2018-2019学年高二上学期开学考试数学试题

合集下载

高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

高中高二数学上学期开学试题(含解析)-人教版高二全册数学试题

2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.354.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.2015-2016学年某某省某某市扶沟高中高二(上)开学数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1} C.{x|2<x<3} D.{x|1<x<3}考点:交集及其运算.专题:集合.分析:直接利用交集运算求得答案.解答:解:∵A={x|x>2},B={x|1<x<3},∴A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}.故选:C.点评:本题考查交集及其运算,是基础的计算题.2.已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的中年职工为5人,则样本容量为()A.7 B.15 C.25 D.35考点:分层抽样方法.专题:概率与统计.分析:利用分层抽样知识求解.解答:解:设样本容量为n,由题意知:,解得n=15.故选:B.点评:本题考查样本容量的求法,是基础题,解题时要注意分层抽样知识的合理运用.4.下列函数在(0,+∞)上为减函数的是()A.y=﹣|x﹣1| B.y=e x C.y=ln(x+1)D.y=﹣x(x+2)考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数解析式判断各自函数的单调区间,即可判断答案.解答:解:①y=﹣|x﹣1|=∴(0,+∞)不是减函数,故A不正确.②y=e x,在(﹣∞,+∞)上为增函数,故B不正确.③y=ln(x+1)在(﹣1,+∞)上为增函数,故C不正确.④y=﹣x(x+2)在(﹣1,+∞)上为减函数,所以在(0,+∞)上为减函数故D正确.故选:D.点评:本题考查了简单函数的单调性,单调区间的求解,掌握好常见函数的解析式即可,属于容易题.5.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数考点:函数奇偶性的判断;函数的定义域及其求法.专题:函数的性质及应用.分析:由题意可得,|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,从而得出结论.解答:解:∵f(x)是奇函数,g(x)是偶函数,∴|f(x)|为偶函数,|g(x)|为偶函数.再根据两个奇函数的积是偶函数、两个偶函数的积还是偶函数、一个奇函数与一个偶函数的积是奇函数,可得 f(x)|g(x)|为奇函数,故选:C.点评:本题主要考查函数的奇偶性,注意利用函数的奇偶性规律,属于基础题.6.设定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),则f(x﹣2)>0的解集为()A.(﹣4,0)∪(2,+∞)B.(0,2)∪(4,+∞)C.(﹣∞,0)∪(4,+∞)D.(﹣4,4)考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知中定义在R上的奇函数f(x)满足f(x)=x2﹣4(x>0),先求出f(x)>0的解集,进而求出f(x﹣2)>0的解集.解答:解:∵f(x)=x2﹣4(x>0),∴当x>0时,若f(x)>0,则x>2,又由函数f(x)是定义在R上的奇函数,当x<0时,﹣x>0,若f(x)>0,则f(﹣x)<0,则0<﹣x<2,即﹣2<x<0,故f(x)>0的解集为(﹣2,0)∪(2,+∞),故f(x﹣2)>0时,x﹣2∈(﹣2,0)∪(2,+∞),x∈(0,2)∪(4,+∞),即f(x﹣2)>0的解集为(0,2)∪(4,+∞).故选:B.点评:本题主要考查不等式的解法,利用函数的奇偶性求出当x<0时,f(x)>0的解集,是解决本题的关键.7.将函数f(x)=sin(2x+φ)的图象向左平移个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为()A.B.C.0 D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,求得φ的一个可能取值.解答:解:将函数f(x)=sin(2x+φ)的图象向左平移个单位,可得到的函数y=sin[2(x+)+φ)]=sin(2x++φ)的图象,再根据所得图象关于y轴对称,可得+φ=kπ+,即φ=kπ+,k∈z,则φ的一个可能取值为,故选:B.点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,正弦函数、余弦函数的图象的对称性,属于基础题.8.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若m⊂α,l∩α=A,点A∉m,则l与m不共面;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;③若l∥α,m∥β,α∥β,则l∥m;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,则α∥β,其中为真命题的是()A.①③④B.②③④C.①②④D.①②③考点:命题的真假判断与应用.专题:空间位置关系与距离;简易逻辑.分析:①利用异面直线的定义即可判断出正误;②利用线面垂直的判定定理即可判断出正误;③由已知可得l与m不一定平行,即可判断出正误;④利用面面平行的判定定理可得:α∥β,即可判断出正误.解答:解:①若m⊂α,l∩α=A,点A∉m,则l与m不共面,正确;②若m、l是异面直线,l∥α,m∥α,且n⊥l,n⊥m,利用线面垂直的判定定理即可判断出:n⊥α正确;③若l∥α,α∥β,α∥β,则l与m不一定平行,不正确;④若l⊂α,m⊂α,l∩m=A,l∥β,m∥β,利用面面平行的判定定理可得:α∥β,正确.其中为真命题的是①②④.故选:C.点评:本题考查了线面平行与垂直的判定定理、异面直线的定义,考查了推理能力,属于中档题.9.在区间[﹣,]上随机取一个数x,cosx的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出所有的基本事件构成的区间长度;通过解三角不等式求出事件“cos x的值介于0到”构成的区间长度,利用几何概型概率公式求出事件的概率.解答:解:所有的基本事件构成的区间长度为∵解得或∴“cos x的值介于0到”包含的基本事件构成的区间长度为由几何概型概率公式得cos x的值介于0到之间的概率为P=故选A.点评:本题考查结合三角函数的图象解三角不等式、考查几何概型的概率公式.易错题.10.已知向量=(4,6),=(3,5),且⊥,∥,则向量等于()A.B.C.D.考点:平面向量的坐标运算.专题:计算题.分析:根据向量平行垂直的坐标公式X1Y2﹣X2Y1=0和X1X2+Y1Y2=0运算即可.解答:解:设C(x,y),∵,,联立解得.故选D.点评:本题考查两个向量的位置关系①平行②垂直,此种题型是高考考查的方向.11.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A.1 B.C.D.考点:古典概型及其概率计算公式.专题:计算题.分析:根据已知中五件正品,一件次品,我们易得共有6件产品,由此我们先计算出从中任取出两件产品的事件个数,及满足条件“恰好是一件正品,一件次品”的基本事件个数,然后代入古典概型概率公式,可求出答案.解答:解:由于产品中共有5件正品,一件次品,故共有6件产品从中取出两件产品共有:C62==15种其中恰好是一件正品,一件次品的情况共有:C51=5种故出的两件产品中恰好是一件正品,一件次品的概率P==故选C点评:本题考查的知识点是古典概型及其概率计算公式,计算出满足条件的基本事件总数及其满足条件的基本事件个数是解答此类题型的关键.12.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}考点:函数奇偶性的性质.专题:函数的性质及应用.分析:首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.解答:解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.点评:本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.二、填空题:(本大题共4小题,每小题5分)13.求值cos600°=﹣.考点:诱导公式的作用.专题:计算题.分析:由诱导公式知cos600°=cos240°,进一步简化为﹣cos60°,由此能求出结果.解答:解:cos600°=cos240°=﹣cos60°=﹣.故答案为:﹣.点评:本题考查诱导公式的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.14.阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3 .考点:循环结构.专题:计算题.分析:直接利用循环框图,计算循环的结果,当k=4时,退出循环,输出结果.解答:解:由题意可知第1次判断后,s=1,k=2,第2次判断循环,s=0,k=3,第3次判断循环,s=﹣3,k=4,不满足判断框的条件,退出循环,输出S.故答案为:﹣3.点评:本题考查循环结构的作用,注意判断框的条件以及循环后的结果,考查计算能力.15.在△ABC中,AB=2,AC=4.若P为△ABC的外心,则的值为 6 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:作出边AB,AC的垂线,利用向量的运算将用和表示,利用向量的数量积的几何意义将向量的数量积表示成一个向量与另个向量的投影的乘积,即可求得的值.解答:解:若P为△ABC的外心,过P作PS⊥AB,PT⊥AC垂足分别为S,T,则S,T分别是AB,AC的中点,AS=1,AT=2.∴=•(﹣)=﹣=AT•AC﹣AS•AB=2×4﹣1×2=6,故答案为:6.点评:本题考查两个向量的运算法则及其几何意义、两个向量数量积的几何意义,属于中档题.16.已知单位向量与的夹角为α,且cosα=,向量=3﹣2与=3﹣的夹角为β,则cosβ=.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:转化向量为平面直角坐标系中的向量,通过向量的数量积求出所求向量的夹角.解答:解:单位向量与的夹角为α,且cosα=,不妨=(1,0),=,=3﹣2=(),=3﹣=(),∴cosβ===.故答案为:.点评:本题考查向量的数量积,两个向量的夹角的求法,考查计算能力.三、解答题:(解答应写出文字说明,证明过程或演算步骤)17.(10分)(2015春•某某期末)已知:tan(α+)=﹣,(<α<π).(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;两角和与差的正切函数.专题:计算题.分析:(1)利用两角和的正切公式,求出tanα的值.(2)利用二倍角公式展开,利用tanα求出cosα即可得到结果.解答:解:(1)由tan(α+)=﹣,得,解之得tanα=﹣3(5分)(2)==2cosα(9分)因为<α<π且tanα=﹣3,所以cosα=﹣(11分)∴原式=﹣(12分).点评:本题是基础题,考查两角和的正切函数公式的应用,同角三角函数的基本关系的应用,考查计算能力.18.(12分)(2014秋•隆化县校级期中)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.考点:频率分布直方图;古典概型及其概率计算公式.专题:计算题;概率与统计.分析:(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.解答:解:(1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,所以,估计这次考试的及格率为80%;=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,则估计这次考试的平均分是72分.(2)从95,96,97,98,99,100这6个数中任取2个数共有=15个基本事件,而[90,100]的人数有3人,则共有基本事件C=3.则这2个数恰好是两个学生的成绩的概率P==.点评:本题考查了学生在频率分布直方图中读取数据的能力,同时考查了古典概型的概率求法,属于基础题.19.(12分)(2013•淄川区校级模拟)已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分.求:(1)直线l的方程;(2)以O为圆心且被l截得的弦长为的圆的方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),分别代入直线l1 和l2的方程,求出m=﹣1,n=2,用两点式求直线的方程.(2)先求出圆心(0,0)到直线l的距离d,设圆的半径为R,则由,求得R的值,即可求出圆的方程.解答:解:(1)依题意可设A(m,n)、B(2﹣m,2﹣n),则,即,解得m=﹣1,n=2.即A(﹣1,2),又l过点P(1,1),用两点式求得AB方程为=,即:x+2y﹣3=0.(2)圆心(0,0)到直线l的距离d==,设圆的半径为R,则由,求得R2=5,故所求圆的方程为x2+y2=5.点评:本题主要考查直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,用两点式求直线的方程,属于中档题.20.(12分)(2015秋•某某月考)如图,四边形ABCD为矩形,DA⊥平面ABE,AE=EB=BC=2,BF⊥平面ACE于点F,且点F在CE上.(Ⅰ)求证:AE⊥BE;(Ⅱ)求三棱锥D﹣AEC的体积.考点:空间中直线与直线之间的位置关系;棱柱、棱锥、棱台的体积;直线与平面垂直的性质.专题:计算题.分析:(Ⅰ)由题意证明BC⊥平面ABE,得AE⊥BC,再结合条件证明AE⊥平面BCE,再证出AE⊥BE;(Ⅱ)利用题意得到平面ACD⊥平面ABE,作出交线的垂线,利用换低求三棱锥体积.解答:(Ⅰ)证明:由题意知,AD⊥平面ABE,且AD∥BC∴BC⊥平面ABE,∵AE⊂平面ABE∴AE⊥BC,∵BF⊥平面ACE,且AE⊂平面ABE∴BF⊥AE,又BC∩BF=B,∴AE⊥平面BCE,又∵BE⊂平面BCE,∴AE⊥BE.(Ⅱ)在△ABE中,过点E作EH⊥AB于点H,∵AD⊥平面ABE,且AD⊂平面ACD,∴平面ACD⊥平面ABE,∴EH⊥平面ACD.由已知及(Ⅰ)得EH=AB=,S△ADC=2.故V D﹣ABC=V E﹣ADC=×2×=.点评:本题主要考查垂直关系,利用线面垂直的定义和判定定理,进行线线垂直与线面垂直的转化;求三棱锥体积常用的方法:换底法.21.(12分)(2013•某某一模)函数f(x)=Asin(ωx+φ)(A>0,ω>0,﹣<φ<)(x∈R)的部分图象如图所示.(1)求函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,求f(x)的取值X围.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:(1)由图象可求得A=1,由=可求得ω,f(x)过(,1)点可求得φ,从而可求得函数y=f(x)的解析式;(2)当x∈[﹣π,﹣]时,可求得x+的X围,利用正弦函数的单调性即可求得f(x)的取值X围.解答:解:(1)由图象得A=1,=﹣=,∴T=2π,则ω=1;将(,1)代入得1=sin(+φ),而﹣<φ<,所以φ=,因此函数f(x)=sin(x+);(6分)(2)由于x∈[﹣π,﹣],﹣≤x+≤,所以﹣1≤sin(x+)≤,所以f(x)的取值X围是[﹣1,].( 12分)点评:本小题主要考查三角函数解析式的求法与三角函数图象与性质的运用,以及三角函数的值域的有关知识,属于中档题.22.(12分)(2015春•某某校级期末)已知函数f(x)=2cos2(x﹣)﹣sin2x+1 (Ⅰ)求f(x)的单调递增区间;(Ⅱ)当x∈(,)时,若f(x)≥log2t恒成立,求 t的取值X围.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的图像与性质.分析:(Ⅰ)由三角函数中的恒等变换应用化简函数解析式可得f(x)=cos(2x+)+2,由2kπ﹣π≤2x+≤2kπ,k∈Z,即可解得f(x)的单调递增区间.(Ⅱ)由,可得,解得1≤cos(2x+)+2,求得f(x),f(x)min=1,由题意log2t≤1,从而解得t的取值X围.解答:解:(Ⅰ)∵f(x)=cos(2x﹣)﹣sin2x+2=cos2x﹣sin2x+2=cos(2x+)+2,…(3分)由2kπ﹣π≤2x+≤2kπ,k∈Z,得k≤x≤k,k∈Z,…(5分)∴f(x)的单调递增区间为[k,k],k∈Z,.…(6分)(或者:f(x)=﹣+2=cos2x﹣+2=﹣+2,…(3分)令+2kπ≤≤+2kπ,k∈Z.则+kπ≤x≤+kπ,k∈Z.…(5分)∴f(x)的单调递增区间为:[+kπ,+kπ],k∈Z.…6分)(Ⅱ)∵,∴,…(7分)∴﹣1≤cos()≤﹣,1≤cos(2x+)+2,…(8分)(或者:∵,∴…(7分)∴≤≤1∴1≤﹣+2≤…8分)∴f(x),f(x)min=1.…(9分)若f(x)≥log2t恒成立,∴则log2t≤1,∴0<t≤2,…(11分)即t的取值X围为(0,2].…(12分)点评:本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.。

