all the company unv eiled his monolithic integrated circuits, from 8, 16 to 32 bits, and,with mainstream c51 series of, and there is not compatible with e ach other, but they, as complementary to monolithic integrated circ uits, the application of the world provide a broad.Throughout monolithic integrated circuits of the development p rocess, the trend of a monolithic integrated circuits, has :1.the low TDP COMSMcs -51 8031 a series of TDP for 630mw, and now a monolit hic integrated circuits, and generally in 100mw. As to ask for lowe r TDP monolithic integrated circuits, and now each monolithic inte grated circuits are used in the basic cmos (complementary metal o xides semiconductor technology). Like 80c51 adopt a hmos (the hig h density metal oxides semiconductor technology) and chmos (com plementary high density metal oxides semiconductor technology). C mos although TDP low, but owing to their physical characteristics to their work at a speed isn't high enough, but it has a high-spee d chmos TDP and low, these features are more appropriate to ask for lower TDP in a battery operated applications. so this process will be for a period of development. the main way to monolithic i ntegrated circuits。
关于单片机的英文文献

关于单片机的英文文献engine-control systems, brakingsystems (ABS). applications thatbenefitThe General Situation of AT89C51Microcontrollers are used in a multitude of commercial applicationssuch as modems, motor-control systems, air conditioner control systems, automotive engine and amongothers. The high processing speed and enhanced peripheral set of these microcontrollers make them suitable for such high-speed event-based applications. However, these critical application domains also require that these microcontrollers are highly reliable. The highreliability and low market risks can be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the component and at the system level. Intel Platform Engineering department developed an object-oriented multi-threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of this environment was not only to provide a robust testing environment for theAT89C51 automotive microcontrollers, but to develop an environment which canbe easilyextended and reused for the validation of several other futuremicrocontrollers. The environment was developed in conjunction withMicrosoft Foundation Classes (AT89C51). The paper describes the design and mechanism of this test environment, its interactions with varioushardware/software environmental components, and how to use AT89C51.1.1 IntroductionThe 8-bit AT89C51 CHMOSmicrocontrollers are designed to handle high-speed calculations and fast input/output operations. MCS 51microcontrollers are typically used for high-speed event control systems. Commercial applications include modems,motor-control systems, printers, photocopiers, air conditioner control systems, disk drives, and medical instruments. The automotive industry use MCS 51 microcontrollers in airbags, suspension systems, and antilock The AT89C51 is especially well suited to from itsprocessing speed and enhanced on-chip dynamicsuspension, antilock braking, and stability control applications.peripheral functions set, such as automotive power-train control, vehicleBecause of these critical applications, the market requires a reliable cost-effective controller with a low interrupt latency response, abilityto service the high number of time and event driven integrated peripherals needed in real time applications, and a CPUwith above average processing power in a single package. The financial and legal risk of having devices that operate unpredictably is very high. Once in the market, particularly in mission critical applications such as an autopilot or anti-lockbraking system, mistakes are financially prohibitive. Redesign costs can run as high as a $500K, much more if the fix means 2 back annotating it across a product family that share the samecore and/or peripheral design flaw. In addition, field replacements of components is extremely expensive, as the devices are typically sealed in modules with a total value several times that of the component. To mitigate these problems, it is essential that comprehensive testing of the controllers be carried out at both the component level and system level under worst case environmental and voltage conditions. This complete and thorough validation necessitates not only a well-defined process but also a proper environment and tools to facilitate and execute the mission successfully. Intel Chandler Platform Engineering group provides post silicon system validation (SV)of various micro-controllers and processors. The system validation process can be broken into three major parts. The type of the device and its application requirements determine which types of testing are performed on the device.1.2 The AT89C51 provides the following standard features:4Kbytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bittimer/counters, a five vector two-level interrupt architecture, a full duple serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Modestops the CPUwhile allowing the RAM,timer/counters, serial port and interrupt sys -tem to continue functioning. The Power-down Mode saves the。
单片机英文参考文献(精选120个)

我国的单片机起步虽然较晚,但经过几十年的发展,也取得了巨大的成就。
不论是工业生产还是社会生活的各个方面都离不开单片机的使用。
下面是搜素整理的单片机英文参考文献的分享,以供参考。
单片机英文参考文献一: [1]Hui Wang. Optimal Design of Single Chip Microcomputer Multi-machine Serial Communication based on Signal VerificationTechnology[J]. International Journal of Intelligent Information and Management Science,2020,9(1)。
[2]Philip J. Basford,Steven J. Johnston,Colin S. Perkins,Tony Garnock-Jones,Fung Po Tso,Dimitrios Pezaros,Robert D. Mullins,Eiko Yoneki,Jeremy Singer,Simon J. Cox. Performance analysis of single board computer clusters[J]. Future Generation ComputerSystems,2020,102. [3]. Computers; Reports from University of Southampton Describe Recent Advances in Computers (Performance Analysis of Single Board Computer Clusters)[J]. Computers, Networks & Communications,2020. [4]Yunyu Cao,Jinjin Dang,Chenxu Cao. Design of Automobile Digital Tire Pressure Detector[J]. Journal of Scientific Research and Reports,2019. [5]Sudad J. Ashaj,Ergun Er?elebi. Reduce Cost Smart Power Management System by Utilize Single Board Computer Artificial Neural Networks for Smart Systems[J]. International Journal of Computational Intelligence Systems,2019. [6]Hanhong Tan*, Yanfei Teng. Design of PWM Lighting brightness Control based on LAN QIAO Cup single Chip Microcomputer[J]. International Journal of Computational and Engineering,2019,4(3)。
单片机_英文参考文献

Structure and function of the MCS-51 seriesStructure and function of the MCS-51 series one-chip computer MCS-51 is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of MCS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic composition, basic performance and instruction system are all the same. 8051 daily representatives- 51 serial one-chip computers .An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) Four 8 run side by side I/O interface P0 four P3, each mouth can use as introduction , may use as exporting too. ( 5) Two timer / counter, each timer / counter may set up and count in the way, used to count to the external incident, can set up into a timing way too, and can according to count or result of timing realize the control of the computer. ( 6) Five cut off cutting off the control system of the source . ( 7) One all duplexing serial I/O mouth of UART (universal asynchronous receiver/transmitter (UART) ), is it realize one-chip computer or one-chip computer and serial communication of computer to use for. ( 8) Stretch oscillator and clock produce circuit, quartz crystal finely tune electric capacity need outer. Allow oscillation frequency as 12 megahertas now at most. Every the above-mentioned part was joined through the inside data bus .Among them, CPU is a core of the one-chip computer, it is the control of the computer and command centre, made up of such parts as arithmetic unit and controller , etc..The arithmetic unit can carry on 8 persons of arithmetic operation and unit ALU of logic operation while including one, the 1 storing device temporarilies of 8, storing device 2 temporarily, 8's accumulation device ACC, register B and procedure state register PSW, etc. Person who accumulate ACC count by 2 input ends entered of checking etc. temporarily as one operation often, come from person who store 1 operation is it is it make operation to go on to count temporarily , operation result and loopback ACC with another one. In addition, ACC is often regarded as the transfer station of data transmission on 8051 inside . The same as general microprocessor, it is the busiest register. Help remembering that agreeing with A expresses in the order. The controller includes the procedure counter , the order is depositted, the order decipher, the oscillator and timing circuit, etc. The procedure counter is made up of counter of 8 for two, amounts to 16. It is a byte address counter of the procedure in fact, the content is the next IA that will carried out in PC. The content which changes it can change the direction that the procedure carries out . Shake the circuit in 8051 one-chip computers, only need outer quartz crystal and frequency to finely tune the electric capacity, its frequency range is its 12MHZ of 1.2MHZ. This pulse signal, as 8051 basic beats of working, namely the minimum unit of time. 8051 is the same as other computers, the work in harmony under the control of the basic beat, just like an orchestra according to the beat play that is commanded.There are ROM (procedure memory , can only read ) and RAM in 8051 slices (data memory, can is it can write ) two to read, they have each independent memory address space, dispose way to be the same with general memory of computer. Procedure 8051 memory and 8751 slice procedure memory capacity 4KB, address begin from 0000H, used for preserving the procedure and form constant. Data 8051- 8751 8031 of memory data memory 128B, address false 00FH, use for middle result to deposit operation, the data are stored temporarily and the data are buffered etc.. In RAM of this 128B, there is unit of 32 byteses that can be appointed as the job register, this and general microprocessor is different, 8051 slice RAM and job register rank one formationthe same to arrange the location. It is not very the same that the memory of MCS-51 series one-chip computer and general computer disposes the way in addition. General computer for first address space, ROM and RAM can arrange in different space within the range of this address at will, namely the addresses of ROM and RAM, with distributing different address space in a formation. While visiting the memory, corresponding and only an address Memory unit, can ROM, it can be RAM too, and by visiting the order similarly. This kind of memory structure is called the structure of Princeton. 