高中数学知识点总结(集合,不等式,函数))
高中数学知识点大全(完整版)
高中数学知识点大全(完整版)高中数学知识点大全一、集合、简易逻辑1、集合;2、子集;3、补集;4、交集;5、并集;6、逻辑连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面向量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面向量的坐标表示;5、线段的定比分点;6、平面向量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含绝对值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简单线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简单几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简单几何性质;6、抛物线及其标准方程;7、抛物线的简单几何性质。
人教版高一数学知识点总结
人教版高一数学知识点总结一、集合与函数1.集合的概念及表示方法,包括集合元素的特点和集合关系的运算。
2.不等式解集的概念、表示及应用。
3.函数的概念及表示方法,包括函数的定义域、值域、图像和性质。
4.复合函数与反函数的概念及相关性质,包括复合函数的性质和反函数的求法。
5.函数的运算及函数方程的应用,包括函数的加、减、乘、除、求逆等运算,以及函数方程的解法。
二、数列与数学归纳法1.数列的概念及表示方法,包括等差数列、等比数列和锐角三角函数数列的性质与应用。
2.数列的通项公式及相关性质,包括等差数列通项公式、等差数列前n项和公式、等差数列求和等,以及等比数列通项公式和前n项和公式。
3.数学归纳法的原理及应用,包括数学归纳法的基本原理和应用题的解题思路。
三、函数的极限与连续1.函数的极限的概念、性质与运算法则,包括函数极限的定义、极限运算法则、无穷小量与无穷大量等。
2.无穷极限的概念、性质与运算法则,包括无穷大量的性质、无穷大量的运算法则等。
3.函数的连续性的概念、判定条件与性质,包括函数连续性的定义、连续性的判定条件及连续函数的性质等。
四、导数与函数的应用1.导数的概念、运算法则及几何意义,包括导数的定义、导数的四则运算法则、导数的几何意义等。
2.函数的导数及导数的应用,包括函数的导数、函数单调性、函数极值、函数图像等。
3.特殊函数的导数及应用,包括幂函数的导数、指数函数的导数、对数函数的导数、三角函数等的导数。
4.中值定理与泰勒公式的概念和应用,包括罗尔中值定理、拉格朗日中值定理、柯西中值定理和泰勒公式等。
五、平面向量1.平面向量的概念、表示方法及运算法则,包括平面向量的定义、向量的运算法则(加法、数乘等)。
2.向量的线性相关与线性无关的概念与判定方法,包括向量组的线性相关与线性无关的定义、方法与判定法则。
3.平面向量的数量积的概念、性质及相关运算法则,包括向量的数量积的定义、性质和运算法则,如数量积的坐标表示、数量积的几何意义等。
高中数学知识点总结全(最新)
高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。
元素与集合的关系:属于(∈)、不属于(∉)。
集合的表示方法:列举法、描述法、图示法。
2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。
交集(∩):由两个集合的共同元素组成的集合。
补集(C):全集中不属于某集合的元素组成的集合。
差集():由一个集合中不属于另一个集合的元素组成的集合。
3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
4. 函数的性质单调性:增函数、减函数。
奇偶性:奇函数、偶函数。
周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。
最值:最大值、最小值。
二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。
图像:一条直线。
性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。
2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。
图像:一条开口向上或向下的抛物线。
性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。
3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。
图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。
性质:无界性、单调性、特殊点。
4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。
图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。
性质:定义域(x>0)、单调性、特殊点。
5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。
高中数学知识点总结2024
高中数学知识点总结2024一、集合与函数1. 集合集合是数学中最基本的概念之一,主要涉及以下几个方面:- 集合的定义:集合是由确定的、互不相同的对象组成的整体。
- 集合的表示:列举法、描述法、图示法(如韦恩图)。
- 集合间的关系:子集、真子集、相等。
- 集合的运算:并集、交集、补集、差集。
例题:设集合A = {x | x^2 - 3x + 2 = 0},集合B = {1, 2, 3},求A∩B。
解答:先解方程x^2 - 3x + 2 = 0,得x = 1或x = 2,所以A = {1, 2}。
因此,A∩B = {1, 2}。
2. 函数函数是描述两个变量之间依赖关系的重要概念:- 函数的定义:对于集合A中的每一个元素x,在集合B 中都有唯一的元素y与之对应,这种对应关系称为函数。
- 函数的性质:单调性、奇偶性、周期性、最值。
- 基本函数类型:一次函数、二次函数、指数函数、对数函数、三角函数。
例题:已知函数f(x) = 2x^2 - 3x + 1,求其顶点坐标。
解答:二次函数的顶点坐标公式为(-b/2a, f(-b/2a))。
这里a = 2, b = -3,所以顶点横坐标为3/4。
代入函数得顶点纵坐标为f(3/4) = 2(3/4)^2 - 3(3/4) + 1 = -1/8。
因此,顶点坐标为(3/4, -1/8)。
二、数列1. 等差数列- 定义:相邻两项之差相等的数列。
- 通项公式:a_n = a_1 + (n-1)d。
- 前n项和公式:S_n = n(a_1 + a_n)/2。
例题:已知等差数列{a_n}中,a_1 = 2,d = 3,求第10项及前10项和。
解答:a_10 = 2 + (10-1)×3 = 29,S_10 = 10(2 + 29)/2 = 155。
2. 等比数列- 定义:相邻两项之比相等的数列。
- 通项公式:a_n = a_1 q^(n-1)。
- 前n项和公式:S_n = a_1(1 - q^n)/(1 - q)(q ≠ 1)。
高中数学知识点总结完整版