南通市高中2018-2019学年上学期高二数学12月月考试题含解析

南通市高中2018-2019学年上学期高二数学12月月考试题含解析

南通市高中2018-2019 学年上学期高二数学12 月月考试题含分析班级 __________ 座号 _____ 姓名 __________ 分数 __________一、选择题1.已知函数 y=x 3+ax2+( a+6) x﹣1 有极大值和极小值,则 a 的取值范围是()A .﹣ 1< a< 2B .﹣ 3< a< 6 C. a<﹣ 3 或 a> 6 D. a<﹣ 1 或 a> 22.在定义域内既是奇函数又是减函数的是()A .y=B . y= ﹣ x+C. y=﹣ x|x| D. y=3.设 x∈ R,则 x> 2 的一个必需不充足条件是()A .x> 1 B. x< 1 C . x> 3 D . x< 34.已知向量=(﹣1,3),=( x, 2 ),且,则 x= ()A .B .C.D.5.直线3x y 1 0 的倾斜角为()A .150 B.120 C.60 D.30 6.已知双曲线的渐近线与圆x2+( y﹣ 2)2=1 订交,则该双曲线的离心率的取值范围是()A .(,+∞)B.(1,)C.( 2. +∞)D.( 1,2)7.已知 m, n 为不一样的直线,α,β为不一样的平面,则以下说法正确的选项是()A .m? α, n∥ m? n∥ αB. m? α, n⊥ m? n⊥αC. m? α, n? β, m∥ n? α∥ βD. n? β, n⊥ α? α⊥β8.函数 f( x) =ax3+bx 2+cx+d 的图象以下图,则以下结论建立的是()A.a> 0, b<0,c>0,d>0 C.a<0,b<0, c< 0,d> 0B. a> 0,b< 0, c<0, d> 0 D. a> 0, b> 0, c> 0, d<0第1页,共16页9.若偶函数y=f(x),x∈ R,知足 f( x+2)=﹣ f( x),且 x∈ [0,2]时, f( x)=1﹣x,则方程 f( x)=log 8|x| 在 [﹣ 10, 10] 内的根的个数为()A .12 B.10 C.9 D. 810.已知函数 f( x)=lg ( 1﹣ x)的值域为(﹣∞, 1],则函数 f (x)的定义域为()A .[﹣9, +∞)B . [0,+∞) C.(﹣ 9, 1)D. [﹣ 9, 1)11 H0 X与变量Y没相关系.则在H0建立的状况下,估量概率P K 2≥6.635 ≈0.01.独立性查验中,假定:变量()表示的意义是()A .变量 X 与变量 Y 相关系的概率为1%B .变量 X 与变量 Y 没相关系的概率为99%C.变量 X 与变量 Y 相关系的概率为99%D .变量 X 与变量 Y 没相关系的概率为99.9%12.已知命题p:对随意 x∈R,总有 3x> 0;命题 q:“x> 2”是“x>4”的充足不用要条件,则以下命题为真命题的是()A p q B.¬p∧¬q C.¬p q D p∧¬q.∧∧.二、填空题13 .定义: [x] ( x∈R)表示不超出 x 的最大整数.比如[1.5]=1 ,[ ﹣ 0.5]= ﹣ 1.给出以下结论:①函数 y=[sinx] 是奇函数;②函数 y=[sinx] 是周期为2π的周期函数;③函数 y=[sinx] ﹣ cosx 不存在零点;④函数 y=[sinx]+[cosx] 的值域是 { ﹣2,﹣ 1, 0,1} .此中正确的选项是.(填上全部正确命题的编号)14.定义在 R 上的偶函数(f x)在[0,+∞)上是增函数,且(f 2)=0,则不等式(f log8x)>0的解集是.15.多面体的三视图以下图,则该多面体体积为(单位cm).16. i 是虚数单位,化简:=.17.直角坐标P(﹣ 1, 1)的极坐标为(ρ>0,0<θ<π).18.以下四个命题:① 两个订交平面有不在同向来线上的三个公交点② 经过空间随意三点有且只有一个平面③ 过两平行直线有且只有一个平面④ 在空间两两订交的三条直线必共面此中正确命题的序号是.三、解答题19.过抛物线y2=2px( p> 0)的焦点 F 作倾斜角为45°的直线交抛物线于A、 B 两点,若线段AB 的长为 8,求抛物线的方程.20.已知函数y=x+有以下性质:假如常数t >0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.( 1)已知函数f( x) =x+,x∈ [1,3],利用上述性质,求函数f( x)的单一区间和值域;2)已知函数g x)=和函数h x = x 2a x1 2,1] ,((()﹣﹣,若对随意∈ [0, 1] ,总存在 x ∈ [0 使得 h( x2) =g( x1)建立,务实数 a 的值.21.已知 f( x) =(1+x )m+(1+2x )n( m, n∈N*)的睁开式中x 的系数为 11.(1 )求 x2 的系数取最小值时 n 的值.(2 )当 x2 的系数获得最小值时,求 f (x)睁开式中 x 的奇次幂项的系数之和.22 .已知函数f( x)=x ﹣ 1+ ( a∈R, e 为自然对数的底数).(Ⅰ )若曲线y=f (x)在点( 1, f( 1))处的切线平行于 x 轴,求 a 的值;(Ⅱ )求函数f( x)的极值;(Ⅲ)当 a=1 的值时,若直线l: y=kx ﹣1 与曲线 y=f ( x)没有公共点,求k 的最大值.23.( 1)直线 l 的方程为( a+1) x+y+2 ﹣ a=0( a∈R).若 l 在两坐标轴上的截距相等,求 a 的值;( 2)已知 A (﹣ 2, 4), B( 4, 0),且 AB 是圆 C 的直径,求圆 C 的标准方程.24.如图,摩天轮的半径OA 为 50m,它的最低点 A 距地面的高度忽视不计.地面上有一长度为240m 的景观带 MN ,它与摩天轮在同一竖直平面内,且AM=60m .点 P 从最低点 A 处按逆时针方向转动到最高点 B 处,记∠ AOP= θ,θ∈( 0,π).( 1 )当θ= 时,求点 P 距地面的高度 PQ;( 2 )试确立θ的值,使得∠ MPN 获得最大值.南通市高中 2018-2019 学年上学期高二数学 12 月月考试题含分析(参照答案)一、选择题1.【答案】 C3 2【分析】解:因为 f ( x) =x +ax +( a+6) x﹣ 1,有 f ′(x) =3x 2+2ax+( a+6).若 f ( x)有极大值和极小值,则△ =4a2﹣12( a+6)> 0,进而有 a> 6 或 a<﹣ 3,应选: C.【评论】此题主要考察函数在某点获得极值的条件.属基础题.2.【答案】 C【分析】解: A. 在定义域内没有单一性,∴ 该选项错误;B. 时, y= , x=1 时, y=0 ;∴ 该函数在定义域内不是减函数,∴该选项错误;C. y=﹣ x|x|的定义域为R,且﹣(﹣ x) |﹣ x|=x|x|= ﹣(﹣ x|x|);∴ 该函数为奇函数;;2 2∴该函数在 [0, +∞),(﹣∞,0)上都是减函数,且﹣0 =0 ;D.;∵ ﹣ 0+1>﹣ 0﹣ 1;∴该函数在定义域R 上不是减函数,∴ 该选项错误.应选: C.【评论】考察反比率函数的单一性,奇函数的定义及判断方法,减函数的定义,以及分段函数单一性的判断,二次函数的单一性.3.【答案】 A【分析】解:当 x> 2 时, x> 1 建立,即 x>1 是 x>2 的必需不充足条件是,x< 1 是 x> 2 的既不充足也不用要条件,x> 3 是 x> 2 的充足条件,x< 3 是 x> 2 的既不充足也不用要条件,应选: A【评论】此题主要考察充足条件和必需条件的判断,比较基础.4.【答案】 C【分析】解:∵,∴3x+2=0 ,解得 x= ﹣.应选: C.【评论】此题考察了向量共线定理、方程的解法,考察了推理能力与计算能力,属于中档题.5.【答案】 C【分析】试题剖析:由直线3x y 1 0 ,可得直线的斜率为k 3 ,即 tan360 ,应选 C.1考点:直线的斜率与倾斜角.6.【答案】 C【分析】解:∵双曲线渐近线为bx±ay=0,与圆 x2+( y﹣2)2=1 订交∴圆心到渐近线的距离小于半径,即< 12 2∴3a < b ,2 2 2 2∴ c =a +b > 4a ,∴ e= >2应选: C.【评论】此题主要考察了双曲线的简单性质,直线与圆的地点关系,点到直线的距离公式等.考察了学生数形联合的思想的运用.7.【答案】 D【分析】解:在 A 选项中,可能有n? α,故 A 错误;在B选项中,可能有n α B错误;? ,故在 C 选项中,两平面有可能订交,故 C 错误;在 D 选项中,由平面与平面垂直的判断定理得 D 正确.应选: D.【评论】此题考察命题真假的判断,是基础题,解题时要仔细审题,注意空间思想能力的培育.8.【答案】 A【分析】解: f( 0)=d> 0,清除 D,当 x→+∞时, y→+∞,∴a> 0,清除 C,函数的导数 f′( x) =3ax 2+2bx+c ,则 f ′(x) =0 有两个不一样的正实根,则 x1+x 2=﹣>0且x1x2=>0,(a>0),∴b< 0, c> 0,方法 2: f ′( x) =3ax2+2bx+c ,由图象知当当x< x1时函数递加,当x1< x< x2时函数递减,则 f ′(x)对应的图象张口向上,则 a> 0,且 x1+x 2=﹣>0且x1x2=>0,(a>0),∴b< 0, c> 0,应选: A9.【答案】 D【分析】解:∵函数 y=f ( x)为偶函数,且知足 f (x+2) =﹣f (x),∴f( x+4 ) =f ( x+2+2 ) =﹣f ( x+2 ) =f ( x),∴偶函数 y=f ( x)为周期为 4 的函数,由 x∈ [0,2]时,f( x) =1﹣x,可作出函数 f ( x)在 [﹣ 10, 10] 的图象,同时作出函数f( x)=log 8 |x|在 [ ﹣10, 10]的图象,交点个数即为所求.数形联合可得交点个为8,应选: D.10.【答案】 D【分析】解:函数 f ( x) =lg ( 1﹣x)在(﹣∞,1)上递减,因为函数的值域为(﹣∞, 1],则 lg( 1﹣ x)≤1,则有 0< 1﹣ x≤10,解得,﹣ 9≤x< 1.则定义域为 [﹣ 9, 1),应选 D.【评论】此题考察函数的值域和定义域问题,考察函数的单一性的运用,考察运算能力,属于基础题.11.【答案】 C【分析】解:∵概率 P( K 2≥6.635)≈0.01,∴ 两个变量相关系的可信度是1﹣ 0.01=99%,即两个变量相关系的概率是99%,应选 C.【评论】此题考察实质推测原理和假定查验的应用,此题解题的重点是理解所求出的概率的意义,此题是一个基础题.12.【答案】 D【分析】解: p:依据指数函数的性质可知,对随意x∈R,总有 3x> 0 建立,即 p 为真命题,q:“x> 2”是“x> 4”的必需不充足条件,即q 为假命题,则 p∧¬ q 为真命题,应选: D【评论】此题主要考察复合命题的真假关系的应用,先判断p, q 的真假是解决此题的重点,比较基础二、填空题13.【答案】②③④【分析】解:①函数 y=[sinx] 是非奇非偶函数;②函数 y=[sinx] 的周期与y=sinx 的周期同样,故是周期为2π的周期函数;③函数 y=[sinx] 的取值是﹣ 1, 0, 1,故 y=[sinx] ﹣ cosx 不存在零点;④函数数 y=[sinx] 、 y=[cosx] 的取值是﹣ 1, 0, 1,故 y=[sinx]+[cosx] 的值域是 { ﹣ 2,﹣ 1, 0, 1} .故答案为:②③④.【评论】此题考察命题的真假判断,考察新定义,正确理解新定义是重点.14.【答案】(0,)∪(64,+∞).【分析】解:∵ f( x)是定义在R 上的偶函数,∴f( log 8x)> 0,等价为: f (|log 8x|)> f (2),又 f ( x)在 [0, +∞)上为增函数,∴|log8x|> 2,∴ log8x> 2 或 log8 x<﹣ 2,∴ x> 64 或 0< x<.即不等式的解集为{x|x >64 或 0<x< }故答案为:( 0,)∪ (64, +∞)【评论】此题考察函数奇偶性与单一性的综合,是函数性质综合考察题,娴熟掌握奇偶性与单一性的对应关系是解答的重点,依据偶函数的对称性将不等式进行转变是解决此题的重点.15.【答案】3.cm【分析】解:以下图,由三视图可知:该几何体为三棱锥P﹣ ABC .该几何体能够当作是两个底面均为△PCD,高分别为 AD 和 BD 的棱锥形成的组合体,由几何体的俯视图可得:△ PCD 的面积 S= ×4×4=8cm2,由几何体的正视图可得:AD+BD=AB=4cm,故几何体的体积V=×8×4=cm3,故答案为:cm3【评论】此题考察由三视图求几何体的体积和表面积,依据已知的三视图剖析出几何体的形状是重点.16.【答案】﹣1+2i.【分析】解:=故答案为:﹣1+2i .17.【答案】.【分析】解:ρ= = ,tanθ= =﹣ 1,且 0<θ<π,∴θ=.∴点 P 的极坐标为.故答案为:.18.【答案】③.【分析】解:① 两个订交平面的公交点必定在平面的交线上,故错误;② 经过空间不共线三点有且只有一个平面,故错误;③ 过两平行直线有且只有一个平面,正确;④ 在空间两两订交交点不重合的三条直线必共面,三线共点时,三线可能不共面,故错误,故正确命题的序号是③ ,故答案为:③三、解答题19.【答案】【分析】解:由题意可知过焦点的直线方程为y=x ﹣,联立,得,设 A ( x1, y1), B( x2, y2)依据抛物线的定义,得 |AB|=x 1+x 2+p=4p=8 ,解得 p=2.∴抛物线的方程为 y2=4x .【评论】此题给出直线与抛物线订交,在已知被截得弦长的状况下求焦参数p 的值.侧重考察了抛物线的标准方程和直线与圆锥曲线地点关系等知识,属于中档题.20.【答案】【分析】解:( 1)由已知能够知道,函数 f ( x)在 x∈ [1,2] 上单一递减,在x∈[2 ,3]上单一递加,f( x)min=f ( 2) =2+2=4 ,又 f ( 1) =1+4=5 , f ( 3) =3+ =;f( 1)> f ( 3)所以 f( x)max=f ( 1) =5所以 f ( x)在 x∈ [1, 3]的值域为 [4, 5].( 2) y=g( x) = =2x+1+ ﹣ 8设μ=2x+1 , x∈[0 ,1], 1≤μ≤3,则 y= ﹣8,由已知性质得,当 1 ≤u≤2 ,即0≤x≤时, g( x)单一递减,所以递减区间为[0, ];当 2 ≤u≤3 ,即≤x≤1 时, g( x)单一递加,所以递加区间为[ ,1];由 g (0)=﹣ 3 ,g() =﹣ 4,g( 1) =﹣,得 g( x)的值域为 [ ﹣4,﹣ 3].因为 h( x) =﹣ x﹣ 2a 为减函数,故h( x)∈ [﹣1﹣ 2a,﹣ 2a],x∈ [0, 1].依据题意, g( x)的值域为h( x)的值域的子集,进而有,所以 a=.21.【答案】【分析】【专题】计算题.【剖析】( 1)利用二项睁开式的通项公式求出睁开式的x 的系数,列出方程获得m, n 的关系;利用二项展开式的通项公式求出 x2 的系数,将 m, n 的关系代入获得对于m 的二次函数,配方求出最小值( 2)经过对 x 分别赋值1,﹣ 1,两式子相加求出睁开式中x 的奇次幂项的系数之和.1 C m 1 n1【解答】解:()由已知+2C =11 ,∴ m+2n=11 ,x2的系数为 C m2+22C n2 = +2n (n﹣ 1) = +( 11﹣ m)(﹣ 1 )=(m﹣)2+.∵m∈N*,∴ m=5 时, x2的系数获得最小值 22,此时 n=3.( 2)由( 1)知,当 x2的系数获得最小值时,m=5, n=3 ,∴ f ( x) =(1+x )5+( 1+2x)3.设这时 f (x)的睁开式为f( x) =a0+a1x+a2x2++a5x5,令 x=1 ,a0+a1 +a2+a3+a4+a5=25+3 3,令 x= ﹣ 1, a0﹣ a1+a2﹣ a3+a4﹣ a5=﹣1,两式相减得 2( a1+a3+a5) =60,故睁开式中 x 的奇次幂项的系数之和为 30.【评论】此题考察利用二项睁开式的通项公式求二项睁开式的特别项问题;利用赋值法求二项睁开式的系数和问题.22.【答案】【分析】解:(Ⅰ)由 f( x)=x ﹣ 1+ ,得 f′( x)=1﹣,又曲线 y=f ( x)在点( 1, f ( 1))处的切线平行于x 轴,∴f′( 1)=0,即1﹣=0 ,解得 a=e.(Ⅱ) f ′( x) =1﹣,①当 a≤0 时, f ′(x)> 0, f( x)为(﹣∞,+∞)上的增函数,所以 f(x)无极值;②当 a> 0 时,令 f′( x) =0,得 e x=a, x=lna ,x∈(﹣∞, lna), f ′( x)< 0; x∈( lna, +∞), f ′(x)> 0;∴f( x)在∈(﹣∞, lna)上单一递减,在(lna, +∞)上单一递加,故 f ( x)在 x=lna 处取到极小值,且极小值为f( lna) =lna,无极大值.综上,当 a≤0 时, f ( x)无极值;当a> 0 时, f ( x)在 x=lna 处取到极小值lna,无极大值.(Ⅲ)当 a=1 时, f (x) =x ﹣ 1+ ,令 g( x)=f ( x)﹣( kx ﹣ 1)=( 1﹣ k)x+ ,则直线 l : y=kx ﹣1 与曲线 y=f ( x)没有公共点,等价于方程 g( x) =0 在 R 上没有实数解.假定 k> 1,此时 g(0) =1> 0, g()=﹣1+ < 0,又函数 g( x)的图象连续不停,由零点存在定理可知g( x) =0 在 R 上起码有一解,“g x)=0在R上没有实数解”k 1与方程(矛盾,故≤ .又 k=1 时, g( x)= > 0,知方程 g( x)=0 在 R 上没有实数解,所以 k 的最大值为1.23.【答案】【分析】解:( 1)当 a=﹣ 1 时,直线化为y+3=0 ,不切合条件,应舍去;当 a≠﹣ 1 时,分别令 x=0, y=0 ,解得与坐标轴的交点(0, a﹣ 2),(,0).∵直线 l 在两坐标轴上的截距相等,∴ a﹣ 2=,解得a=2或a=0;(2)∵A (﹣ 2, 4), B(4, 0),∴线段 AB 的中点 C 坐标为( 1,2).又∵ |AB|= ,∴所求圆的半径 r= |AB|= .所以,以线段AB 为直径的圆 C 的标准方程为( x﹣1)2 +( y﹣ 2)2 =13.24 .【答案】【分析】解:( 1)由题意得PQ=50 ﹣ 50cosθ,进而当时, PQ=50﹣ 50cos=75.即点 P 距地面的高度为75 米.(2)由题意得, AQ=50sin θ,进而 MQ=60 ﹣ 50sinθ, NQ=300 ﹣ 50sinθ.又 PQ=50 ﹣50cosθ,所以 tan,tan.进而 tan∠ MPN=tan (∠NPQ﹣∠MPQ )==.令 g(θ) =.θ∈(0,π)则,θ∈(0,π).由 g′(θ) =0,得 sinθ+cosθ﹣ 1=0,解得.当时, g′(θ)> 0, g(θ)为增函数;当x时,g′(θ)<0,g(θ)为减函数.所以当θ=时,g(θ)有极大值,也是最大值.因为.所以.进而当 g(θ) =tan∠ MNP 获得最大值时,∠ MPN获得最大值.即当时,∠ MPN 获得最大值.【评论】此题考察了与三角函数相关的最值问题,主要仍是利用导数研究函数的单一性,进一步求其极值、最值.。

2018-2019学年上学期高二数学12月月考试题含解析(371)

2018-2019学年上学期高二数学12月月考试题含解析(371)

永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( )A .50x -<<或5x >B .5x <-或5x >C .55x -<<D .5x <-或05x <<2. 抛物线y=﹣x 2上的点到直线4x+3y ﹣8=0距离的最小值是( )A .B .C .D .33. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8B .1C .5D .﹣14. 若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假5. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1B .m >0或m <﹣1C .m >1或m ≤0D .m >1或m <06. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也非必要条件7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对9. 已知命题p :∃x ∈R ,cosx ≥a ,下列a 的取值能使“¬p ”是真命题的是( )A .﹣1B .0C .1D .210.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .11.设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣iD .﹣1+i12.已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=()|x ﹣2|+()|x ﹣2|,则关于x 的不等式f (2x ﹣1)﹣f (x+1)>0的解集为( )A .(﹣∞,)∪(2,+∞)B .(,2)C .(﹣∞,﹣)∪(2,+∞)D .(﹣,2)二、填空题13.下列关于圆锥曲线的命题:其中真命题的序号 .(写出所有真命题的序号).①设A ,B 为两个定点,若|PA|﹣|PB|=2,则动点P 的轨迹为双曲线;②设A ,B 为两个定点,若动点P 满足|PA|=10﹣|PB|,且|AB|=6,则|PA|的最大值为8; ③方程2x 2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率; ④双曲线﹣=1与椭圆有相同的焦点.14.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )fB (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .15.在极坐标系中,直线l 的方程为ρcos θ=5,则点(4,)到直线l 的距离为 .16.若直线:012=--ay x 与直线2l :02=+y x 垂直,则=a .17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B为 .三、解答题19.电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(1)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女总计(2)将日均收看该体育节目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2名,求至少有1名女性观众的概率.附:K2=P(K2≥k0)0.50 0.40 0.25 0.15 0.10 0.05 0.0250.010 0.005 0.001k00.455 0.708 1.323 2.072 2.706 3.84 5.024 6.63520.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()()3231312f x x k x kx =-+++,其中.k R ∈ (1)当3k =时,求函数()f x 在[]0,5上的值域; (2)若函数()f x 在[]1,2上的最小值为3,求实数k 的取值范围.22.如图,M 、N 是焦点为F 的抛物线y 2=2px (p >0)上两个不同的点,且线段MN 中点A 的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN 与x 轴交于点B 点,求点B 横坐标的取值范围.23.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.24.设椭圆C :+=1(a >b >0)过点(0,4),离心率为.(1)求椭圆C 的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.永胜县第二中学校2019-2020学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.12. 【答案】A【解析】解:由,得3x 2﹣4x+8=0.△=(﹣4)2﹣4×3×8=﹣80<0.所以直线4x+3y ﹣8=0与抛物线y=﹣x 2无交点.设与直线4x+3y ﹣8=0平行的直线为4x+3y+m=0联立,得3x 2﹣4x ﹣m=0.由△=(﹣4)2﹣4×3(﹣m )=16+12m=0,得m=﹣.所以与直线4x+3y ﹣8=0平行且与抛物线y=﹣x 2相切的直线方程为4x+3y ﹣=0.所以抛物线y=﹣x 2上的一点到直线4x+3y ﹣8=0的距离的最小值是=.故选:A .【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题.3. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0,∴a=2×0+1=1.故选:B.4.【答案】B【解析】解:若命题“p或q”为真,则p真或q真,若“非p”为真,则p为假,∴p假q真,故选:B.【点评】本题考查了复合命题的真假的判断,是一道基础题.5.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.6.【答案】A【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,∴sinB=2cosAsinB,∵sinB≠0,∴cosA=,∴A=,∴sinA=,当sinA=,∴A=或A=,故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,故选:A7.【答案】C【解析】解:如图,++().故选C.8.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.9.【答案】D【解析】解:命题p:∃x∈R,cosx≥a,则a≤1.下列a的取值能使“¬p”是真命题的是a=2.故选;D.10.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h (x )的图象如图:当x ≤0时,h (x )=2+x+x 2=(x+)2+≥,当x >2时,h (x )=x 2﹣5x+8=(x ﹣)2+≥,故当=时,h (x )=,有两个交点,当=2时,h (x )=,有无数个交点,由图象知要使函数y=f (x )﹣g (x )恰有4个零点,即h (x )=恰有4个根,则满足<<2,解得:b ∈(,4),故选:D .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.11.【答案】A【解析】解:∵z (1+i )=2,∴z===1﹣i .故选:A .【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.12.【答案】B【解析】解:∵α,β为锐角△ABC 的两个内角,可得α+β>90°,cos β=sin (90°﹣β)<sin α,同理cos α<sin β,∴f (x )=()|x ﹣2|+()|x ﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);故选:B.二、填空题13.【答案】②③.【解析】解:①根据双曲线的定义可知,满足|PA|﹣|PB|=2的动点P不一定是双曲线,这与AB的距离有关系,所以①错误.②由|PA|=10﹣|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=6,所以a=5,c=3,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=8,所以②正确.③方程2x2﹣5x+2=0的两个根为x=2或x=,所以方程2x2﹣5x+2=0的两根可分别作椭圆和双曲线的离心率,所以③正确.④由双曲线的方程可知,双曲线的焦点在x轴上,而椭圆的焦点在y轴上,所以它们的焦点不可能相同,所以④错误.故正确的命题为②③.故答案为:②③.【点评】本题主要考查圆锥曲线的定义和性质,要求熟练掌握圆锥曲线的定义,方程和性质.14.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.15.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为. ∴点到直线l 的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.16.【答案】1 【解析】试题分析:两直线垂直满足()02-12=⨯+⨯a ,解得1=a ,故填:1. 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,0:1111=++c y b x a l ,0:2222=++c y b x a l ,当两直线垂直时,需满足02121=+b b a a ,当两直线平行时,需满足01221=-b a b a 且1221c b c b ≠,或是212121c c b b a a ≠=,当直线是斜截式直线方程时,两直线垂直121-=k k ,两直线平行时,21k k =,21b b ≠.117.【答案】2 【解析】18.【答案】4π 【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用三角形的三角和是︒180,消去多余的变量,从而解出B 角.三角函数题目在高考中的难度逐渐增加,以考查三角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷( )中以选择题的压轴题出现.三、解答题19.【答案】【解析】解:(1)由频率分布直方图中可知:抽取的100名观众中,“体育迷”共有(0.020+0.005)×10×100=25名.可得2×2列联表:非体育迷体育迷合计男30 15 45女45 10 55总计75 25 100将2×2列联表中的数据代入公式计算可得K2的观测值为:k==≈3.030.∵3.030<3.841,∴我们没有理由认为“体育迷”与性别有关.(2)由频率分布直方图中可知:“超级体育迷”有5名,从而一切可能结果所组成的基本事件空间Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},其中a i(i=1,2,3)表示男性,b j (j=1,2)表示女性.设A表示事件“从“超级体育迷”中任意选取2名,至少有1名女性观众”,则事件A包括7个基本事件:(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2).∴P(A)=.【点评】本题考查了“独立性检验基本原理”、古典概率计算公式、频率分布直方图及其性质,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)21.【答案】(1)[]1,21;(2)2k ≥.【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得()'f x =()()31x x k --,再分1k ≤和1k >两种情况进行讨论;试题解析:(1)解:3k = 时,()32691f x x x x =-++则()()()23129313f x x x x x =-+=--' 令0f x '=得121,3x x ==列表由上表知函数()f x 的值域为[]1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增 所以()()()min 31113132f x f k k ==-+++= 即53k =(舍) ②当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增所以()()()322min 313132f x f k k k k k ==-+++= 化简得:32340k k -+= 即()()2120k k +-=所以1k =-或2k =(舍)注:也可令()3234g k k k =-+则()()23632g k k k k k =='-- 对()()1,2,0k g k ∀∈'≤()3234g k k k =-+在()1,2k ∈单调递减所以()02g k <<不符合题意综上所述:实数k 取值范围为2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当2k ≥时,[]()1,2,'0x f x ∀∈≤,函数()f x 在区间[]1,2单调递减 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分 ②当1k ≤时,[]()1,2,'0x f x ∀∈≥,函数()f x 在区间[]1,2单调递增所以()()min 23f x f <=不符合题意③当12k <<时,当[)1,x k ∈时,()'0f x <()f x 区间在[)1,k 单调递减 当(],2x k ∈时,()'0f x >()f x 区间在(],2k 单调递增 所以()()()min 23f x f k f =<=不符合题意综上所述:实数k 取值范围为2k ≥ 22.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+, ∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN =,∴直线MN 的方程为y ﹣t=(x ﹣3),∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3),∴点B 横坐标的取值范围是(﹣3,3). 【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.23.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围.试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b , 所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.24.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x﹣3),…设直线与椭圆C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x﹣3)代入椭圆C方程,整理得x2﹣3x﹣8=0,…由韦达定理得x1+x2=3,y1+y2=(x1﹣3)+(x2﹣3)=(x1+x2)﹣=﹣.…由中点坐标公式AB中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.。

