简易示波器课程设计报告
示波器的使用实验报告
示波器的使用实验报告篇一:大学物理实验报告(示波器)??00A9示波器的使用【实验简介】示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。
从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。
在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。
若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。
正确使用示波器是进行电子测量的前提。
第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。
发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。
Karl Ferdinand Braun生平简介1909年的诺贝尔物理奖得主Karl Ferdinand Braun于1897年发明世界上第一台阴极射线管示波器,至今许多德国人仍称CRT为布朗管(Braun Tube)。
【实验目的】2、学习用示波器观察电信号的波形和测量电压、周期及频率值。
3、通过观察李沙如图形,学会一种测量正弦波信号频率的方法。
图8-1 Karl Ferdinand Braun1、了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。
【实验仪器】VD4322B型双踪示波器、EM1643型信号发生器、连接线及小喇叭等?1051、电源开关2、电源指示灯3、聚焦旋钮4、亮度调节旋钮5、Y1(X)信号输入口6、Y2信号输入口7、8、9 86图8-2 VD4322型双踪示波器板面图入耦合开关(AC-GND-DC)9、10、垂直偏转因数选择开关(V/格)11、Y1位移旋钮12、Y2位移旋钮13、工作方式选择开关(Y1、Y2、交替、断续)14、扫描速度(时间/格)选择开关15、扫描微调控制旋钮16、水平位移旋钮17、电平调节旋钮【实验原理】一、示波器的结构及简单工作原理示波器一般由5个部分组成,如图8-3所示:(1)示波管;(2)信号放大器和衰减器(3)扫描发生器;(4)触发同步电路;(5)电源。
示波器实验报告(共7篇)
示波器实验报告(共7篇)一、实验目的1.了解示波器的基本原理和工作原理。
2.掌握示波器在电路测试和故障诊断中的应用。
3.学习示波器的操作方法,掌握各项操作技巧。
二、实验原理示波器是用来观察波形的一种仪器。
它以示波管为核心,通过电子束扫描屏幕,形成比较直观的波形图,实现对信号的观测、测量和分析。
示波器一般有模拟示波器和数字示波器两种,本实验采用数字示波器进行测试。
数字示波器以模拟数字转换技术为基础,是一种精确分析波形的仪器。
它接收被测电路中的信号,经过采样后经过模拟数字转换(ADC)转换成数字信号,同时进行多次采样,得到不同时刻下的波形数据,并将其传输到计算机中进行处理和显示。
数字示波器具有显示快、分辨率高、操作方便等优点,适用于对高频信号进行测量和分析。
三、实验内容1.了解示波器的基本操作方法,包括示波器的输入接口、触发系统、扫描方式、显示控制等内容。
2.使用示波器测量不同频率、振幅的正弦信号,并进行分析。
四、实验步骤与数据分析1.测量正弦波(1)将正弦波信号输入示波器的通道1,选择“正弦波”测量模式。
(2)调整示波器的扫描方式、扫描速率和显示控制,以得到清晰的信号波形。
(3)通过示波器测量正弦波的振幅和频率,得出如下数据:振幅:3V频率:50Hz(4)分析得出,正弦波是具有一定周期性的波形,它的幅度和频率可以通过示波器的测量得到。
在实际电路测试和故障诊断中,正弦波可以用作交流信号的测试,并可以通过触发系统实现高精度数据的采样和分析。
2.测量直流信号电压:5V3.测量矩形波和脉冲信号(3)通过示波器测量矩形波和脉冲信号的各项参数,如上升沿和下降沿时间、占空比等,得到实验数据。
五、实验结果本次实验使用数字示波器测量了不同频率、振幅的正弦信号、直流信号、矩形波信号和脉冲信号。
通过对示波器的操作和分析,得出了对信号波形的各项参数,进一步理解了示波器的原理和工作方式,并掌握了数字示波器的操作和应用技巧。
示波器的制作实验报告
示波器的制作实验报告1. 引言示波器是一种用于显示电信号波形的仪器,广泛应用于电子、通信、计算机等领域。
本实验旨在通过制作一个简单的示波器来加深对电信号处理的理解,掌握示波器的基本原理和制作方法。
2. 实验器材和材料- Arduino开发板- 电阻、电容、二极管- 示波器探头- 电脑3. 实验原理示波器的主要原理是通过接收待测信号并将其转换为电压信号,再经过信号处理和显示电路,最终在屏幕上显示出波形图。
本实验采用Arduino作为信号处理器,利用Arduino的模拟输入功能获取待测信号的电压值,然后通过串口将数据传输给电脑,最后在电脑上使用绘图软件显示波形图。
4. 实验步骤4.1. 搭建硬件电路根据示波器的原理,搭建以下电路:![电路图](circuit_diagram.png)4.2. 编写Arduino代码在Arduino集成开发环境中编写以下代码,用于读取模拟输入引脚的电压值,并通过串口发送给电脑:c++void setup() {Serial.begin(9600);}void loop() {int sensorValue = analogRead(A0);Serial.println(sensorValue);delay(1);}将代码上传至Arduino开发板。
4.3. 配置电脑连接Arduino开发板与电脑,并打开绘图软件(如Processing)。
配置串口接收端口和波特率,确保与Arduino代码中一致。
4.4. 接收并绘制波形图在绘图软件中编写以下代码,用于接收Arduino发送的数据并绘制波形图:javaimport processing.serial.*;Serial port;int xPos = 0;float[] inData = new float[500];int index = 0;void setup() {size(800, 400);port = new Serial(this, "/dev/bmodem14201", 9600); 根据实际情况修改端口名称}void draw() {background(0);if (port.available() > 0) {String data = port.readStringUntil('\n');if (data != null) {data = trim(data);inData[index] = float(data);index++;if (index >= width) {index = 0;}}}translate(0, height / 2);stroke(255);for (int i = 0; i < index; i++) {line(i, inData[i], i + 1, inData[i + 1]);}}运行绘图软件并启动串口读取。
示波器使用大学物理实验报告1
示波器使用大学物理实验报告1一、实验目的1、了解示波器的基本结构和工作原理。
2、掌握示波器的基本操作方法,包括示波器的调节、信号的输入与显示等。
3、学会使用示波器测量正弦波、方波等信号的电压、频率和周期等参数。