8051 memories are divided into procedure memory space and data memory space on the physics structure, there are four memory spaces in all: The procedure stores in one and data memory space outside data memory and one in procedure memory space and one outside one, the structure forms of this kind of procedure device and data memory separated form data memory, called Harvard structure. But use the angle from users, 8051 memory address space is divided into three kinds: (1) In the slice, arrange blocks of FFFFH , 0000H of location , in unison outside the slice (use 16 addresses). (2) The data memory address space outside one of 64KB, the address is arranged from 0000H 64KB FFFFH (with 16 addresses ) too to the location. (3) Data memory address space of 256B (use 8 addresses). Three above-mentioned memory space addresses overlap, for distinguishing and designing the order symbol of different data transmission in the instruction system of 8051: CPU visit slice, ROM order spend MOVC , visit block RAM order uses MOVX outside the slice, RAM order uses MOV to visit in slice.8051 one-chip computer have four 8 walk abreast I/O port, call P0, P1, P2 and P3. Each port is 8 accurate two-way mouths, accounts for 32 pins altogether. Every one I/O line can be used as introduction and exported independently. Each port includes a latch (namely special function register ), one exports the driver and a introduction buffer . Make data can latch when outputting, data can buffer when making introduction , but four function of passway these self-same. four port these may serve as accurate two-way mouth of I/O in common use. Expand among the system of memory outside having slice, P2mouth see high 8 address off; P0 mouth is a two-way bus, send the introduction of 8 low addresses and data / export in timesharingOutput grade , P3 of mouth , P1 of mouth , connect with inside have load resistance of drawing , every one of they can drive 4 Model LS TTL load to output. As while inputting the mouth, any TTL or NMOS circuit can drive P1 of 8051 one-chip computers as P3 mouth in a normal way . Because draw resistance on output grade of them have, can open a way collector too or drain-source resistance is it urge to open a way, do not need to have the resistance of drawing outerly . Mouths are all accurate two-way mouths too. When the conduct is input, must write the corresponding port latch with 1 first . As to 80C51 one-chip computer, port can only offer milliampere of output electric currents, is it output mouth go when urging one ordinary basing of transistor to regard as, should contact a resistance among the port and transistor base , in order to the electricity while restraining the high level from exporting P1~P3 Being restored to the throne is the operation of initializing of an one-chip computer. Its main function is to turn PC into 0000H initially , make the one-chip computer begin to hold the conduct procedure from unit 0000H. Except that the ones that enter the system are initialized normally,as because procedure operate it make mistakes or operate there aren't mistake, in order to extricate oneself from a predicament , need to be pressed and restored to the throne the key restarting too. It is an input end which is restored to the throne the signal in 8051 China RST pin. Restore to the throne signal high level effective , should sustain 24 shake cycle (namely 2 machine cycles ) the above its effective times. If 6 of frequency of utilization brilliant to shake, restore to the throne signal duration should exceed 4 delicate to finish restoring to the throne and operating. Produce the logic picture of circuit which is restored to the throne the signal:Restore to the throne the circuit and include two parts outside in the chip entirely. Outside that circuit produce to restore to the throne signal (RST ) hand over to Schmitt's trigger, restore to the throne circuit sample to output , Schmittof trigger constantly in each S5P2 , machine of cycle in having one more , then just got and restored to the throne and operated the necessary signal insidly. Restore to the throne resistance of circuit generally, electric capacity parameter suitable for 6 brilliant to shake, can is it restore to the throne signal high level duration greater than 2 machine cycles to guarantee. Being restored to the throne in the circuit is simple, its function is very important. Pieces of one-chip computer system could normal running,should first check it can restore to the throne not succeeding. Checking and can pop one's head and monitor the pin with the oscillograph tentatively, push and is restored to the throne the key, the wave form that observes and has enough range is exported (instantaneous), can also through is it restore to the throne circuit group holding value carry on the experiment to change.译文51系列单片机的功能和结构MCS51电脑芯片的结构和功能。
单片机英文文献

Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the number of human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from militaryequipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART· 6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DATA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。
单片机英文资料+英文文献

Dormancy of the one-chip computer---restore to the throne in the operation way and improve anti- interference abilityAbstract:Introduce a kind of dormancy of using- restore to the throne in theoperation way and improve the anti-interference ability method of the one-chip computer;Analyse its scope of application, provide and use the circuit concretly; Combine the instance, analyse the characteristic of the hardware and software design under these kind of operation way.Keyword: One-chip computer Restore to the throne /dormancyanti-interference ForewordIntroduction:With the development at full speed of the microelectric technique, the performance of the one-chip computer improves rapidly, demonstrate the outstanding advantage in the operation, logic control, intelligent respect, replaced and enlarged the measuring that the circuit made up, control circuit by digital logical circuit, operation originally to a great extent, use very extensivly. But because it have system halted, procedure run critical defect of flying etc, make it limit in a lot of important application of occasion. A lot of technology inanti-interference , for example set up the software trap, add thehardware to guard the gate in dog's circuit etc, can make this problem havebetter settlement, but still the existing problem: ① Guard the gate dog at the movement, mean and appear mistake already and run some time, this is not allowed in some occasions; ②Procedure appear circulation mistake very much sometimes, but just guard the gate dog control link include and enter, adopt and guard the gate as to such a mistake dog unable to discern; ③In measure and control cycle among the long system, one-chip computer spend wait for the peripheral hardware a large amount of time, will be interfered too when carry out and wait for the order. To these situations, we have tried the method restored to the throne voluntarily in practice, alternate pulse of adopting etc or restore to the throne waking according to external terms to the one-chip computer up. After being restored to the throne each time, the one-chip computer carries out the corresponding procedure, enters dormancy in time after finishing carrying out the task, wait to be restored to the throne nextly. Have solved above-mentioned problems well with this method , and has got better result in the agricultural voltage transformer comprehensive protector experiment. Now take 51 serial one-chip computers as an example and probe into the concrete principle and implementation method, restored to the throne the signal as the high level.1.A principle and implementation method1.1 Restored to the throne the law regularly unconditionallyUse timer, special-purpose clock chip or other pulse generator, produce signal of restoring to the throne regularly according to interval that set for. This kind of method is especially suitable for the measuring instrument. In not running actually, sample the analog quantity of introduction with A/D converter often, then store showing. This course is very fast, but steady for reading, the data per second are only upgraded 1 -2 times, a large amount of time of CPU is used for waiting. Let CPU carry out and enter dormancy directly after the task , restore to the throne and wake by external world up It carry out the next operation, this is to restore to the throne the law regularly In this way can makeanti-interference ability strengthen greatly , have 2 points mainly: ①. At the dormancy, procedure stop run, can appear PC indicator disorderly procedure that causes run and fly. Work time in dormancy proportion 1:9, that is to say 1 s have 0.1 time of s used for measuring, sending off showing, there is time dormancy of 0.9s, the probability that the procedure is interfered is 1/10 while running at full speed, whole anti-interference ability raise by 10 times. ② Because every 1s is restored to the throne once unconditionally, once present the system halted during a job, can certainly resume when restored to the throne next time. As to only instrument that show, some reading mistake that 1s appear accidentally there is no memory to the next measurement, be could bear , belong to “pass” mistake. This kind is restored to the throne the advantage of dog's circuit for guarding the gate regularly, first, change waiting time into a dormancy state, time to shorten and may be interfered; Second, avoided happenning that the dog controls the death circulation of the link to include guarding the gate.1.2 The external condition is restored to the throne the lawSome arrival that export or measure is controlled by the outside. For instance, the hot form. of heating, rotate the pulse produced and calculate heat by hot water water wheels, there is no hot water to flow, there is no heat to export, CPU only need in fact keep number value, do not need to count. Can imagine hot water water wheels rotate when parking warm , CPU idle in will it be will it be one season autumn spring and summer, If let dormancy its , measure have water wheels pulse constantly,anti-interference ability can strengthen greatly. So, so long as link up the restoring to the throne of the pulse of the water wheels and CPU, the water wheels rotate a circle each time, CPU is restored to the throne once, hot form. can work normally , this is restored to the throne the law by the external condition . Similar application have half electron kilowatt-hour meter , go on one count just when the machinery degree wheels and transfers to a circle, users do not need the electricity, CPU has beenknowing the dormancy all the time . The restoring to the throne in the interval not to be regular, but confirmed according to the external condition of this method. In some occasions, the time of the dormancy will be very long, very effective to improving anti-interference ability.2 .The hardware realizes the main point2.1 Restored to the throne regularly unconditionallyGenerally have 2 kinds of methods. ① Use theitimer or thespecial-purpose clock chip to be restored to the throne. Fig1, in order to use the timing circuit that 555 circuit makes up; Can use the clock chips of X1126 ,etc too , wake CPU up with the alarm signal after setting up warning time. This kind of method is suitable when the long interval is made, can also follow the result of this operation ,determine to wake time up in alarm next time temporarily, very flexible and convenient. ②The signal of using the system to be inherent is as reducing the pulse regularly. Use 50Hz worker power make reducing after having a facelift frequently, already omit the timer, gathered the corresponding signal for the phase place which measured the electric current signal at the same time, as