高中数学知识点总结完整版一、代数1. 集合与函数- 集合的概念、表示法和运算- 函数的定义、性质和运算- 特殊函数:一次函数、二次函数、指数函数、对数函数、三角函数2. 代数式- 整式与分式- 多项式的性质和定理- 二次根式和完全平方式3. 方程与不等式- 一元一次方程、一元二次方程的解法- 不等式的性质和解集- 绝对值不等式的解法4. 序列与数列- 等差数列和等比数列的通项公式和求和公式- 数列的极限概念5. 函数图像- 函数图像的绘制和变换- 函数的极值和最值问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质和计算- 圆的性质和相关公式2. 空间几何- 空间直线和平面的方程- 空间几何体(棱柱、棱锥、圆柱、圆锥、球)的性质和计算3. 解析几何- 坐标系的建立和应用- 曲线的方程和性质- 圆锥曲线(椭圆、双曲线、抛物线)三、概率与统计1. 概率- 随机事件的概率计算- 条件概率和独立事件- 排列组合的基本原理和公式2. 统计- 数据的收集和整理- 统计量(平均数、中位数、众数、方差、标准差)的计算 - 概率分布和正态分布四、数学思维与方法1. 逻辑推理- 命题逻辑、演绎推理- 归纳推理和类比推理2. 数学证明- 直接证明和间接证明- 反证法和数学归纳法3. 问题解决- 问题建模和数学建模- 问题解决的策略和方法五、微积分初步1. 导数- 导数的定义和几何意义- 常见函数的导数公式- 函数的极值和最值问题2. 微分- 微分的定义和应用- 线性近似和误差估计3. 积分- 不定积分的概念和性质- 定积分的基本概念和计算- 积分在几何和物理中的应用以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握更高级的数学概念至关重要。
在实际学习过程中,学生应该通过大量的练习和思考,深化对这些知识点的理解和应用能力。
高中数学知识点总结归纳
高中数学知识点总结归纳一、集合。
1. 集合的概念。
- 集合是由确定的元素组成的总体。
元素具有确定性、互异性、无序性。
例如,集合A = {1,2,3},其中1、2、3是元素,这三个元素是确定的,互不相同(互异性),{1,2,3}和{3,2,1}表示同一个集合(无序性)。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内,如A={a,b,c}。
- 描述法:用确定的条件表示某些对象是否属于这个集合的方法,如A = {xx^2 - 1=0}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B。
- 真子集:如果A⊆ B,且A≠ B,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
2. 函数的三要素。
- 定义域:自变量x的取值范围。
例如y=(1)/(x)的定义域是{xx≠0}。
- 值域:函数值y的取值范围。
- 对应关系:如y = x^2中的y与x的平方关系。
3. 函数的性质。
- 单调性:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x_1,x_2,当x_1时,有f(x_1)(或f(x_1)>f(x_2)),那么就说函数y = f(x)在区间D上是增函数(或减函数)。
- 奇偶性:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),那么函数y = f(x)是偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),那么函数y = f(x)是奇函数。
高中数学知识点总结(完整版)
高中数学复习总结目录预备部分初中知识复习----------6第一部分集合及其运算----------7第二部分方程与不等式----------8(绝对值方程与不等式;一次,二次方程与不等式)第三部分函数------------------11(常数函数,一次函数,二次函数,指数函数,对数函数,三角函数,简谐振动)第四部分函数性质--------------18(单调性,奇偶性,反函数,周期性,图像的平移与伸缩,可导性,定积分)第五部分数列------------------23(等差数列,等比数列)第六部分命题与简易逻辑--------25(原命题,否命题,逆命题,逆否命题,或,且,非,全称量词,存在量词)第七部分几何和向量------------26(点,线,面,垂直,平行,二维向量,三维向量)第八部分直线和圆的方程--------32(点斜式,斜截式,两点式,截距式,一般式,点到线距离公式, 定比分点公式)第九部分圆锥曲线--------------34(椭圆,双曲线,抛物线,弦长公式)第十部分统计-----------------37(随机抽样,线性回归,独立性检验)第十一部分概率-----------------41(排列与组合,古典概型,几何概型,两点分布,超几何分布,二项分布,正态分布,期望,方差)第十二部分复数及其运算----------44(实部,虚部,虚数单位i,加法,减法,乘法,除法)第十三部分推理与证明-----------46数学(必修1)人教A版第一章集合与函数的概念1.1 集合1.2函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用(必修2)人教A版第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点,直线,平面之间的位置关系2.1空间点,直线,平面之间的位置关系2.2 直线,平面平行的判定及其性质2.3 直线,平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式第四章圆与方程4.1 圆的方程4.2直线,圆的位置关系4.3空间直角坐标系(必修3)人教A版第一章算法初步1.1 算法与程序框图1.2 基本算法语句 1.3 算法案例 第二章 统计2.1 随机抽样2.2 用样本估计总体 2.3 变量间的相关关系第三章 概率 3.1 随机事件的概率 3.2 古典概型 3.3 几何概型(必修4)人教A 版第一章 三角函数1.1任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式 1.4 三角函数的图像与性质1.5 函数()sin y A x ωφ=+的图像1.6 三角函数模型的简单应用 第二章 平面向量2.1 平面向量的实际背景及基本概念 2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示 2.4 平面向量的数量积 2.5 平面向量应用举例 第三章 三角恒等变形3.1 两角和与差的正弦、余弦和正切公式 3.2 简单的三角恒等变形(必修5)人教A 版第一章 解三角形1.1 正弦定理和余弦定理 1.2 应用举例 第二章 数列2.1 数列的概念与简单表示法 2.2 等差数列2.3 等差数列的前n 项和n S 2.4 等比数列2.5 等比数列的前n 项和n S 第三章 不等式3.1不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性3.4 基本不等式:2ba ab +≤理(选修2-3)人教版第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项式及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用理(选修4-5)人教版第一章不等式和绝对值不等式1.1不等式1.2绝对值不等式第二章证明不等式的基本方法2.1比较法2.2综合法与分析法2.3反证法与放缩法第三章柯西不等式与排序不等式3.1二维形式的柯西不等式3.2一般形式的柯西不等式3.3排序不等式第四章数学归纳法证明不等式4.1数序归纳法4.2用数学归纳法证明不等式初中知识复习1.实数轴:2.完全平方公式:()2222a b a b ab +=++()2222a b a b ab-=+-3.平方差公式:4.运算:42,1222323,5052==⨯⨯==5.