二、实验仪器示波器、函数信号发生器、探头、连接线等。
三、实验原理示波器是一种用于显示电信号波形的电子仪器。
它通过将输入的电信号转换为光信号,并在荧光屏上显示出来,从而使我们能够观察到信号的变化情况。
示波器主要由电子枪、偏转系统和荧光屏三部分组成。
电子枪产生高速电子束,经过偏转系统的作用,使电子束在荧光屏上按照输入信号的变化规律进行偏转,从而形成信号的波形。
示波器的显示原理是基于电子束在电场和磁场中的偏转。
当在垂直偏转板和水平偏转板上分别加上适当的电压时,电子束就会在垂直和水平方向上发生偏转,从而在荧光屏上显示出相应的波形。
四、实验内容及步骤1、示波器的调节(1)打开示波器电源,预热一段时间。
(2)调节辉度和聚焦旋钮,使荧光屏上的亮点清晰可见。
(3)调节水平和垂直位移旋钮,将亮点移至屏幕的中心位置。
(4)选择适当的触发方式和触发电平,使示波器能够稳定地显示输入信号的波形。
2、正弦波信号的测量(1)将函数信号发生器的输出端与示波器的输入端连接,设置函数信号发生器输出正弦波信号,频率为 1kHz,峰峰值为 5V。
(2)调节示波器的垂直灵敏度和水平扫描速度,使正弦波的波形在屏幕上显示完整且清晰。
(3)测量正弦波的峰峰值、有效值、频率和周期。
峰峰值:通过示波器的垂直刻度读取正弦波的峰峰值。
有效值:根据公式 U 有效值= U 峰峰值/√2 计算正弦波的有效值。
频率:根据示波器水平刻度上一个周期所对应的时间,计算出正弦波的频率。
周期:直接从示波器上读取正弦波的周期。
3、方波信号的测量(1)设置函数信号发生器输出方波信号,频率为 500Hz,峰峰值为 3V。
(2)按照上述方法测量方波信号的峰峰值、频率和周期。
示波器的使用学生实验报告
示波器的使用学生实验报告实验目的:通过使用示波器来观察和分析不同电路中的电波波形和特征,加深对示波器的原理和使用方法的理解,培养学生动手实践和解决问题的能力。
实验器材:示波器、电源、电阻、电容、电感等基本电路元件。
实验步骤:1.根据实验需求,准备好所需的电路元件和示波器。
2.搭建实验电路,保证元件之间连接正确。
3.将示波器的探头连接到电路中要测量的位置,确保信号完整地传输到示波器上。
4.打开示波器,调整触发模式和触发电平,使示波器能够稳定地显示期望的波形。
5.调整示波器的垂直和水平控制,以获得清晰的波形显示。
6.根据实验要求,分析波形的周期、幅值、频率、相位等特征。
7.进行多组实验,改变电路元件的数值或顺序,观察波形的变化。
8.记录实验数据和观察结果,并进行分析和讨论。
实验内容:本次实验选取了三个不同的电路,分别是RC电路、RL电路和LC电路。
通过改变电路元件的数值和连接方式,观察电路中电流和电压的波形变化。
1.RC电路实验:搭建RC电路,连接电源、电阻和电容。
调整输入电压和频率,观察电压波形和电流波形的变化。
分析电容充电和放电的过程,记录实验数据。
2.RL电路实验:搭建RL电路,连接电源、电阻和电感。
调整输入电压和频率,观察电压波形和电流波形的变化。
分析电感储能和释放的过程,记录实验数据。
3.LC电路实验:搭建LC电路,连接电源、电容和电感。
调整输入电压和频率,观察电压波形和电流波形的变化。
分析电容和电感之间的能量交换,记录实验数据。
实验结果:通过实验观察和数据分析,我们得到了不同电路中电流和电压的波形特征。
对于RC电路,电容充电和放电的过程可以观察到指数衰减的波形,频率越高衰减越快。
对于RL电路,则可以观察到电感储能和释放的过程,波形呈指数增长和衰减。
而在LC电路中,电容和电感之间的能量交换导致波形频率的变化。
实验讨论:本次实验中,使用示波器观察了不同电路中电流和电压的波形变化,加深了对示波器的原理和使用方法的理解。
课程设计示波器
课程设计示波器一、教学目标本课程的目标是让学生掌握示波器的基本原理、结构和操作方法,能够运用示波器进行基本的电信号分析。
知识目标包括了解示波器的工作原理、各种探头的使用方法、垂直和水平系统的调节方法等;技能目标包括能够熟练操作示波器,进行信号的采集、显示和分析;情感态度价值观目标包括培养学生的实验操作兴趣,增强学生的实践能力,提高学生的问题解决能力。
二、教学内容教学内容主要包括示波器的基本原理、结构和操作方法。
首先,介绍示波器的工作原理,包括垂直系统、水平系统和显示系统的工作原理;然后,介绍示波器的结构,包括各种探头、显示屏、调节按钮等;最后,介绍示波器的操作方法,包括信号的采集、显示和分析。
三、教学方法本课程采用讲授法、实验法和讨论法进行教学。
首先,通过讲授法向学生介绍示波器的基本原理和结构;然后,通过实验法让学生亲自操作示波器,进行信号的采集和分析;最后,通过讨论法让学生交流实验心得,提高问题解决能力。
四、教学资源教学资源包括教材、实验设备和多媒体资料。
教材主要用于向学生介绍示波器的基本原理、结构和操作方法;实验设备包括示波器、信号发生器、探头等,用于让学生亲自操作示波器;多媒体资料包括教学课件、实验视频等,用于辅助教学,提高学生的学习兴趣。
五、教学评估本课程的评估方式包括平时表现、作业和考试。
平时表现主要评估学生在课堂上的参与程度、提问回答等情况;作业主要评估学生的实践能力,包括示波器操作练习和信号分析报告;考试主要评估学生的理论知识和问题解决能力,包括选择题、简答题和实验操作题。
评估方式客观、公正,全面反映学生的学习成果。
六、教学安排教学安排如下:共10课时,每周2课时,共计5周。
第一周:介绍示波器的基本原理和工作原理(2课时);第二周:介绍示波器的结构和各种探头(2课时);第三周:示波器的操作方法(2课时);第四周:信号的采集、显示和分析(2课时);第五周:实验操作和总结(2课时)。
教学安排合理紧凑,确保完成教学任务。
示波器实验报告
示波器实验报告在学习、工作生活中,报告的适用范围越来越广泛,其在写作上有一定的技巧。
那么你真正懂得怎么写好报告吗?下面是小编整理的示波器实验报告,欢迎大家借鉴与参考,希望对大家有所帮助。
示波器实验报告篇1一、实验目的及要求:(1)了解示波器的基本工作原理。
(2)学习示波器、函数信号发生器的使用方法。
(3)学习用示波器观察信号波形和利用示波器测量信号频率的方法。
二、实验原理:1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。
2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。
亮点在偏转板电压的作用下,位置也随之改变。
在一定范围内,亮点的位移与偏转板上所加电压成正比。
3) 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。
我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。
如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。
但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。
要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。
示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。
在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。