河北省石家庄市第二中学2018-2019学年高二上学期期中考试数学(理)试题(含精品解析)

河北省石家庄市第二中学2018-2019学年高二上学期期中考试数学(理)试题(含精品解析)

2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.42.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=14.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A .8B .9C .10D .128.已知直三棱柱ABC ﹣A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A .B .C .D .9.若直线l :y =ax ﹣1与抛物线C :y 2=(a ﹣1)x 恰好有一个公共点,则实数a 的值构成的集合为( )A .{﹣1,0}B .{﹣1, }C .{0, }D .{1,,0}10.直线kx ﹣y ﹣2k +2=0恒过定点A ,若点A 是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A .x +4y ﹣10=0B .2x ﹣y ﹣2=0C .4x +y ﹣10=0D .4x ﹣y ﹣6=011.如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .12.已知椭圆C 1:+=1(a >b >0)与双曲线C 2:﹣=1(m >0,n >0)有共同的焦点F 1,F 2,且在第一象限的交点为P ,满足2•=2(其中O 为原点)设C 1,C 2的离心率分别为e 1,e 2当3e 1+e 2取得最小值时,e 1的值为( )A .B .C .D .二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 .14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 .16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 .三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.2018-2019学年河北省石家庄二中高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.双曲线2x2﹣y2=8的实轴长是( )A.2B.2C.4D.4【分析】根据题意,将双曲线的方程变形可得标准方程,分析可得其a的值,由双曲线实轴的定义计算可得答案.【解答】解:根据题意,双曲线方程为:2x2﹣y2=8,则其标准方程为:﹣=1,其中a==2,则其实轴长2a=4;故选:C.【点评】本题考查双曲线的几何性质,注意要现将其方程变形为标准方程.2.若平面α与β的法向量分别是,则平面α与β的位置关系是( )A.平行B.垂直C.相交但不垂直D.无法确定【分析】先计算向量与向量的数量积,根据数量积为0得到两向量垂直,从而判断出两平面的位置关系.【解答】解: =﹣2+8﹣6=0∴⊥∴平面α与平面β垂直故选:B.【点评】本题主要考查了向量数量积以及向量垂直的充要条件,同时考查了两平面的位置关系,属于基础题.3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),点(0,﹣3)在椭圆上,则椭圆的方程为( )A. +=1B. +=1C. +=1D. +=1【分析】由条件根据椭圆的标准方程和简单性质可得a2﹣b2=9,0+=1,求得a2和b2的值,可得椭圆的方程.【解答】解:由题意可得a2﹣b2=9,0+=1,∴a2=18,b2=9,故椭圆的方程为+=1,故选:D.【点评】本题主要考查椭圆的标准方程和简单性质,属于基础题.4.双曲线﹣y2=1的顶点到其渐近线的距离等于( )A.B.C.D.【分析】求出双曲线的渐近线方程,顶点坐标,利用点到直线的距离求解即可.【解答】解:双曲线﹣y2=1的顶点坐标(,0),其渐近线方程为x±y=0,所以所求的距离为=.故选:C.【点评】本题考查双曲线的简单性质的应用,是基本知识的考查.5.若平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,则点A到平面α的距离为( )A.1B.2C.D.【分析】求出,点A到平面α的距离:d=,由此能求出结果.【解答】解:∵平面α的一个法向量为=(1,2,2),A=(1,0,2),B=(0,﹣1,4),A∉α,B∈α,∴=(1,1,﹣2),点A到平面α的距离:d===.故选:C.【点评】本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意向量法的合理运用.6.已知直线l1:4x﹣3y+7=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.B.C.2D.【分析】如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.【解答】解:如图所示,过点F(1,0)作FQ⊥l1,交抛物线于点P,垂足为Q,过点P作PM⊥l2,垂足为M.则|PF|=|PM|,可知:|FQ是|抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值.|FQ|==.故选:A.【点评】本题考查了抛物线的标准方程及其性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.7.椭圆的焦点F1,F2,P为椭圆上的一点,已知PF1⊥PF2,则△F1PF2的面积为( )A.8B.9C.10D.12【分析】先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面积.【解答】解:设|PF1|=m,|PF2|=n,由椭圆的定义可知m+n=2a,∴m2+n2+2nm=4a2,∴m2+n2=4a2﹣2nm由勾股定理可知m2+n2=4c2,求得mn=18,则△F1PF2的面积为9.故选:B.【点评】本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.8.已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.B.C.D.【分析】【解法一】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN 和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.【解法二】通过补形的办法,把原来的直三棱柱变成直四棱柱,解法更简洁.【解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【解法二】如图所示,补成四棱柱ABCD﹣A1B1C1D1,求∠BC1D即可;BC1=,BD==,C1D=,∴+BD2=,∴∠DBC1=90°,∴cos∠BC1D==.故选:C.【点评】本题考查了空间中的两条异面直线所成角的计算问题,也考查了空间中的平行关系应用问题,是中档题.9.若直线l:y=ax﹣1与抛物线C:y2=(a﹣1)x恰好有一个公共点,则实数a的值构成的集合为( )A.{﹣1,0}B.{﹣1, }C.{0, }D.{1,,0}【分析】讨论若a=1,当a=﹣1时,将直线方程代入曲线方程,运用判别式为0,解方程即可得到所求值.【解答】解:若a=1,则曲线C为y=0,直线l:y=x﹣1,即有直线与曲线的交点为(1,0),满足题意;若a=0,则曲线C为y2=﹣x,直线l:y=﹣1,即有直线与曲线的交点为(﹣1,﹣1),满足题意;若a≠1,a≠0时,则抛物线y2=(a﹣1)x的对称轴为x轴,由y=ax﹣1与抛物线y2=(a﹣1)x相切,可得:a2x2﹣(3a﹣1)x+1=0,由判别式为0,可得(3a﹣1)2﹣4a2=0,解得a=(a=1舍去),综上可得,a=0,1或.故选:D.【点评】本题考查直线与曲线的交点的个数问题,注意讨论直线与曲线相切或与对称轴平行,考查运算能力,属于中档题和易错题.10.直线kx﹣y﹣2k+2=0恒过定点A,若点A是双曲线﹣=1的一条弦的中点,则此弦所在的直线方程为( )A.x+4y﹣10=0B.2x﹣y﹣2=0C.4x+y﹣10=0D.4x﹣y﹣6=0【分析】求出定点A(2,2),设A是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),利用点差法能求出以A(2,2)为中点的双曲线的弦所在的直线方程.【解答】解:直线kx﹣y﹣2k+2=0恒过定点A(2,2),双曲线﹣=1方程可化为:4x2﹣y2=8,设A(2,2)是弦P1P2的中点,且P1(x1,y1),P2(x2,y2),则x1+x2=4,y1+y2=4.∵P1,P2在双曲线上,∴,∴4(x1+x2)(x1﹣x2)﹣(y1﹣y2)(y1+y2)=0,∴4×4(x1﹣x2)=4(y1﹣y2),∴k==4,∴以A(2,2)为中点的双曲线的弦所在的直线方程为:y﹣2=4(x﹣2),整理得4x﹣y﹣6=0.故选:D.【点评】本题考查直线方程的求法,是中档题,解题时要认真审题,注意点差法和根的判别式的合理运用.11.如图F1、F2是椭圆C1: +y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是( )A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1: +y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.12.已知椭圆C1:+=1(a>b>0)与双曲线C2:﹣=1(m>0,n>0)有共同的焦点F1,F2,且在第一象限的交点为P,满足2•=2(其中O为原点)设C1,C2的离心率分别为e1,e2当3e1+e2取得最小值时,e1的值为( )A.B.C.D.【分析】由2•=2,故||=2||cos∠POF2,即x P=,由焦半径公式可得:PF1=a+=x P+m⇒e1e2=2,3e1+e2取,当且仅当3e1=e2时取等号,即.【解答】解:∵2•=2,故||=2||cos∠POF2,即x P=由焦半径公式可得:PF1=a+=x P+m⇒2c2=am⇒e1e2=23e1+e2取,当且仅当3e1=e2时取等号,即故选:A.【点评】本题考查了双曲线离心率,属于中档题.二、填空题(本题共4个小题,每题5分,共20分)13.设椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,则曲线C2的标准方程为 ﹣=1 .【分析】在椭圆C1中,由题设条件能够得到a,b,曲线C2是以F1(﹣5,0),F2(5,0),为焦点,实轴长为4的双曲线,由此可求出曲线C2的标准方程.【解答】解:在椭圆C1中,椭圆C1:+=1(a>b>0)的离心率为,长轴长为26,a=13,c=5,b=12,椭圆C1的焦点为F1(﹣5,0),F2(5,0),椭圆方程为:.曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于4,a=2,则c=5,则b=.故C2的标准方程为:,故答案为:.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用,注意区分椭圆和双曲线的性质.14.在正方体ABCD﹣A1B1C1D1中,M为棱AA1的中点,则直线D1B与平面MBC所成角的正弦值为 .【分析】设正方体ABCD﹣A1B1C1D1中棱长为2,建立空间直角坐标系,利用向量法能求出直线D1B与平面MBC所成角的正弦值.【解答】解:设正方体ABCD﹣A1B1C1D1中棱长为2,如图建立空间直角坐标系,则D1(0,0,2),B(2,2,0),M(2,0,1),C(0,2,0),=(﹣2,﹣2,2),=(0,﹣2,1),=(﹣2,0,0),设平面MBC的法向量=(x,y,z),则,取y=1,得=(0,1,2),设直线D1B与平面MBC所成角为θ,则sinθ===.故直线D1B与平面MBC所成角的正弦值为.故答案为:.【点评】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.15.已知F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,现以F2(1,0)为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M,N,若过F1的直线MF1是圆F2的切线,则椭圆的长轴长为 +1 .【分析】由题意画出图形,利用椭圆定义可得|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理求得a,则答案可求.【解答】解:如图,由题意可知,|MF2|=c=1,则|MF1|=2a﹣1,则Rt△F1MF2中,由勾股定理可得(2a﹣1)2+12=4,解得:a=.∴椭圆的长轴长为.故答案为:.【点评】本题考查椭圆的简单性质,考查数形结合的解题思想方法,是中档题.16.已知双曲线x2﹣=1(b>0)的左右焦点分别为F1,F2,过F2作直线l交双曲线的左支于点A,过F2作直线l的垂线交双曲线的左支于点B,若直线AB过F1,则△ABF2的内切圆圆心到F2的距离为 2 .【分析】设内切圆的圆心为I,由直线AF2和直线BF2垂直,运用内角平分线定可得ABF2为等腰直角三角形,运用勾股定理和三角形的等积法,可得半径r,即可得到所求距离.【解答】解:设内切圆的圆心为I,由直线AF2和直线BF2垂直,可得I在x轴上, ====1,可得三角形ABF2为等腰直角三角形,设|AF2|=m,则设|BF2|=m,|AB|=m,即有内切圆的半径r满足r•(4m﹣4)=m2,又m=2m﹣4,解得r=2,m=4+2,即有|IF2|=r=2,故答案为:2.【点评】本题考查双曲线的定义、方程和性质,注意定义法和内角平分线定理的运用,考查三角形的等积法和勾股定理的应用,考查运算能力,属于中档题.三、解答题(本题共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(10分)已知椭圆的对称轴为坐标轴且焦点在x轴上,离心率e=,短轴长为4.(I)求椭圆的方程(Ⅱ)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A,B两点,求AB的中点坐标及弦长|AB|.【分析】(Ⅰ)由已知, =,2b=4,由此能求出椭圆的标准方程.(Ⅱ)椭圆的右焦点为(1,0),直线AB方程为:y=2(x﹣1),由,得3x2﹣5x=0,由此能求出A(0,﹣2),B(),进而能求出|AB|.【解答】解:(Ⅰ)由已知, =,2b=4,∴b=2∵b2=a2﹣c2=5c2﹣c2=4c2=4,∴c2=1,a2=5,∴椭圆的标准方程为: +=1.……………………(4分)(Ⅱ)椭圆的右焦点为(1,0),∴直线AB方程为:y=2(x﹣1)…………………………设A(x1,y1),B(x2,y2),由,得3x2﹣5x=0,解得x1=0,x2=,…………………………(7分)设AB中点坐标为(x0,y0),则=,,所以AB的中点为(),…………………………(9分)∵A(0,﹣2),B(),∴|AB|==.…………………………(10分)【点评】本题考查椭圆方程的求法,考查弦长的求法,考查椭圆、直线方程、中点坐标公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.(12分)在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角CEMN的正弦值.【分析】(1)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(2)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角CEMN的余弦值,进一步求得正弦值.【解答】(1)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(2)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则=(1,2,﹣1),=(0,2,1),设平面MEN的一个法向量为=(x,y,z),由,得,取z=2,得=(4,﹣1,2).由图可得平面CME的一个法向量为=(1,0,0).∴cos<,>==.∴二面角CEMN的余弦值为,则正弦值为.【点评】本题考查直线与平面平行的判定,考查了利用空间向量求解空间角,考查计算能力,是中档题.19.(12分)已知抛物线y2=﹣x与直线l:y=k(x+1)相交于A、B两点,点O为坐标原点.(1)求的值;(2)若△OAB的面积等于,求直线l的方程.【分析】(1)联立直线与抛物线方程,化为关于y的一元二次方程,由根与系数关系求出A,B两点的横纵坐标的和与积,直接运用数量积的坐标运算求解;(2)直接代入三角形面积公式求解即可【解答】解:(1)设,由题意可知:k≠0,∴,联立y2=﹣x得:ky2+y﹣k=0显然:△>0,∴,∴=(﹣y12)(﹣y22)+y1y2=(﹣1)2+1=0,(2)∵S△OAB=×1×|y1﹣y2|===,解得:k=±,∴直线l的方程为:2x+3y+2=0或2x﹣3y+2=0.【点评】本题考查了直线和圆锥曲线的关系,考查了平面向量数量积的坐标运算,训练了三角形面积的求法,是中档题.20.(12分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则:(Ⅰ)求双曲线C的渐进线方程.(Ⅱ)当a=1时,已知直线x﹣y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在圆x2+y2=5上,求m的值.【分析】(Ⅰ)由题意通过离心率推出c2=3a2,得到,然后求解双曲线的渐近线方程.(Ⅱ)当a=1时,双曲线C的方程为x2﹣.设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),联立直线与双曲线方程,利用韦达定理,结合已知条件求解m即可.【解答】(本小题满分12分)解:(Ⅰ)由题意,得,∴c2=3a2∴b2=c2﹣a2=2a2,即∴所求双曲线C的渐进线方程………………(Ⅱ)由(1)得当a=1时,双曲线C的方程为x2﹣.……6分设A、B两点的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由,得x2﹣2mx﹣m2﹣2=0(判别式△>0),∴x0==m,y0=x0+m=2m,…………(10分)∵点M(x0,y0),在圆x2+y2=5上,∴m2+4m2=5,∴m=±1.……(12分)(本题学生用“点差法”也给分)【点评】本题考查圆锥曲线的综合应用,直线与双曲线的位置关系的应用,考查转化思想以及计算能力.21.(12分)已知抛物线y2=4x的焦点为F,过点F的直线交抛物线于A,B两点.(Ⅰ)若,求直线AB的斜率;(Ⅱ)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.【分析】(Ⅰ)依题意F(1,0),设直线AB方程为x=my+1.将直线AB的方程与抛物线的方程联立,得y2﹣4my﹣4=0.由此能够求出直线AB的斜率.(Ⅱ)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.由此能求出四边形OACB的面积最小值.【解答】(本小题满分13分)(Ⅰ)解:依题意F(1,0),设直线AB方程为x=my+1.…(1分)将直线AB的方程与抛物线的方程联立,消去x得y2﹣4my﹣4=0.…(3分)设A(x1,y1),B(x2,y2),所以y1+y2=4m,y1y2=﹣4.①…(4分)因为,所以y1=﹣2y2.②…联立①和②,消去y1,y2,得.…(6分)所以直线AB的斜率是.…(7分)(Ⅱ)解:由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AOB.…(9分)因为…(10分)=,…(12分)所以m=0时,四边形OACB的面积最小,最小值是4.…(13分)【点评】本题考查直线斜率的求法,考查四边形面积的最小值的求法,综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.22.(12分)已知动点M到定直线x=﹣4的距离是它到定点F1(﹣1,0)的距离的2倍.(Ⅰ)求动点M的轨迹方程.(Ⅱ)是否存在过点P(2,1)的直线l与动点M的轨迹相交于不同的两点A,B,满足•=?若存在,求出直线l的方程;若不存在,请说明理由.【分析】(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,由此能求出动点M的轨迹方程.(Ⅱ)设直线l的方程为y=k(x﹣2)+1,由,得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,利用根的判别式、韦达定理、向量的数量积,结合已知条件能求出存在直线l满足条件,其方程为x﹣2y=0.【解答】解:(Ⅰ)设M(x,y)(x>﹣4),由题意得==|x+4|=2+,…………………………(2分)整理得动点M的轨迹方程为: =1.…………………………(4分)(Ⅱ)假设存在符合题意的直线l,由题意知直线斜率存在,设直线l的方程为y=k(x﹣2)+1,由,消去y得(4k2+3)x2﹣8(2k2﹣k)x+8(2k2﹣2k﹣1)=0,由△=64(2k2﹣k)k2﹣32(4k2+3)(2k2﹣2k﹣1)>0,得6k+3>0,解得k>﹣,设A(x1,y1),B(x2,y2),则,x1x2=,…………………………(8分)由,得(x1﹣2)(x2﹣2)+(y1﹣1)(y2﹣1)=,则(x1﹣2)(x2﹣2)(k2+1)=,即[x1x2﹣2(x1+x2)+4](k2+1)=,所以[﹣+4](k2+1)=,整理得=,解得k=,…………………………(10分)又k>﹣,所以k=,故存在直线l满足条件,其方程为y=,即x﹣2y=0.…………………………(12分)【点评】本题考查动点的轨迹方程的求法,考查满足条件的直线方程是否存在的判断与求法,考查根的判别式、韦达定理、向量的数量积等基础知识,考查运算求解能力,考查化归与转化思想,是中档题.。

遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)

遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④2. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111] 3. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样4.已知直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8平行,则实数m的值为()A.﹣7 B.﹣1 C.﹣1或﹣7 D.5.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B. C.D.6.函数f(x)=tan(2x+),则()A.函数最小正周期为π,且在(﹣,)是增函数B.函数最小正周期为,且在(﹣,)是减函数C.函数最小正周期为π,且在(,)是减函数D.函数最小正周期为,且在(,)是增函数7.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=;④对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小.其中正确的说法的个数是()A.1 B.2 C.3 D.48.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距()A.10米B.100米C.30米D.20米9. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .010.已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( ) A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭ B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭ C 、16t t ⎧⎫>-⎨⎬⎩⎭ D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭11f x [14]f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .512.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .2425二、填空题13.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.17.在数列中,则实数a=,b=.A B C三点的截面和球心的距离是球半径的一半,且18.已知过球面上,,AB BC CA===,则2球表面积是_________.三、解答题19.已知圆C的圆心在射线3x﹣y=0(x≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ)求圆C的方程;(Ⅱ)点A(1,1),B(﹣2,0),点P在圆C上运动,求|PA|2+|PB|2的最大值.20.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?21.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.22.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.23.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.24.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D2.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.3.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.4.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.5.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.6.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.7.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.故选:B.【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.8.【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt △ABD 中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD 2=BC 2+BD 2﹣2BCBDcos30°=900 ∴CD=30米(负值舍去) 故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.9. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b ,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 10.【答案】A 【解析】考点:函数的性质。

江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题第Ⅰ卷选择题一,选择题:本大题共10个小题,每小题5分,共50分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.为创建文明城市,共建美好家园,某市教育局拟从3000名小学生,2500名初中生和1500名高中生中抽取700人参与“城市文明知识”问卷调查活动,应采用地最佳抽样方式是()A. 简单随机抽样法 B. 分层抽样法C. 系统抽样法D. 简单随机抽样法或系统抽样法【结果】B【思路】【思路】依据总体明显分层地特点采用分层抽样.【详解】依据题意,所有学生明显分成互不交叉地三层,即小学生,初中生,高中生,故采用分层抽样法.故选:B.【点睛】本题考查分层抽样地概念,属基础题.2.甲乙两名同学在班级演讲比赛中,得分情况如茎叶图所示,则甲乙两人得分地中位数之和为()A. 176B. 174C. 14D. 16【结果】A【思路】【思路】由茎叶图中地数据,计算甲,乙得分地中位数即可.【详解】由茎叶图知,甲地得分情况为76,77,88,90,94, 甲地中位数为88。

乙地得分情况为75,86,88,88,93,乙地中位数为88。

故甲乙两人得分地中位数之和为88+88=176.故选:A.【点睛】本题考查了茎叶图表示地数据地中位数地计算,注意先把数据按从小到大(或从大到小)先排序即可.3.下面表达中正确地是()A. 若事件与事件互斥,则B. 若事件与事件满足,则事件与事件为对立事件C. “事件与事件互斥”是“事件与事件对立”地必要不充分款件D.某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【结果】C【思路】【思路】对A,由互斥地定义判断即可,对B选项,利用几何概型判断即可,对C由互斥事件和对立事件地概念可判断结论,对D由对立事件定义判断,所以错误.【详解】对A,基本事件可能地有C,D…,故事件与事件互斥,但不一定有对B,由几何概型知,则事件与事件不一定为对立事件,。