Fig. 2 shows.2.2 External conditions are restored to the throneSend external condition pulse to and is restored to the throne the end son after having a facelift. To that above-mentioned water wheels or the ammeter spend a pulse produced, can use Schmitt's trigger to have a facelift; For writing down the instrument of the biggest or minimum,can use the window comparator. In order to realize the electronization that is regulated,can use the electronic electric potential device, establish upper and lower limits with the order of the one-chip computer.2.3 Reduce cycle and restored to the throne the high electricity at ordinary timesIn Fig3, restored to the throne the signal during high level Tr, the one-chip computer is in the state of restoring to the throne, the procedure does not run, anti-interference ability is the strongest; After the high level, the one-chip computer begins to hold the conduct procedure. That is to say, are restored to the throne and suitable for the time that the procedure carries out during the low level Td of the signal, this time should be greater than the execution cycle of the procedure each time. It is restore to the throne cycle and restore to the throne high level of signal take empty than very much important to choose rationally. As to simple to show instrument, restore to the throne cycle determine data break cycle, low electricity is it measure, hancl over all time shown to greater than to want at ordinary times; Otherwise, cant present forever the mistake of the intact executive program.Monolithic integrated circuit in Ts and Tr period all can effectively the antijamming, but is best the unnecessary time arrangement in Tr. When the program time is long, when as far as possible the request reduces Tr, may join the differentiating circuit, like chart 1 center C30, R26, D9.2.4 Treatment of output end sons(1) Restore to the throne straight pulseDuring all I/O mouth of one-chip computer turn into the high level when restoring to the throne. That is to say output for low pin normally, will according to restore to the throne cycle appear the width for the straight pulse of Tr. This straight pulse will influence the normal output, 2 methods are dealt with: ① Connect in parallel electric capacity suppress , capacity confirm according to Tr time that restore to the throne on the son in end. Reducing Tr can be reduced and connected the electric capacity in parallel. ② It is invalid to design the peripheral circuit into the high level. (2) Fault-tolerantChoose the capacity that the output end connects the electric capacity in parallel fault-tolerantly and properly, can realize fault-tolerant control. Reduced cycle in a certain, because interfered exporting the wrong level. Because the keeping function of electric capacity, can't still enable exporting the change to the valid level within this cycle; Next cycle , the mistake is corrected. So, so long as does not make mistakes in 2 cycles in succession, it is very fault-tolerant to export Certainly, this kind of method will make the normal output change lag behind for one cycle, just really reflect the output end son.2.5 has the electricity to measure and restore to the throne manuallySome system is it make some initialize and operate to want at electricity for the first time. Restored to the throne and already become the beginning condition of normal running each time while adopting the way of restoring to the throne to run , it is unable to distinguish and have the electricity for the first time. In some pin connects the electric capacity of one ljIF to the ground, measure this pin after being restored to the throne, if low level to have electricity for the first time. Give system set up one restore to the throne button, that is to say a common one manual to restore to the throne, this button is not joined and being restored to the throne in the end, is connected in parallel in the electric capacity both ends to the ground of above-mentioned pins.3. The software realizes the main point3.1 is it resume with zero clearing RAM to outputRestore to the throne the last all pin turn high level into , is it should taKe place unnecessary change for low pin to make regularly, so, should resume the state.of all pins immediately after being restored to the throne. There are 2 kinds of methods : ① Analyse and judge immediately after being restored to the throne this time, provide the state of the pin according to the need; ② In being RAM it is the last last state that come down,these RAMs when restored.To the throne regularly can the zero clearing one; But electricity or manual to rstore to the throne when pushing in conformity with zero clearing, is it embody to want when the software is worked outing at the beginning. If calculate time allows, try one's best to take method 1. Restore to the throne cycle probability made mistakes to calculate very little, according to 2 for the 2nd time in succession. 4 output end son that narrate connect treatment method of electric capacity in parallel, can reach kind anti-interference result very.3.2 realizes crossing over and is restored to the throne alternate time sequenceregularly to controlWork in way of restoring to the throne now, start anew and carry out the same procedure repeatedly each time. Can be divided into 2 kinds of situations: ① As to simple to show instrument, carry on measurement ,send off showing after being restored to the throne each time, have causality between restoring to the throne twice . need is it switch over to the dormancy to waiting original only. Should pay attention to,measurement, give total time used to show is it is it restore to the throne low electricity at ordinary times to smaller than to want, otherwise can't present forever the mistake of the intact executive program. ② For having application that time sequence controlled , after being restored to the throne each time , should check first that see the sign left last cycle , in order to determine what is done this cycle . That is to say every is it restore to the throne operation of cycle to stride , by is it transmit to indicate all, these indicate while leaving in inside RAM , the zero clearing only when have the electricity for the first time. For example, the protecting synthetically device of above-mentioned voltage transformer , is restored to the throne regularly according to the interval of 20ms. It reaches the normal working state through, certain movement order after having the electricity, such as Fig. 4; Write a part of the procedure of the software according to this movement, such as Fig.5.In 4 Fig, act as person who protect the beginning at the electricity, is it transmit power 0 to try at first. 5s, points out and transmits power soon; Transmit power formally after waiting for 30s. It is start-up time in 1s after transmitting power, does not measure the electric current. Start after finishing, if all going well, the location is put" normal sign ", person who protect restore to the throne cycle enter normal running in the next one. Try 0 that transmits power. 5s is it is it realize to count once restoring to the throne to delay time, restore to the throne time 20ms each time. At having electricity for the first time, make all zero clearing to inside RAM, make it is it time Ts to transmit power not to try =Dormancy after 25. After restoring to the throne, is it have electric pin to have electricity for the first time already, is it is it is it is it time the measuring of Ts to transmit power to try to get to go on to measure next time. If Ts * 0, is it in is it prolong period to transmit power, is it enter dormancy after the 1 to reduce Ts to prove. Act as Ts-1 = 0, the course which waited for 30s that should enter and lose electrical power. Just when Ts decreases progressively to 0, make it is it indicate to wait for not to lose electrical power Td =1500. When the procedure is restored to the throne beginning again, measure to Ts =0 but Td * 0, is it is it is it transmit power to try to cross already to indicate, at is it wait for the course of 30s to lose electrical power now. In this way, the whole process is transmitted each other by such these parameters as Tr, Td , Ts etc, go on step by step.Result:Conclusion Anti-interference is an important problem in an electronic design, especially Important in the one-chip computer. This is because the one-chip computer has procedures to run particularity that flies, the consequence that it is interfered may be the system halted, may send out various kinds of mistakes or illegal movements before the system halted too, make the whole system produce the mortality mistake. So, only guarantee it is not enough yet for one-chip computer not to crash, study how to reduce the risk interfered, it can befault-toierant how is it after and make mistakes. This text is it act as some exploration from two these to try hard, hope these elementary opinions can play some function of casting a brick to attract jade, helpful to everybody; Hope too every colleague explore together, improve our design level together.在一个芯片的计算机恢复到休眠---宝座的运作方式,提高抗干扰能力摘要:介绍了一种使用休眠,恢复到在theoperation方式的宝座,提高了单芯片计算机抗干扰能力的方法,分析其应用范围,提供和使用的电路concretly;结合实例,分析的运作方式下,这些种类的硬件和软件的设计特点。
关于单片机的英文文献(可编辑修改word版)

The General Situation of AT89C51Microcontrollers are used in a multitude of commercial applications such as modems, motor-control systems, air conditioner control systems, automotive engine and among others. The high processing speed and enhanced peripheral set of these microcontrollers make them suitable for such high-speed event-based applications. However, these critical application domains also require that these microcontrollers are highly reliable. The high reliability and low market risks can be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the component and at the system level. Intel Platform Engineering department developed an object-oriented multi- threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of this environment was not only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes (AT89C51). The paper describes the design and mechanism of this test environment, its interactions with various hardware/software environmental components, and how to use AT89C51.1.1IntroductionThe 8-bit AT89C51 CHMOS microcontrollers are designed to handle high-speed calculations and fast input/output operations. MCS 51 microcontrollers are typically used for high-speed event control systems. Commercial applications include modems, motor-control systems, printers, photocopiers, air conditioner control systems, disk drives, and medical instruments. The automotive industry use MCS 51 microcontrollers in engine-control systems, airbags, suspension systems, and antilock braking systems (ABS). The AT89C51 is especially well suited to applications that benefit from its processing speed and enhanced on-chip peripheral functions set, such as automotive power-train control, vehicle dynamic suspension,antilock braking, and stability control applications. Because of these critical applications, the market requires a reliable cost- effective controller with a low interrupt latency response, ability to service the high number of time and event driven integrated peripherals needed in real time applications, and a CPU with above average processing power in a single package. The financial and legal risk of having devices that operate unpredictably is very high. Once in the market, particularly in mission critical applications such as an autopilot or anti-lock braking system, mistakes are financially prohibitive. Redesign costs can run as high as a $500K, much more if the fix means 2 back annotating it across a product family that share the same core and/or peripheral design flaw. In addition, field replacements of components is extremely expensive, as the devices are typically sealed in modules with a total value several times that of the component. To mitigate these problems, it is essential that comprehensive testing of the controllers be carried out at both the component level and system level under worst case environmental and voltage conditions. This complete and thorough validation necessitates not only a well-defined process but also a proper environment and tools to facilitate and execute the mission successfully. Intel Chandler Platform Engineering group provides post silicon system validation (SV) of various micro-controllers and processors. The system validation process can be broken into three major parts. The type of the device and its application requirements determine which types of testing are performed on the device.1.2The AT89C51 provides the following standard features:4Kbytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16- bittimer/counters, a five vector two-level interrupt architecture, a full duple serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt sys -tem to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.1-3Pin DescriptionVCC Supply voltage.GND Ground.Port 0:Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high impedance inputs .Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.Port 1:Port 1 is an 8-bit bi-directional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2:Port 2 is an 8-bit bi-directional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 2 emits the high- order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX@DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8- bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3:Port 3 is an 8-bit bi-directional I/O port with internalpull ups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special feature soft the AT89C51 as listed below:RST:Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROG:Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSEN:Program Store Enable is the read strobe to external program memory. When theAT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPP:External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin all receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1:Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2:Output from the inverting oscillator amplifier. Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on- chip oscillator, as shown in Figure 1. Either a quarts crystal orceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. Idle Mode In idle mode, the CPU puts itself to sleep while all the on chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Power-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power- down is a hardware reset. Reset redefines the SFR but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize. The AT89C51 code memory array is programmed byte-by byte in either programming mode. To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode.2 Programming AlgorithmBefore programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines. 3.Activate the correct combination of control signals. 4. Raise EA/VPP to 12V for the high-voltage programming mode. 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached. Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.2.1Ready/Busy:The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program Verify:If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled.2.2Chip Erase:The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed.2.3Reading the Signature Bytes:The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 andP3.7 must be pulled to a logic low. The values returned areas follows :(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programming2.4Programming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is self timed and once initiated, will automatically time itself to completion. A microcomputer interface converts information between two forms. Outside the microcomputer the information handled by an electronic system exists as a physical signal, but within the program, it is represented numerically. The function of any interface can be broken down into a number of operations which modify the data in some way, so that the process of conversion between the external and internal forms is carried out in a number of steps. An analog-to-digital converter is used to convert a continuously variable signal to a corresponding digital form which can take any one of a fixed number of possible binary values. If the output of the transducer does not vary continuously, no ADC is necessary. In this case the signal conditioning section must convert the incoming signal to a form which can be connected directly to the next part of the interface, the input/output section of the microcomputer itself. Output interfaces take a similar form, the obvious difference being that here the flow of information is in the opposite direction; it is passed from the program to the outside world. In this case the program may call an output subroutine which supervises the operation of the interface and performs the scaling numbers which may be needed for digital-to- analog converter. This subroutine passes information in turn to an output device which produces a corresponding electrical signal, which could be converted into analog form using a DAC. Finally the signal is conditioned to a form suitable for operating an actuator. The signals used within microcomputer circuits are almost always too small to be con nected directly to the outside world” and some kind of interface must be used to translate them to a more appropriate form. The design of section of interface circuits is one of the most important tasks facing the engineer wishing to apply microcomputers.We have seen that in microcomputers information is represented as discrete patterns of bits; this digital form is most useful when the microcomputer is to be connected to equipment which can only be switched on or off, where each bit might represent the state of a switch or actuator. To solve real-world problems, a microcontroller must have more than just a CPU, a program, and a data memory. In addition, it must contain hardware allowing the CPU to access information from the outside world. Once the CPU gathers information and processes the data, it must also be able to effect change on some portion of the outside world. These hardware devices, called peripherals, are the CPU’s window to the outside.The most basic form of peripheral available on microcontrollers is the general purpose I70 port. Each of the I/O pins can be used as either an input or an output. The function of each pin is determined by setting or clearing corresponding bits in a corresponding data direction register during the initialization stage of a program. Each output pin may be driven to either a logic one or a logic zero by using CPU instructions to pin may be viewed (or read.) by the CPU using program instructions. Some type of serial unit is included on microcontrollers to allow the CPU to communicate bit-serially with external devices. Using a bit serial format instead of bit-parallel format requires fewer I/O pins to perform the communication function, which makes it less expensive, but slower. Serial transmissions are performed either synchronously or asynchronously.。
单片机 外文翻译 外文文献 英文文献ROM的单片机

单片机外文翻译外文文献英文文献ROM的单片机外文翻译外文原文Method of manufacturing a single chip semiconductor integratedcircuit device including a mask rom in a short timeThis application is based upon and claims the benefit of priorityfrom Japanese patent application No. 2006-207797, filed on Jul. 31, 2006, the disclosure of which is incorporated herein its entirety by reference.BACKGROUND OF THE INVENTIONThis invention relates to a method of manufacturing a single chip semiconductor integrated circuit device (a microcontroller) and a method of debugging a program of the single chip semiconductor integratedcircuit device.As well know in the art, a microcomputer is defined by aminiaturized electronic computer constituted by a microprocessor. The microprocessor is a processor where in a central processing unit (CPU)of the computer is integrated on one or few large-scale integratedcircuits (LSIs). The microcomputer normally comprises the CPU, aninput/output device, and a main memory device. The main memory device comprises a random access memory (RAM) and a read only memory (ROM). An input/output control LSI is used as a connecting circuit portion for the input/output device. A single chip microcomputer is a microcomputerwhere the CPU, the RAM, the ROM, and the input/output LSI are mounted ina one chip. The single chip microcomputer is called a one chip microcomputer.A program is read from an outside of a chip of the microprocessor while the program is preliminarily installed in the inside in the chip of the signal chip microcomputer. The microprocessor is capable of changing processing contents by renewing the program of the outside while it is almost impossible for the single chip microcomputer to change processing contents by a user because the program is already installed in the inside in the chip thereof. Herein, the program is preliminarily stored in the ROM.In addition, as well know in the art, read only memories (ROMs) are broadly divided into mask ROMs wherein wiring of contents is carried out at a manufacturing process in a semiconductor maker and programmable ROMs (PROMs) where a user can electrically write with the program therein.The mask ROMs can be manufactured at the lowest price among the semiconductor memories in principle. Therefore, products having a large memory capacity are manufactured as the mask ROMs. On the other hand, the programmable ROMs have features wherein the writing of the program can carry out by a user at hand. The programmable ROMs are classified into EPROM in a narrow sense wherein the user can program only once, erasable and programmable ROMs (EPROMs) which can be electrically programmed and can be erased by ultraviolet light or the like, and electrically erasable programmable ROMs (EEPROMs).In the EPROM, the user can program and all of data can be erased by irradiating it with ultraviolet light to be enable to rewrite therein. Inasmuch as a glass window for erasing by ultraviolet light is required in the EPROM, the EPROM is commonly contained in a ceramic package. There is a one time programmable ROM (OTP) as the EPROM in a narrow sense. The OPT comprises a semiconductor chip embedded there in that is similar to that of the EPROM but the OTP cannot be erased by ultraviolet light because the OTP comprises a package with no window. By using an ordinary EPROM programmer, the user can program information to each memory cell in the OTP only once. The OTP has a cost which is higher than that of the mast ROM and which is lower than that of the EPROM. There is a flash EEPROM as a kind of the EEROMs. The flash EEPROM is also called a flash memory which can electrically erase all of bit contents (which may erase