示波器实验报告
示例器实验报告一、引言示波器是一种用于显示电压波形的仪器,广泛应用于电子电路实验和故障诊断中。
本次实验旨在通过示波器观察不同信号的波形特征,掌握示波器的基本操作方法,并对电路进行分析和测试。
二、实验目的1.了解示波器的基本原理和工作方式。
2.掌握示波器的使用方法和操作技巧。
3.观察不同信号的波形特征,分析信号的频率、幅度等参数。
4.熟悉示波器在电路实验中的应用。
三、实验仪器本次实验所用仪器设备包括: - 示波器 - 信号发生器 - 示波器探头 - 电路板及元器件四、实验步骤1.首先连接示波器、信号发生器和电路板,调节示波器和信号发生器的参数。
2.使用示波器探头连接到电路中的相应位置,调节示波器的触发模式和触发电平。
3.发出不同频率的信号,观察示波器显示的波形。
4.改变信号幅度和波形形状,记录下示波器显示的波形特征。
5.对比不同信号波形,分析其频率、周期、幅度等参数。
五、实验数据及分析通过示波器观察到的波形数据如下: - 正弦波:频率为100Hz,幅度为5V,波形平滑连续。
- 方波:频率为1kHz,幅度为3.3V,波形具有明显的上升和下降沿。
- 脉冲波:频率为500Hz,幅度为2V,波形具有较短的脉冲宽度。
根据实验数据分析,不同信号波形在示波器上显示出不同的特征,可以通过观察波形参数来判断信号性质。
六、实验总结通过本次实验,我们掌握了示波器的基本原理和操作方法,能够准确观察和分析不同信号的波形特征。
示波器在电子电路实验中具有重要作用,可以帮助我们快速、准确地了解电路工作状态,有效提高电路设计和调试效率。
七、参考资料•《电子技术基础》•《示波器使用手册》以上为本次示波器实验报告内容。
希望这份示波器实验报告符合您的要求。
示波器实验报告
示波器实验报告实验目的本实验旨在让学生掌握示波器的基本操作方法,包括:示波器的结构与原理、示波器的使用、各种电型信号的测量,同时提高学生的实验操作能力和数据处理能力。
实验仪器本次实验使用的仪器为示波器、信号发生器、电阻、电容、电感、万用表、直流电源等。
实验原理示波器是一种用于测量电压随时间变化的仪器,应用广泛,用途很多。
其中,示波器的核心部分是电子枪和电子束系统。
当电子枪发射高速电子时,经过加速后会形成一个电子束,它在偏转板和偏转系统的作用下,被导向到屏幕上,形成一定的波形。
示波器可以根据不同的电压输入端,分别被称作单向示波器和双向示波器。
信号发生器可以产生多种波形的电信号,包括正弦波、方波、三角波等。
电容和电感可以产生相位差,电阻可以调节电流大小和电压大小,万用表可以测量各种电型信号。
实验内容实验一:直流信号的测量将直流电源的正负极分别接到示波器的通道一和通道二上,并将示波器的探头分别接到通道一和通道二的输入端。
打开示波器电源,调整示波器的扫描速度和扫描范围,观察电压随时间的变化情况,并记录下对应的数据。
实验二:正弦信号的测量将信号发生器的输出端接到示波器的通道一输入口,调节信号发生器产生正弦波信号。
打开示波器电源,观察正弦波信号的波形,调整示波器的扫描速度和扫描范围,记录下对应的数据。
实验三:方波信号的测量将信号发生器的输出端接到示波器的通道一输入口,调节信号发生器产生方波信号。
打开示波器电源,观察方波信号的波形,调整示波器的扫描速度和扫描范围,记录下对应的数据。
实验四:三角波信号的测量将信号发生器的输出端接到示波器的通道一输入口,调节信号发生器产生三角波信号。
打开示波器电源,观察三角波信号的波形,调整示波器的扫描速度和扫描范围,记录下对应的数据。
实验五:RC电路的测量搭建一个RC电路,将信号发生器的输出端接到电路的输入端,将示波器的探针分别接到电容和电阻两端。
打开示波器电源,观察电容电压和电阻电压随时间的变化情况,并记录下对应的数据。
大学物理实验示波器实验报告-示波器实验数据
大学物理实验示波器实验报告-示波器实验数据在这次大学物理实验中,我们主要使用示波器来观察电信号,学习如何通过示波器测量和分析波形。
整个实验让我对电学的理解有了更深的认识,感觉不仅仅是在学习理论,更多的是在探索和发现。
一、实验目的与准备工作1.1 实验目的这次实验的主要目的是熟悉示波器的使用,掌握基本的测量技能,并通过实际操作观察不同信号的波形特征。
示波器在现代电子技术中非常重要,它能将电信号可视化,帮助我们更好地理解信号的性质。
1.2 准备工作在实验前,我们先进行了一些准备工作。
老师给我们分发了实验手册,手册里详细说明了示波器的各个功能。
我们还讨论了如何设置示波器的时间基准和垂直灵敏度。
为了确保实验的顺利进行,我们还提前检查了所有设备,确保示波器、信号发生器和连接线都处于良好状态。
二、实验过程2.1 连接设备实验开始时,我们将信号发生器和示波器连接起来。
首先,我小心翼翼地将信号线插入示波器的输入端,确保连接稳固。
接着,我们设置了信号发生器的输出频率,开始时设为1kHz。
这个频率适中,能够让我们清楚地看到波形。
2.2 观察波形当信号发生器开始工作时,示波器屏幕上出现了一条波形。
这个过程真的让我感到兴奋!波形是一条漂亮的正弦波,起伏的线条让我感觉像是在和电流进行对话。
我们观察到波形的幅度和频率都很稳定,老师讲解了如何调整示波器的时间和电压刻度,以便更好地分析波形的细节。
2.3 记录数据在观察到稳定的波形后,我们开始记录数据。
我和我的实验伙伴一起对波形的周期、幅度和相位差进行了测量。
通过示波器的光标功能,我们可以精确地读取波形的参数。
那一刻,我感受到了一种成就感,因为这些数据并不是单纯的数字,而是我们在实验中获取的真实结果。
三、实验结果与分析3.1 数据分析经过一番测量,我们得到了一些数据。
波形的周期约为1毫秒,幅度约为2伏特。
这些数据与我们理论计算的结果相符,说明我们在实验中掌握了示波器的使用,也验证了理论的正确性。
简易示波器课程设计报告
课程设计报告课程名称综合电子设计题目简易数字示波器指导教师起止日期系别自动化专业自动控制学生姓名班级/学号成绩摘要本系统由CPLD,单片机控制模块,键盘,LED,幅度控制模块,低通滤波模块组成,采用当前主流DDS 技术完成,能产生从1HZ-260KHZ 正弦波,方波,三角波以及这三种同频率波的线性组合,失真度限制在6%之内。
一、功能介绍1. 具有产生正弦波、方波、三角波三种周期性波形的性能。
2. 用键盘输入编辑生成上述三种波形(同周期)的线性组合波形。
3. 输出波形频率范围为1Hz~200kHz(非正弦波频率按10 次谐波计算;重复频率可调,频率步进间隔1Hz。
)4. 输出波形幅度范围0~5V(峰-峰值),可按步进为0.1V(峰-峰值)。
5. 具有显示输出波形种类、重复频率(周期)和幅度的功能。
6. 增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载变化范围:100Ω~∞)。
二、方案论证与比较常见信号源的制作方法有:方案一:采用锁相式频率合成。
将一个高稳定度和高精确度的标准频率经过加减乘除的运算产生同样稳定度的大量离散频率技术,它在一定程度上既要频率稳定精确,又要频率在很大范围内可变的矛盾。
但频率受VCO 可变频率范围的影响,高低频率比不可能做的很高,而且只能产生方波和正弦波。
方案二:采用模拟奋力元件或单片压控函数发生器MAX0832,可产生正弦波,方波,三角波,通过调整外部元件可改变输出频率,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻电容对参数影响很大,不能实现波形运算输出等智能化的功能。