上学期高二入学考试数学试题(附答案)

上学期高二入学考试数学试题(附答案)

双流中学2015-2016学年度高二(上)入学试题数 学第Ι卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四项中,只有一项是符合题目要求的.请将你所选的答案填涂在答题卡相应位置. 1.设集合{}23,log P a =,{},Q a b =,若{}0P Q =,则P Q =A.{}3,0B.{}3,0,1C.{}3,0,2D.{}3,0,1,22.下列函数中,既是偶函数又在(0,)+∞单调递增的是A .1()2x y -= B .2sin y x = C .y x x = D .ln y x =3. 已知0a b <<,则下列不等式正确的是A .22a b <B .11a b< C .22a b <D . 2ab b < 4.已知等差数列}{n a 的前15项之和为154π,则789tan()a a a ++=A. 1-B.33C. 1D. 35.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图像可能是A B C D6.等比数列{n a }中,3a ,5a是方程064342=+-x x 的两根,则4a 等于A .8B .-8C .±8D .以上都不对7. 已知函数2sin y x =的定义域为[],a b ,值域为[]2,1-,则b a -的值不可能是 A .π B .56πC.2πD.76π8.在△ABC ,三个内角A 、B 、C 所对的边分别为a 、b 、c ,若内角A 、B 、C 依次成等差数列,且不等式2680x x -+->的解集为{}|x a x c <<,则b 等于A B . C . D . 49.某空间几何体的三视图如图所示,则该几何体的表面积为A .12+4 2B .18+8 2C .28D .20+8 210.设M 是∆ABC 内一点,且02330AB AC BAC ⋅=∠=,若,M B C ∆,M C A M A B ∆∆的面积分别为1,,2x y ,则14x y+得最小值为 A .8 B .9C .16D .1811.设()n f x 是等比数列21,,,,n x x x 的各项的和,其中0,,x n N >∈ 2n ≥,则关于x的方程()2n f x =在1,12⎛⎫ ⎪⎝⎭解的情况是A .有且仅有一个解B .有两不同的解C .有无穷多个解D .无解12. 定义在[)0,+∞上的函数()f x 满足1()(2)3f x f x =-,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为()*n a n N ∈,且{}n a 的前n 项和为n S ,若212n S m m <-对任意*n N ∈恒成立,则m 的最小正整数值为 A .2B .3C .4D .5第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应的位置上.13.21,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则()(1)f f -= .14.已知正方体的棱长为aa =________.15.在ABC ∆中,tan tan tan A B A B +=,则角C 的弧度数为__________.16.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15︒方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是__________m .三、解答题:本大题共6小题.共70分.解答应写出文字说明、证明过程或演算步骤.请将解题过程书写在答题卡相应位置.17.(本小题满分10分)已知向量121243,2a e e b e e =+=-+,其中12(1,0),(0,1)e e ==. (Ι)求a 与b 夹角的余弦值;(Ⅱ)若向量a xb -与2a b +垂直,求实数x 的值.18.(本小题满分12分)已知公差大于零的等差数列{}n a 满足:343448,14a a a a =+=. (Ⅰ) 求数列{}n a 通项公式; (Ⅱ)记na nb =,求数列{}n b 的前n 项和n T .19. (本小题满分12分)已知定义在R 上的函数2()(3)2(1)f x x a x a =--+-(其中a R ∈).(Ⅰ)解关于x 的不等式()0f x >;(Ⅱ)若不等式()3f x x ≥-对任意2x >恒成立,求a 的取值范围.20.(本小题满分12分) 设2()sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若02A f ⎛⎫= ⎪⎝⎭,1a =,求△ABC 面积的最大值.21.(本小题满分12分)某渔业公司今年初用98万购进一艘渔船用于捕捞.第一年需各种费用12万元,从第二年开始每年包括维修费在内,所需费用均比上一年增加4万元,该船捕捞总收入预计每年50万元.(Ⅰ)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正)? (Ⅱ)该船捕捞若干年后,处理方案有两种: ① 年平均盈利达到最大值时,以26万元的价格卖出; ② 盈利总额达到最大时,以8万元的价格卖出. 问哪一种方案较为合算?并说明理由.22. (本小题满分12分)已知定义域在R 上的单调函数()y f x =,存在实数0x ,使得对于任意的实数1x ,2x ,总有()0102012()()()f x x x x f x f x f x +=++恒成立.(Ⅰ)求0x 的值;(Ⅱ)若0()1f x =,且对任意正整数n ,有11,1()2n n n a b f f n ⎛⎫==+ ⎪⎝⎭,记12231n n n T bb b b b b +=+++,求n a 与n T ;(Ⅲ)在(Ⅱ)的条件下,若不等式212211224[log (1)log (91)1]35n n n a a a x x +++++>+--+ 对任意不小于2的正整数n 都成立,求实数x 的取值范围.双流中学2015-2016学年度高二(上)入学试题数学参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四项中,只有一项是符合题目要求的.请将你所选的答案填涂在答题卡相应位置. 1.设集合{}23,log P a =,{},Q a b =,若{}0P Q =,则P Q = ( B )A.{}3,0B.{}3,0,1C.{}3,0,2D.{}3,0,1,2{}20log 010PQ a a b =⇒=⇒=⇒=,经检验满足,{}3,0,1P Q =2.下列函数中,既是偶函数又在(0,)+∞单调递增的是(D )A .1()2x y -= B .2sin y x = C .y x x = D .ln y x =3. 已知0a b <<,则下列不等式正确的是( C )A .22a b <B .11a b< C .22a b <D . 2ab b < 4.已知等差数列}{n a 的前15项之和为154π,则789tan()a a a ++=( A )A. 1-B.33C. 1D. 3()115158878981531515tan tan 3tan 12444a a S a a a a a a πππ+=⨯==⇒=⇒++===- 5.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的图像可能是( B )A .B .C .D .6.等比数列{n a }中,3a ,5a 是方程064342=+-x x 的两根,则 4a等于( C )A .8B .-8C .±8D .以上都不对7. 已知函数2sin y x =的定义域为[],a b ,值域为[]2,1-,则b a -的值不可能是( C ) A .π B .56π C.2πD.76π 因为函数的最小正周期为2π,若2b a π-=,则值域为[2,2]-,不符合题意.8.在△ABC ,三个内角A 、B 、C 所对的边分别为a 、b 、c ,若内角A 、B 、C 依次成等差数列,且不等式2680x x -+->的解集为{}|x a x c <<,则b 等于( B )AB .C .D . 4∵内角A 、B 、C 依次成等差数列,∴B =60°,∵不等式﹣x 2+6x ﹣8>0的解集为{x |a <x <c },∴a =2,c =4,∴b 2=a 2+c 2﹣2accos 60°=4+16﹣2×2×4×=12,∴b =B . 9.某空间几何体的三视图如图所示,则该几何体 的表面积为 ( D ) A .12+4 2B .18+8 2C .28D .20+8 210.设M 是∆ABC 内一点,且023,30AB AC BAC ⋅=∠=,若,M B C ∆,M C A M A B ∆∆的面积分别为1,,2x y ,则14x y+得最小值为 A .8B .9C .16D .18由条件可得,||||4AB AC ⋅=,∴1||||sin 12S AB AC BAC =⋅∠=,而12MBC S ∆=,∴12x y +=,∴141442()()2(5)18y x x y x y x y x y +=++=++≥,当且仅当1613x y ⎧=⎪⎪⎨⎪=⎪⎩时等号成立.11.设()n f x 是等比数列21,,,,n x x x 的各项的和,其中0,,x n N >∈ 2n ≥,则关于x 的方程()2n f x =在1,12⎛⎫ ⎪⎝⎭解的情况是( A )A .有且仅有一个解B .有两不同的解C .有无穷多个解D .无解 2()()212nn F x f x x x x =-=++++-在1,12⎛⎫⎪⎝⎭上递增,当1x ≠时,1()21nx F x x -=--, ∵11111220,(1)1012212n n F F n --⎛⎫=-=-<=-> ⎪⎝⎭-,由零点存在性定理()F x 在1,12⎛⎫ ⎪⎝⎭内有且仅有一个零点,∴关于x 的方程()2n f x =在1,12⎛⎫⎪⎝⎭解的情况是有且仅有一个零点.12. 定义在[)0,+∞上的函数()f x 满足1()(2)3f x f x =-,当[)0,2x ∈时,2()2f x x x =-+.设()f x 在[)22,2n n -上的最大值为()*n a n N ∈,且{}n a 的前n 项和为n S ,若212n S m m <-对任意*n N ∈恒成立,则m 的最小正整数值为( B )A .2B .3C .4D .5画图可知,1234231111,,,,333a a a a ====…,113n n a -=,∴2111111131331133323213n n n S ---=++++==-<-, ∴21322m m -≥,解得3m ≥,即m 的最小正整数值为3. 选B二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应的位置上.13.21,1()2,1x x f x x x ⎧+≤⎪=⎨>⎪⎩,则()(1)f f -= .()22(1)(1)12(1)(2)12f ff f -=-+=⇒-=== 14. 已知正方体的棱长为a a =________.215.在ABC ∆中,tan tan tan A B A B +=,则角C 的弧度数为__________.)tan tan tan tan tan 1tan tan A B A B A B A B +=⇒+=-t a n t a n2t a n ()31t a n t a n33A B AB A BC A B ππ+⇒+==+=⇒=-16.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15︒方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是__________m .设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有BC =33x ,AC =332x 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°, ∠CBD=30°,由正弦定理可得,CBDCDBDC BC ∠=∠sin sin可得,BC =21030sin 45sin 1000==x 33,解得610=x 三、解答题:本大题共6小题.共70分.解答应写出文字说明、证明过程或演算步骤.请将解题过程书写在答题卡相应位置. 17.(本小题满分10分)已知向量121243,2a e e b e e =+=-+,其中12(1,0),(0,1)e e ==. (Ⅰ)求a 与b 夹角的余弦值;(Ⅱ)若向量a xb -与2a b +垂直,求实数x 的值.17 (Ⅰ)由已知,(4,3),(1,2)a b ==-,∴||5,||5,2a b a b ==⋅=,………3分 ∴a 与b 夹角的余弦值为25cos ,25||||a b a b a b ⋅<>==.………………………………5分(Ⅱ)∵()(2)a xb a b -⊥+,∴()(2)0a xb a b -⋅+=,化简得222(12)0a xb x a b -+-⋅=, ……………………………………………8分 即5052(12)0x x -+-=,解得529x =. ………………………………………10分 18.(本小题满分12分)已知公差大于零的等差数列{}n a 满足:34344814a a a a =+=,. (Ⅰ) 求数列{}n a 通项公式;(Ⅱ) 记n a n b =,求数列{}n b 的前n 项和n T .(Ⅰ) 由公差0d >及343448,14a a a a =+=,解得346,8a a ==. ··························· 3分 所以432d a a =-=,所以通项3(3)2n a a n d n =+-=.········································ 6分(Ⅱ) 由(Ⅰ)有2n a n n b ==, ······································································ 8分所以{}n b 是等比数列,首项12b =,公比2=q . ··············································· 10分 所以数列{}n b 的前n 项和11(1)221n n n b q T q+-==--. ··············································· 12分19.(本小题满分12分)已知定义在R 上的函数2()(3)2(1)f x x a x a =--+-(其中a R ∈). (Ⅰ)解关于x 的不等式()0f x >;(Ⅱ)若不等式()3f x x ≥-对任意2x >恒成立,求a 的取值范围. 19(Ⅰ) ()(2)[(1)]f x x x a =---,而12211x x a a -=-+=+,()0f x >等价于(2)[(1)]0x x a --->,于是 当1a <-时,12x x <,原不等式的解集为(,2)(1,)a -∞-+∞;……………………2分 当1a =-时,12x x =,原不等式的解集为(,2)(2,)-∞+∞; ………………………4分 当1a >-时,12x x >,原不等式的解集为(,1)(2,)a -∞-+∞………………………6分(Ⅱ)不等式()3f x x ≥-,即2452x x a x -+≥--恒成立 (8)分又当2x >时,2452x x x -+--=1(2)22x x --+≤--,(当且仅当3x =时取“=”号).…10分∴a 的取值范围为[)2,-+∞…………………………………………………………………12分 20.(本小题满分12分) 设2()sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭. (Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若02A f ⎛⎫= ⎪⎝⎭,1a =,求△ABC 面积的最大值.20.解:(Ⅰ)由题意可知,f (x )=sin2x ﹣=sin2x ﹣=sin2x ﹣ …………………………………………………………………3分由2k ≤2x≤2k ,k ∈Z 可解得:k ≤x≤k ,k ∈Z ; 由2k ≤2x≤2k ,k ∈Z 可解得:k ≤x≤k ,k ∈Z ;所以f (x )的单调递增区间是,(k ∈Z );单调递减区间是:,(k ∈Z ); ………………………………………………………………6分(Ⅱ)由f ()=sinA ﹣=0,可得sinA=,由题意知A 为锐角,所以cosA=,………………………………………………8分由余弦定理a 2=b 2+c 2﹣2bccosA ,可得:1+bc=b 2+c 2≥2bc ,即bc ,且当b=c 时等号成立.因此bcsinA≤, 所以△ABC 面积的最大值为.………………………………………………12分 由A 为锐角,所以6A π=,而1a =, ∴由正弦定理,2sin sin sin b c a B C A===,∴2sin ,2sin b B c C ==,………7分 ∴15sin sin sin sin sin 26ABC S bc A B C B B π∆⎛⎫===- ⎪⎝⎭………………………8分211sin cos sin cos 22B B B B B B ⎛⎫=+=+⎪ ⎪⎝⎭11sin 2cos 2)sin 2242B B B B ⎡⎤=+-=+⎢⎥⎣⎦1sin 2234B π⎛⎫=-+ ⎪⎝⎭ ……………………………………………………9分 ∵△ABC 为锐角三角形且6A π=,∴0256B B C ππ⎧<<⎪⎪⎨⎪+=⎪⎩,解得32B ππ<< ∴22333B πππ<-< , ……………………………………………………………11分故当232B ππ-=即512B π=时,△ABC 的面积取得最大值124+……………12分 21.(本小题满分12分)某渔业公司今年初用98万购进一艘渔船用于捕捞.第一年需各种费用12万元,从第二年开始每年包括维修费在内,所需费用均比上一年增加4万元,该船捕捞总收入预计每年50万元.(Ⅰ)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正)? (Ⅱ)该船捕捞若干年后,处理方案有两种:① 年平均盈利达到最大值时,以26万元的价格卖出;② 盈利总额达到最大时,以8万元的价格卖出.问哪一种方案较为合算?并说明理由.解: (Ⅰ)设n 年后盈利额为y 元()215012498240982n n y n n n n -⎡⎤=-+⨯-=-+-⎢⎥⎣⎦令0y >,得317n ≤≤,∴从第3年开始盈利. …………………………………………………………………6分(Ⅱ) ①平均盈利982404012y n n n =--+≤-= 这种情况下,盈利总额为12726110⨯+=万元,此时7n =.…………………………………………………………………………9分 ②()2210102102y n =--+≤,此时10n =.这种情况下盈利额为1028110+=.……………………………………………11分 两种情况的盈利额一样,但方案①的时间短,故方案①合算. …………………12分22. (本小题满分12分)已知定义域在R 上的单调函数()y f x =,存在实数0x ,使得对于任意的实数1x ,2x ,总有()0102012()()()f x x x x f x f x f x +=++恒成立.(Ⅰ)求0x 的值;(Ⅱ)若0()1f x =,且对任意正整数n ,有11,1()2n n n a b f f n ⎛⎫==+ ⎪⎝⎭,记12231n n n T bb b b b b +=+++,求n a 与n T ; (Ⅲ)在(Ⅱ)的条件下,若不等式212211224[log (1)log (91)1]35n n n a a a x x +++++>+--+ 对任意不小于2的正整数n 都成立,求实数x 的取值范围.(Ⅰ)令120x x ==得:00(0)()2(0)()(0)f f x f f x f =+⇒=-……………① 令121,0x x ==,得00()()(1)(0)(1)(0)f x f x f f f f =++⇒=-………② 由①②得0()(1)f x f =,又因为()f x 是单调函数,∴01x =……………………………3分 (Ⅱ)由(Ⅰ)可得121212()(1)()()()()1f x x f f x f x f x f x +=++=++ 令12,1x n x ==,且0(1)()1f f x ==,则(1)()(1)1()2f n f n f f n +=++=+ ∴数列{}n a 为等差数列,又∵(1)1f =,∴()*()21f n n n N =-∈,∴121n a n =- ………………………………………6分 11)21(,0)21()1()21()21()2121()1(1=+==∴++=+=f b f f f f f f 法一:11111211222n n n n b f -⎛⎫=+=⨯-+=⎪⎝⎭ 法二:111111111()()2()(1)2()122222n n n n n f f f f f ++++=+=+=+ 1111111122()2()2()12222n n n n n n b f f f b ++++=+=+=+= ∴1111122n n n b b --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ ……………………………………………………………7分 12311211)21()21()21()21()21()21()21()21()21(--+⋯++=⨯+⋯+⨯+⨯=n n n o n T 21134n ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦……………………………………………………………………………8分 令122()n n n F n a a a ++=+++,则1111(1)()0414321(43)(41)(21)F n F n n n n n n n +-=+-=>++++++ ∴数列{()}F n 单调递增,∴当2n ≥时3412()(1)(2)35F n F n F a a >->>=+= ∴ 21122124[log (1)log (91)1]3535x x >+--+,即21122log (1)log (91)2x x +--<, 即211221log (1)log (91)4x x +<-,亦即22119104(1)91x x x x +>⎧⎪->⎨⎪+>-⎩解得5193x -<<-或113x <<,故511,,,1933x ⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ ………………12分。

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)

2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。

高二上学期入学考试数学试题及答案

高二上学期入学考试数学试题及答案

高二(上)入学考试数学试题一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项符合要求.) 1.已知集合{}2,1,0,1,2--=M ,{}0)2)(1(<-+=x x x N ,则=N M ( ) A .{}0,1-B .{}1,0C .{}1,0,1-D .{}2,1,02.=︒︒-︒︒70sin 160sin 70cos 20cos ( ) A .0B .21C .23 D .13.下列说法中正确的是( ).A 斜三棱柱的侧面展开图一定是平行四边形 .B 水平放置的正方形的直观图有可能是梯形.C 一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体.D 用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台4.若3tan =α,则=-)4tan(πα( )A .2B .2-C .21-D .21 5.已知等比数列{}n a 满足31=a ,21531=++a a a ,则=+73a a ( ) A .18B .24C .30D .426. 已知22log log a b >,则下列不等式一定成立的是( )A .11a b>B .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()2log 0a b ->D .21a b-<7.设l 、m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α⊂,则//l m D .若//l α,//m α,则//l m 8.在ABC ∆中,若B b A a cos cos =,则此三角形是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形9.等比数列}{n a 的各项均为正数,且167465=+a a a a ,则=+++1022212log log log a a a ( )A .20B .15C .8D .5log 32+10.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题.《张丘建算经》(成书约公元5世纪)卷上二十二“织女问题”:今有女善织,日益功疾.初日织五尺,今一月日织九匹三丈,问日益几何?其意思为:有一个女子很会织布,一天比一天织得快,而且每天比前一天多织相同量的布.已知第一天织5尺,经过一个月(按30天计)后,共织布九匹三丈.问从第2天起,每天比前一天多织布多少尺?(注:1匹4=丈,1丈10=尺)那么此问题的答案为( ).A 12尺 815尺 .C 1631尺 .D 1629尺 11.在ABC ∆中,4=a ,5=b ,6=c ,则=AC2sin sin ( )A .43B .54C .1D .3412.设n S 是数列{}n a 的前项和,且1111,n n n a a S S ++=-=,则2021S =( ).111,.,.2021,202120212020AB C D-二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中的横线上.) 13.数列{}n a 前n 项和为n S ,其中n S 是首项为5,公比为5的等比数列,则n a =______ 14.若实数b a ,满足122=+ba,则b a +的最大值是___________.15.已知母线长为3m 的圆锥的轴截面的底角为α,且322sin =α,一只蚂蚁从底面圆周上一点A 出发沿圆锥侧面一周回到点A 所经过的最短路程为_____ 16.给出下列四个叙述:①化简sin13cos17cos13sin17︒︒+︒︒ ②已知向量a 与b 的夹角为45︒,||2a =,||4b =,则||10a b -=;③已知4cos()5αβ+=,4cos()5αβ-=-,且3(,2)2παβπ+∈,(,)2παβπ-∈,则24sin 225α=; ④已知O 为ABC ∆的重心,动点P 满足112663OP OA OB OC =++,则点P 是ABC ∆的边AB 的中线的一个三等分点.⑤.已知0,0a b >>,且2a b +=,则14a b +的最小值是 92⑥若不等式2210x x k x R -+->∈对恒成立,则实数k 的取值范围是k<2其中所有正确叙述的序号是 .三.解答题17.(10分)已知函数2()3(5)f x x a a x b =-+-+. (Ⅰ)当不等式()0f x >的解集为(1,3)-,求实数,a b 的值;(Ⅱ)若对任意的实数a ,若不等式(2)0f <恒成立,求实数b 的取值范围.18.(12分)某工厂要建造一个长方体形无盖贮水池,其容积为4800m 3,深为3m ,如果池底每平方米的造价为150元,池壁每平方米的造价为120元.设长方体底面长为x m ,由于地形限制,0x a <≤,水池总造价为)(x f 元.(1)求)(x f 的解析式;(2)求)(x f 的最小值.19. (12分)如图,是四棱柱1111D C B A ABCD -的三视图。