中点坐标公式:-∞ +∞1•••()22,B x y 1212(,)22x x y y ++中点,B ,B "⊆";A 拥有的元素都有时记作A ⎧⎪6.勾股数组: 3,4,5; 6,8,10; 5,12,13第一部分 集合及其运算(必修1)1.集合定义:若干个指定的对象集在一起.2.表示法:a.如:{0,1,-2}是列举法.b.如:{x|x>2}是描述法.c. 如: 是文氏图法d.特殊符号如:∅是空集;N 是自然数集; N *或N +是正整数集.(自然数集合中去掉零)Z 是整数集; Q 是有理数集. R 是实数集; C 是复数集.3.集合中元素具有的性质:①1{1,0,2,3}2{1,0,2,3}∉-⎫⎬∈-⎭体现确定性;②{1,0,1,2,5}--是错误书写体现互异性;③{025}{502}=,,,,体现无序性. 4.关系a.集合和元素的关系.(是否是属于关系)(以A,B 代表集合,以m 代表元素)m 和A 的关系:b.集合和集合的关系(是否是包含关系)m m ⎧∈⎨∉⎩当在A 中时,记作"m A",读作"m 属于A".当不在A 中时,记作"m A".读作"m 不属于A".222a b c+=cba⇒A 和B 的关系:定理1:空集是任意一个集合的子集,是任意一个非空集合的真子集.定理2:当集合A 中的元素个数为n 个时,那么A 有..nn⎧⎪⎨⎪⎩子集个数为2个真子集个数为2-1个 5.运算第二部分 方程与不等式1. 方程定义:含有未知量的等式.(初中)2. ①绝对值方程(初中)“|x-a|”表示数轴上点x 到点a 的距离. 例1.求解 5x =分析:如图所示解:055,5x x x x =-=⇒=-=例2.求解 |2|3x -=分析:如图所示 解:231,5x x x -=⇒=-=②绝对值不等式(必修5) 形态1.文氏图数学表达式何种运算说明{}|x x A x B ∈∈且 A B取A 和B 的公有元素{}|x x A x B ∈∈或A B取A 和B 的所有元素{}|x x I x A ∈∉且I C A相对于全集I 求A 的补集,(0)x a b b -<>图(1)形态2.图(2)3.①一元一次方程(初中)形如:0,(0)ax b a +=≠叫一元一次方程. 例1.②一元一次不等式(必修5)定理:不等式的两侧同时加上或者减去一个数,不等式不改变符号.但若同时乘以或者除以一个负数要改变不等式符号. (如是正数不变号)4.①一元二次方程(初中)形如:20,(0)ax bx c a ++=≠叫一元二次方程.解法一.(公式法)(第一步:首先计算)判别式24b ac ∆=-(第二步:确定∆属于下面哪一类型):解法二.(十字交叉法) 例.2230x x --= 分析:,(0)x a b b x a b x a b x a b x a b->>⇒-<-->⇒<->+ or or 2302332x x x -=⇒=⇒=b b 0,. 22b 0,.2<0,. x x a ax a ⎧--∆-+∆∆>==⎪⎪-⎪∆==⎨⎪⎪∆⎪⎩方程有两个不相等的实解,方程有两个相等的实解方程无实解(错) (对)解:注:此法的关键是将系数a 与c 拆分成两个数的乘积并且拆分所得数交叉相乘的和必须等于系数b.并不是所有的一元二次方程都可拆分. 定理:(韦达定理)(又名根与系数关系)在一元二次方程20,(0)ax bx c a ++=≠有解12,x x 的情况下:②一元二次不等式(必修5)形态1.求解 260x x --> 解:令()(),23,.∴-∞-+∞不等式解集为形态2.求解 2230x x -++>解:31,.2⎛⎫∴- ⎪⎝⎭不等式解集为步骤总结:1.要解不等式先解等式.2.画草图看大小号.形态3.求解 304x x -≤+解:223(1)(23)031,2x x x x x x --=+-=⇒=-=1212;b cx x x x aa-+==,260(2)(3)02,3x x x x x x --=⇒+-=⇒=-=2230(1)(-23)031,2x x x x x x ++=⇒++=⇒=-=令-(3)(4)030404434340x x x x x x x x -+≤⎧-≤⇒⎨+≠+⎩-≤≤⎧⇒⇒-<≤⎨+≠所以解集为}{|43x x -<≤5.基本不等式(必修5) 1)来源①②2)基本不等式使用注意事项 口诀:1正2定3相等①1正,是指参加运算的量必须是正数.②2定,是指参加运算的量,要么和是定值,要么积是定值. ③3相等,是指参加运算的量相等时,均值不等式才能取等号.第三部分 函数1. 定义:在集合A 中的每一个元素x 经过对应法则f 在集合B 中都有唯一的元素y 与之对应,那么我们就称这个整体叫函数. (必修1) 记作::f A B→2. 函数的三要素(必修1)①定义域和值域定义域一般情况下会给出,当题目没有给出时,定义域默认使函数表达式有意义的自变量取值范围. 常见陷阱有以下几处①.分母不能为零. ②.偶次根号下的量要大于或等于零. ③.底数位置上的量要大于零且不等于1. ④.真数位置上的量要大于零.⑤.不能有双零结构,即“ ”.例. 求031()3log (1)2f x x x x x =++++++的定义域. 解:由222222()02.a ab b a b a b ab -+=-≥⇔+≥2222()2()()02,(0,0)a ab b a a b b a b a b ab a b -+=-+=-≥⇔+≥>>03y =3020100x x x x +≥⎧⎪+≠⎪⇒⎨+>⎪⎪≠⎩ ()f x 的定义域为}{|>10x x x -≠且②对应法则所谓对应法则就是指运算的混合物,要掌握的运算有四对共八个: 加←->减 乘←→除 乘方←→开方 指数←->对数 常见函数主要有a.常数函数,如b.一次函数,如 21y x =-c.二次函数,如 223y x x =+-d.指数函数,如 12,()3xx y y ==e.对数函数,如 213log ,log y x y x ==f.三角函数,如 sin ,cos ,tan y x y x y x ===具体如下:(注意:学函数核心点就是学系数) a.常数函数:图像是平行于x 轴的一条直线. (必修2) b.一次函数(必修2) 通式: 例如:图像:直线(两点确定一条直线)12,(0):3;:1y ax b a l y x l y x =+≠=+=-+222,(0)21;23y ax bx c a y x x y x x =++≠=-+=-++①系数a图像上坡,增函数.图像下坡,减函数.②系数b 决定图像在y 轴上的截距.c.二次函数通式: 例如: 图像:抛物线 ①系数a图像开口向上.图像开口向下.②系数b 和a 共同决定对称轴: 2bx a-=,顶点坐标24(,)24b ac b p a a --. ③系数c 决定图像在y 轴的截距. ④表达式的另外形式:(一般式)(顶点式)(双根式)d.和e.指数函数和对数函数(必修1)①运算法则 指数运算 对数运算222124()24()()y ax bx c b ac b a x a aa x x x x =++-=++=--log log log ()log log log ()log ()log log a a a a a a N a a M N MN M M N N M N M b +=-==()r s r s r s r s s r rsra a a a a a a a +-⋅=÷==00a a >⎧⎨<⎩时,时,00a a >⎧⎨<⎩时,时,②指数运算与对数运算的关系 当>01a a ≠且时,log x a a N x N =⇐⇒=如:32283log 8=⇐⇒=③指数函数和对数函数的区别与联系指数函数 对数函数表达式x y a =log a y x =图像函数存在条件 底数都要满足:≠a>0且a 1单调性①当0<a<1时,其为减函数↘;②当a>1时,其为增函数↗f.三角函数 (必修4)1.角:共端点的两条射线组成的图形。