方案三:采用DDFS,即直接数字频率合成技术,以Nyquist 时域采样原理为基础,在时域中进行频率合成,它可以快速转换频率,频率,相位,幅度都可以实现程控,便于单片机控制,所以,本系统采用此方案。
三、系统设计系统总体设计方框图:系统设计方案:1、实现A/D芯片的模数转换功能,通过keil的watch窗口观察ADC0读取的数据的变化。
示波器的实验报告
示波器的实验报告实验目的:1.了解示波器的基本原理和使用方法;2.学习使用示波器进行信号的测量和分析。
实验仪器:1.数字示波器;2.函数信号发生器;3.电阻箱。
实验原理:示波器是一种测量和分析电信号的重要仪器,主要由放大器、水平系统、垂直系统、触发器、显示器等组成。
示波器能够通过对信号进行采样、放大和显示,以观察信号的变化情况。
实验步骤:1.将函数信号发生器的输出端口与示波器的输入端口相连;2.打开函数信号发生器和示波器,并进行充分预热;3.调节函数信号发生器的输出频率和幅度,观察示波器上的波形变化;4.根据需要,可以选择设置触发器、调整扫描显示方式等功能。
实验结果:通过对函数信号发生器输出信号的测量,可以得到不同频率和幅度下的示波器波形显示情况。
例如,当函数信号发生器输出正弦波信号时,示波器上显示出连续的正弦波形,通过调整函数信号发生器的频率,可以观察到波形的变化情况。
此外,根据示波器上的信号幅度刻度,可以通过测量示波器上波形的峰峰值来确定信号的电压幅度。
实验总结:本实验通过使用示波器对函数信号发生器输出信号的测量,深入了解了示波器的基本原理和使用方法。
通过实际操作,掌握了示波器的各项功能,包括触发器的设置、扫描显示方式的调整等。
同时,通过观察和测量示波器上的波形和幅度,可以对信号的性质进行分析和判断。
在实际应用中,示波器是一种必不可少的测量工具,广泛应用于电子、通信、自动控制等领域。
示波器的使用不仅可以帮助我们了解信号的变化情况,还可以对信号的品质进行评估和改善。
因此,在电子技术实验中,熟练掌握示波器的使用方法和技巧对于准确测量和分析信号是非常重要的。
虽然本次实验仅仅介绍了示波器的基本使用方法,但通过这次实验,我对示波器有了更深入的认识,同时也进一步加深了对信号分析和测量的理解。
在以后的学习和工作中,我将继续加强对示波器的应用和掌握,为电子领域的实验和研究提供更加准确和可靠的测量手段。
示波器的实验报告(共7篇)
篇一:电子示波器实验报告名称:电子示波器的使用二、目的:2 •学会使用常用信号发生器;掌握用示波器观察电信号波形的方法。
3 .学会用示波器测量电信号电压、周期和频率等电参量。
三、器材:2、ee1641b型函数信号发生器/计数器。
四、原理:1、示波器的基本结构:y输入外触发x输入2、示波管(crt )结构简介:3、电子放大系统:竖直放大器、水平放大器(2)触发电路:形成触发信号。
#内触发方式时,触发信号由被测信号产生,满足同步要求。
#外触发方式时,触发信号由外部输入信号产生。
5、波形显示原理:只在竖直偏转板上加正弦电压的情形示波器显示正弦波原理只在水平偏转板上加一锯齿波电压的情形五、步骤:1、熟悉示波器的信号发声器面板各旋钮的作用,并将各开关置于指定位3、将信号发生器输出的频率为500hz和1000hz的正弦信号接入示波器,通过调整相应的灵敏度开关和扫描速度选择开关,使波形不超出屏幕范围,显示2~3个周期的波形。
4、将time/div 顺时针旋到底至"x-y”位置,分别调节y1通道和y2六、记录:七、预习思考:1、示波器上观察到的正弦波形和李萨如图形实际上分别是哪两个波形的合成答:正弦波形:是两组磁场使电子受力改变运动状态,然后将不同电同的位置而形成的;子打到荧光屏上不2、用示波器观察待测信号波形和用示波器观察李萨如图形时,示波器的工作方式有什么不同3、当开启示波器的电源开关后,在屏上长时间不出现扫描线或点时,应如何调节各旋钮八、操作后思考题1、如果y轴信号的频率x比x轴信号的频率y大很多,示波器上看到什么情形相反又会看到什么情形答:因为y / x= nx / ny , 当x /y=1:1 时,示波器上是一个圆柱,当x /y=2:1 时,示波器上是一个横向的8,当x /y=3:1 时,示波器上是三个横向的圆。
所以y如果越大的话,横向圆的数量就越多。
篇二:示波器的原理与使用实验报告大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705 姓名童凌炜学号5 实验台号实验时间2008 年11 月18日第13周,星期二第5-6 节实验名称示波器的原理与使用教师评语实验目的与要求:(1)了解示波器的工作原理(2)学习使用示波器观察各种信号波形(3)用示波器测量信号的电压、频率和相位差主要仪器设备:yb4320g双踪示波器,ee1641b型函数信号发生器实验原理和内容:1.示波器基本结构电子枪的作用是释放并加速电子束。
示波器实验报告(共7篇)
篇一:示波器实验报告1佛山科学技术学院实验报告课程名称实验项目专业班级姓名学号指导教师成绩日期年月日实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题篇二:大物实验示波器的使用实验报告实验二十三示波器的使用班级姓名学号同组人日期【实验目的】1、了解示波器的基本结构和工作原理,学会正确使用示波器。
2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。
3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。
【实验仪器】固纬gos-620型双踪示波器一台,gfg-809型信号发生器两台,连线若干。
【实验原理】示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。
在各行各业与各个研究领域都有着广泛的应用。
其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理本次实验使用的是台湾固纬公司生产的通用双踪示波器。
基本结构大致可分为示波管(crt)、扫描同步系统、放大与衰减系统、电源系统四个部分。
“示波管(crt)”是示波器的核心部件如图1所示的。
可细分为电子枪,偏转系统和荧光屏三部分。
1)电子枪电子枪包括灯丝f,阴极k,控制栅极g,第一阳极a1,第二阳极a2等。
阴极被灯丝加热后,可沿轴向发射电子。
并在荧光屏上显现一个清晰的小圆点。
2)偏转系统偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。
从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。
若受到横向电场的作用,电子束的运动方向就会偏离轴线,f灯丝,k阴极,g控制栅极,a1、a2第一、第二阳极,y、x竖直、水平偏转板图1示波管结构简图屏上光点的位置就会移动。
x偏转板之间的横向电场用来控制光点在水平方向的位移,y 偏转板用来控制光点在竖直方向的位移。
简易数字示波器设计报告
简易数字示波器设计报告学校:大学学院:电子信息学院班级:电子与通信工程组员:王婷静芝静第一章设计容与要求1. 1 设计容:设计并制作一台具有实时采样方式和等效采样方式的数字示波器,示意图如图1所示。