浙江名校协作体2024年高二上学期开学考试数学试题+答案

浙江名校协作体2024年高二上学期开学考试数学试题+答案

2024学年第一学期浙江省名校协作体试题高二年级数学学科考生须知:1.本卷满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号. 3.所有答案必须写在答题卷上,写在试卷上无效. 4.考试结束后,只需上交答题卷.选择题部分一、选择题:本题8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合2{|4}A x x =<,{}|41B x x =−<≤,则A B = ( ▲ )A.{|2}x x <B.{|21}x x −<≤C.{|41}x x −<≤D.{|42}x x −<< 2.记复数z 的共轭复数为z ,若()2i 24i z +=−,则z =( ▲ )A .1BC .2D.3.甲、乙两名射击运动员进行射击比赛,甲中靶的概率为0.6,乙中靶的概率为0.7, 且两人是否中靶相互独立,若甲、乙各射击一次,则( ▲ )A .两人都中靶的概率为0.12B .两人都不中靶的概率为0.42C .恰有一人中靶的概率为0.46D .至少一人中靶的概率为0.74 4.已知向量12a =,b = ,若()()//a b a b λµ++,则( ▲ ) A. 1λµ= B. 1λµ=− C.1λµ+=− D. 1λµ+= 5.已知,αβ是两个互相垂直的平面,,m n 是两条直线,m αβ= 则“//n m ”是“//n α”的( ▲ ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6. 设函数()f x x x = ,则不等式()()332log 3log 0f x f x +−<的解集是( ▲ )A .1,2727B .1027,C .()270,D .()27+∞,7.已知函数()4f x x π=+ 的定义域为[],a b ,值域为,则b a −的取值范围是( ▲ ) A .π4π,23B .π5π,23C .5π5π,63D .2π4π,33 8.如图,在正方体1111ABCD A B C D −中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点, 且1A F //平面1AD E ,则下列说法正确的个数有( ▲ ) ①二面角1F AD E −−的大小为常数 ②二面角1F D E A −−的大小为常数 ③二面角1F AE D −−的大小为常数A .0个B .1个C .2个D .3个二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某次校十佳歌手评比中,10位评委给出的分数分别为1210,,,x x x ,计算得平均数7x =,方差 22S =,现去掉一个最高分10分和一个最低分5分后,对新数据下列说法正确的是( ▲ ) A .极差变大 B .中位数不变11.四面体ABCD 中,3AC BC AB ===,5BD =,4CD =,记四面体ABCD 外接球的表面积为S , 当AD 变化时,则( ▲ ) A. 当3AD =时,32411S=π B. 当四面体ABCD 体积最大时,28S =π C. S 可以是16π D. S 可以是100π非选择题部分三、填空题:本题共3小题,每小题5分,共15分. 12.已知幂函数()2()57m f x mm x =−+的图象关于y 轴对称,则实数m 的值是 ▲ .13.已知1,1x y >>且3log 4log 3y x =,则xxxx 的最小值为 ▲ .14.在正四面体ABCD 中,,E F 分别为,AB BC 的中点,23AG AD =,截面EFG 将四面体分成两部分,则体积较大部分与体积较小部分的体积之比是 ▲ .四、解答题:(共5大题,共77分,其中第15题13分,第16题、第17题每题15分,第18题、第19题每题17分,解答应写出文字说明、证明过程或演算步骤).15.已知a R ∈,()(){}|20A x a x a x =++>,102x B xx −=≤ −. (Ⅰ)当0a <时求集合A ;(Ⅱ)若B A ⊆,求a 的取值范围.16.为了了解某项活动的工作强度,随机调查了参与活动的100名志愿者,统计他们参加志愿者服务的时间(单位:小时),并将统计数据绘制成如图的频率分布直方图. (Ⅰ) 估计志愿者服务时间不低于18小时的概率;(Ⅱ) 估计这100名志愿者服务时间的众数,平均数(同一组数据用该组数据的中点值代替); (Ⅲ) 估计这100名志愿者服务时间的第75百分位数(结果保留两位小数).17.已知函数()sin()cos()sin +632f x x x x πππ=+−++. (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)将函数()f x 图象上所有点的横坐标缩短为原来的12(纵坐标不变),再向右平移6π个单位, 得到函数()g x 的图象,若6()5g α=−,且5,612αππ∈−,求cos 2α的值.18.如图,已知四棱锥P ABCD −中,4PB PD ==,6PA =,60APB APD ∠=∠=°,且PB PD ⊥, (Ⅰ)求证:BD PA ⊥;(Ⅱ)求直线PA 与平面ABCD 所成角的正弦值;(Ⅲ)若平面PAC 与平面ABCD 垂直,3PC =,求四棱锥P ABCD −的体积.19.已知函数()f x 的定义域为D ,若存在常数()0k k >,使得对D 内的任意x ,都有()k f x f x =,则称()f x 是“反比例对称函数”.设()2816log log f x x x =⋅,()16g x ax m ax =+−.(Ⅰ)判断函数()2816log log f x x x=⋅是否为“反比例对称函数”,并说明理由; (Ⅱ)当1a =时,若函数()f x 与()g x 的图象恰有一个交点,求m 的值;(Ⅲ)当1a >时,设()()()hx f x g x =−,已知()h x 在(0,)+∞上有两个零点12,x x ,证明:1216x x <.命题: 学军中学 温岭中学(审校) 审核:春晖中学2024学年第一学期浙江省名校协作体联考参考答案高二年级数学学科首命题:学军中学 次命题兼审校:温岭中学 审核:春晖中学15.(Ⅰ)∵0a <,()()+20a x a x +> 所以()()20x a x ++<,解得2x a −<<− 所以{}2A x x a =−<<−.............5分 (Ⅱ){}12B x x =≤<①当0a <时,B A ⊆因为,所以2a −≥,得2a ≤−;............ 7分 ②当0a =时A =Φ不合;.............9分③当02a <≤时,{}2A x x x a =<−>−或成立,所以B A ⊆成立;.............11分 ④当2a ≥时时,{}2A x x a x =<−>−或成立,所以B A ⊆成立; 20a a ≤−>综合得或 ...............................13分16.解析:(Ⅰ)由已知,志愿者服务时间不低于18小时的概率为1(0.020.06)40.68−+⨯=. ------4分(Ⅱ)由频率分布直方图可看出最高矩形底边上的中点值为20,故众数是20;--------7分 由(0.020.060.0750.025)41a ++++⨯=,解得0.07a =, ∵(0.020.06)40.32+⨯=,且(0.020.060.075)40.62++⨯=,平均数为(0.02120.06160.075200.07240.02528)420.32⨯+⨯+⨯+⨯+⨯⨯=;--------11分 (Ⅲ)又∵(0.020.060.075)40.62++⨯=,(0.020.060.0750.07)40.9+++⨯=, ∴第75%位数位于22~26之间,设第75%位数为y , 则220.750.6226220.90.62y −−=−−,解得132223.867y =+≈.----------------15分17.(Ⅰ)解析:()2sin()6f x x π=+,----------------------------3分32,2622x k k πππ⎡⎤+∈π+π+⎢⎥⎣⎦令得42233k x k ππππ+≤≤+, ()f x 的单调减区间为4[2,2],33k k k Z π+ππ+π∈-----------------6分(Ⅱ)解析:由题意得()2sin(2)6g x x π=−,则6()2sin(2)65g παα=−=−--------8分3sin(2)65πα−=−,又因为5(,)612ππα∈−,则22(,)623πππα−∈−所以4cos(2)65πα−=------------------------------------------------11分cos 2cos(2)663cos(2)cos sin(2)sin 666610ππααππππαα=−++=−−−=----------------------15分18.(Ⅰ)解析:由题意,在三角形PAB 与三角形PAD 中用余弦定理可得:AB AD ==分取BD 中点M ,连,AM PM ,由AB AD =,PB PD =,可得BD AM ⊥,BD PM ⊥,故BD ⊥平面APM ,因为AP APM ⊂平面,所以BD PA ⊥-----------4分(Ⅱ)因为BD ⊥平面APM ,所以平面PAM ⊥平面ABCD ,故点P 在平面ABCD 上的投影在两平面的交线AM 上,所以PAM ∠为所求线面角,-----------5分在Rt PBD ∆中,有BM DM PM ===;在Rt ADM ∆中,可得AM =分故在三角形PAM中:222cos 2PA AM PM PAM PA AM +−∠==⋅sin PAM ∠=,分(Ⅲ)解析:因为平面PAM ⊥平面ABCD ,故点,,,P A M C 四点共面,所以点,,A M C 三点共线,-------------------------------------------------10分所以在PAC ∆中,cos PAC ∠=,所以2222cos 9PC PA AC PA AC PAC =+−⋅⋅∠=,即2369AC AC +=,解得AC =或AC =分若AC =,则四边形ABCD为凹四边形,矛盾. 所以AC =---------------13分 因为,所以12ABCD S AC BD =⋅=四边形分所以1sin 3P ABCD ABCD V S PA PAM −=⋅⋅⋅∠=四棱锥四边形分19.(Ⅰ)解析:是.理由如下:------------------------------------1分281616lnln16ln ln log log ln 2ln 8l 160,0,16()2l ()n n 8x x x x xf f x x x x x ∀>=⋅=⋅=>=⋅-----------------------3分 故()2816log log f x x x=⋅是“反比例对称函数”.--------------- -------4分 (Ⅱ)解析:()()(),(0,)h x f x g x x =−∈+∞设, 由(Ⅰ)知16()()f f x x =,验证知16()()g g x x= 故16()()h x h x=.--------------------------------------------------------6分 由题意函数()f x 与()g x 的图像恰有一个交点,即()h x 恰有一个零点,故由对称性零点只能为4.-----------------------------------------------7分 由(4)0h =,得203m =.----------------------------------------8分 下检验此时()h x 恰有一个零点.由对勾函数性质知,()g x 在(]0,4上单调递减,[)4,+∞上单调递增.()ln (ln16ln )ln 2ln 8x x f x −=,设ln u x =,()(ln16)ln 2ln 8u u f x −=,()f x 关于u 在(]0,ln 4上单调递增,[)ln 4,+∞上单调递减,因此()f x 在(]0,4上单调递增,[)4,+∞上单调递减. 故()h x 在(]0,4上单调递增,[)4,+∞上单调递减.故此时()h x 恰有一个零点4.----------------------------10分注:充分必要性步骤交换亦可。

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

湖北省荆州中学2018-2019学年高二上学期期末考试数学(文)试题 Word版含解析

荆州中学高二圆月期末考数学(文科)试题一,选择题:本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.设,则地一个必要不充分款件是()A. B. C. D.【结果】A【思路】【思路】当时,是成立,当成立时,不一定成立,依据必要不充分款件地判定方式,即可求解.【详解】由题意,当时,是成立,当成立时,不一定成立,所以是地必要不充分款件,故选A.【点睛】本题主要考查了必要不充分款件地判定问题,其中解答中熟记必要不充分款件地判定方式是解答本题地关键,着重考查了推理与论证能力,属于基础题.2.已知椭圆长轴在轴上,若焦距为4,则等于()A. 4B. 5C. 7D. 8【结果】8【思路】由椭圆地长轴在y轴上,则a2=m﹣2,b2=8﹣m,c2=a2﹣b2=2m﹣10.由焦距为4,即2c=4,即有c=2.即有2m﹣10=4,解得m=7.故结果为:7.3.已知直线和平面,若,,则过点且平行于地直线()A. 只有一款,不在平面内B. 只有一款,且在平面内C. 有无数款,一定在平面内D. 有无数款,不一定在平面内【结果】B【思路】【思路】假设m是过点P且平行于l地直线,n也是过点P且平行于l地直线,则与平行公理得出地结论矛盾,进而得出结果.【详解】假设过点P且平行于l地直线有两款m与n,则m∥l且n∥l由平行公理得m∥n,这与两款直线m与n相交与点P相矛盾,故过点且平行于地直线只有一款,又因为点P在平面内,所以过点P且平行于l地直线只有一款且在平面内.故选:B【点睛】本题主要考查了空间中直线与直线之间地位置关系,空间中直线与平面地位置关系.过一点有且只有一款直线与已知直线平行.4.已知数列是等差数列,且,则公差()A. B. 4 C. 8 D. 16【结果】B【思路】试题思路:等差数列中考点:等差数列地性质5.“更相减损术”是《九章算术》中记录地一种求最大公约数地算法,按其算理流程有如下程序框图,若输入地,分别为165,66,则输出地为()A. 2B. 3C. 4D. 5【结果】B【思路】【思路】由题中程序框图知,该程序地功能是利用循环结构计算并输出变量地值,模拟程序地运行过程,思路循环中各变量地变化情况,即可得到结果.【详解】由程序框图可知:输入时,满足,则,满足,则,满足,则,不满足,此时输出,故选B.【点睛】本题主要考查了循环结构地程序框图地计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构。

溆浦县第二中学校2018-2019学年上学期高二数学12月月考试题含解析

溆浦县第二中学校2018-2019学年上学期高二数学12月月考试题含解析

溆浦县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)2. 对“a ,b ,c 是不全相等的正数”,给出两个判断: ①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错3. 已知11xyi i=-+,其中,x y 是实数,是虚数单位,则x yi +的共轭复数为 A 、12i + B 、12i - C 、2i + D 、2i -4. 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )A .B .C .D .5. 某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .6. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .7. 设a >0,b >0,若是5a 与5b的等比中项,则+的最小值为( )A .8B .4C .1D .8. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)9. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15 C .10,10,30 D .10,20,2010.已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( ) A .(﹣1,2] B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)11.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且=2, =2,=2,则与( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直12.若直线:1l y kx =-与曲线C :1()1ex f x x =-+没有公共点,则实数k 的最大值为( )A .-1B .12C .1D 【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.二、填空题13.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .14.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .15.已知f (x )=,则f (﹣)+f ()等于 .16.已知a ,b 是互异的负数,A 是a ,b 的等差中项,G 是a ,b 的等比中项,则A 与G 的大小关系为 .17.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).18.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数的概率是.三、解答题19.在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x﹣﹣3,3y).(1)求点P的轨迹方程;(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.20.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.21.已知A(﹣3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点.(1)若x0=﹣4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D.判断直线CD与圆M的位置关系,并证明你的结论.22.(本小题满分12分)椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-12.(1)求椭圆C的方程;(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.23.(本小题满分12分)某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.(1)求总人数N 和分数在110-115分的人数; (2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.数学 88 83 117 92 108 100 112 物理949110896104101106已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:^121()()()nii i nii uu v v uu β==--=-∑∑,^^a v u β=-.24.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;(2)当x∈[0,]时,求f(x)的值域.溆浦县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】B【解析】解:定义在(0,+∞)上的函数f (x )满足:<0.∵f (2)=4,则2f (2)=8, f (x )﹣>0化简得,当x <2时,⇒成立. 故得x <2,∵定义在(0,+∞)上.∴不等式f (x )﹣>0的解集为(0,2). 故选B .【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.2. 【答案】A【解析】解:由:“a ,b ,c 是不全相等的正数”得:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2中至少有一个不为0,其它两个式子大于0,故①正确; 但是:若a=1,b=2,c=3,则②中a ≠b ,b ≠c ,c ≠a 能同时成立,故②错. 故选A .【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力.属于基础题.3. 【答案】D【解析】1()1,2,1,12x x xi yi x y i =-=-∴==+故选D 4. 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有4×6=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.5.【答案】C【解析】【分析】通过三视图分析出几何体的图形,利用三视图中的数据求出四个面的面积中的最大值.【解答】解:由题意可知,几何体的底面是边长为4的正三角形,棱锥的高为4,并且高为侧棱垂直底面三角形的一个顶点的三棱锥,两个垂直底面的侧面面积相等为:8,底面面积为:=4,另一个侧面的面积为:=4,四个面中面积的最大值为4;故选C.6.【答案】D【解析】解:设|PF1|=t,∵|PF1|=|PQ|,∠F1PQ=60°,∴|PQ|=t,|F1Q|=t,由△F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,∴|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,∴椭圆的离心率为:e===.故选D.7.【答案】B【解析】解:∵是5a与5b的等比中项,∴5a•5b=()2=5,即5a+b=5,则a+b=1,则+=(+)(a+b)=1+1++≥2+2=2+2=4,当且仅当=,即a=b=时,取等号,即+的最小值为4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.8.【答案】B【解析】解:∵M={x|x≥﹣1},N={x|x≤k},若M∩N≠¢,则k≥﹣1.∴k的取值范围是[﹣1,+∞).故选:B.【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.9.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.10.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.11.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.12.【答案】C【解析】令()()()()111ex g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10ex g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .二、填空题13.【答案】 ③ .【解析】解:①、终边在y 轴上的角的集合是{a|a=,k ∈Z},故①错误;②、设f (x )=sinx ﹣x ,其导函数y ′=cosx ﹣1≤0,∴f (x )在R 上单调递减,且f (0)=0, ∴f (x )=sinx ﹣x 图象与轴只有一个交点.∴f (x )=sinx 与y=x 图象只有一个交点,故②错误; ③、由题意得,y=3sin[2(x﹣)+]=3sin2x ,故③正确;④、由y=sin (x﹣)=﹣cosx 得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.14.【答案】.【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.15.【答案】4.【解析】解:由分段函数可知f()=2×=.f(﹣)=f(﹣+1)=f(﹣)=f(﹣)=f()=2×=,∴f()+f(﹣)=+.故答案为:4.16.【答案】A<G.【解析】解:由题意可得A=,G=±,由基本不等式可得A≥G,当且仅当a=b取等号,由题意a,b是互异的负数,故A<G.故答案是:A<G.【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题.17.【答案】②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM<0<MP.故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.18.【答案】.【解析】解:由题意,函数y=ax2﹣2bx+1在(﹣∞,2]上为减函数满足条件.∵第一次朝上一面的点数为a,第二次朝上一面的点数为b,∴a取1时,b可取2,3,4,5,6;a取2时,b可取4,5,6;a取3时,b可取6,共9种∵(a,b)的取值共36种情况∴所求概率为=.故答案为:.三、解答题19.【答案】【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,可化为4x2+3y2=12,即:;∴点P的轨迹方程为;(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,∴x1+x2=,x1x2=,∴|AB|=•|x1﹣x2|==,∴k=±,∴直线l的方程y=±x+1.【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.20.【答案】【解析】(1)证明:取ED的中点为O,由题意可得△AED为等边三角形,,,∴AC2=AO2+OC2,AO⊥OC,又AO⊥ED,ED∩OC=O,AO⊥面ECD,又AO⊆AED,∴平面AED⊥平面BCDE;…(2)如图,以O为原点,OC,OD,OA分别为x,y,z轴,建立空间直角坐标系,则E(0,﹣1,0),A(0,0,),C(,0,0),B(,﹣2,0),,,,设面EAC的法向量为,面BAC的法向量为由,得,∴,∴,由,得,∴,∴,∴,∴二面角E﹣AC﹣B的余弦值为.…2016年5月3日21.【答案】【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y2﹣8y﹣9=0…(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,又∠CAO=∠ACO,∴∠DOB=∠COD又OC=OB,所以△BOD≌△COD∴∠OCD=∠OBD=90°即OC⊥CD,则直线CD与圆M相切.…(其他方法亦可)22.【答案】 【解析】解:(1)可设P 的坐标为(c ,m ), 则c 2a 2+m 2b2=1, ∴m =±b 2a ,∵|PF |=1 ,即|m |=1,∴b 2=a ,①又A ,B 的坐标分别为(-a ,0),(a ,0),由k P A ·k PB =-12得b 2ac +a ·b 2a c -a=-12,即b 2=12a 2,②由①②解得a =2,b =2,∴椭圆C 的方程为x 24+y 22=1.(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =12×22×2=2.当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±21+2k2,∴y =±2k 1+2k 2, 即M (21+2k2,2k 1+2k2),N (-21+2k2,-2k 1+2k2),∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭⎪⎫4k 1+2k 22=41+k 21+2k 2,点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =12·41+k 21+2k 2·|2k -1|k 2+1=2·|2k -1|1+2k 2=22k 2+1-22k1+2k 2=21-22k 1+2k 2, 当k >0时,22k 1+2k 2≤22k22k =1,此时S ≥0显然成立, 当k =0时,S =2.当k <0时,-22k 1+2k 2≤1+2k 21+2k 2=1,当且仅当2k 2=1,即k =-22时,取等号. 此时S ≤22,综上所述0≤S ≤2 2. 即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-22x . 23.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,24(,)A A ,21(,)A B ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到 ^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数,a b ,一定要将题目中所给数据与公式中的,,a b c 相对应,再进一步求解.在求解过程中,由于,a b 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b 常数项为这与一次函数的习惯表示不同. 24.【答案】 【解析】解:(1)…(2分)令解得…f(x)的递增区间为…(6分)(2)∵,∴…(8分)∴,∴…(10分)∴f(x)的值域是…(12分)【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.。