every block) to rewrite contents therein among the programmable read only memories (PROMs).Such a single chip microcomputer is mounted in an ordinary electric calculator, a printer, a keyboard, a microprocessor-controlled automatic (electric) rice cooker, a microprocessor-controlled camera, an engine controller for an automobile, an so on. Inasmuch as the single chip microcomputer mainly often controls operations of its equipment with it installed in the equipment, the single chip microcomputer may be called a microcontroller. In addition, the microcontroller is a kind of the single chip semiconductor integrated circuit devices.In order to effectively carry out development of the equipment (an electronic device) in which such a single chip microcomputer (microcontroller) is installed, various development systems (development tools) are delivered by semiconductor makers or development tool makers. Inasmuch as the single chip microcomputer (microcontroller) comprises hardware and software which are closely related to each other and has a short time period of development, debug of the software and checking of the hardware must be simultaneously carried out. That is, development of the hardware and the software must often carried out concurrently. In this event, the debug of the software is required with a yet-to-be-completed hardware.There is an emulator as one of debug tools (development tools). Herein, the emulator is a device or a computer program for imitating, by using a system, another system. With the help of the emulator, verification of functional operations of the equipment (electronic device) installed with the software is carried out. Emulators are divided into an in-circuit emulator (ICE) which is used with it directly connected to the equipment (the electronic device) under development and a software emulator using a logic simulator. That is, the in-circuit emulator is a development tool for supporting the verification of the functional operations of the equipment (electronic device) by directly connecting it to the equipment (electronic device) mounting a program-controlled microcontroller under development.Usually, development of the hardware of the microcontroller iscarried out by the semiconductor maker side while development of the software of the microcontroller is carried out by the user side. That is, development of the microcontroller is carried out by cooperative working of the semiconductor maker and the user.Now, the description will proceed to a conventional method of manufacturing ofa microcontroller. Herein, the description will be directed to the method of manufacturing, as an ultimate product, a microcontroller comprising a mask ROM in which an ultimate program is stored.[0013]First of all, between the semiconductor maker and the user, investigation of specifications of the microcontroller (the single chip semiconductor integrated circuit device) to be manufactured is carried out. Herein, the ultimate microcontroller to be manufactured comprises a CPU, an RAM, a mask ROM, and an input/output control LSI which are incorporated into a one chip. In addition, the CPU, the RAM, the mask ROM, and the input/output control LSI are mutually connected to each other via an internal bus. The internal bus comprises an address bus and a data bus.The semiconductor maker provides the user with the emulator (the software emulator and the in-circuit emulator) as the envelopment tool while the user develops, by using the emulator, software (a program) to be stored in the above-mentioned mask ROM.Subsequently, the semiconductor maker designs a product in OTP version and the user carries out debug of the program using the software emulator. Herein, the product in OTP version (a provisional microcontroller) to be designed comprises a CPU, an RAM, the OTP, and an input/output control LSI which are incorporated into a one chip. In other words, the provisional microcontroller is similar in structure to the ultimate microcontroller except that the OTP is used in lieu of the mask ROM. However, any program is not stored in the OTP and storing of the program to the OTP is carried out by the user side in the manner which will later be described. The provisional microcontroller is sealed in a semiconductor package. On the other hand, carried out by the user, debug of the program using the software emulator is carried out with the hardware put into a yet-to-be-completed state.The semiconductor maker provides the user with a plurality of the provisional microcontrollers which are similar in structure to one another. The user stores, by using the EPROM programmer (writer), a provisional program (which is a program debugged by using the software emulator) in the OTP in one selected from the plurality of the provisional microcontrollers, mounts the selected provisional microcontroller in question in an equipment (a target board), andcarries out a test of the provisional program. That is, by using the above-mentioned in-circuit emulator, the user carries out verification of functional operations of the equipment (target board). In the manner which is described above, the OTP is a PROM in which information can bewritten only once. Accordingly, if any correction place (error) is found out in the provisional program by the test, the user stores a corrected provisional program in another provisional microcontroller, and carries out retest and re-correction of the corrected provisional program. That is, the test and the correction (the retest and the re-correction) of the provisional program is repeatedly carried out. By repeating operations of the test and the correction (the retest and the re-correction) for the provisional program, an ultimate program is determined by the user side.On the other hand, after the provisional controllers are provided to the user, the semiconductor maker subsequently carries out design of a produce in mask ROM version. Herein, the product in mask ROM version (an actual microcontroller to bemounted in the equipment) to be designed comprises a CPU, an ROM,the mask ROM, and an input/output control LSI which are incorporated in a one chip. However, at this time instance, the ultimate program has yet to be written in the mask ROM of the actual microcontroller.[0018]The user sends (provides) the above-mentioned determined ultimate program to the semiconductor maker. The semiconductor maker stores, using ion implantation, the ultimate program in the mask ROM of the actual microcontroller, thereby a microcontroller as the ultimate product is manufactured. In addition, the microcontroller manufacturedin the manner which is described above is sealed in a semiconductor package and is produced in large quantity. And, ultimatemicrocontrollers produced in large quantity are provided to the user. [0019]The user mounts the ultimate microcontrollers in the respective equipments (electronic devices), thereby the equipments are produced in large quantity.Although the above-mentioned microcontroller comprises one semiconductor chip, U.S. Pat. No. 7,199,469 or U.S. Pat. No. 7,199,469B2 issued to Ishida et al. discloses a semiconductor device (a microcontroller) having stacked two semiconductor chips sealed with a resin seal member. As the semiconductor device, a semiconductor device called a multi chip package (MCP) type is known. Although ones having various structures are developed and manufactured in the MCP type semiconductor devices, the MCP type semiconductor device comprising the stacked two semiconductor devices sealed with the resin seal member becomes most widespread. Ishida et al. discloses the semiconductordevice wherein a chip for a microcomputer (a first semiconductor chip) and a chip for EEPROM (a second semiconductor chip) are incorporated in a package. That is, Ishida et al. discloses the semiconductor device wherein the chip for EEPROM (the second semiconductor chip) is stackedon the chip for the microcomputer (the first semiconductor chip) and the two chips are sealed with the resin seal member. The chip for the microcomputer comprises a processor unit (CPU), an ROM unit, an RAM unit, a timer unit, an A/D conversion unit, a serial communication interface unit, a data input/output circuit unit, and so on which are mounted on the same board. Those units are mutually connected through a data busand an address bus. The processor unit mainly comprises a central processing portion, a control circuit portion, an arithmetic circuit portion, and so on. The chip for the microcomputer having such a structure is operated by a program. On the other hand, the chip for the EEPROM comprises a serial communication interface unit, a nonvolatile storage unit, and so on which are mounted on the same board. According to Ishida et al., electrical connection between the first semiconductor chip and the second semiconductor chip is carried out by internal leads among leads disposed around the first semiconductor chip and two bonding wires. [0021]In addition, United States Patent Application Publication No. 2002/0027281 A1 or US 2002/0027281 A1 discloses a multi chip package (a semiconductor device) which is capable of controlling a rise in temperature, which occurs inside a package due to heat (self-heating) radiated from a semiconductor chip. According to US 2002/0027281 A1, the multi chip package constructing a microcontroller comprises a lower semiconductor chip on which the microcontroller including a mask ROM is formed and an upper semiconductor chip including flash memory mounted on the lower semiconductor chip. Inasmuch as no transistor is formed on the lower semiconductor chip under the upper semiconductor chip, it is possible to neglect the self-heating in this area. In addition, US 2002/0027281 A1 discloses an embodiment wherein transistors having a mask ROM function are formed on the lower semiconductor chip at a mounting area (a substantially central area) for the upper semiconductor chip and the upper semiconductor chip (the flash memory)is mounted on the mounting area. In this event, the mask ROM function in the lower semiconductor chip is discarded.In the above-mentioned conventional method of manufacturing the microcontroller, the semiconductor maker must carry out design of two kinds of products, namely, design of a product of the OTP version and design of a product of the mask ROM version. As a result, the conventional method is disadvantageous in that it takes very much time (e.g. one year or one and half years) to develop the microcontroller as the ultimate product.In addition, the product of the OTP version and the product of the mask ROM version are a pin-for-pin equivalent in a package state and can be substituted by each other. However, the product of the OTP version and the product of the mask ROM version are different from each other as semiconductor chips and cannot be compatible in characteristics in abundance. That is, when the product of the mask ROM version is replaced with the product of the OTP which is completed with evaluation, there are cases where a malfunction such as no operation occurs. 译文在短时间内制造集成在电路器件中含有掩膜ROM的单片机的方法此应用程序是基于在2006年7月31日从日本申请的专利号2006-207797中,提交了关于披露注册在这里的完整参考,拥有优先索赔利益的权利。
有关单片机原理的外文文献