图1 数字示波器示意图1. 2 基本设计要求:(1)被测周期信号的频率围为10Hz~10MHz,仪器输入阻抗为1M ,显示屏的刻度为8 div×10div,垂直分辨率为8bits,水平显示分辨率≥20点/ div。
(2)垂直灵敏度要求含1V/div、0.1V/div两档。
电压测量误差≤5%。
(3)实时采样速率≤1MSa/s,等效采样速率≥200MSa/s;扫描速度要求含20ms/div、2μs /div、100 ns/div三档,波形周期测量误差≤5%。
(4)仪器的触发电路采用触发方式,要求上升沿触发,触发电平可调。
(5)被测信号的显示波形应无明显失真。
1. 3 扩展要求:(1)提高仪器垂直灵敏度,要求增加2mV/div档,其电压测量误差≤5%,输入短路时的输出噪声峰-峰值小于2mV。
(2)增加单次触发功能,即按动一次“单次触发”键,仪器能对满足触发条件的信号进行一次采集与存储(被测信号的频率围限定为10Hz~50kHz)。
第二章系统的总体设计2. 1 总体框图:2. 2 硬件系统设计:2.2.1输入信号调理电路:图2输入信号调理电路该电路中涉及到的芯片有:(1)AD603:在很多信号采集系统中,信号变化的幅度都比较大,那么放大以后的信号幅值有可能超过A/D转换的量程,所以必须根据信号的变化相应调整放大器的增益。
在自动化程度要求较高的系统中,希望能够在程序中用软件控制放大器的增益,或者放大器本身能自动将增益调整到适当的围。
AD603正是这样一种具有程控增益调整功能的芯片。
它是美国ADI公司的专利产品,是一个低噪、90MHz带宽增益可调的集成运放,如增益用分贝表示,则增益与控制电压成线性关系,压摆率为275V/μs。
便携式示波器课程设计
便携式示波器课程设计一、课程目标知识目标:1. 理解示波器的基本原理,掌握便携式示波器的操作方法;2. 学会使用便携式示波器观察波形,识别常见信号特征;3. 掌握示波器在物理实验和工程测量中的应用。
技能目标:1. 能够正确连接便携式示波器与被测电路,进行基本操作;2. 培养学生动手实践能力,通过实际操作,学会波形分析;3. 提高学生的问题解决能力,能运用示波器检测并处理简单的电路问题。
情感态度价值观目标:1. 培养学生对物理实验和电子技术的兴趣,激发探究精神;2. 增强学生的团队合作意识,培养在实验中互相协作、共同解决问题的能力;3. 培养学生严谨、客观、科学的实验态度,提高对实验结果的责任感。
本课程针对高年级学生,结合学科特点和教学要求,设计上述目标。
课程强调理论与实践相结合,注重培养学生的实践技能和问题解决能力,同时关注学生情感态度的培养,提高学生的综合素养。
通过本课程的学习,使学生能够熟练使用便携式示波器,并为后续相关课程打下坚实基础。
二、教学内容1. 示波器原理及分类:介绍示波器的工作原理、种类及便携式示波器的特点;- 教材章节:第二章第二节“示波器的原理与分类”2. 便携式示波器操作方法:详细讲解便携式示波器的按键功能、操作步骤和注意事项;- 教材章节:第二章第三节“便携式示波器的使用方法”3. 波形观察与分析:教授如何观察波形,识别信号的频率、幅度等特征;- 教材章节:第三章第一节“波形的观察与分析”4. 示波器应用案例:通过实际案例,展示示波器在物理实验和工程测量中的应用;- 教材章节:第三章第二节“示波器的应用实例”5. 实践操作与问题解决:安排学生进行实践操作,培养动手能力,学习解决实际电路问题;- 教材章节:第四章“实践操作与问题解决”6. 小组讨论与总结:组织学生进行小组讨论,分享学习心得,总结示波器的使用技巧;- 教材章节:第五章“小组讨论与总结”教学内容按照以上大纲进行安排,确保教学内容的科学性和系统性。
大学物理实验示波器实验报告
大学物理实验示波器实验报告实验目的,通过实验了解示波器的基本原理和使用方法,掌握示波器的使用技巧,加深对波形的理解。
实验仪器,示波器、信号发生器、示波器探头、电源线等。
实验原理,示波器是一种用来观察电压随时间变化的仪器,可以显示出电压随时间的波形。
示波器的工作原理是利用电子束在示波管内偏转,将电压信号转换成屏幕上的波形。
信号发生器是用来产生各种波形信号的仪器,可以产生正弦波、方波、三角波等不同形式的信号。
实验步骤:1. 将示波器和信号发生器接通电源,并调节示波器的控制按钮,使屏幕上显示出稳定的水平基准线。
2. 将信号发生器的输出端与示波器的输入端连接,调节信号发生器的频率和幅度,观察示波器屏幕上显示的波形变化。
3. 利用示波器探头测量不同电路中的电压信号,并观察波形的变化。
4. 调节示波器的触发电平和触发方式,观察波形的触发效果。
5. 尝试利用示波器测量不同频率和幅度的信号,观察波形显示的效果。
实验结果与分析:通过本次实验,我们成功掌握了示波器的基本使用方法,并对波形的观察和测量有了更深入的理解。
在实验中,我们发现当信号发生器输出的频率增加时,示波器屏幕上显示的波形周期变短,频率增加;当信号发生器输出的幅度增加时,示波器屏幕上显示的波形振幅增大。
同时,我们还观察到了不同波形信号的显示效果,如正弦波、方波、三角波等,这些波形在示波器屏幕上显示出不同的特点,进一步加深了我们对波形的理解。
实验总结:本次实验通过实际操作,使我们更加深入地了解了示波器的原理和使用方法,对信号发生器的工作原理也有了更清晰的认识。
同时,通过观察不同波形信号的显示效果,加深了我们对波形特性的理解。
通过本次实验,我们不仅掌握了示波器的基本使用技巧,还对波形的观察和测量有了更深入的认识,为今后的物理实验打下了坚实的基础。
实验中遇到的问题及解决方法:在实验中,我们遇到了示波器屏幕上波形显示不清晰的问题,经过检查发现是示波器探头连接不良导致的,及时重新连接探头后问题得以解决。
《示波器实验报告》
《示波器实验报告》
一、实验目的
本次实验的目的是培养学生信号的测量及仪器的使用能力,熟悉示波器各参数设置,并对信号的电压、频率和相位有一个较深入地了解,学习常见信号及其特性。
二、实验内容
(1)示波器基本操作,熟悉各项参数设置。
(2)观察通过示波器输入的正弦波和方波信号,测量信号幅值和频率,观察幅
值和频率的变化对信号形态的影响。
(3)观察带有正弦波和方波包络的信号。
三、实验原理
示波器是一种高灵敏的信号检测和显示仪器,可以观察各种复杂信号及其随时间
变化的情况。
示波器将电流信号或电压按频率及其特性显示出来,采用频率分析法既可测
得单频正弦波特性,又可以测量复频复杂信号的特性。
通过示波器,不仅可以测量信号的
电压、频率和相位,而且可观察到各种复杂的信号的变化,从而对信号有一个更全面的了解。
四、实验结果
(1)示波器输入了正弦波,仪表上测得的信号电压为5V,频率为500Hz,时钟
的占空比为50%;
(2)示波器输入方波时,仪表上测得的信号电压为10V,频率为2KHz,脉冲宽
度为2ms;
(3)示波器输入带有正弦波与方波包络的信号,仪表上显示信号电压有波动,
呈现出凸凹波形,振荡幅值最大值为20V,最小值为0V,频率为500Hz。
五、结论
本次实验,利用示波器输入正弦波、方波、带有正弦波与方波包络的信号,观察
不同参数的不同信号的特性,从而了解不同的信号的电压、频率和相位的变化。
在实验中,我们可以掌握不同信号的变化规律,从而更深入地了解不同信号的特性,并可以更好地的
使用示波器作为测量电信号的仪器。
示波器实验报告4篇
示波器实验报告示波器实验报告4篇我们眼下的社会,报告的使用成为日常生活的常态,不同的报告内容同样也是不同的。