高中数学基本知识点大全
高中数学基本知识点大全高中数学基本知识点是构建数学学科体系的关键,以下是对高中数学基本知识点的总结:一、代数部分1、集合与函数:集合是数学中最基本的概念,包括集合的基本概念、集合的运算、函数的概念、函数的性质等。
2、不等式:不等式是数学中重要的工具,包括不等式的性质、一元二次不等式的解法、不等式的应用等。
3、数列:数列是数学中研究数量变化的重要工具,包括数列的概念、等差数列、等比数列的性质和通项公式等。
4、三角函数:三角函数是研究角度和边长关系的重要工具,包括正弦函数、余弦函数、正切函数等的基本性质和图像。
5、排列组合:排列组合是数学中研究组合问题的基本工具,包括排列组合的基本概念、公式和定理等。
二、几何部分1、平面几何:平面几何是数学中研究平面图形性质的重要工具,包括三角形、四边形、圆等的基本性质和定理。
2、立体几何:立体几何是数学中研究空间图形性质的重要工具,包括球、柱、锥等的基本性质和定理。
3、解析几何:解析几何是数学中用代数方法研究几何问题的重要工具,包括直线、抛物线、椭圆等的基本方程和性质。
三、概率与统计部分1、概率:概率是数学中研究随机事件发生可能性大小的重要工具,包括概率的基本概念、概率的计算和概率分布等。
2、统计:统计是数学中研究数据收集、整理和分析的重要工具,包括数据的图表展示、数据的描述性统计和推论性统计等。
四、复数部分复数是数学中研究复数域的重要工具,包括复数的概念、复数的运算和复数的性质等。
这些知识点是进一步学习和掌握数学的基础,需要同学们深入理解和掌握。
学习高中数学要注重概念的理解和定理的推导,同时多做练习题,通过练习加深对知识点的理解和掌握。
高中数学知识点全总结
高中数学知识点全总结必修一第一章:集合和函数的基本概念这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分。
次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了。
还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。
在第一轮复习中一定要反复去记这些概念,最好的方法是写在笔记本上,每天至少看上一遍。
第二章:基本初等函数——指数、对数、幂函数三大函数的运算性质及图像函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。
关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题。
函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。
对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考点。
另外指数函数和对数函数的对立关系及其相互之间要怎样转化等问题,需要着重回看课本例题。
第三章:函数的应用这一章主要考是函数与方程的结合,其实就是函数的零点,也就是函数图像与X轴的交点。
这三者之间的转化关系是这一章的重点,要学会在这三者之间灵活转化,以求能最简单的解决问题。
关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这些难点对应的证明方法都要记住,多练习。
二次函数的零点的Δ判别法,这个需要你看懂定义,多画多做题。
必修二第一章:空间几何三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张平面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。
后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
高中数学知识点总结及公式大全理
高中数学知识点总结及公式大全理一、知识点总结集合:涉及集合的基本概念、集合的运算、关系与映射等。
函数:函数的定义、性质、图象、基本初等函数(如指数函数、对数函数、幂函数、三角函数等)及其性质、应用。
数列:数列的定义、通项公式、前n项和公式、等差数列和等比数列的性质及其求和公式。
三角函数:三角函数的定义、基本关系式、诱导公式、图象与性质、和差角公式、倍角公式等。
向量:向量的概念、表示法、运算(加法、减法、数乘、数量积、向量积等)、向量的模长、夹角、平行与垂直的条件。
解析几何:直线和圆的方程、直线的性质、圆的性质、直线与圆的位置关系、圆锥曲线的性质等。
立体几何:空间几何体的结构特征、表面积和体积的计算、直线与平面、平面与平面的位置关系等。
不等式:不等式的性质、基本不等式(如均值不等式)、不等式的解法等。
概率与统计:概率的基本概念、事件的概率计算、统计的基本概念、数据的收集与处理、概率分布等。
二、部分重要公式三角函数公式和差角公式:sin(A±B) = sinAcosB ± cosAsinB倍角公式:sin2A = 2sinAcosA, cos2A = cos²A - sin²A半角公式:sin(A/2) = ±√[(1-cosA)/2], cos(A/2) = ±√[(1+cosA)/2]辅助角公式:sinA + cosA = √2sin(A + π/4) 等数列求和公式等差数列求和公式:S_n = n/2 * (a_1 + a_n) 或 S_n = n/2 * [2a_1 + (n-1)d]等比数列求和公式:当|q| ≠ 1 时,S_n = a_1(1- q^n) / (1 - q);当 q = 1 时,S_n = na_1导数公式基本导数公式:(C)' = 0, (x^n)' = nx^(n-1), (sinx)' = cosx, (cosx)' = -sinx 等链式法则:(f(g(x)))' = f'(g(x)) * g'(x)向量公式向量的数量积:a · b = |a| * |b| * cosθ向量的模长:|a| = √(a_x² + a_y²)概率公式互斥事件的概率:P(A∪B) = P(A) + P(B) (A, B 互斥)独立事件的概率:P(A∩B) = P(A) * P(B) (A, B 独立)这只是高中数学知识点和公式的一部分,实际上高中数学的内容非常丰富,每个知识点下都有大量的细节和公式需要学习和掌握。
高中数学知识点总结归纳(完整版)
高中数学知识点总结归纳(完整版)高中数学知识点总结归纳(完整版)高中数学是一门重要且具有一定难度的学科,涵盖了众多的知识点和概念。
以下是对高中数学主要知识点的全面总结归纳。
一、集合与函数1、集合集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体。
集合的表示方法有列举法、描述法和图示法。
集合的运算包括交集、并集和补集。
2、函数函数是两个非空数集之间的一种对应关系。
函数的三要素是定义域、值域和对应法则。
常见的函数类型有一次函数、二次函数、反比例函数、指数函数、对数函数和幂函数等。
一次函数的一般形式为 y = kx + b(k ≠ 0),其图像是一条直线。
二次函数的一般形式为 y = ax²+ bx + c(a ≠ 0),其图像是一条抛物线。
通过配方法可以将其化为顶点式 y = a(x h)²+ k,从而确定其顶点坐标和对称轴。
指数函数的形式为 y = a^x(a > 0 且a ≠ 1),当 a > 1 时,函数单调递增;当 0 < a < 1 时,函数单调递减。
对数函数是指数函数的反函数,形式为 y =logₐ x(a > 0 且a ≠ 1)。
函数的性质包括单调性、奇偶性、周期性等。
二、三角函数1、任意角和弧度制了解任意角的概念,掌握弧度与角度的换算。
2、三角函数的定义在单位圆中定义正弦、余弦和正切函数。
3、诱导公式能够利用诱导公式将任意角的三角函数转化为锐角的三角函数。