Foundation and Application ofMicrocontrollerThe single slice machine is also called tiny controller, is because it was used in the industry to control realm at the earliest stage Single slice machine from inside chip have CPU appropriation processor to develop only since then. At the earliest stage of design the principle is to pass to integrate a great deal of peripherals and CPU in a chip, making calculator system smaller, integrating more easily into complicated of but to mention to request a strict control equipments in the middle. The INTEL Z80 is the processor which designed according to this kind of thought at the earliest stage, from now on, single slice the development of the machine and appropriation processor went by different roads then.The single slice of the earlier period all of machines are 8 or 4.Among them, the INTEL is most successful of 8031, because of in brief dependable but the function was quite good to acquire very big good opinion. Henceforth at 8031 up developed MCS51 series a single slice machine system. According to the single slice of this system machine system is still in the extensive usage till now. Because the industry controls the exaltation of[with] realm request, starting appearing16 single slice machine, but because sex price wanted to don't get a very extensive application than the disregard. Develop greatly along with the consumption electronics product after 90's, the single slice machine technique got a huge exaltation. Along with the extensive application of INTEL I 960 series especially later ARM series, the 32 single slice machine replaces 16 single slice the high level position of the machine quickly, and gets into an essential market. And traditional of 8 single slice the function of the machine also got to fly to raise soon, handling an ability to compare with to raise few a hundred folds in 80's.Currently, 32 single slice of the high level with main machine already over 300 MHZ, the function keeps appropriation processor of making track for the mid 90's, and the common model number factory price drop into to USD 1, tallest carry of model number also only USD 10.The contemporary and single slice machine system has already no longer developed and used just under the naked machine environment, the in great quantities appropriative built-in operate system is applied extensively in the whole stresses of the single slice is on board. But Be rising the high level of handheld PC and cellular phone core processing single slice the machine even can use appropriative Windows and the Linux operatesystem directly.Single slice the machine ratio appropriation processor is the most suitable to match to apply in the built-in system, so it got the most applications. In fact the single slice machine is an amount the most calculators are in the world. The modern mankind are living medium use of assemble in almost each electronics and machine product have a single slice machine. All have 1-2 single slice machine in the computer accessoriness such as cellular phone, telephone, calculator, home appliances, electronics toy, handheld PC and mouse etc. And personal computer in would also capable number not a few single slice the machine be working. Provide with more than 40 departments a single slice machine generally on the car, complicated industry's controlling the top of the system even may has single several hundred pedestals slices machine to work in the meantime! Single slice the amount of the machine not only far above the PC machine and other calculations of comprehensive, even than the mankind's amount still want have another.Single-chip, also known as single-chip microcontroller, it is not the completion of a logic function of the chip, but a computer system integrated into a chip. Speaking in general terms: a single chip has become a computer. Its small size, lightweight, cheap, for the learning, application and development of facilities provided. At the same time, learning to use the principle of single-chip computer to understand and structure the best choice. Single-chip and computer use is also similar to the module, such as CPU, memory, parallel bus, as well as the role and the same hard disk memory, is it different from the performance of these components are relatively weak in our home computer a lot, but the price is low, there is generally no more than 10 Yuan ...... can use it to make some control for a class of electrical work is not very complex is sufficient. We are using automatic drum washing machines, smoke hood; VCD and so on inside the home appliances can see its shadow! ...... It is mainly as part of the core components of the control. It is an online real-time control computer, control-line is at the scene, we need to have a stronger anti-interference ability, low cost, and this is off-line computer (such as home PC) the main difference. By single-chip process, and can be amended. Through different procedures to achieve different functions, in particular the special unique features, this is the need to charge other devices can do a great effort; some of it is also difficult to make great efforts to do so. A function is not very complicated if the United States the development of the 50's series of 74 or 60during the CD4000 series to get these pure hardware, the circuit must be a big PCB board! However, if the United States if the successful 70's series of single-chip market, the result will be different! Simply because the adoption of single-chip preparation process you can achieve high intelligence, high efficiency and high reliability! Because of the cost of single-chip is sensitive, so the dominant software or the lowest level assembly language, which is in addition to the lowest level for more than binary machine code of the language, since such a low-level so why should we use? Many of the senior's language has reached a level of visual programming Why is it not in use? The reason is simple, that is, single-chip computer as there is no home of CPU, also not as hard as the mass storage device. A visualization of small high-level language program, even if there is only one button which will reach the size of dozens of K! For the home PC's hard drive is nothing, but in terms of the single-chip microcomputer is unacceptable. Single-chip in the utilization of hardware resources have to do very high, so the compilation of the original while still in heavy use. The same token, if the computer giant's operating system and applications run up to get the home PC, home PC can not afford to sustain the same. It can be said that the twentieth century across thethree "power" of the times, that is, the electrical era, the electronic age and has now entered the computer age. However, such a computer usually refers to a personal computer, or PC. It consists of the host, keyboards, displays and other components. There is also a type of computer, not how most people are familiar with. This computer is smart to give a variety of mechanical single-chip (also known as micro-controller). As the name suggests, these computer systems use only the minimum of an integrated circuit to make a simple calculation and control. Because of its small size, are usually charged with possession of machine in the "belly" in. It in the device, like the human mind plays a role, it is wrong, the entire device was paralyzed. Now, this single chip has a very wide field of use, such as smart meters, real-time industrial control, communications equipment, navigation systems, and household appliances. Once a variety of products with the use of the single-chip, will be able to play so that the effectiveness of product upgrading, product names often adjective before the word - "intelligent," such as washing machines and so intelligent. At present, some technical personnel of factories or other amateur electronics developers from engaging in certain products, not the circuit is too complex, that is functional and easy to be too simple imitation. The reasonmay be the product not on the cards or the use of single-chip programmable logic device on the other.Electrical machinery and electronics, also known as the integration of science, English as Mechatronics, it is by English mechanics of the first half of Mechanics and Electronics of the latter part of a combination of Electronics. Mechatronics 1971 first appeared in Japanese magazine, "Machine Design" on the supplement, with the mechanical-electrical integration of the rapid development of technology, electromechanical integration, the concept was widely accepted and we have universal application. With the rapid development of computer technology and extensive application of mechatronics technology unprecedented development. Mechatronics present technology, mechanical and micro-electronics technology is closely a set of technologies, the development of his machine has been cold humane, intelligent.Specific mechanical and electrical integration technologies, including the following:(1) mechanical engineering machinery and technology is the basis of mechatronics, mechanical technology, focused on how to adapt to mechanical and electrical integration technologies, the use of other high and new technology toupdate the concept, the realization of the structure, materials, the performance changes to meet the needs to reduce weight, reduce the size and improve accuracy, increase the stiffness and improving the performance requirements. Mechatronic systems in the manufacturing process, the classical theory and technology of mechanical computer-aided technology should help, while the use of artificial intelligence and expert systems, the formation of a new generation of mechanical manufacturing technology.(2) Computer and Information TechnologyWhich information exchange, access, computing, judge and decision-making, artificial intelligence techniques, expert system technology, neural networks are computer information processing technology.(3) System TechnologySystem technology that is the concept of the overall application of related technology organizations, from the perspective of the overall objectives and systems will be interconnected into the overall number of functional units, system interface technology is an important aspect of technology, it is an organic part of the realization of system guarantee connectivity.(4) Automatic Control TechnologyIts scope is broad, under the guidance of the control theory for system design, design of system simulation, live debugging, control technology include, for example, high-precision positioning control, speed control, adaptive control, self-diagnosis calibration, compensation, reproduction, retrieval, etc. .(5) Sensor detection technologySensor detection technology is the feeling of organ systems, is to achieve automatic control, the key to automatic adjustment. The stronger its functions, the system the higher the automation process. Engineering requirements of modern sensors can be fast and accurate access to information and are able to withstand the harsh environment of the test; it is the mechanical-electrical integration systems to achieve a high level of assurance.