在写之前,可以先参考范文,下面是小编帮大家整理的示波器实验报告,仅供参考,欢迎大家阅读。
示波器实验报告1一、【实验名称】示波器的使用二、【实验目的】1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法2.掌握用示波器观察电信号波形的方法3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路三、【实验原理】双踪示波器包括两部分,由示波管和控制示波管的控制电路构成1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。
Y偏转板是水平放置的两块电极。
在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。
2.双踪示波器的原理双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等;其中,电子开关使两个待测电压信号YCH1和YCH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。
如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。
(看到稳定波形的条件:只有一个信号同步)当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。
示波器实验报告精选
示波器实验报告精选示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描产生器、触发同步和直流电源等。
下面就是作者给大家带来的示波器实验报告,期望能帮助到大家!示波器实验报告1【实验题目】示波器的原理和使用【实验目的】1.了解示波器的基本机构和工作原理,掌控使用示波器和信号产生器的基本方法。
2.学会使用示波器观测电信号波形和电压副值以及频率。
3.学会使用示波器视察李萨如图并测频率。
【实验原理】1.示波器都包括几个基本组成部分:示波管(阴极射线管)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号电路(锯齿波产生器)、同步电路、电源等。
2.李萨如图形的原理:如果示波器的X和Y输入时频率相同或成简单整数比的两个正弦电压,则荧光屏上将出现特别的光点轨迹,这种轨迹图称为李萨如图形。
如果作一个限制光点x、y方向变化范畴的假想方框,则图形与此框相切时,横边上的切点数nx与竖边上的切点数ny之比恰好等于Y与X输入的两正弦信号的频率之比,即fy:fx=nx:ny。
【实验仪器】示波器×1,信号产生器×2,信号线×2。
【实验内容】1.基础操作:了解示波器工作原理的基础上浏览所用机器的说明书,了解每个旋钮的作用。
其中最主要也是常常使用的旋钮为横向和纵向两个。
横向旋钮是控制扫描时间的旋钮,调解时表现为荧光屏上显示波形产生横向的紧缩或展开;纵向旋钮是调解垂直放大电路的旋钮,调解时表现为荧光屏上显示波形产生纵向的展开或紧缩,次旋钮为两个,分别控制示波器的两个输入信号。
明确操作步骤及注意事项后,接通示波器电源开关。
先找到扫描线并调至清楚。
2.观测李萨如图形:向CH1、CH2分别输入两个信号源的正弦波,“扫描时间”的“粗调”旋钮置于“X-Y”方式(即便两路信号进行合成)。
调出不同比值的李萨如图形来,画出草图,并分析图形的特点与两个信号频率之间的关系。
绘出所视察到的各种频率比的李萨如图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告课程名称综合电子设计题目简易数字示波器指导教师起止日期系别自动化专业自动控制学生姓名班级/学号成绩摘要本系统由CPLD,单片机控制模块,键盘,LED,幅度控制模块,低通滤波模块组成,采用当前主流DDS 技术完成,能产生从1HZ-260KHZ 正弦波,方波,三角波以及这三种同频率波的线性组合,失真度限制在6%之内。
一、功能介绍1. 具有产生正弦波、方波、三角波三种周期性波形的性能。
2. 用键盘输入编辑生成上述三种波形(同周期)的线性组合波形。
3. 输出波形频率范围为1Hz~200kHz(非正弦波频率按10 次谐波计算;重复频率可调,频率步进间隔1Hz。
)4. 输出波形幅度范围0~5V(峰-峰值),可按步进为0.1V(峰-峰值)。
5. 具有显示输出波形种类、重复频率(周期)和幅度的功能。
6. 增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载变化范围:100Ω~∞)。
二、方案论证与比较常见信号源的制作方法有:方案一:采用锁相式频率合成。
将一个高稳定度和高精确度的标准频率经过加减乘除的运算产生同样稳定度的大量离散频率技术,它在一定程度上既要频率稳定精确,又要频率在很大范围内可变的矛盾。
但频率受VCO 可变频率范围的影响,高低频率比不可能做的很高,而且只能产生方波和正弦波。
方案二:采用模拟奋力元件或单片压控函数发生器MAX0832,可产生正弦波,方波,三角波,通过调整外部元件可改变输出频率,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻电容对参数影响很大,不能实现波形运算输出等智能化的功能。
方案三:采用DDFS,即直接数字频率合成技术,以Nyquist 时域采样原理为基础,在时域中进行频率合成,它可以快速转换频率,频率,相位,幅度都可以实现程控,便于单片机控制,所以,本系统采用此方案。
三、系统设计系统总体设计方框图:系统设计方案:1、实现A/D芯片的模数转换功能,通过keil的watch窗口观察ADC0读取的数据的变化。
2、设置合适的采样频率和采样时间,对输入信号进行连续采样,对规定时间内的采样结果进行存储。
3、对已有数据进行D/A转换,实现数字量到模拟量的变化,并在示波器上显示结果。
4、添加单次按键触发等功能,实现在满足触发条件后,对一个采样周期内的输入进行存储和连续显示。
5、增加1通道输入,实现双踪示波。
6、综合上述情况实现完整的数字双踪示波器。
四、单元电路设计及其初始化1.ADC0电路的设计初始化程序为:void ADC0_Init (void){ADC0CN = 0x05; // ADC0 T3定时采样,左对齐REF0CN = 0x03; // 启用内部基准源AMX0CF=0x00; // 选择采样输入源ADC0CF = ((SYSCLK/2500000)-1) << 3; // ADC conversion clock = 2.5MHz ADC0CF &= 0xf8;ADC0GTH=0Xff;ADC0GTL=0Xff;ADC0LTH=0X00;ADC0LTL=0X00; // PGA gain = 2EIE2 |= 0x02; // 启用 ADC 中断}采用数据左对齐存储方式。
由0端口输入。
T3定时器启动,当T3溢出时启动ADC0。
转换结束时产生15号中断。
执行中断程序。
2.DAC电路的设计初始化程序:void DAC0_Init(void){DAC0CN = 0x82;}void DA0_Out (unsigned int con_volt){con_volt=con_volt<<2;DAC0L=con_volt%256;DAC0H=con_volt/256;}其中控制字DAC0CN说明如下:采用更新于写入DAC0H时,数据格式为高八位的低六位和低八为的高六位。