城关区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

城关区第二高级中学2018-2019学年高二上学期第二次月考试卷数学

优选高中模拟试卷城关区第二高级中学2018-2019 学年高二上学期第二次月考试卷数学班级 __________ 姓名 __________ 分数 __________一、选择题1. 已知实数 x< a y0 a 1 )x , y 知足 a ( < < ),则以下关系式恒建立的是(A .B . ln ( x 2+1)> ln (y 2+1)C . x 3 >y 3D . sinx > siny 2.已知,则 f{f[f (﹣ 2) ]} 的值为() A .0 B . 2 C . 4 D . 83. 已知圆 C : x 2 +y 2﹣ 2x=1,直线 l :y=k ( x ﹣ 1) +1 ,则 l 与 C 的地点关系是( )A .必定相离B .必定相切C .订交且必定可是圆心D .订交且可能过圆心4. 已知 2a =3b =m , ab ≠0 且 a , ab ,b 成等差数列,则 m=( )A .B .C .D . 65. 某大学数学系共有本科生 1000 人,此中一、二、三、四年级的人数比为4:3 :2: 1,要用分层抽样的方法从全部本科生中抽取一个容量为 200 的样本,则应抽取三年级的学生人数为()A .80B .40C . 60D . 206.《算数书》竹简于上世纪八十年月在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学文籍,此中记录有求 “囷盖 ”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长 L 与高 h ,计算其体积 V 的近似公式 V ≈L 2h ,它其实是将圆锥体积公式中的圆周率π近似取为 3,那么,近似公式 V ≈ L 2h 相当于将圆锥体积公式中的π近似取为()A .B .C .D .7. 在二项式( x 3 ﹣ ) n ( n ∈N * )的睁开式中,常数项为 28,则 n 的值为()A .12B .8C . 6D . 48. 在长方体 ABCD ﹣ A 1B 1C 1D 1 中,底面是边长为 2 的正方形,高为 4 ,则点 A 1 到截面 AB 1D 1 的距离是( )A .B .C .D .第1页,共15页9.已知函数f( x)=Asin (ωx﹣)(A>0,ω>0)的部分图象如下图,△ EFG是边长为2的等边三角形,为了获得g( x) =Asin ωx 的图象,只要将f ( x)的图象()A .向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位10.若复数z=2﹣ i ( i 为虚数单位),则=()A .4+2iB . 20+10i C. 4﹣ 2i D.11.设双曲线焦点在 y 轴上,两条渐近线为,则该双曲线离心率e=()A .5B .C.D.12.若当x R 时,函数f ( x) a|x|(a 0 且 a 1)一直知足 f (x) 1,则函数 y log a | x | 的图象大概是x3()【命题企图】本题考察了利用函数的基天性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.二、填空题13.设 m 是实数,若x∈R 时,不等式 |x﹣ m|﹣ |x﹣ 1|≤1 恒建立,则m 的取值范围是.14.已知点 A( 2,0),点 B( 0,3),点 C 在圆 x2+y 2=1 上,当△ ABC 的面积最小时,点 C 的坐标为.第2页,共15页15.△ ABC 外接圆半径为,内角A,B,C对应的边分别为a,b,c,若 A=60 °,b=2,则 c 的值为.16.在正方形ABCD 中,ABAD2 ,M , N分别是边BC, CD上的动点,当AMAN4 时,则 MN的取值范围为.【命题企图】本题考察平面向量数目积、点到直线距离公式等基础知识,意在考察坐标法思想、数形联合思想和基本运算能力.17.若点 p( 1,1)为圆( x﹣ 3)2+y2 =9 的弦 MN 的中点,则弦MN 所在直线方程为18.命题“对随意的x∈R, x3﹣ x2+1≤0”的否认是.三、解答题19.(本小题满分 10 分)选修4-5:不等式选讲已知函数 f (x) x a (a R) .( 1)当a 1时,解不等式 f (x) 2x 1 1;( 2)当x ( 2,1) 时,x 1 2x a 1 f ( x) ,求的取值范围.20.已知函数f( x)=log a( 1﹣ x) +log a(x+3 ),此中0< a< 1.(1)求函数 f ( x)的定义域;(2)若函数 f ( x)的最小值为﹣ 4,求 a 的值.21.如图,在 Rt△ ABC 中,∠ EBC=30 °,∠ BEC=90 °,CE=1,此刻分别以 BE ,CE 为边向 Rt△ BEC 外作正△EBA 和正△CED .第3页,共15页(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ ADC 和∠ABC 的大小.22.已知矩阵M所对应的线性变换把点A ( x, y)变为点A′( 13, 5),试求M 的逆矩阵及点A 的坐标.23.已知数列 {a n} 知足 a1=,a n+1=a n+,数列{b n}知足b n=(Ⅰ)证明: b n∈(0, 1)(Ⅱ)证明:=第4页,共15页(Ⅲ)证明:对随意正整数n 有 a n.24.若已知,求sinx的值.第5页,共15页城关区第二高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参照答案)一、选择题1.【答案】 C【分析】解:∵实数 x、 y 知足 a x< a y( 1>a> 0),∴ y< x.关于 A .取 x=1,y=0,不建立,所以不正确;关于 B.取 y=﹣ 2 , x= ﹣1 , ln( x2+1)> ln (y2+1 )不建立;关于 C.利用 y=x 3在 R 上单一递加,可得x3> y3,正确;关于 D.取 y=﹣π, x= ,可是 sinx= , siny= , sinx> siny 不建立,不正确.应选: C.【评论】本题考察了函数的单一性、不等式的性质,考察了推理能力,属于基础题.2.【答案】 C【分析】解:∵﹣ 2< 0∴f(﹣ 2) =0∴f( f (﹣ 2)) =f (0)∵0=0∴f( 0) =2 即 f( f (﹣ 2)) =f (0) =2∵2> 0∴f( 2) =22=4即 f{f[ (﹣ 2)]}=f ( f( 0)) =f (2) =4应选 C.3.【答案】 C【分析】【剖析】将圆 C 方程化为标准方程,找出圆心 C 坐标与半径 r,利用点到直线的距离公式表示出圆心到直线的距离 d,与 r 比较大小即可获得结果.2 2【解答】解:圆 C 方程化为标准方程得:( x﹣ 1)+y =2 ,∴圆心 C( 1,0),半径 r= ,∵≥>1,∴圆心到直线 l 的距离 d= <=r,且圆心(1,0)不在直线 l 上,∴直线 l 与圆订交且必定可是圆心.应选 C第6页,共15页4.【答案】 C.ab【分析】解:∵2 =3 =m ,∴a=log 2m, b=log 3m,∵ a, ab,b 成等差数列,∴2ab=a+b,∵ab≠0,∴+=2,∴=log m2,=log m3,∴log m2+log m3=log m6=2,解得 m= .应选 C【评论】本题考察了指数与对数的运算的应用及等差数列的性质应用.5.【答案】 B【分析】解:∵要用分层抽样的方法从该系全部本科生中抽取一个容量为200 的样本,∴三年级要抽取的学生是×200=40,应选: B.【评论】本题考察分层抽样方法,本题解题的重点是看出三年级学生所占的比率,本题也能够先做出三年级学生数和每个个体被抽到的概率,获得结果.6.【答案】 B【分析】解:设圆锥底面圆的半径为r ,高为 h,则 L=2 πr,∴= ( 2πr)2h,∴π= .应选: B.7.【答案】 B【分析】解:睁开式通项公式为T r+1= ?(﹣ 1)r?x 3n﹣4r ,则∵二项式( x3﹣)n(n∈N*)的睁开式中,常数项为28,第7页,共15页∴,∴n=8 ,r=6.应选: B.【评论】本题主要考察二项式定理的应用,二项式系数的性质,二项式睁开式的通项公式,求睁开式中某项的系数,属于中档题.8.【答案】 C【分析】解:如图,设 A1C1∩ B1D1=O1,∵ B1D1⊥A 1O1, B1D 1⊥AA 1,∴ B1 D1⊥平面 AA 1O1,故平面 AA 1O1⊥面 AB 1D1,交线为 AO 1,在面 AA 1O1内过 B 1作 B 1H⊥ AO 1于 H ,则易知 A 1H 的长即是点 A 1到截面 AB 1D 1的距离,在 Rt△ A 1O1A 中, A 1O1= ,AO 1=3,由A 1O1?A 1A=h AO 1,可得A 1H=,?应选: C.【评论】本题主要考察了点到平面的距离,同时考察空间想象能力、推理与论证的能力,属于基础题.9.【答案】 A【分析】解:∵△ EFG 是边长为 2 的正三角形,∴ 三角形的高为,即 A= ,函数的周期 T=2FG=4 ,即 T= =4 ,解得ω== ,即 f ( x) =Asin ωx= sin(x﹣), g( x) = sin x,因为 f ( x)= sin(x﹣)= sin[ ( x﹣) ] ,故为了获得 g( x) =Asin ωx 的图象,只要将f( x)的图象向左平移个长度单位.应选: A.第8页,共15页【评论】 本题主要考察三角函数的图象和性质,利用函数的图象确立函数的分析式是解决本题的重点,属于中 档题.10.【答案】 A【分析】 解:∵z=2﹣ i , ∴====,∴ =10?=4+2i , 应选: A .【评论】本题考察复数的运算,注意解题方法的累积,属于基础题. 11. 【答案】 C【分析】 解: ∵双曲线焦点在 y 轴上,故两条渐近线为 y= ± x , 又已知渐近线为 , ∴= , b=2a ,故双曲线离心率 e= === ,应选 C .【评论】本题考察双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的重点. 12. 【答案】 C【分析】 由 f ( x) a|x|一直知足 f ( x) 1可知 a 1.由函数 ylog a| x |是奇函数, 清除 B ;当 x ( 0,1) 时,x 3log a | x | 0 ,此时 ylog a | x | 0,清除 A ;当 x时, y0,清除 D ,所以选 C .x 3二、填空题13. 【答案】[0,2] .【分析】 解: ∵ |x ﹣ m|﹣ |x ﹣ 1|≤|( x ﹣ m )﹣( x ﹣ 1)|=|m ﹣1|,故由不等式 |x ﹣ m|﹣ |x ﹣ 1|≤1 恒建立,可得 |m ﹣ 1|≤1 ,∴ ﹣ 1≤m ﹣ 1≤1, 求得 0≤m ≤2, 故答案为: [0, 2].第9页,共15页【评论】本题主要考察绝对值三角不等式,绝对值不等式的解法,函数的恒建立问题,表现了转变的数学思想,属于基础题.14.【答案】(,).【分析】解:设C a b a2+b 2 =1,①(,).则∵点 A(2,0),点 B(0,3),∴直线 AB 的分析式为: 3x+2y ﹣ 6=0 .如图,过点 C 作 CF⊥ AB 于点 F,欲使△ ABC 的面积最小,只要线段CF 最短.则 CF= ≥,当且仅当 2a=3b 时,取“=”,∴ a= ,②联立①②求得: a= , b= ,故点 C 的坐标为(,).故答案是:(,).【评论】本题考察了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考察了推理能力与计算能力,属于中档题.15.【答案】.【分析】解:∵△ ABC 外接圆半径为,内角A,B,C对应的边分别为a,b, c,若 A=60 °, b=2 ,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c 2﹣2bccosA ,可得: 9=4+c2﹣ 2c,即 c2﹣2c﹣ 5=0 ,第10页,共15页∴解得: c=1+,或1﹣(舍去).故答案为:.【评论】本题主要考察了正弦定理,余弦定理,在解三角形中的综合应用,考察了转变思想和计算能力,属于基础题.16.【答案】[2,2]( 0 #x2 , 0 #y2 )上的点 (x, y) 到定点 (2, 2) 的距离,其最小值为2 ,最大值为2,故 MN 的取值范围为 [2,2] .yDN C2MAx B 217.【答案】:2x﹣ y﹣ 1=0解:∵P( 1, 1)为圆( x﹣ 3)2+y2=9 的弦 MN 的中点,∴圆心与点P 确立的直线斜率为=﹣,∴弦 MN 所在直线的斜率为2,则弦 MN 所在直线的方程为y﹣ 1=2( x﹣ 1),即 2x﹣ y﹣ 1=0.故答案为: 2x﹣ y﹣ 1=018.【答案】存在x∈R,x3﹣x2+1>0.【分析】解:因为全称命题的否认是特称命题,3232所以命题“对随意的x∈R, x ﹣ x +1≤0”的否认是:存在x∈R, x ﹣ x +1 >0.第11页,共15页【评论】本题考察命题的否认,特称命题与全称命题的否认关系.三、解答题19 1x x 1或 x 1 ;(2)( ,2]..【答案】()【分析】试题分析:(1)因为f ( x) 2x 1 1 ,所以 x 1 2x 1 1,即 x 1 2x 1 1,当 x 1 时, x 1 2x 1 1,∴ x 1 ,∴ x 1 ,进而 x 1 ;当1x1时, 1 x 2x 1 1 ,∴3x 3,∴ x 1 ,进而不等式无解;2当 x 1x 2x 1 1 ,∴ x 1,进而 x 1 ;时, 12综上,不等式的解集为x x 1或x 1 .( 2)由x 1 2x a 1 f ( x) ,得 x 1 x a 2x a 1 ,因为 x 1 x a x a x 1 2x a 1 ,所以当 ( x 1)(x a) 0 时, x 1 x a 2x a 1 ;当 ( x 1)(x a) 0 时,x 1 x a 2x a 1记不等式 (x 1)(x a) 0的解集为 A,则 ( 2,1) A ,故 a 2,所以的取值范围是( , 2] .考点: 1.含绝对值的不等式; 2.分类议论 .20.【答案】【分析】解:( 1)要使函数存心义:则有,解得﹣ 3 < x<1,所以函数 f( x)的定义域为(﹣ 3, 1).( 2)f( x)=log a a a)= = ,( 1﹣ x)+log (x+3)=log ( 1﹣ x)( x+3∵﹣3< x< 1,∴0<﹣( x+1 )2+4≤4,∵0< a< 1,∴≥log a4,即f(x)min=log a4;第12页,共15页由 log a4=﹣ 4,得 a﹣4=4,∴a==.【评论】本题考察对数函数的图象及性质,考察二次函数的最值求解,考察学生剖析问题解决问题的能力.21.【答案】【分析】解:(Ⅰ)在 Rt△BEC 中, CE=1,∠ EBC=30 °,∴ BE= ,在△ ADE 中, AE=BE= , DE=CE=1 ,∠AED=150 °,由余弦定理可得AD==;(Ⅱ)∵∠ ADC= ∠ ADE+60 °,∠ ABC= ∠ EBC+60 °,∴问题转变为比较∠ ADE与∠ EBC的大小.在△ ADE 中,由正弦定理可得,∴ sin∠ ADE=<=sin30 °,∴∠ ADE < 30°∴∠ ADC <∠ABC .【评论】本题考察余弦定理的运用,考察正弦定理,考察学生剖析解决问题的能力,正确运用正弦、余弦定理是重点.22.【答案】【分析】解:依题意,由M=得|M|=1,故M﹣1=进而由=得═=故 A ( 2,﹣ 3)为所求.【评论】本题考察学生会求矩阵的逆矩阵及掌握矩阵的线性变换,考察学生的计算能力,比较基础.23.【答案】【分析】证明:(Ⅰ)由 b n=,且a n+1=a n+,得,∴,下边用数学概括法证明:0< b n<1.第13页,共15页优选高中模拟试卷①由 a1= ∈(0, 1),知0< b1< 1,②假定 0< b k< 1,则,∵0< b k< 1,∴,则 0 < b k+1< 1 .综上,当*时, b n∈(0 1);n∈N ,(Ⅱ)由,可得,,∴= = .故;(Ⅲ)由(Ⅱ)得:,故.由知,当 n≥2 时,= .【评论】本题考察了数列递推式,考察了用数学概括法证明与自然数相关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的重点,考察了学生的逻辑思想能力和灵巧办理问题的能力,是压轴题.24 .【答案】【分析】解:∵,∴<<2π,∴sin() =﹣=﹣.∴sinx=sin[ ( x+ )﹣]=sin () cos ﹣ cos() sin=﹣﹣=﹣.【评论】本题考察了两角和差的余弦函数公式,属于基础题.第14页,共15页优选高中模拟试卷第15页,共15页。

湖北省黄冈市2018-2019学年高二上学期期末考试数学(理科)试题 Word版含解析

湖北省黄冈市2018-2019学年高二上学期期末考试数学(理科)试题 Word版含解析

湖北省黄冈市2018年秋季高二年级期末考试数学试题(理科)第Ⅰ卷(共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.任意抛两枚一圆硬币,记事件:恰好一枚正面朝上。

:恰好两枚正面朝上。

:恰好两枚正面朝上。

:至少一枚正面朝上。

:至多一枚正面朝上,则下面事件为对立事件地是()A. 与B. 与C. 与D. 与【结果】D【思路】【思路】依据对立事件地定义,逐项判断即可.【详解】因为与地并事件不是必然事件,因此A错。

至少一枚正面朝上包含恰好两枚正面朝上,所以与m不是对立事件,故B错。

因与是均表示两枚正面向上,所以与是相等事件,故C错。

所以选D.【点睛】本题主要考查对立事件地概念,属于基础题型.2.某同学地6次数学测试成绩(满分100分)进行统计,作出地茎叶图如图所示,给出有关该同学数学成绩地以下表达:①中位数为84。

②众数为85。

③平均数为85,。

④极差为12.其中,正确表达地序号是()A. ①④B. ①③C. ②④D. ③④【结果】B【思路】【思路】由茎叶图思路中位数,众数,平均数,极差【详解】①依据茎叶图可知,中位数为,故正确②依据茎叶图可知,数据出现最多地是83,故众数为83,故错误③平均数.故正确④依据茎叶图可知最大地数为91,最小地数为78,故极差为91-78=13,故错误综上,故正确地为①③故选B【点睛】本题主要考查了思路茎叶图中地数据特征,较为简单3.已知双曲线方程为,则其焦点到渐近线地距离为()A. 2B. 3C. 4D. 6【结果】A【思路】【思路】先由双曲线地方程求出焦点坐标,以及渐近线方程,再由点到直线地距离公式求解即可.【详解】因为双曲线方程为,所以可得其一个焦点为,一款渐近线为,所以焦点到渐近线地距离为,故选A.【点睛】本题主要考查双曲线地简单性质,属于基础题型.4.点地坐标分别是,,直线与相交于点,且直线与地斜率地商是,则点地轨迹是()A. 直线B. 圆C. 椭圆D. 抛物线【结果】A【思路】【思路】设点M坐标,由题意列等量关系,化简整理即可得出结果.【详解】设,由题意可得,,因为直线与地斜率地商是,所以,化简得,为一款直线,故选A.【点睛】本题主要考查曲线地方程,通常情况下,都是设曲线上任一点坐标,由题中款件找等量关系,化简整理,即可求解,属于基础题型.5.下面命题中地假命题是()A. 对于命题,,则B. “”是“”地充分不必要款件C. 若命题为真命题,则都是真命题D. 命题“若,则”地逆否命题为:“若,则”【结果】C【思路】【思路】利用命题地否定,判断A。