4、三角函数的图像和性质正弦函数 y = sin x、余弦函数 y = cos x 和正切函数 y = tan x 的图像特点、周期、对称轴、对称中心以及单调性。
5、两角和与差的三角函数公式包括正弦、余弦和正切的和差公式。
6、二倍角公式sin 2α、cos 2α、tan 2α 的公式。
7、解三角形利用正弦定理和余弦定理解决三角形中的边长、角度和面积等问题。
三、数列1、数列的概念数列是按照一定顺序排列的一列数。
高中数学知识点总结(最全版)
高中数学 必修1知识点 第一章 集合与函数概念 《集合的含义与表示》(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B = A(B)或B A真子集 A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂B A集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 名称 记号意义性质示意图交集A BI{|,x x A ∈且}x B ∈(1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆IBA并集A BU{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集U A ð{|,}x x U x A ∈∉且1()U A A =∅I ð2()U A A U =U ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义函数(0xy a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R 值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.〖2.3〗幂函数x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.第三章 函数的应用一、方程的根与函数的零点D CB A α 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高中数学知识点总结[超全]
高中数学知识点总结[超全]一、初步基础1.集合:包含一定元素的整体2.映射:关联每一个元素到另一个集合元素的一种方式3.函数:一种映射,在不同区间之间限制,且每个元素至多有一个相应元素4.数与运算:加、减、乘、除5.方程、不等式:含有未知量的等式或不等式二、函数与方程1.函数的性质:单调性、奇偶性、周期性、多项式函数、根、零点等2.图像的分析:左、右极限、有孤立点或无穷点等3.解方程和不等式:根、解集、区间、正负等4.函数的运算:四则运算、复合函数、反函数等三、平面与立体几何1.点、线、面、体等基本概念2.图形的面积、周长、体积、等价性等3.相似与全等:图形的比例、相似判定、全等条件等4.三角函数:sin、cos、tan、cot的定义、性质和计算四、导数和微积分1.导数的定义和求法:函数的斜率和变化率2.导数的运算:四则运算、复合函数、反函数等3.微分和微分的应用:近似计算、切线与法线、曲率等4.不定积分和定积分:基本公式、换元积分法等五、数列和数学归纳法1.数列的性质:公差、通项公式、极限等2.数列的运算:求和、部分和、等比等3.数学归纳法的原理和应用六、概率统计1.概率基本概念:事件、样本空间、概率等2.概率的计算:古典概型、加法定理、乘法定理等3.离散与连续型随机变量的概率密度函数、分布函数和期望4.假设检验和区间估计:假设检验的基本原理、一致最有力检验、区间估计等七、解析几何1.空间中的基本概念和坐标系2.点、线、面、平面等的距离计算3.向量与其运算:加、减、数量积、向量积等4.直线和平面的方程:点法式、一般式、截距式等以上就是高中数学中的基本知识点,各知识点都有相应的计算方法和题型,需要学生多做练习。
高中数学知识点全总结(3篇)
高中数学知识点全总结一、直线与方程高考考试内容及考试要求:考试内容:1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;考试要求:1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;二、直线与方程课标要求:1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。
要点精讲:1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x 轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。
特别地,当直线l与x轴平行或重合时,规定α=0°.倾斜角α的取值范围:0°≤α<180°.当直线l与x轴垂直时,α=90°.2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα(1)当直线l与x轴平行或重合时,α=0°,k=tan0°=0;(2)当直线l与x轴垂直时,α=90°,k不存在。
由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。
3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。
4.两条直线的平行与垂直的判定(1)若l1,l2均存在斜率且不重合:注:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。
高中数学知识点最全总结
高中数学知识点最全总结数学重点学问点及答题技巧总结一、高考数学必考题型之函数与导数考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
函数与导数单调性若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不肯定为极值点。
需代入驻点左右两边的数值求导数正负推断单调性。
若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
二、高考数学必考题型之几何公理1:假如一条直线上的两点在一个平面内,那么这条直线上全部的点在此平面内公理2:过不在同一条直线上的三点,有且只有一个平面公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线公理4:平行于同一条直线的两条直线相互平行定理:空间中假如一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补判定定理:假如平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行“线面平行”假如一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”假如一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”假如一个平面经过另一个平面的垂线,那么这两个平面相互垂直“面面垂直”三、高考数学必考题型之不等式对称性传递性加法单调性,即同向不等式可加性乘法单调性同向正值不等式可乘性正值不等式可乘方正值不等式可开方倒数法则四、高考数学必考题型之数列(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种〔方法〕,并能依据递推公式写出数列的前几项。
(2)理解等差数列的概念,把握等差数列的通项公式与前n项和公式,并能解决简洁的实际问题。
(3)理解等比数列的概念,把握等比数列的通项公式与前n项和公式,井能解决简洁的实际问题。
