考研数学公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式篇
·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1
·三角函数恒等变形公式·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·倍角公式:si n(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] 三角函数的有理式积分:
22
2212211cos 12sin u du
dx x tg u u u x u u x +==+-=+=
, , ,
一些初等函数: 两个重要极限:
和差角公式: ·和差化积公式:
·正弦定理:R C c
B b A a 2sin sin sin ===·余弦定理:
C ab b a c
cos 2222
-+=
反三角函数性质:
arcctgx
arctgx x x -=
-=
2
arccos 2
arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
)
()
()()2()1()(0)()()
(!)1()1(!2)1()
(n k k n n n n n
k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+
'+==---=-∑
a
x x a a a ctgx x x tgx x x x
ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arc c os 11
)(arc sin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin
2cos 2sin sin 2cos
2sin
2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβ
αβα-+=--+=+-+=--+=+α
ββαβαβαβ
αβαβ
αβαβαβ
αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1
)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x
x
arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x
x
x x
x
x
x -+=
-+±=++=+-==+=
-=
----11ln
21)
1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)1
1(lim 1sin lim 0==+=∞→→e x
x
x
x x x
中值定理与导数应用:
拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=
---'=-)(F )
()
()()()()()
)(()()(ξξξ
曲率:
.1
;0.
)
1(lim M s M M :.,13202a
K a K y y ds d s K M M s
K tg y dx y ds s =
='+''==∆∆='∆'∆∆∆=
=''+=→∆的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α
ααα
α
定积分的近似计算:
⎰⎰⎰----+++++++++-≈
++++-≈
+++-≈
b
a
n n n b
a
n n b
a n y y y y y y y y n
a
b x f y y y y n a b x f y y y n
a
b x f )](4)(2)[(3)(])(2
1
[)()()(1312420110110 抛物线法:梯形法:矩形法:
定积分应用相关公式:
⎰
⎰--==⋅=⋅=b
a
b
a dt
t f
a
b dx
x f a b y k r m m k F A
p F s
F W )(1
)(1
,2
2
2
1均方根:
函数的平均值:为引力系数
引力:水压力:功:
空间解析几何和向量代数:
。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22
2
2
2
2
2
21212
1221221221c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k
j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M d z
y
x z y x
z
y x
z
y
x
z y x
z
y
x
z
y
x
z
z y y x x z z y y x x u u
⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅
++++=++=⋅=⋅+=+=-+-+-==