河南省豫西名校2018-2019学年高二上学期第二次联考数学(文)试题 Word版含答案

河南省豫西名校2018-2019学年高二上学期第二次联考数学(文)试题 Word版含答案

豫西名校2018-2019学年上期第二次联考高二数学(文)试题(考试时间:120分钟 试卷满分:150分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2=|20A x x x -≤,{}1,0,1,2B =-,则AB 等于()A .[]0,2B .{}0,1,2C .()1,2-D .{}1,0,1-2.命题“1x ∀>,1122x⎛⎫< ⎪⎝⎭”的否定是( )A .1x ∀>,1122x ⎛⎫≥ ⎪⎝⎭B .1x ∀≤,1122x⎛⎫≥ ⎪⎝⎭C .01x ∃>,01122x ⎛⎫≥ ⎪⎝⎭D .01x ∃≤01122x⎛⎫≥ ⎪⎝⎭3.已知等差数列{}n a 的前n 项和为n S ,且105S =,71a =,则1a =( )A .-1B .12-C .14D . 124.已知1F ,2F 为椭圆C:22195x y +=的左、右焦点,点P 是椭圆上任意一点(非左右顶点),则12PF F ∆的周长为( ) A .12B .10C .8D .65.王昌龄《从军行》中有两句诗句“黄沙百战穿金甲,不破楼兰终不还”,其中最后一句中“攻破楼兰”是“返回家乡”的()A .充分而不必要条件B .必要而不充分条件 C.充要条件D . 既不充分也不必要条件6.已知实数x ,y 满足条件103020x y x y --≤⎧⎪+≥⎨⎪-≤⎩,则2z x y =-的最大值为()A .-8B .-6 C.-2 D .4 7.已知命题p :“[]0,1x ∀∈,x a e ≥”,命题:q “x R ∀∈,240x x a ++≠”,若命题p q ∧⌝是真命题,则实数a 的取值范围是( )A .[]1,4B .[],4e C.[4,)+∞ D .(,1]-∞8.已知椭圆C :22221x y a b+=(0a b >>)的右焦点为F ,过点F 的直线交椭圆交于A ,B两点,若AB 的中点11,2P ⎛⎫- ⎪⎝⎭,且直线AB 的倾斜角为4π,则此椭圆的方程为( ) A .2224199x y += B .22194x y += C.22195x y += D .222199x y += 9.已知直线210x y -+=与椭圆2219x y m+=恒有公共点,则实数m 的取值范围为( ) A .(1,9] B .[1,)+∞ C.[1,9)(9,)+∞D.(9,)+∞10.若ABC ∆的三个内角A ,B ,C 成等差数列,且BC 边上的中线AD =,又2AB =,则ABC S ∆=( )A .6B ..311.ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,若ABC ∆的面积为S ,且()222S a b c =+-,a =tan C 等于()A .34 B .43 C.34- D .43- 12.斜率为1的直线l 与椭圆2214x y +=相交于A ,B 两点,则||AB 的最大值为( )A .2B D 第Ⅱ卷(共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且cos cos 3a B b A a +=,则ca= .14.若命题“0x R ∃∈,20020x x m -+≤”是假命题,则m 的取值范围是 .15.已知点1F ,2F 是椭圆C :22221x y a b+=(0a b >>)的两个焦点,P 为椭圆C 上一点,且122F PF π∠=.若12PF F ∆的面积为9,则b = .16. 椭圆22221x y a b+=(0a b >>)的中心在原点,1F ,2F 分别为左、右焦点,A ,B 分别是椭圆的上顶点和右顶点,P 是椭圆上一点,且1PF x ⊥轴,1PF AB ,则此椭圆的离心率为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分10分)设命题p :0a >;命题q :关于x 的不等式0a x -≥对一切[]2,1x ∈--均成立. (1)若命题q 为真命题,求实数a 的取值范围(用集合表示); (2)若命题p q ∨为真命题,且命题p q ∧为假命题,求a 的取值范围.18.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .已知sin a B A =. (1)求角A 的大小;(2)若a =2b =,求ABC ∆的面积.19. (本小题满分12分)已知0m >,:p ()()260x x +-≤,:q 22m m -≤+.(1)已知p 是q 成立的必要不充分条件,求实数m 的取值范围; (2)若p ⌝是q ⌝成立的充分不必要条件,求实数m 的取值范围. 19. (本小题满分12分)已知m R ∈,命题:p 对[]0,8x ∀∈,不等式()213log 13x m m +≥-恒成立;命题:q 对(),1x ∀∈-∞-,不等式222x x mx +>+恒成立.(1)若命题p 为真命题,求实数m 的取值范围; (2)若p q ∧为假,p q ∨为真,求实数m 的取值范围. 20. (本小题满分12分)设n S 为数列{}n a 的前n 项和,已知12a =,对任意*n N ∈,都有()21n n S n a =+.(1)求数列{}n a 的通项公式;(2)若数列()42n n a a ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭的前n 项和为n T ,求证:112n T ≤<.21. (本小题满分12分)已知点()0,1A 与12B ⎫⎪⎭都是椭圆:C 22221x y a b +=(0a b >>)上的点,直线AB 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标;(2)设O 为原点,点D 与点B 关于x 轴对称,直线AD 交x 轴于点N .问:y 轴上是否存在点E ,使得OEM ONE ∠=∠?若存在,求点E 的坐标;若不存在,请说明理由. 22. (本小题满分12分)已知椭圆:C 22221x y a b+=(0a b >>)的左、右顶点分别为A ,B 其离心率12e =,点M 为椭圆上的一个动点,MAB ∆面积的最大值是(1)求椭圆C 的方程;(2)若过椭圆C 右顶点B 的直线l 与椭圆的另一个交点为D ,线段BD 的垂直平分线与y 轴交于点P ,当0PB PD ⋅=时,求点P 的坐标.豫西名校2018-2019学年上期第二次联考高二数学(文)参考答案一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合{}{}2|20|02A x xx x x =-≤=≤≤,{}1,0,1,2,B =-,∴{}0,1,2AB =.2.因为“1x ∀>,1122x⎛⎫< ⎪⎝⎭”是全称命题,其否定是特称命题,即“01x ∃>,01122x⎛⎫≥ ⎪⎝⎭”.3.11161,1.109105,2a d a a d +=⎧⎪⇒=⎨⨯+=⎪⎩ 4.由22195x y +=知,3a =,b =2c ==,∴12AF F ∆周长为226410a c +=+=.5.“破楼兰”是“返家乡”的必要而不充分条件.6.作出约束条件103020x y x y --≤⎧⎪+≥⎨⎪-≤⎩所对应的可行域如图ABC ∆及其内部,变形目标函数可得2y x z =-,平移直线2y x =可知,当直线经过点()3,2C 时,直线的截距最小,z 取最大值,代值计算可得2z x y =-的最大值max 2324z =⨯-=.7.命题p 为真,则a e ≥;命题q 为真,则1640a -<,解得4a >,∴q ⌝:4a ≤,∴p q ∧⌝:4e a ≤≤.8.∵1211c =-,∴32c =,令()11,A x y ,()22,B x y ,则22221x y a b +=, ∴()()()()12121212220x x x x y y y y a b +⋅-+⋅-+=,22210a b -+=,∴292a =,294b =. 9.直线210kx y -+=恒过定点()0,1P ,直线210kx y -+=与椭圆2219x y m+=恒有公共点,即点()0,1P 在椭圆内或椭圆上,∴0119m+≤,即1m ≥,又9m ≠,∴19m ≤<或9m >. 10.因为ABC ∆的三个内角A ,B ,C 成等差数列,则60B =︒,在ABC ∆中,由余弦定理得:2222cos AD AB BD AB BD B =+-⋅⋅,即2742BD BD =+-,所以3BD =或-1(舍去),可得6NC =,所以11sin 26222ABC S AB BC B ∆=⋅⋅=⨯⨯⨯=11.由()222S a b c =+-得22212sin 22ab C a b c ab ⨯=+-+,得sin 2cos 2ab C ab C ab =+,sin 2cos 2C C -=,∴22sin 4cos 4sin cos 4C C C C +-=,∴22tan 4tan 44tan 1C C C -+=+, ∴4tan 3C =-或0(舍去). 12.法一:设A ,B 两点的坐标分别为()11,x y ,()22,x y ,直线l 的方程为y x t =+,由2244,x y y x t⎧+=⎨=+⎩消去y ,得()2258410x tx t ++-=,则1285x x t +=-,()212415t x x -=.∴12|||AB x x =-===5,故当0t=时,max ||AB=法二:∵直线斜率固定过椭圆中心时,弦最长,∴可直接求的max ||AB =. 二、填空题(本大题共4小题,每小题5分,共20分) 【答案】13.314.()1,+∞ 15.3 16.513.法一:由已知及正弦定理得sin cos sin cos 3sin A B B A A +=,∴()sin 3sin A B A +=, ∴sin 3sin C A =,∴3ca=. 法二:cos cos 3ac B bc A c a +==,∴3ca=. 14.因为命题“0x R ∃∈,20020x x m -+≤”是假命题,所以x R ∀∈,220x x m -+≥为真命题,即440m ∆=-<,1m >,故答案为()1,+∞.15.122F PF π∠=,由题意,得121222212||||2,1||||9,2||||4,PF PF a PF PF PF PF c +=⎧⎪⎪⋅=⎨⎪⎪+=⎩可得224364c a +=,即229a c -=,所以3b =.16.如图所示,把x e =-代入椭圆方程22221x y a b +=(0a b >>)可得2,b P c a ⎛⎫- ⎪⎝⎭,又()0,A b ,(),0B a ,()2,0F c ,∴2AB bk ac=-,∵2PF AB ,∴22b b a ac-=-,化简得2b c =.∴22224c b a c ==-,即225a c =,∴e ==. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(1)当命题q 为真命题时,不等式0a x -≥对一切[]2,1x ∈--均成立, 所以1a ≥-,所以实数a 的取值范围是[1,)-+∞.…………(4分)(2)由命题p q ∨为真,且p q ∧为假,故命题p 、q 一真一假,…………(5分) ①当p 真q 假时,01a a >⎧⎨<-⎩,a ∈∅;………………(7分)②当p 假q 真时,01a a ≤⎧⎨≥-⎩,得10a -≤≤…………(9分)所以实数a 的取值范围是[]1,0-.……………………(10分) 18.(1)因为sin cos a B A =,由正弦定理得sin sin cos A B B A =.又sin 0B ≠,从而tan A =0A π<<,所以3A π=……………………(4分)(2)法一:由余弦定理2222cos a b c bc A =+-,及a =2b =,3A π=,得2742c c =+-,即2230c c --=. 因为0c >,所以3c =.故ABC ∆的面积1sin 2S bc A ==……………………(10分)2sin sin3B =,从而sin B =, 又由a b >,知A B >,所以cos B =故()sin sin sin sin cos cos sin 333C A B B B B πππ⎛⎫=+=+=+= ⎪⎝⎭所以ABC ∆的面积1sin 22S bc C ==………………(10分) 19.(1):26p x -≤≤………………(1分)∵p 是q 成立的必要不充分条件,则[]2,2m m -+是[]2,6-的真子集,有222226m mm m -<+⎧⎪-≥-⎨⎪+≤⎩,解得04m <≤, 又当4m =时,[][]2,22,6m m -+=-,不合题意, ∴m 的取值范围是()0,4.………………(6分) 分类处理亦可(2)∵q ⌝是p ⌝的充分不必要条件,∴p 是q 的充分不必要条件,则[]2,6-是[]2,2m m -+的真子集,则哟02226m m m >⎧⎪-<-⎨⎪+≥⎩,解得4m ≥,又当4m =时,不合题意.∴m 的取值范围为()4,+∞.………………(12分) 分类处理亦可 19.(1)令()()13log 1f x x =+,则()f x 在()1,-+∞上为减函数,因为[]0,8x ∈,所以当8x =时,()()min 82f x f ==-,…………(2分)不等式()213log 13x m m +≥-恒成立,等价于223m m -≥-,解得12m ≤≤,故命题p 为真,实数m 的取值范围为[]1,2.………………(4分) (2)若命题q 为真,则221m x x>-+,对(),1x ∀∈-∞-上恒成立, 令()21g x x x =-+,因为()g x 在(),1x ∈-∞-上为单调增函数,则()()11g x g <-=,故1m ≥,即命题q 为真,1m ≥.……………………(6分) 若p q ∧为假,p q ∨为真,则命题p ,q 中一真一假;…………(7分)①若p 为真,q 为假,那么121m m <<⎧⎨<⎩,则无解;……(9分)②若p 为假,q 为真,那么121m m m <>⎧⎨≥⎩或,则2m >.…………(11分)综上m 的取值范围为()2,+∞.……………………(12分) 20.(1)因为()21n n S n a =+,当2n ≥时,112n n S na --=, 两式相减,得()121n n n a n a na -=+-,即()11n n n a na --=, 所以当2n ≥时,11n n a a n n -=-,所以121n a a n ==,即2n a n =(2n ≥). 因为12a =也符合上式,所以2n a n =. (2)证明:由(1)知2n a n =,令()42n n n b a a =+,*n N ∈,所以()()411122211n b n n n n n n ===-+++…………(7分) 所以121111111122311n n T b b b n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭…………(9分) 因为101n >+,所以1111n -<+. 显然当1n =时,n T 取得最小值12.………………(11分)所以112n T ≤<.………………(12 分)21.(1)由题意得22211311,4b ab ⎧=⎪⎪⎨⎪+=⎪⎩ ∴2241a b ⎧=⎪⎨=⎪⎩.故椭圆C 的方程为2214x y +=.…………(4分) 直线AB方程为1y x =+,与x轴交点为()M .………………(5分) (2)因为点D 与点B 关于x轴对称,所以12D ⎫-⎪⎭,………………(6分) 直线AD方程为1y x =+,与x轴交于点N ⎫⎪⎪⎝⎭,…………(7分) “存在点()0,E E y 使得OEM ONE ∠=∠”等价于“存在点()0,E E y 使得||||||||OM OE OE ON =”(9分)即E y 满足2||||E M N y x x =.∴243E y ==,∴22E y =±,…………(11分) 故在y 轴上存在点E ,使得OEM ONE ∠=∠,且点E 的坐标为()0,2或()0,2-.……(12分)22.(1)由题意可知2221,2122,c e a ab a b c ⎧==⎪⎪⎪⨯=⎨⎪⎪=+⎪⎩解得2a =,b = 所以椭圆方程为22143x y +=.…………(4分) (2)由(1)知()2,0B ,设直线BD 的方程为()2y k x =-,()11,D x y ,把()2y k x =-代入椭圆方程22143x y +=, 整理得()2222241616120k x k x k +-+-=, 所以221122168623434k k x x k k -+=⇒=++,则2228612,3434k k D k k ⎛⎫-- ⎪++⎝⎭,…………(6分) 所以BD 中点的坐标为22286,3434k k k k ⎛⎫- ⎪++⎝⎭,…………(7分) 则直线BD 的垂直平分线方程为2226183434k k y x k k k ⎛⎫--=-- ⎪++⎝⎭,得220,34k P k ⎛⎫ ⎪+⎝⎭……(9分)又0PB PD ⋅=,即2222286142,,0343434k k k k k k ⎛⎫--⎛⎫-⋅= ⎪ ⎪+++⎝⎭⎝⎭, 化简得()424226428360642836034k k k k k +-=⇒+-=+, 解得34k =±故当34k =时,20,7P ⎛⎫ ⎪⎝⎭,当34k =-时,20,7P ⎛⎫- ⎪⎝⎭.………………(12分)。

河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

河北省石家庄市2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析

石家庄市2018~2019学年度第一学期期末考试试题高二数学(文科)第Ⅰ卷(选择题,共60分)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.命题“若则”地逆否命题是()A. 若则B. 若则C. 若则D. 若则【结果】B【思路】本题主要考查命题及其关系。

逆否命题是将原命题地款件与结论否定,然后再将否定后地款件和结论互换,故命题“若则”地逆否命题是“若,则”。

故选2.一个年级有22个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为19地学生留下进行交流,这里运用地是A. 分层抽样法B. 抽签法C. 随机数表法D. 系统抽样法【结果】D【思路】【思路】依据系统抽样地定义进行判断即可.【详解】每个班同学以1﹣50排学号,要求每班学号为19地同学留下来交流,则数据之间地间距差相同,都为50,所以依据系统抽样地定义可知,这里采用地是系统抽样地方式.故选:D.【点睛】本题主要考查抽样地定义和应用,要求熟练掌握简单抽样,系统抽样和分层抽样地定义,以及它们之间地区别和联系,比较基础.3.抛物线地焦点坐标是A. B. C. D.【结果】B【思路】【思路】先将方程化简为标准形式,即可得焦点坐标.【详解】由抛物线可得x2=4y,故焦点坐标为(0,1)故选:B.【点睛】本题主要考查抛物线地简单性质,属于基础题.4.已知命题:,。

命题:,,则下面表达中正确地是A. 是假命题B. 是真命题C. 是真命题D. 是假命题【结果】C【思路】【思路】先判断命题地真假,进而求得复合命题真假判断真值表得到结果.【详解】命题p,,即命题p为真,对命题q,去 ,所以命题q为假,为真所以是真命题故选:C.【点睛】(1)对于一些简单命题,判断为真,许推理证明,若判断为假,只需找出一个反例即可。

(2)对于复合命题地真假判断应利用真值表。

(3)也可以利用“互为逆否命题”地等价性,通过判断其逆否命题地真假来判断原命题地真假.5.阅读下边地程序框图,运行相应地程序,则输出地值为A. -1B. 0C. 3D. 4【结果】D【思路】【思路】直接依据程序框图计算得出结果.【详解】由程序框图可知。

浙江省台州市2018-2019学年高二上学期第一次月考数学试题

浙江省台州市2018-2019学年高二上学期第一次月考数学试题

浙江省台州市2018-2019学年高二上学期第一次月考数学试题★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.直线的倾斜角是()A. B. C. D.【答案】A【解析】【分析】先由直线的方程求出斜率,再根据倾斜角的正切值等于斜率,再结合倾斜角的范围求出倾斜角.【详解】由直线,可得直线的斜率为,直线倾斜角的正切值是,又倾斜角大于或等于且小于,故直线的倾斜角为,故选A.【点睛】本题主要考查直线方程与直线的斜率、倾斜角,意在考查对基础知识掌握的熟练程度,属于中档题.2.椭圆的离心率为()A. B. C. D.【答案】D【解析】【分析】由椭圆的标准方程可得,利用离心率公式可得结果.【详解】由椭圆的方程可得:,所以椭圆的离心率为,故选D.【点睛】本题主要考查椭圆的标准方程以及简单性质,意在考查利用所学知识解决问题的能力,属于简单题.3.双曲线的离心率为,则其渐近线方程为()A. B. C. D.【答案】B【解析】【分析】根据双曲线离心率为2,列出关于的方程,解之得,从而可得双曲线渐近线的斜率,进而可得结果.【详解】双曲线的方程是,双曲线渐近线为,又离心率为,可得,,即,可得,由此可得双曲线渐近线为,故选B.【点睛】本题主要考查双曲线的离心率与渐近线,意在考查综合应用数学知识解决问题的能力,属于中档题.4.直线与圆交于两点,则()A. B. C. D.【答案】B【解析】【分析】化圆的方程为标准方程,求出圆心坐标与半径,,再由垂径定理求弦长.【详解】化圆为,可得圆心坐标为,半径为2,圆心到直线的距离,,故选B.【点睛】本题主要考查点与圆的位置关系、直线与圆的位置关系以及待定系数法求直线的方程,属于中档题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系(求弦长问题需要考虑点到直线距离、半径,弦长的一半之间的等量关系);二是直线方程与圆的方程联立,考虑运用韦达定理以及判别式来解答.5.已知定点,点在圆上运动,是线段上的中点,则点的轨迹方程为()A. B. C. D.【答案】C【解析】【分析】设,由是的中点,可得,利用“逆代法”可得结果.【详解】设,是的中点,,又,,化为,故选C.【点睛】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法④求的轨迹方程的.6.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为,,则()A. B. C. D.【答案】B【解析】【分析】设,根据过抛物线的焦点,可设直线方程为,代入抛物线方程可得,根据韦达定理和弦长公式,以及中点坐标公式即可求出. 【详解】设,过抛物线的焦点,设直线方程为,代入抛物线方程可得,,,,,,,解得,故选B.【点睛】本题主要考查抛物线的标准方程与简单性质,以及韦达定理、弦长公式与中点坐标公式的应用,意在考查数形结合思想、函数与方程思想的应用,属于难题.7.已知双曲线的离心率为,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且,则双曲线的方程为()A. B. C. D.【答案】D【解析】【分析】由双曲线离心率为,由到双曲线的同一条渐近线的距离可得右焦点到渐近线的距离为,,从而可得结果.【详解】双曲线离心率为,,双曲线方程为,又到双曲线的同一条渐近线的距离,由梯形中位线定理得右焦点到渐近线的距离为,,双曲线的方程为,故选D.【点睛】本题主要考查双曲线的离心率、双曲线的渐近线方程以及点到直线距离公式的应用,意在考查计算能力、转化与划归思想的应用,属于中档题.8.已知椭圆与双曲线的焦点重合,分别为的离心率,则()A. 且B. 且C. 且D. 且【答案】A【解析】【分析】由椭圆与双曲线的焦点重合可得,即,由条件可得,再由离心率公式,即可得到结论.【详解】由椭圆与双曲线的焦点重合,可得,即,又,则,由,则,故选A.【点睛】本题主要考查椭圆与双曲线的离心率与几何性质,解答本题的关键是利用椭圆与双曲线的焦点重合,得到,本题属于中档题.9.若动点与两定点,的连线的斜率之积为常数,则点的轨迹一定不可能...是()A. 除两点外的圆B. 除两点外的椭圆C. 除两点外的双曲线D. 除两点外的抛物线【答案】D【解析】【分析】根据题意可分别表示出动点与两定点的连线的斜率,根据其之积为常数,求得和的关系式,对的范围进行分类讨论,分别讨论且和时,可推断出点的轨迹.【详解】因为动点与两定点,的连线的斜率之积为常数,所以,整理得,当时,方程的轨迹为双曲线;当时,且方程的轨迹为椭圆;当时,点的轨迹为圆,抛物线的标准方程中,或的指数必有一个是1 ,故点的轨迹一定不可能是抛物线,故选D.【点睛】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法①求动点的轨迹方程的.10.已知为椭圆上一个动点,直线过圆的圆心与圆相交于两点,则的取值范围为()A. B. C. D.【答案】C【解析】【分析】由可得圆心,由得椭圆右焦点也是,结合向量的加减运算法则,利用向量的数量积公式用表示出,根据椭圆的几何性质可得结果.【详解】由可得圆心,由得椭圆右焦点也是,,,,即的取值范围是,故选C.【点睛】本题主要考查向量的几何运算及平面向量的数量积公式,属于难题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知直线,直线,若,则__________;若,则两平行直线间的距离为__________.【答案】 (1). (2).若,则,解得:若,则,解得:∴两平行直线间的距离为故答案为:,12.公元前3世纪,古希腊数学家阿波罗尼斯(Apollonius)在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆.后世把这种圆称之为阿波罗尼斯圆. 已知直角坐标系中,,动点满足,若点的轨迹为一条直线,则______;若,则点的轨迹方程为_______________;【答案】 (1). 1 (2).【解析】【分析】设,由可得,,从而可得结果.【详解】设,由,,时,轨迹方程为,表示直线,时,轨迹方程为,故答案为,.【点睛】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.13.抛物线的准线方程是_________,过此抛物线的焦点的最短弦长为__________.【答案】 (1). (2).【解析】将化为,,从而可得准线方程,利用抛物线的几何性质可得当过焦点的直线与对称轴垂直时,弦长最小值为.【详解】代入,准线方程为,由抛物线的几何性质可得,当过焦点的直线与对称轴垂直时,弦长最小值为,故答案为,.【点睛】本题主要考查抛物线的标准方程与几何性质,意在考查灵活应用所学知识解决问题的能力,属于简单题.14.若动点在直线上,动点在直线上,记线段的中点为,则点的轨迹方程为____________,的最小值为_____________.【答案】 (1). (2). 8【解析】【分析】由两直线平行,可得中点的轨迹是与两直线平行且与两直线等距离的直线,设的轨迹方程为,利用平行线的距离公式可得结果.【详解】因为直线上与直线平行,中点的轨迹是与两直线平行且与两直线等距离的直线,设的轨迹方程为,则,得,即的轨迹方程为,原点到直线的距离为,的最小值为,故答案为,8.【点睛】本题主要考查轨迹方程以及点到直线距离公式、两平行线的距离公式的应用以及数形结合思想的应用,属于中档题.15.设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心为__________.【答案】【解析】双曲线的一条渐近线为,联立,得,令,则该双曲线的离心率为.16.已知为椭圆的下焦点,点为椭圆上任意一点,点的坐标为,则当的最大时点的坐标为_____________.【答案】【解析】【分析】由椭圆的定义可得,根据三角形的性质可得当共线时,有最大值,利用直线与椭圆的交点可得结果.【详解】设椭圆上焦点为,则,当共线时,有最大值9,直线的方程为与椭圆方程联立,可得或(舍去),故答案为.【点睛】解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.17.设定点,是函数图象上的一动点,若点之间的最短距离为,则__________.【答案】或【解析】【分析】设点,利用两点间的距离公式可得,利用基本不等式和二次函数的单调性即可得出的值.【详解】设点,则,令,,令,①当时,时取得最小值,解得;②当时,在区间上单调递减,在单调递增,取得最小值,,解得,综上可知或,故答案为或.【点睛】本题主要考查二次函数的性质、基本不等式求最值、以及两点间距离公式与分类讨论思想的应用,意在考查综合应用所学知识解决问题的能力,属于难题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知直线,直线..(1)求直线与直线的交点的坐标,并求出过点与原点距离最大的直线方程;(2)过点的直线分别与轴的正半轴和轴的正半轴交于点,两点,且(为坐标原点),求直线的方程【答案】(1);(2)【解析】【分析】(1)联立两条直线方程可解得直线与直线的交点的坐标为,利用与过原点和点连线垂直的直线,求出与原点距离最大的直线方程;(2)设直线方程为:.,可得,求出,从而可得结果.【详解】(1)联立两条直线方程:,解得,所以直线与直线的交点的坐标为.利用与过原点和点连线垂直的直线求出与原点距离最大的直线方程为 .(2)设直线方程为:.令得,因此令得,因此.,即,解得直线的方程为.【点睛】本题主要考查直线的交点坐标以及直线的方程,属于简单题. 在解题过程中需要用“点斜式”、“斜截式”设直线方程时,一定不要忘记讨论直线斜率不存在的情况,这是解析几何解题过程中容易出错的地方.19.如图,点是圆上一动点,点,过点作直线的垂线,垂足为.(1)求点的轨迹方程;(2)求的取值范围.【答案】(1);(2)【解析】【分析】(1),可得在以为直径的圆上,从而可得点的轨迹方程为;(2),设,,,,利用辅助角公式以及三角函数的有界性可得结果.【详解】(1).∵,∴在以为直径的圆上∴点的轨迹方程为;(2),设,,,,则∴,即的取值范围是【点睛】本题主要考查圆的轨迹方程以及利用辅助角公式求最值,属于中档题. 形如,的函数求值域,分两步:(1)求出的范围;(2)由的范围结合正弦函数的单调性求出,从而可求出函数的值域.20.已知椭圆的焦距为,长轴长为.(1)求椭圆的标准方程;(2)直线与椭圆交于A,B两点.若,求的值.【答案】(1);(2)【解析】【分析】(1)利用椭圆的焦距为,长轴长为,求出椭圆的几何量,可得椭圆的标准方程;(2)直线,联立椭圆方程,消去 ,运用韦达定理,由,则有,化简整理即可求的值.【详解】(1)∵椭圆的焦距为,长轴长为,∴,,∴,∴椭圆C的标准方程为 .(2)设,将直线AB的方程为代入椭圆方程得,则,①.又,.由OA⊥OB,知将①代入,得,又∵满足,∴.【点睛】求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出,从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.已知直线过椭圆的右焦点且与椭圆交于两点,为中点,的斜率为.(1)求椭圆的方程;(2)设是椭圆的动弦,且其斜率为1,问椭圆上是否存在定点,使得直线的斜率满足?若存在,求出点的坐标;若不存在,请说明理由.【答案】(1).(2)或满足题意.【解析】试题分析:(1)由已知得,椭圆的半焦距,设,,,由在椭圆上列出方程组,得到,进而求得,再根据,解得的值,即可得到椭圆的方程;(2)假设上存在定点满足题意,设直线方程为,联立方程组,得,,由,代入化简得,又由它与无关,即可得椭圆上存在点或满足题意.试题解析:(1)由已知得,椭圆的半焦距,设,,,则,,又由在椭圆上得,两式相减得,所以,而,所以又,所以,,所以椭圆的方程为.(2)假设上存在定点满足题意,并设直线方程为,,,联立,消得,则,,由,得,将,,代入并化简得,将,代入并化简得,由它与无关,只需,解得,或,而这两点恰好在椭圆上,从而假设成立,即在椭圆上存在点或满足题意.点睛:本题对考生计算能力要求较高,是一道难题,解答此类题目,利用的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.22.如图,已知圆,为抛物线上的动点,过点作圆的两条切线与轴交于.(1)若,求过点的圆的切线方程;(2)若,求△面积的最小值.【答案】(1)或;(2)32【解析】【分析】(1)设切线方程为,利用圆心到切线的距离等于半径,求出,然后求出切线方程;(2)设切线,利用切线与轴交点为,圆心到切线的距离列出关系式,得到关于的二次方程,设两切线斜率分别为,通过韦达定理得到,表示出三角形的面积,利用基本不等式求出最小值.【详解】(1)当时,,所以,设切线方程为,即,∴,解得:或∴过点的圆的切线方程或.(2)设切线,即,切线与轴交点为,圆心到切线的距离为,化简得设两切线斜率分别为,则,,,当且仅当时取等号.所以△面积的最小值.【点睛】本题主要考查直线与圆锥曲线的位置关系的相关问题,意在考查学生理解力、分析判断能力以及综合利用所学知识解决问题能力和较强的运算求解能力,其常规思路是先把直线方程与圆锥曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.在得到三角形的面积的表达式后,能否利用换元的方法,观察出其中的函数背景成了完全解决问题的关键.。