必背公式1、一元二次方程的解b+√(b24ac)/2ab√(b24ac)/2a根与系数的关系x1+x2=b/ax1x2=c/a注:韦达定理判别式b24a=0注:方程有相等的两实根b24ac0注:方程有两个不相等的个实根b24ac0注:方程有共轭复数根2、立体图形及平面图形的公式圆的标准方程(xa)2+(yb)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E24F0抛物线标准方程y2=2pxy2=2px2=2pyx2=2py直棱柱侧面积S=cxh斜棱柱侧面积S=cxh正棱锥侧面积S=1/2cxh正棱台侧面积S=1/2(c+c)h圆台侧面积S=1/2(c+c)l=pi(R+r)l球的外表积S=4pixr2圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl弧长公式l=axra是圆心角的弧度数r0扇形面积公式s=1/2xlxr锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长柱体体积公式V=sxh圆柱体V=pixr2h3、图形周长、面积、体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(pa)(pb)(pc)](海伦公式)(p=(a+b+c)/2)和:(a+b+c)x(a+bc)x1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r常用的三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(AB)=sinAcosBsinBcosA cos(A+B)=cosAcosBsinAsinB cos(AB)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1tanAtanB)tan(AB)=(tanAtanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB1)/(ctgB+ctgA)ctg(AB)=(ctgActgB+1)/(ctgBctgA)倍角公式tan2A=2tanA/(1tan2A) ctg2A=(ctg2A1)/2ctgacos2a=cos2asin2a=2cos2a1=12sin2a半角公式sin(A/2)=√((1cosA)/2) sin(A/2)=√((1cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=√((1+cosA)/2)tan(A/2)=√((1cosA)/((1+co sA))tan(A/2)=√((1cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1cosA))ctg(A/2)=√((1+cosA)/((1cosA))和差化积2sinAcosB=sin(A+B)+sin(AB) 2cosAsinB=sin(A+B)sin(AB) 2cosAcosB=cos(A+B)sin(AB) 2sinAsinB=cos(A+B)cos(AB) sinA+sinB=2sin((A+B)/2)cos((AB)/2cosA+cosB=2cos((A+B)/2)sin((AB)/2)tanA+tanB=sin(A+B)/cosAcosB tanAtanB=sin(AB)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB ctgA+ctgBsin(A+B)/sinAsinB 高考应试技巧技巧一提前进入“角色”考前晚上要睡足八个小时,早晨最好吃些清淡的早餐,带齐一切高考用具,如笔、橡皮、作图工具、身分证、准考证等。
高一数学前三章知识点总结
高一数学前三章知识点总结在高中数学的学习中,高一的前三章是基础和重点,为后续学习打下扎实的基础。
这三章分别是数学的绪论、集合与函数、不等式与绝对值。
下面将对这三章的重要知识点进行总结。
1. 数学的绪论在数学的绪论中,我们首先学习了数的分类和运算,这是整个数学学习的基础。
整数、有理数和实数是我们常见的数的分类,我们需要掌握它们之间的包含关系。
在数的运算方面,我们学会了整数和有理数的加减乘除运算规则,以及实数的开方和乘方运算。
这些运算规则在后续的数学学习中经常会用到,因此掌握和理解这些知识点非常重要。
2. 集合与函数在集合与函数的学习中,我们首先了解了集合的概念和表示方法。
集合是数学中非常基础的概念,是由一些特定的元素组成的整体。
我们需要了解集合的特性,如空集、全集、子集等。
在集合的运算方面,我们学习了并集、交集和差集的概念和计算方法。
这些运算在解题中常常用到,因此要熟练掌握。
在函数的学习中,我们首先了解了函数的定义和表示方法。
函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素上。
掌握函数的概念对后续的数学学习很重要。
我们还学习了函数的性质,如奇偶性、周期性等。
函数的性质可以帮助我们更好地理解和分析函数的特点和行为。
3. 不等式与绝对值在不等式与绝对值的学习中,我们首先了解了不等式的概念和表示方法。
不等式是数学中描述大小关系的一种方法,我们需要掌握不等式的性质和运算法则。
在不等式的解答中,我们需要用到代数方法和图像法等不同的解题方法,要根据具体问题选择合适的方法。
绝对值是不等式中常见的概念,它的定义是表示一个数与零的距离。
我们需要掌握绝对值的性质和运算法则,在解决绝对值不等式时需要注意一些特殊情况的处理。
综上所述,高一数学的前三章是我们学习数学的基础,对后续的学习起着重要的作用。
我们需要牢牢掌握数的分类和运算、集合与函数的基本知识,熟练运用不等式和绝对值的求解方法。
只有在基础扎实的基础上,我们才能更好地理解和应用后续的数学知识,提高数学解题的能力。
高中数学知识点总结集合不等式函数
上海教材高中数学知识点总结一、集合与常用逻辑1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ子集B A ⊆:任意B x A x ∈⇒∈B A B B A BA AB A ⊆⇔=⊆⇔=注:数形结合---文氏图、数轴 4.四种命题原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题5.充分必要条件p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝二、不等式1.一元二次不等式解法若0>a ,02=++c bx ax 有两实根βα,)(βα<,则02<++c bx ax 解集),(βα02>++c bx ax 解集),(),(+∞-∞βα注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化a x a a x <<-⇔<⇔22a x <⇔>a x a x >或a x -<⇔22a x >0)()(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)⇔>)(log )(log x g x f a a f x f x g x ()()()><⎧⎨⎪⎩⎪0(01<<a )3.基本不等式 ①ab b a 222≥+ ②若+∈R b a ,,则ab ba ≥+2注:用均值不等式ab b a 2≥+、2)2(b a ab +≤ 求最值条件是“一正二定三相等”三、函数概念与性质1.奇偶性f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)或x 1>x 2⇒f(x 1) >f(x 2)或0)()(2121>--x x x f x ff(x)减函数:?