(6) Servo-drive technology, including electric, pneumatic, hydraulic and other types of actuators, servo system is a signal to the mechanical action to achieve the conversion devices and components, the dynamic performance of the system, control the quality and features have a decisive impact.Mechatronics system1. Machinery ontology ontology including mechanical rack,mechanical connections, such as mechanical transmission, which is the basis of mechanical-electrical integration, play a support system of other functional units, transmission of the role of movement and power. And compared to purely mechanical products, electrical and mechanical systems integration technology to improve performance, enhanced functionality, which requires mechanical ontology in the mechanical structure, materials, processing technology, as well as the areas of geometry to adapt, with high efficiency, multi-functional, reliable and energy-saving, small, lightweight, aesthetically pleasing characteristics.2. Detection sensor detecting sensor part includes a variety of sensors and signal detection circuit, and its function is to detect the process of mechatronic systems in the work itself and the external environment changes in the relevant parameters and information to the electronic control unit, electronic control unit checks the information in accordance with the actuator to the corresponding control issue.3. Electronic Control Unit, also known as electronic control unit ECU (Electrical Control Unit), is the core of Mechatronic Systems, responsible for testing the sensor from the external input signal and centralized command, storage, computing,analysis, information processing based on the results of according to a certain extent and pace of the instructions issued to control the destination for the entire system.4. Executor's role in the implementation of electronic control unit in accordance with the order-driven movement of mechanical components. Implementation is moving parts, usually electric, pneumatic and hydraulic drive, such as drivinga number of ways.5. The power source power source is a mechanical-electrical integration products part of the energy supply, the role of system control in accordance with the requirements of mechanical systems to provide energy and power system normal operation. Way to provide energy, including electricity, gas, energy and hydraulic energy, mainly electricity.。
单片机的外文文献及中文翻译

单片机的外文文献及中文翻译一、外文文献Title: The Application and Development of SingleChip Microcontrollers in Modern ElectronicsSinglechip microcontrollers have become an indispensable part of modern electronic systems They are small, yet powerful integrated circuits that combine a microprocessor core, memory, and input/output peripherals on a single chip These devices offer significant advantages in terms of cost, size, and power consumption, making them ideal for a wide range of applicationsThe history of singlechip microcontrollers can be traced back to the 1970s when the first microcontrollers were developed Since then, they have undergone significant advancements in technology and performance Today, singlechip microcontrollers are available in a wide variety of architectures and capabilities, ranging from simple 8-bit devices to complex 32-bit and 64-bit systemsOne of the key features of singlechip microcontrollers is their programmability They can be programmed using various languages such as C, Assembly, and Python This flexibility allows developers to customize the functionality of the microcontroller to meet the specific requirements of their applications For example, in embedded systems for automotive, industrial control, and consumer electronics, singlechip microcontrollers can be programmed to control sensors, actuators, and communication interfacesAnother important aspect of singlechip microcontrollers is their low power consumption This is crucial in batterypowered devices and portable electronics where energy efficiency is of paramount importance Modern singlechip microcontrollers incorporate advanced power management techniques to minimize power consumption while maintaining optimal performanceIn addition to their use in traditional electronics, singlechip microcontrollers are also playing a significant role in the emerging fields of the Internet of Things (IoT) and wearable technology In IoT applications, they can be used to collect and process data from various sensors and communicate it wirelessly to a central server Wearable devices such as smartwatches and fitness trackers rely on singlechip microcontrollers to monitor vital signs and perform other functionsHowever, the design and development of systems using singlechip microcontrollers also present certain challenges Issues such as realtime performance, memory management, and software reliability need to be carefully addressed to ensure the successful implementation of the applications Moreover, the rapid evolution of technology requires developers to constantly update their knowledge and skills to keep up with the latest advancements in singlechip microcontroller technologyIn conclusion, singlechip microcontrollers have revolutionized the field of electronics and continue to play a vital role in driving technological innovation Their versatility, low cost, and small form factor make them an attractive choice for a wide range of applications, and their importance is expected to grow further in the years to come二、中文翻译标题:单片机在现代电子领域的应用与发展单片机已成为现代电子系统中不可或缺的一部分。
单片机英文文献 免费

单片机英文文献Principle of MCUSingle-chip is an integrated on a single chip a complete computer system. Even though most of his features in a small chip, but it has a need to complete the majority of computer components: CPU, memory, internal and external bus system, most will have the Core. At the same time, such as integrated communication interfaces, timers, real-time clock and other peripheral equipment. And now the most powerful single-chip microcomputer system can even voice, image, networking, input and output complex system integration on a single chip.Also known as single-chip MCU (Microcontroller), because it was first used in the field of industrial control. Only by the single-chip CPU chip developed from the dedicated processor. The design concept is the first by a large number of peripherals and CPU in a single chip, the computer system so that smaller, more easily integrated into the complex and demanding on the volume control devices. INTEL the Z80 is one of the first design in accordance with the idea of the processor, From then on, the MCU and the development of a dedicated processor parted ways.Early single-chip 8-bit or all of the four. One of the most successful is INTEL's 8031, because the performance of a simple and reliable access to a lot of good praise. Since then in 8031 to develop a single-chip microcomputer system MCS51 series. Based on single-chip microcomputer system of the system is still widely used until now. As the field of industrial control requirements increase in the beginning of a 16-bit single-chip, but not ideal because the price has not been very widely used. After the 90's with the big consumer electronics product development, single-chip technology is a huge improvement. INTEL i960 Series with subsequent ARM in particular, a broad range of applications, quickly replaced by 32-bit single-chip 16-bit single-chip high-end status, and enter the mainstream market. Traditional 8-bit single-chip performance has been the rapid increase in processing power compared to the 80's to raise a few hundred times. At present, the high-end 32-bit single-chip frequency over 300MHz, the performance of the mid-90's close on the heels of a special processor, while the ordinary price of the model dropped to one U.S. dollars, the most high-end models, only 10 U.S. dollars. Contemporary single-chip microcomputer system is no longer only the bare-metal environment in the development and use of a large number of dedicated embedded operating system is widely used in the full range of single-chip microcomputer. In PDAs and cell phones as the core processing of high-end single-chip or even a dedicated direct access to Windows and Linux operating systems.More than a dedicated single-chip processor suitable for embedded systems, so it was up to the application. In fact the number of single-chip is the world's largest computer. Modern human life used in almost every piece of electronic and mechanical products will have a single-chip integration. Phone, telephone, calculator, home appliances, electronic toys, handheld computers and computer accessories such as a mouse in the Department are equipped with 1-2 single chip. And personal computers also have a large number of single-chip microcomputer in the workplace. Vehicles equipped with more than 40 Department of the general single-chip, complex industrial control systems and even single-chip may have hundreds of work at the same time! SCM is not only far exceeds the number of PC and other integrated computing, even more than the number of human beings.Hardwave introductionThe 8051 family of micro controllers is based on an architecture which is highly optimized for embedded control systems. It is used in a wide variety of applications from military equipment to automobiles to the keyboard on your PC. Second only to the Motorola 68HC11 in eight bit processors sales, the 8051 family of microcontrollers is available in a wide array of variations from manufacturers such as Intel, Philips, and Siemens. These manufacturers have added numerous features and peripherals to the 8051 such as I2C interfaces, analog to digital converters, watchdog timers, and pulse width modulated outputs. Variations of the 8051 with clock speeds up to 40MHz and voltage requirements down to 1.5 volts are available. This wide range of parts based on one core makes the 8051 family an excellent choice as the base architecture for a company's entire line of products since it can perform many functions and developers will only have to learn this one platform.The basic architecture consists of the following features:·an eight bit ALU·32 descrete I/O pins (4 groups of 8) which can be individually accessed·two 16 bit timer/counters·full duplex UART· 6 interrupt sources with 2 priority levels·128 bytes of on board RAM·separate 64K byte address spaces for DA TA and CODE memoryOne 8051 processor cycle consists of twelve oscillator periods. Each of the twelve oscillator periods is used for a special function by the 8051 core such as op code fetches and samples of the interrupt daisy chain for pending interrupts. The time required for any 8051 instruction can be computed by dividing the clock frequency by 12, inverting that result and multiplying it by the number of processor cycles required by the instruction in question. Therefore, if you have a system which is using an 11.059MHz clock, you can compute the number of instructions per second by dividing this value by 12. This gives an instruction frequency of 921583 instructions per second. Inverting this will provide the amount of time taken by each instruction cycle (1.085 microseconds).单片机原理单片机是指一个集成在一块芯片上的完整计算机系统。
单片机原理中英文文献翻译(一)2024

单片机原理中英文文献翻译(一)引言概述:单片机(Microcontroller)是一种集成电路芯片,融合了中央处理器(CPU)、内存、输入输出端口和其他外围设备接口等功能于一体。
在电子设备中,单片机扮演着控制和管理各种任务的重要角色。
本文将介绍关于单片机原理的中英文文献翻译。
大点1:单片机的基本概念1. 单片机的定义和发展历史2. 单片机的特点和应用领域3. 单片机的工作原理和体系结构4. 单片机与传统微处理器的对比5. 单片机的分类和性能指标大点2:单片机的主要组成部分1. 中央处理器(CPU)的功能和工作原理2. 存储器单元(Memory Unit)的作用和分类3. 输入输出(I/O)端口和外围设备接口4. 定时器和计数器的功能及应用5. 电源和电源管理电路的设计要点大点3:单片机的编程方法1. 单片机的指令系统和寄存器2. 单片机的汇编语言和高级语言编程3. 编写简单的单片机程序的实例4. 单片机编程中常见的问题和解决方法5. 嵌入式操作系统的开发和应用大点4:单片机的应用案例1. 家用电器中的单片机控制应用2. 工业自动化领域中的单片机应用3. 交通和物流行业中的单片机应用4. 医疗设备和仪器中的单片机应用5. 农业和环保领域中的单片机应用大点5:单片机的发展趋势1. 单片机技术的发展历程和现状2. 单片机性能和功耗的改进方向3. 嵌入式系统和物联网对单片机的影响4. 新一代单片机的发展趋势和应用前景5. 单片机教育和研究的发展现状和挑战总结:通过对单片机原理中英文文献的翻译,我们可以了解单片机的基本概念、主要组成部分、编程方法、应用案例和发展趋势。