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析

河南省郑州市2018-2019学年上期期末考试高二数学(理)第Ⅰ卷(选择题,共60分)一,选择题:本大题共有12个小题,每小题5分,共60分。

在每小题所给出地四个选项中,只有一项是符合题目要求地。

1.已知命题那么为()A. B.C. D.【结果】B【思路】【思路】依据全称命题地否定是特称命题即可写出结果.【详解】命题则为故选:B【点睛】本题考全称命题地否定形式,属于简单题.2.已知数列是等比数列,若则地值为()A. 4B. 4或-4C. 2D. 2或-2【结果】A【思路】【思路】设数列{a n}地公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列地性质以及通项公式,属于简单题.3.已知是实数,下面命题结论正确地是()A. “”是“”地充分款件B. ”是“”地必要款件C. “ac2>bc2”是“”地充分款件D. ” 是“”地充要款件【思路】【思路】依据不等式地性质,以及充分款件和必要款件地定义分别进行判断即可.【详解】对于,当时,满足,却,所以充分性不成立。

对于,当时,满足,却,所以必要性不成立。

对于,当时,成立,却,所以充分性不成立,当时,满足,却,所以必要性也不成立,故“” 是“”地既不充分也不必要款件,故选:C【点睛】本题主要考查不等式地性质以及充分款件,必要款件地判断,属于基础题.4.已知双曲线地一款渐近线与直线垂直,则双曲线地离心率为()A. B. C. D.【结果】A【思路】【思路】双曲线地渐近线方程为,由渐近线与直线垂直,得地值,从而得到离心率.【详解】由于双曲线地一款渐近线与直线垂直,所以双曲线一款渐近线地斜率为,又双曲线地渐近线方程为,所以,双曲线地离心率.故选:A【点睛】本题主要考查双曲线地渐近线方程和离心率,以及垂直直线斜率地关系.5.若等差数列地前项和为,且,则()A. B. C. D.【结果】C【思路】由得,再由等差数列地性质即可得到结果.【详解】因为为等差数列,所以,解得,故.故选:C【点睛】本题主要考查等差数列地前项和公式,以及等差数列性质(其中m+n= p+q)地应用.6.地内角地对边分别为,,, 则=()A. B. C. D.【结果】D【思路】【思路】先由二倍角公式得到cosB,然后由余弦定理可得b值.【详解】因为,所以由余弦定理,所以故选:D【点睛】本题考查余弦二倍角公式和余弦定理地应用,属于简单题.7.椭圆与曲线地()A. 焦距相等B. 离心率相等C. 焦点相同D. 准线相同【结果】A【思路】【思路】思路两个曲线地方程,分别求出对应地a,b,c即可得结果.【详解】因为椭圆方程为,所以,焦点在x轴上,曲线,因为,所以,曲线方程可写为,,所以曲线为焦点在y轴上地椭圆,,所以焦距相等.【点睛】本题考查椭圆标准方程及椭圆简单地几何性质地应用,属于基础题.8.在平行六面体(底面是平行四边形地四棱柱)ABCD-A1B1C1D1中,AB=AD=AA1=1,,则地长为()A. B. 6 C. D.【结果】C【思路】【思路】依据空间向量可得,两边平方即可得出结果.【详解】∵AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,∴===,∵,∴=6,∴|=.故选:C.【点睛】本题考查平行四面形法则,向量数量积运算性质,模地计算公式,考查了推理能力与计算能力.9.已知不等式地解集是,若对于任意,不等式恒成立,则t地取值范围()A. B. C. D.【结果】B【思路】【思路】由不等式地解集是,可得b,c地值,代入不等式f(x)+t≤4后变量分离得t≤2x2﹣4x﹣2,x ∈[﹣1,0],设g (x )=2x 2﹣4x ﹣2,求g(x)在区间[﹣1,0]上地最小值可得结果.【详解】由不等式地解集是可知-1和3是方程地根,,解得b=4,c=6,,不等式化为 ,令g (x )=2x 2﹣4x ﹣2,,由二次函数图像地性质可知g(x)在上单调递减,则g(x )地最小值为g(0)=-2,故选:B【点睛】本题考查一圆二次不等式地解法,考查不等式地恒成立问题,常用方式是变量分离,转为求函数最值问题.10.在中,角所对地边分别为,表示地面积,若,则( )A.B.C.D.【结果】D 【思路】【思路】由正弦定理,两角和地正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理,三角形面积公式可求角C,从而得到B 地值.【详解】由正弦定理及得,因为,所以。

河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题

河北省成安县第一中学2018-2019学年高二上学期期末考试数学(文)试题

2018-2019学年上学期期末考试高二数学试题(文)本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。

考试时长120分钟第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合A={x|2x2﹣5x﹣3≤0},B={x∈Z|x≤2},则A∩B中地圆素个数为( )A.2B.3C.4D.52.设复数z=1+i,i是虚数单位,则+()2=( )A.1﹣3i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∃x0∈(0,),cosx0>sinx0”地否定是( )A.∃x0∈(0,),cosx0≤sinx0B.∀x∈(0,),cosx≤sinxC.∀x∈(0,),cosx>sinx D.∃x0∉(0,),cosx0>sinx04.设各项均为正数地等差数列{a n}地前n项和为S n,且a4a8=32,则S11地最小值为A.244 C.22 D.4422 B.25.已知向量,满足•(﹣)=2,且||=1,||=2,则与地夹角为( )A.B.C.D.6.如图为教育部门对辖区内某学校地50名儿童地体重(kg)作为样本进行思路而得到地频率分布直方图,则这50名儿童地体重地平均数为( )A.27.5B.26.5C.25.6D.25.7 7.已知sin()=,则cos(2)=( )A.﹣B.﹣C.D.8.在一线性回归模型中,计算相关指数20.96R ,下面哪种表达不够妥当?( )A.该线性回归方程地拟合效果较好B.解释变量对于预报变量变化地贡献率约为96%C.随机误差对预报变量地影响约占4%D.有96%地样本点在回归直线上9.如图,B ,D 是以AC 为直径地圆上地两点,其中,,则=( )A .1B .2C .tD .2t10.已知实数x,y 满足款件|x ﹣1|+|y ﹣1|≤2,则2x+y 地最大值为( )A .3B .5C .7D .911.设函数()f x 在R 上可导, ()()2'23,f x x f x =-则()1f -与()1f 地大小关系是( )A. ()(1)1f f -=B. ()()f f ->11C. ()(1)1f f -<D.不确定12.抛物线y 2=2px (p >0)地焦点为F,已知点A,B 为抛物线上地两个动点,且满足∠AFB=120°.过弦AB 地中点M 作抛物线准线地垂线MN,垂足为N,则地最大值为( )A .B .1C .D .2 第Ⅱ卷(非选择题)二.填空题(共4题每题5分满分20分)13.已知双曲线=l (a >0,b >0)地一款渐近线与直线2x+y ﹣3=0垂直,则该双曲线地离心率为 .14.已知正四面体ABCD 地棱长为l,E 是AB 地中点,过E 作其外接球地截面,则此截面面积地最小值为 .15.若函数2()2ln f x x x =-在其定义域内地一个子区间(1,1)k k -+内不是单调函数,则实数k 地取值范围是16.设函数y=地图象上存在两点P,Q,使得△POQ 是以O 为直角顶点地直角三角形(其中O 为坐标原点),且斜边地中点恰好在y 轴上,则实数a 地取值范围是 .三.解答题:(解答题应写出必要地文字说明和演算步骤,17题10分,18-22每题12分)17.已知a,b,c 分别为△ABC 地三个内角A,B,C 地对边,a=2且(2+b )(sinA ﹣sinB )=(c ﹣b )sinC(1)求角A 地大小。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本大题共12小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4,5},A ={1,3},则U A C =( )A .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.下列函数中,既是奇函数又在(0,+∞)单调递增的是( )A .x x y e e -=+B .()ln 1y x =+C .sin xy x=D .1y x x=-3.若3412a ⎛⎫= ⎪⎝⎭,1234b ⎛⎫=⎪⎝⎭,c =log 23,则a ,b ,c 大小关系是( ) A .a <b <c B .b <a <c C .b <c <a D .c <b <a4.已知α为第二象限的角,且3tan 4α=-,则sinα+cosα=( ) A .75- B .34- C .15- D .155.已知△ABC 的边BC 上有一点D 满足3BD DC =,则AD 可表示为( ) A .23AD AB AC =-+ B .3144AD AB AC =+ C .1344AD AB AC =+ D .2133AD AB AC =+ 6.一个几何体的三视图如图,其左视图是一个等边三角形,则这个几何体的体积为( )A .(43π+ B .(86π+ C .(83π+ D .(4π+7.设n S 为等差数列{}n a 的前n 项和,已知a 1=S 3=3,则S 4的值为( ) A .﹣3B .0C .3D .68.设锐角△ABC 的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 a =1,B =2A ,则b 的取值范围为( )A .B .(C .)2 D .()0,29.已知变量x ,y 满足约束条件206010x y x y x -+≤⎧⎪+-≤⎨⎪-≥⎩,则2x ﹣y 的最小值是( )A .2B .﹣2C .﹣3D .﹣110.若直线220mx ny --=(m >0,n >0)过点(1,﹣2),则12m n+最小值( ) A .2B .6C .12D .3+211.已知函数()11x x f x e e +-=+,则满足()221f x e -<+的x 的取值范围是( )A .x <3B .0<x <3C .1<x <eD .1<x <312.设等差数列{}n a 满足22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差()1,0d ∈-,若当且仅当n =11时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( )A .9,10ππ⎛⎫⎪⎝⎭ B .11,10ππ⎡⎤⎢⎥⎣⎦ C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫⎪⎝⎭第Ⅱ卷(90分)二、填空题(本大题共4小题,每小题5分,共20分)13.设向量()1,0a =,()1,b m =-.若()a mab ⊥-,则m = . 14.已知1cos 123πθ⎛⎫-=⎪⎝⎭,则5sin 12πθ⎛⎫+ ⎪⎝⎭的值是 . 15.函数f (x )=Asin (ωx+φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则f (2018)的值为 .16.已知直线l:30mx y m ++=与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D两点,若AB =|CD |= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)如图,在四棱锥P ﹣ABCD 中,∠ADB =90°,CB =CD ,点E 为棱PB 的中点. (Ⅰ)若PB =PD ,求证:PC ⊥BD ;(Ⅱ)求证:CE ∥平面P AD .18.(12分)已知{}n a 的前n 项和24n S n n =-. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列72n na -⎧⎫⎨⎬⎩⎭的前n 项和T n .19.在平行四边形ABCD 中,设边AB 、BC 、CD 的中点分别为E 、F 、G ,设DF 与AG 、EG 的交点分别为H 、K ,设AB a =,BC b =,试用a 、b 表示GK 、AH .20.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (Ⅰ)求角B 的大小;(Ⅱ)设a =2,c =3,求b 和sin (2A ﹣B )的值.21.已知方程x 2+y 2﹣2x ﹣4y +m =0.(Ⅰ)若此方程表示圆,求实数m 的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线x +2y ﹣4=0相交于M ,N 两点,且坐标原点O 在以MN 为直径的圆的外部,求实数m 的取值范围.22.已知函数()•,xxf x e a e x R -=+∈.(Ⅰ)当1a =时,证明: ()f x 为偶函数;(Ⅱ)若()f x 在[)0,+∞上单调递增,求实数a 的取值范围;(Ⅲ)若1a =,求实数m 的取值范围,使()()221m f x f x ⎡⎤+≥+⎣⎦在R 上恒成立.参考答案与试题解析一.选择题(共12小题)8.【解答】解:锐角△ABC中,角A、B、C所对的边分别为a、b、c,B=2A,∴0<2A<,且B+A=3A,∴<3A<π.∴<A<,∴<cosA<,∵a=1,B=2A,∴由正弦定理可得:=b==2cosA,∴<2cosA<,则b的取值范围为(,).故选:A.11.【解答】解:∵f(x)=e1+x+e1﹣x =,令t=e x,可得y=e(t+),内函数t=e x为增函数,而外函数y=e(t+)在(0,1)上为减函数,在(1,+∞)上为增函数,∴函数f(x)=e1+x+e1﹣x 的减区间为(﹣∞,0),增区间为(0,+∞).又f(x)=e1+x+e1﹣x为偶函数,∴由f(x﹣2)<e2+1,得f(|x﹣2|)<f(1),得|x﹣2|<1,解得1<x<3.故选:D.12.【解答】解:∵等差数列{a n}满足=1,∴===sin(a2﹣a7)=sin(﹣5d)=1,∴sin(5d)=﹣1,∵d∈(﹣1,0),∴5d∈(﹣5,0),∴5d=﹣,d=﹣.由S n=na1+d=na1﹣=﹣π+(a1+)n.对称轴方程为n=(a1+),由题意当且仅当n=11时,数列{a n}的前n项和S n取得最大值,∴<(a1+)<,解得:π<a1<.∴首项a1的取值范围是(π,).故选:D.二.填空题(共4小题)13.﹣1.14. 1315. 2 16. 415.【解答】解:由函数f(x)=Asin(ωx+φ)的部分图象知,=11﹣2=9,解得T=12,ω==;又f(0)=Asinφ=1,∴sinφ=;f(2)=Asin(×2+φ)=A,∴φ=,∴=sin=,∴A=2,∴f(2018)=f(168×12+2)=f(2)=A=2.故答案为:2.16.【分析】先求出m,可得直线l的倾斜角为30°,再利用三角函数求出|CD|即可.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.三.解答题(共6小题,满分22分)17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO 平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO 平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】(Ⅰ)解:已知{a n}的前n项和,则:当n≥2时,a n=S n﹣S n﹣1=4n﹣n2﹣4(n﹣1)+(n﹣1)2=5﹣2n.当n=1时,a1=S1=3,适合上式∴a n=5﹣2n.(Ⅱ)解:令=,+…+①,所以:+…+②,①﹣②得:﹣,=,=.整理得:.19.【解答】解:如图所示,因为AB、BC、CD的中点分别为E、F、G,所以=+=+(﹣)=﹣+(﹣+)=.因为A、H、G三点共线,所以存在实数m,使=m=m(+)=m+m;又D、H、F三点共线,所以存在实数n,使=n=n(﹣)=n﹣n.因为+=,所以+n=m+因为a、b不共线,∴解得m=,即=(+)=+.20.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin (2A ﹣B )=sin2AcosB ﹣cos2AsinB==.21.【解答】解:(1)∵程x 2+y 2﹣2x ﹣4y+m=0表示圆, ∴△=(﹣2)2+(﹣4)2﹣4m >0, 解得m <5,∴实数m 的取值范围是(﹣∞,5).(2)直线x+2y ﹣4=0代入圆的方程,消去x 可得:5y 2﹣16y+8+m=0 ∵△>0,∴m <,设M (x 1,y 1),N (x 2,y 2),则y 1+y 2=,y 1y 2=,∴x 1x 2=(4﹣2y 1)(4﹣2y 2)=16﹣8(y 1+y 2)+4y 1y 2=,∵坐标原点O 在以MN 为径的圆的外部, ∴>0,∴x 1x 2+y 1y 2>0, ∴+>0解得m >. 22. 【解答】:(1)当1a =时, ()x xf x e e -=+,定义域(),-∞+∞关于原点对称,而()()xx f x ee f x --=+=,说明()f x 为偶函数;(2)在[)0,+∞上任取1x 、2x ,且12x x <, 则()()()()()121211221212x x x x x x x x x x e e eaf x f x e aee aee +--+---=+-+=,因为12x x <,函数xy e =为增函数,得12xxe e <, 120xxe e -<,而()f x 在[)0,+∞上单调递增,得()()12f x f x <, ()()120f x f x -<,于是必须120x x e a +->恒成立, 即12x x a e +<对任意的120x x ≤<恒成立,1a ∴≤;(3)由(1)、(2)知函数()f x 在(],0-∞上递减,在[)0,+∞上递增, 其最小值()02f =,且()()22222x x x x f x e e e e --=+=+-,设x x t e e -=+,则[)2,t ∈+∞, 110,2t ⎛⎤∈ ⎥⎝⎦于是不等式()()221m f x f x ⎡⎤⋅+≥+⎣⎦恒成立,等价于21m t t ⋅≥+, 即21t m t+≥恒成立, 而22211111124t t t t t +⎛⎫=+=+- ⎪⎝⎭,仅当112t =,即2t =时取最大值34, 故34m ≥。

相关文档
最新文档