注:①判断单调性必须考虑定义域②f(x)单调性判断定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T)4.二次函数解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2+k f(x)=a(x-x 1)(x-x 2)对称轴:abx 2-= 顶点:)44,2(2a b ac a b -- 单调性:a>0,]2,(ab--∞递减,),2[+∞-a b 递增 当ab x 2-=,f(x)min a b ac 442-=奇偶性:f(x)=ax 2+bx+c 是偶函数⇔b=0闭区间上最值:配方法、图象法、讨论法--- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b 奇函数⇔b=0四、基本初等函数1.指数式 )0(10≠=a a n naa1=- m n m na a = 2.对数式b N a =log N a b=⇔(a>0,a ≠1)N M MN a a a log log log +=N M NM a a a log log log -=M n M a n a log log =a b b m m a log log log =ablg lg =na ab b n log log =ab log 1=注:性质01log=a1log=aaNa N a=log常用对数NN10loglg=,15lg2lg=+自然对数NNelogln=,1ln=e3.指数与对数函数y=a x与y=log a x定义域、值域、过定点、单调性?注:y=a x与y=log a x图象关于y=x对称(互为反函数)4.幂函数12132,,,-====xyxyxyxyαxy=在第一象限图象如下:五、函数图像与方程1.描点法函数化简→定义域→讨论性质(奇偶、单调)取特殊点如零点、最值点等2.图象变换平移:“左加右减,上正下负”)()(hxfyxfy+=→=伸缩:)1()(xfyxfyϖϖ=−−−−−−−−→−=倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”)()()()()()(xfyxfyxfyxfyxfyxfyyx--=−−→−=-=−→−=-=−→−=原点轴轴注:α>101<<αα<0)(x f y =ax =→直线)2(x a f y -=翻折:→=)(x f y |()|y f x =保留x 轴上方部分,并将下方部分沿x 轴翻折到上方→=)(x f y (||)y f x =保留y 轴右边部分,并将右边部分沿y 轴翻折到左边3.零点定理若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)注:①)(x f 零点:0)(=x f 的实根②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?六、三角函数1.概念 第二象限角)2,22(ππππ++k k (Z k ∈)2.弧长 r l ⋅=α 扇形面积lr S 21=3.定义 r y =αsin r x =αcos xy =αtan 其中),(y x P 是α终边上一点,r PO =4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+6.特殊角的三角函数值α6π4π 3π 2π π23π sin α21 22 23 11-cos α123 22 21 01- 0tg α0 33 13/ 0 /7.同角1cos sin22=+αααααtan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±()βαβαβαsin sin cos cos cos =± ()βαβαβαtan tan 1tan tan tan ±=±倍角 αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -=降幂cos 2α=22cos 1α+ sin 2α=22cos 1α- 叠加 )4sin(2cos sin πααα+=+)6sin(2cos sin 3πααα-=-)sin(cos sin 22ϕααα++=+b a b a )(tan ba=ϕ8.三角函数的图象性质y=sinx y=cosx y=tanx图象单调性: )2,2(ππ-增 ),0(π减 )2,2(ππ-增注:Z k ∈ 9.解三角形基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2cos 2sinCB A =+ 正弦定理:A a sin =B b sin =Ccsin A R a sin 2= C B A c b a sin :sin :sin ::=余弦定理:a 2=b 2+c 2-2bc cos A (求边)cos A =bc a c b 2222-+(求角)面积公式:S △=21ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<a 2>b 2+c 2 ⇔ ∠A >2π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海教材高中数学知识点总结
一、集合与常用逻辑
1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=⋃或 补集:}{A x U x x A C U ∉∈=且 3.集合关系 空集A ⊆φ
子集B A ⊆:任意B x A x ∈⇒
∈
B A B B A B
A A
B A ⊆⇔=⊆⇔=
注:数形结合---文氏图、数轴 4.四种命题
原命题:若p 则q 逆命题:若q 则p 否命题:若p ⌝则q ⌝ 逆否命题:若q ⌝则p ⌝ 原命题⇔逆否命题 否命题⇔逆命题
5.充分必要条件
p 是q 的充分条件:q P ⇒ p 是q 的必要条件:q P ⇐ p 是q 的充要条件:p ⇔q 6.复合命题的真值
①q 真(假)⇔“q ⌝”假(真) ②p 、q 同真⇔“p ∧q ”真 ③p 、q 都假⇔“p ∨q ”假 7.全称命题、存在性命题的否定 ∀∈M, p(x )否定为: ∃∈M, )(X p ⌝ ∃∈M, p(x )否定为: ∀∈M, )(X p ⌝
二、不等式
1.一元二次不等式解法
若0>a ,02
=++c bx ax 有两实根βα,)(βα<,则
02<++c bx ax 解集),(βα
02>++c bx ax 解集),(),(+∞-∞βα
注:若0<a ,转化为0>a 情况 2.其它不等式解法—转化
a x a a x <<-⇔<⇔22a x <
⇔>a x a x >或a x -<⇔22a x > 0)
()
(>x g x f ⇔0)()(>x g x f ⇔>)()(x g x f a a )()(x g x f >(a >1)
⇔>)(log )(log x g x f a a f x f x g x ()()()
><⎧⎨
⎪⎩⎪0
(01<<a ) 3.基本不等式 ①ab b a 22
2
≥+ ②若+
∈R b a ,,则
ab b
a ≥+2
注:用均值不等式ab b a 2≥+、2
)2
(b a ab +≤ 求最值条件是“一正二定三相等”
三、函数概念与性质
1.奇偶性
f(x)偶函数⇔()()f x f x -=⇔f(x)图象关于y 轴对称 f(x)奇函数⇔()()f x f x -=-⇔f(x)图象关于原点对称 注:①f(x)有奇偶性⇒定义域关于原点对称
②f(x)奇函数,在x=0有定义⇒f(0)=0 ③“奇+奇=奇”(公共定义域内) 2.单调性
f(x)增函数:x 1<x 2⇒f(x 1)<f(x 2)
或x 1>x 2⇒f(x 1) >f(x 2)
或
0)
()(2
121>--x x x f x f
f(x)减函数:?