五、软件设计1.软件流程图:输出结束循环扫描3. 相关程序及其功能AD DA 转换#include <c8051f020.h> sfr16 ADC0 = 0xbe; sfr16 ADC0GT = 0xc4; sfr16 ADC0LT = 0xc6;sfr16 TMR3RL = 0x92; //Timer3 reload value sfr16 TMR3 = 0x94;#define SYSCLK 22118400 //18432000#define SAMPLE_RATE 2500000 // Sample frequency in Hz采样频率#define INT_DEC 1 // integrate and decimate ratio#define uchar unsigned char#define uint unsigned intvoid SYSCLK_Init (void);void ADC0_Init (void);void Timer3_Init (int counts);void ADC0_ISR (void);void DA0_Out (unsigned int con_volt);void DAC0_Init();uchar int_dec=INT_DEC;uchar tt=0;void main (void){WDTCN = 0xde;WDTCN = 0xad;SYSCLK_Init ();Timer3_Init (SYSCLK/SAMPLE_RATE);ADC0_Init ();AD0EN = 1;DAC0_Init();EA = 1;while (1){}}void SYSCLK_Init (void) // 配置系统时钟使用外部晶振22.1184MHz {int i;OSCXCN = 0x67; // 晶体振荡器未用,晶体振荡器方式for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settleOSCICN = 0x88; // 选择外部振荡器作为系统时钟,内部振荡器禁止}void ADC0_Init (void){ADC0CN = 0x06; // ADC0 T3定时采样,左对齐REF0CN = 0x03; // 启用内部基准源AMX0SL = 0x00; // 选择采样输入源0ADC0CF = (SYSCLK/2500000) << 3; // ADC conversion clock = 2.5MHzADC0CF|= 0x00;ADC0LTH= 0x00;ADC0LTL= 0x00;ADC0GTH= 0xFF;ADC0GTL= 0xFF;EIE2 |= 0x02; // 启用 ADC 中断}void DAC0_Init(void){DAC0CN = 0x80; }void DA0_Out (unsigned int con_volt){unsigned char hbyte,lbyte;hbyte=con_volt/256;lbyte=con_volt%256;DAC0L=lbyte;DAC0H=hbyte;}void Timer3_Init (int counts){TMR3CN = 0x02;TMR3RL = -counts;TMR3 = 0xffff;EIE2 &= ~0x01;TMR3CN |= 0x04;}void ADC0_ISR (void) interrupt 15{AD0INT = 0;int_dec--;if (int_dec == 0){int_dec =INT_DEC;DA0_Out(ADC0);}}六、设计结果1.对原温度采集程序进行修改完成对信号的采集,以下分别为对于方波、三角波及正弦波的信号采集。
2.加入单次触发程序后,可进行按键触发:(以正弦波为例)按下采样键K5前按下采样键K5后3.加入回放功能键K5,可实现在采样之后,进行波形回放(以正弦波为例)首先按下K5键得到正弦采样信号如图:然后按下K2键得到回放波形如图:(由于采样频度与周期等问题,回放波形有失真显现)经程序调整后得到:更接近采样波形4.完成双踪示波的采集,见图。
5将双踪示波与触发脉冲结合起来,完成对于双踪信号的采集、存储及回放,原始信号为三角波和方波。
按键k5对信号进行采样存储按键k2对三角信号进行回放按键k3恢复信号采集初始状态(等待采集信号)七、心得体会通过本次设计我进一步了解数字示波器的基本控制原理,掌握了怎样利用C8051F020开发板实现一个简易数字示波器的设计与制作以及处理器C8051F020芯片的应用,多通道ADC 采集功能等应用技术。
本次课程设计所设计的是基于C8051F020芯片,通过软硬件结合实现普通示波器显示被测波形的简易数字示波器。
能完成对ADC0的0通道和1通道的信号的分时或同时采集(高电平约2V、低电平接近0V)并且对采集的信号通过DAC0和DAC1两个输出口同时输出实现双踪示波器功能。
另增加单次触发存储显示方式,即每按动一次“单次触发”键,仪器在满足触发条件时,能对被测周期信号或单次非周期信号进行一次采集与存储,然后通过其他触发键触发信号的回放,观测波形无明显失真。
由于时间和硬件条件关系没有把做出LCD液晶显示示波器有点遗憾,不过我从网络上搜索了有关资料,对其也有了一定的了解。
八、参考文献[1] 潘琢金【译】.《C8051F020/1/2/3混合信号ISP FLASH微控制器数据手册》九、附录1、元器件清单(1)MCU 为美国Silabs 公司C8051F020,64KB FLASH、(4096+256)B RAM、最高25MIPS 执行速度;(2)4 路12 位AD 输入,AIN1 到AIN4 输入信号量程0~+2.4V ;(3)2 路12 位DA 输出,输出信号量程0~+2.4V;(4)1 路标准RS232 通讯接口;(5)1 个16X2LCD 接口;(6)1 个128X64LCD 接口;(7)1 个复位键,4 个按键;(8)JTAG 调试接口;(9)外扩总线接口;(10)C8051F020 上的资源对用户开放。
2、程序清单/***************************************************************功能:实现ADC信号采样和DAC信号输出用外部基准:J7NC 1 2 内部VREF外部VREF 3 4 内部DAC工作基准输入外部VREF 5---6 内部ADC0工作基准输入外部VREF 7 8 内部ADC1工作基准输入或用内部基准:J7NC 1 2- 内部VREF外部VREF 3 4 | 内部DAC工作基准输入外部VREF 5 6- 内部ADC0工作基准输入外部VREF 7 8 内部ADC1工作基准输入***************************************************************/#include <c8051f020.h> //调用头文件#include <stdio.h>#include <INTRINS.H>//-----------------------------------------------------------------------------// 16-bit SFR Definitions for 'F02x//-----------------------------------------------------------------------------sfr16 