这些知识有助于我们更好地理解和应用单片机技术,推动电子设备的创新与发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INTRODUCTION TO MICROCONTROLLERSWhat are microcontrollers? They are what their name suggests. Today they can be found in almost any complex electronic device - from portable music devices to washing machines to your car. They are programmable, cheap, small, can handle abuse, require almost zero power, and there are so many variaties to suit every need. This is what makes them so useful for robotics - they are like tiny affordable computers that you can put right onto your robot.Augmented Microcontrollers and Development Boards In a pure sense, a microcontroller is just an IC (integrated circuit, or a black chip thing with pins coming out of it>. However it is very common to add additional external components, such as a voltage regulator, capacitors, LEDs, motor driver, timing crystals, rs232, etc to the basic IC. Formally, this is called an augmented microcontroller. But in reality, most people just say 'microcontroller' even if it has augmentation. Other abbreviations would be uncontroller and MicroController Unit (MCU>. Usually when I say 'microcontroller' what I really mean to say is 'augmented microcontroller.'As a beginner it is probably best to buy an augmented microcontroller. Why? Well because they have tons of goodies built onto them that are all assembled and debugged for you. They also often come with tech support, sample code, and a community of people to help you with them. My microcontroller parts list shows the more popular types that you can buy. They tend to cost from $30 to $150 depending on the features. This will give you a good introductory to microcontroller programming without having to be concerned with all the technical stuff.In the long term however you should build your own augmented microcontroller so that you may understand them better. The advantage to making your own is that it will probably cost you from $10-$30.Between getting a full augmented board and doing it yourself is something called a development board. These boards come pre-augmented with just the bare basics to get you started. They are designed for prototyping and testing of new ideas very quickly. They typically cost between $15 and $40.What comes with the IC?There is a huge variety of microcontrollers out on the market, but I will go over a few common features that you will find useful for your robotics project.For robots, ore important than any other feature on a microcontroller, is the I/O ports. Input ports are used for taking in sensor data, while output is used for sending commands to external hardware such as servos. There are two types of I/O ports, analog and digital.Analog Input Ports Analog Ports are necessary to connect sensors to your robot. Also known as an analog to digital converter (ADC>, they recieve analog signals and convert them to adigital number within a certain numerical range.So what is analog? Analog is a continuous voltage range and is typically found with sensors. However computers can only operate in the digital realm with 0's and 1's. So how does a microcontroller convert an analog signal to a digital signal?First, the analog is measured after a predefined period of time passes. At each time period, the voltage is recorded as a number. This number then defines a signal of 0's and 1's as shown:The advantage of digital over analog is that digital is much better at eliminating background noise. Cell phones are all digital today, and although the digital signal is less representative than an analog signal, it is much less likely to degrade since computers can restore damaged digital signals. This allows for a clearer output signal to talk to your mom or whoever. MP3's are all digital too, usually encoded at 128 kbps. Higher bit rates obviously mean higher quality because they better represent the analog signal. But higher bit rates also require more memory and processing power.Most microcontrollers today are 8 bit, meaning they have arange of 256 (2^8=256>. There are a few that are 10 bit, 12 bit, and even 32 bit, but as you increase precision you also need a much faster processor.What does this bit stuff mean for ADC? For example, suppose a sensor reads 0V to an 8 bit ADC. This would give you a digital ouput of 0. 5V would be 255. Now suppose a sensor gave anoutput of 2.9V, what would the ADC output be?Doing the math:2.9V/5V = X/255 X = 2.9*255/5 = 148So how do you use an analog port? First make sure your sensor output does not exceed your digital logic voltage (usually 0V -> 5V>. Then plug that output directly to the analog port.This bit range could also be seen as a resolution. Higher resolutions mean higher accuracy, but occasionally can mean slower processing and more succeptability to noise. For example, suppose you had a 3 bit controller which has a range of 2^3=8. Then you have a distance sensor that outputed a number 0->7 (a total of 8> that represents the distance between your robot and the wall. If your sensor can see only 8 feet, then you get a resolution of 1 bit per foot (8 resolution / 8 feet = 1>. But then suppose you have an 8 bit controller, you would get256/8=32 ~ 1 bit per centimeter - way more accurate and useful! With the 3 bit controller, you could not tell the difference between 1 inch and 11 inches.Digital I/O Ports Digital ports are like analog ports, but with only 1 bit (2^1=2> hence a resolution of 2 - on and off.Digital ports obviously for that reason are rarely used for sensors, except for maybe on/off switches . . . What they are mostly used for is signal output. You can use them to control motors or led's or just about anything. Send a high 5V signalto turn something on, or a low 0V to turn something off. Or if you want to have an LED at only half brightness, or a motor at half speed, send a square wave. Square waves are like turning something on and off so fast that its almost like sending outan analog voltage of your choice. Neat, huh?This is an example of a square wave for PWM:These squarewaves are called PWM, short for pulse width modulation. They are most often used for controlling servos or DC motor H-Bridges.Also a quick side note, analog ports can be used as digital ports.Serial Communication, RS232, UART A serial connection on your microcontroller is very useful for communication. You can useit to program your controller from a computer, use it to output data from your controller to your computer (great for debugging>, or even use it to operate other electronics such as digital video cameras. Usually the microcontroller would require an external IC to handle everything, such as an RS232.Timers A timer is the method by which the microcontroller measures the passing of time - such as for a clock, sonar, a pause/wait command, timer interrupts, etc.Motor Driver To run a DC motor you need to either have an H-Bridge or a Motor Driver IC. The IC is great for small robots that do not exceed 1 or 2 amps per motor and the rated motor voltage is not higher than about 12V. The homemade H-Bridge would need to be used if you wanted to exceed those specs. There are a few H-Bridge controllers commercially available to buy, but usually they are way too expensive and are designedfor battlebot type robots. The IC is small, very cheap, and can usually handle two motors. I highly recommend opting for the IC. Also, do not forget to put a heatsink onto the motordriver. Motordrivers give off pretty fireworks when they explode from overheating =>Another interesting note, you can stack IC's in parallel to double the allowable current and heat dissipation.Theoretically you can stack as many as you want, as long as the current is high enough to still operate the logic of the IC. This works for voltage regulators too.Output Indicators Im referring to anything that can be used for debugging by communicating information to you. LED's, buzzers, LCD screens, anything that gives output. The better the indicator, the easier the debugging. The best indicator is to have your robot tethered and print or data log sensor andaction data to your computer, but it isn't always possible to have your robot tethered.Programming Languages The lowest form of programming languagesis the machine language. Microcontrollers need to be programmed with this.These higher languages would then be compiled automaticallyinto a machine language, which then you can upload into your robot. Probably the easiest language to learn would be BASIC, with a name true to itself. The BASIC Stamp microcontrolleruses that language. But BASIC has its limitations, so if you have any programming experience at all, I recommend you program in C. This language was the precurser to C++, so if you can already program in C++, it should be really simple for you to learn. What complicates this is that there is no standard to programming microcontrollers. Each has its own features, its own language, its own compiler, and its own uploading to the controller method.This is why I do not go into too much detail because there are too many options out there to talk about. The support documents that come with the controllers should answer your specificquestions. Also, if you decide to use a PIC, understand that the compiler program (at least the good ones> can cost hundred of dollars. Most microcontrollers also require a special interface device between your computer and the chip for programming which could also cost from $10-$40.Costs With possibly the exception of DC motors, the microcontroller is the most expensive part of your robot. There is just no escaping the costs, especially for the beginner. But remember, after buying all this for your first robot, you do not need to buy any of it again as you can reuse everything. So here is the breakdown of costs. The chip itself, without augmentation, would only cost dollars. But understand the chip is useless without the augmentation, so you would need to do it yourself if you do not buy it already augmented. This could potentially cost just as much with the augmentation, and could cause you many frustrations.If however you are more experienced (and for some odd reason still reading this>, you can customize your own circuit to do exactly what you want. Why have a motordriver when you are only using servos anyway? If you decide to buy an augmented MCU, the cost will range from about $50-$150. To compile your program, you would need to get special compiling software. Atmel and BASIC Stamps have free compilers. PIC's however have fairly expensive compilers. There are some free ones available online, but they are of poor quality in my opinion. CCSC PIC C compiler is about $125, but I think it is worth getting if you are going to use PIC's.You will also need an uploader to transfer the program from your computer to the chip. This generally requires more special software and a special interface device. The Cerebellum PIC based controller has this built in which is really nice and convienent, but for any others expect to spend from $10-$40. People often opt to just make their own as the circuit isnt too complicated.As a prototyper, what you probably want most is a MCUdevelopment board. These augmented microcontrollers aredesigned for the prototyper in mind. To find these augmentedMCU's, do a search for 'pic development board,' 'atmeldevelopment board,' 'stamp development board,' etc.单片机的介绍什么是单片机? 正如它们的名字所说的那样。