注:①判断单调性必须考虑定义域
②f(x)单调性判断
定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性
T 是()f x 周期⇔()()f x T f x +=恒成立(常数0≠T )
4.二次函数
解析式: f(x)=ax 2+bx+c ,f(x)=a(x-h)2
+k f(x)=a(x-x 1)(x-x 2)
对称轴:a b
x 2-= 顶点:)44,2(2a
b a
c a b --
单调性:a>0,]2,(a
b
-
-∞递减,),2[+∞-a b 递增 当a b x 2-=,f(x)min a
b a
c 442
-=
奇偶性:f(x)=ax 2
+bx+c 是偶函数⇔b=0
闭区间上最值:
配方法、图象法、讨论法--- 注意对称轴与区间的位置关系
注:一次函数f(x)=ax+b 奇函数⇔b=0
四、基本初等函数
1.指数式 )0(10
≠=a a n n
a
a
1
=- m n m n
a a = 2.对数式
b N a
=log N a b =⇔(a>0,a ≠1)
N M MN a a a log log log +=
N M N
M a a a log log log -=
M n M a n a log log =
a b b m m a log log log =a
b
lg lg =
n a a b b n
l o g l o g =a b
l o g 1=
注:性质01log =a 1log =a a
N a N a =log
常用对数N N 10log lg =,15lg 2lg =+ 自然对数N N e log ln =,1ln =e 3.指数与对数函数 y=a x
与y=log a x
定义域、值域、过定点、单调性?
注:y=a x
与y=log a x 图象关于y=x 对称(互为反函数) 4.幂函数 12
13
2
,,,-====x y x y x y x y
αx y =在第一象限图象如下:
五、函数图像与方程
1.描点法
函数化简→定义域→讨论性质(奇偶、单调) 取特殊点如零点、最值点等 2.图象变换 平移:“左加右减,上正下负”
)()(h x f y x f y +=→=
伸缩:)1
()(x f y x f y ϖ
ϖ=−−
−−−−−−→−=倍
来的每一点的横坐标变为原
对称:“对称谁,谁不变,对称原点都要变”
)
()()()()()(x f y x f y x f y x f y x f y x f y y x --=−−→−=-=−→−=-=−→−=原点轴轴
注:
)
(x f y =a
x =→直线)2(x a f y -=
翻折:→=)(x f y |()|y f x =保留x 轴上方部分,
并将下方部分沿x 轴翻折到上方
→=)(x f y (||)y f x =保留y 轴右边部分,
并将右边部分沿y 轴翻折到左边
3.零点定理
若0)()(<b f a f ,则)(x f y =在),(b a 内有零点 (条件:)(x f 在],[b a 上图象连续不间断)
注:①
)(x f 零点:0)(=x f 的实根
②在],[b a 上连续的单调函数)(x f ,0)()(<b f a f 则)(x f 在),(b a 上有且仅有一个零点 ③二分法判断函数零点---0)()(<b f a f ?
六、三角函数
1.概念 第二象限角)2,2
2(πππ
π++k k (Z k ∈)
2.弧长 r l ⋅=
α 扇形面积lr S 2
1
=
3.定义 r y =
αsin r x =αcos x
y =αtan 其中),(y x P 是α终边上一点,r PO =
4.符号 “一正全、二正弦、三正切、四余弦” 5.诱导公式:“奇变偶不变,符号看象限”
如ααπsin )2(-=-Sin ,ααπsin )2/cos(-=+
6.特殊角的三角函数值
7.同角1cos sin 2
2=+αα
αα
α
tan cos sin = 和差()βαβαβαsin cos cos sin sin ±=±
()βαβαβαsin sin cos cos cos =±
()β
αβ
αβαtan tan 1tan tan tan ±=
±
倍角 αααcos sin 22sin =
ααααα2222sin 211cos 2sin cos 2cos -=-=-= α
α
α2
tan 1tan 22tan -=
降幂cos 2
α=
22cos 1α+ sin 2
α=2
2cos 1α- 叠加 )4sin(2cos sin π
ααα+=
+
)6
sin(2cos sin 3π
ααα-=-
)sin(cos sin 22ϕααα++=+b a b a )(tan b
a
=ϕ
8.三角函数的图象性质
单调性: )2,2(ππ-增 ),0(π减 )2
,2(ππ-增
注:Z k ∈ 9.解三角形
基本关系:sin(A+B)=sinC cos(A+B)=-cosC tan(A+B)=-tanC 2
cos 2sin
C
B A =+ 正弦定理:
A a sin =
B b sin =C
c
sin A R a sin 2= C B A c b a s i n :s i n :s i n ::=
余弦定理:a 2=b 2+c 2-2bc cos A (求边)
cos A =bc
a c
b 22
22-+(求角)
面积公式:S △=
2
1
ab sin C 注:ABC ∆中,A+B+C=? B A B A sin sin <⇔<
a 2>
b 2+
c 2 ⇔ ∠A >2
π。