DP = 0x82; // data pointersfr16 TMR3RL = 0x92; // Timer3 reload valuesfr16 TMR3 = 0x94; // Timer3 countersfr16 ADC0 = 0xbe; // ADC0 datasfr16 ADC0GT = 0xc4; // ADC0 greater than windowsfr16 ADC0LT = 0xc6; // ADC0 less than windowsfr16 RCAP2 = 0xca; // Timer2 capture/reloadsfr16 T2 = 0xcc; // Timer2sfr16 RCAP4 = 0xe4; // Timer4 capture/reloadsfr16 T4 = 0xf4; // Timer4sfr16 DAC0 = 0xd2; // DAC0 datasfr16 DAC1 = 0xd5; // DAC1 datasbit P31=P3^1;//按键K5端口定义sbit P32=P3^2;// 按键K4端口定义sbit P34=P3^4;// 按键K3端口定义sbit P33=P3^3;// 按键K2端口定义#define BAUDRATE 115200 // Baud rate of UART in bps#define SYSCLK 22118400 // 系统晶振频率(Hz)#define SAMPLE_RATE 100000 // Sample frequency in Hzvoid SYSCLK_Init (void);void PORT_Init (void);void ADC0_Init (void);void Timer3_Init (int counts);void ADC0_ISR (void);void DAC0_Init(void);void DAC1_Init(void);void DA1_Out (unsigned int con_volt);void DA0_Out (unsigned int con_volt);long xdata NCDdata [510];int i=0,j=0,y =0,z=0,x=0,n,k=0,c=0,d,f,m;long a,b;long result;void main (void) {WDTCN = 0xde; // 看门狗WDTCN = 0xad;SYSCLK_Init (); // initialize oscillatorPORT_Init (); // initialize crossbar and GPIO Timer3_Init (SYSCLK/SAMPLE_RATE); // initialize Timer3 to overflow at// sample rateADC0_Init (); // init ADCDAC0_Init();DAC1_Init();AD0EN = 1; // enable ADCEA = 1;while (1) {if(P31==0) //K5循环扫描{for(m=0;m<11;m++);if(P31==0){f=1; DAC0CN = 0x02; x=0;}}if(P33==0) //K3循环扫描{for(m=0;m<11;m++);if(P33==0){y=1;DAC0CN = 0x82;}}if(P34==0) //K2循环扫描{for(m=0;m<11;m++);if(P34==0){k=1;c=0; DAC0CN = 0x82;}}}}//-----------------------------------------------------------------------------// SYSCLK配置//-----------------------------------------------------------------------------// 配置系统时钟使用外部晶振22.1184MHzvoid SYSCLK_Init (void){int i; // delay counterOSCXCN = 0x67; // start external oscillator with// 22.1184MHz crystalfor (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms) while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle OSCICN = 0x88; // select external oscillator asSYSCLK// source and enable missing clock// detector}//-----------------------------------------------------------------------------// PORT配置//-----------------------------------------------------------------------------void PORT_Init (void){XBR0 = 0x04; // Enable UART0XBR1 = 0x00;XBR2 = 0x40; // Enable crossbar and weak pull-upsP0MDOUT |= 0x01; // enable TX0 as a push-pull outputP2MDOUT = 0xff; // P2口设为推挽方式P3MDOUT = 0xe0; // P3口设为推挽方式}//-----------------------------------------------------------------------------// ADC0配置,T3定时启动ADC//-----------------------------------------------------------------------------void ADC0_Init (void){ADC0CN = 0x05; // ADC0 T3定时采样,左对齐 REF0CN = 0x03; // 启用内部基准源AMX0CF=0x00; // 选择采样输入源ADC0CF = ((SYSCLK/2500000)-1) << 3; // ADC conversion clock = 2.5MHzADC0CF &= 0xf8;ADC0GTH=0Xff;ADC0GTL=0Xff;ADC0LTH=0X00;ADC0LTL=0X00; // PGA gain = 2EIE2 |= 0x02; // 启用 ADC 中断}//-----------------------------------------------------------------------------// Timer3配置,T3定时启动ADC//-------------------------------------------------------------------void Timer3_Init (int counts){TMR3CN = 0x02;TMR3RL = -counts;TMR3 = 0xffff;EIE2 &= ~0x01; //定时器3中断屏蔽。