新世纪大学物理活页习题集(10-15)

合集下载

最新大学物理活页作业答案及解析((全套))

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdvmmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+= 7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

新世纪大学物理活页习题集(10-15)

新世纪大学物理活页习题集(10-15)
2.一金属球壳的内外半径分别为R1和R2,带电量为Q。在球壳内距球心O为r处有一带电量为q的点电荷,则球心处的电势为_____________。
3.如图10-6所示,一无限大均匀带电平面A附近放置一与之平行的无限大导体平板B。已知带电平面A的电荷面密度为σ,则导体板B两表面1和2的感应电荷面密度分别为σ1=_____________和σ2=_____________。
A.0;B. ;
C. ;D. .
6.关于有介质时的高斯定理,下列说法中正确的是:()
A.若高斯面内不包围自由电荷,则穿过高斯面的D通量与E通量均为零;
B.若高斯面上的D处处为零,则面内自由电荷的代数和必为零;
C.高斯面上各点D仅由面内自由电荷决定;
D.穿过高斯面的D通量令与面内自由电荷有关,而穿过高斯面的E通是与高斯面内的自由电荷和束缚电荷均有关。
A.E↑、C↑、U↑、W↑;
B.E↑、C↑、U↓、W↓;
C.E↓、C↑、U↓、W↓;
D.E↓、C↑、U↑、W↑。
二、填空题
1.一实心金属导体,无论原先是否带电,当它处在其它带电体所产生的电场中而达到静电平衡时,其上的电荷必定分布在_____________;导体表面的电场强度E的方向必定沿_____________方向;导体内任一点的电势梯度为gradU=_____________。
8.行板电容器,充电后切断电源,然后使两极间充满相对介电常数为εr的各向同性均匀电介质。此时两极板间的电场强度是原来的________倍;电场能量是原来的________倍。
9.如图10-9所示,两个完全相同的平板电容器,其极板面积为S,两极板间距为a,分别插入厚度均为b的金属板和相对电容率为εr介质板,且这两个电容器极板上自由电荷面密度均为σ。则

大学物理活页作业答案(全套)马文蔚(二)2024

大学物理活页作业答案(全套)马文蔚(二)2024

大学物理活页作业答案(全套)马文蔚(二)引言概述:在本文中,我们将提供马文蔚的《大学物理活页作业答案(全套)》第二部分的答案。

该答案集包含了大学物理课程中的各种难题和练习题的解答,将帮助学生更好地理解和掌握物理知识。

下面将分为五个大点,详细阐述每个大点下的小点内容。

1. 力学:- 物体的运动:包括匀速直线运动、加速直线运动、自由落体等运动形式的求解方法;- 牛顿运动定律:分析力的作用、摩擦力、弹力等的计算方法;- 循环运动:旋转、圆周运动等相关知识;- 力的合成与分解:应用向量运算解决力的合成与分解问题;- 动量与能量:动量守恒定律、机械能守恒定律等的应用。

2. 热学:- 温度与热量:温标、热量的单位、热量传递等的概念和计算;- 热力学第一定律:内能和热功的关系,热机效率的计算;- 热传导:导热系数、传热方程等内容;- 热膨胀:线膨胀、面膨胀和体膨胀等相关知识;- 气体定律:理想气体状态方程、等温过程和绝热过程的分析。

3. 光学:- 光的传播:光速、光线传播的规律等;- 光的折射与反射:折射定律、反射定律的应用;- 光的干涉与衍射:双缝干涉、单缝衍射等基本原理;- 光的色散与光谱:光的色散现象、光谱的特性和应用;- 光学仪器:透镜、显微镜、望远镜等光学仪器的工作原理和使用方法。

4. 电磁学:- 静电场:库仑定律、电场强度的计算等;- 电场的能量:电场能的计算、电场的静电势和电势差的概念;- 电流和电阻:电流的计算、欧姆定律的应用;- 磁场:磁感应强度、电流在磁场中受力等基本概念;- 电磁感应:法拉第电磁感应定律、应用于电感和互感等。

5. 物理实验:- 实验仪器与测量:常用物理实验仪器的常规使用方法;- 实验技巧和数据处理:实验数据的处理与分析方法;- 实验设计和报告:实验设计的基本原则、报告撰写的要点;- 实验安全与管理:实验过程中的安全措施和实验室规章制度;- 物理实验的应用与发展:物理实验在科学研究和工程技术中的应用和发展。

大学物理标准答案(9、10、13、14、15、16章)

大学物理标准答案(9、10、13、14、15、16章)

P b a O xd xy9-5 一无限长均匀带电细棒被弯成如习题9-5图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零。

解: 设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强。

在圆弧上取一弧元 d s =R d φ所带的电量为 d q = λd s 在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε=== 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为 d E x = -d E cos φ 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=方向沿着x 轴正向。

再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==;方向沿着x 轴负向当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1;因此 θ/2 = π/4,所以 θ = π/29-6 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如习题9-6图所示。

试求 平板所在平面内,离薄板边缘距离为a 的P 点处的场强。

解: 建立坐标系。

在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x 根据直线带电线的场强公式02E rλπε=得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-其方向沿x 轴正向。

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰/20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+ ①场强方向沿x 轴正向。

大学物理习题集

大学物理习题集

大学物理习题集上册物理教研室2004年元月目录部分物理常量练习一描述运动的物理量练习二刚体定轴转动的描述相对运动练习三牛顿运动定律非惯性系中的力学练习四动量角动量练习五功和能碰撞练习六刚体定轴转动的转动定律转动惯量练习七刚体定轴转动中的动能及角动量练习八力学习题课练习九状态方程压强公式练习十理想气体的内能分布律练习十一分布律(续) 自由程碰撞频率练习十二热力学第一定律等值过程练习十三循环过程练习十四热力学第二定律熵练习十五热学习题课练习十六谐振动练习十七谐振动能量谐振动合成练习十八阻尼受迫共振波动方程练习十九波的能量波的干涉练习二十驻波多普勒效应练习二十一振动和波习题课练习二十二光的相干性双缝干涉光程练习二十三薄膜干涉劈尖练习二十四牛顿环迈克耳逊干涉仪衍射现象练习二十五单缝圆孔光学仪器的分辨率练习二十六光栅X射线的衍射练习二十七光的偏振练习二十八光学习题课23h3456789101112131415图9.1 161718192021232425(A)图15.12627图17.24. 一平面简谐波沿x 轴负方向传播,已知x=x 0处质点的振动方程为y=A cos(ω t+ϕ0). 若(B)v (m/s)O1 x (m)ωA(A)·图18.3图18.54041距离 (从地上一点看两星的视线间夹角)是(A) 5.3×10-7 rad.(B) 1.8×10-4 rad .(C) 5.3×10-5 rad .(D) 3.2×10-3 rad二.填空题1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成了惠更斯-菲涅耳原理.2. 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为30 的方位上,所用单色光波长λ =5×103 Å, 则单缝宽度为m .3. 平行单色光垂直入射于单缝上,观察夫琅和费衍射. 若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带,若将单缝宽度减小一半, P点将是级纹.三.计算题1. 用波长λ =6328Å 的平行光垂直照射单缝, 缝宽a= 0.15mm , 缝后用凸透镜把衍射光会聚在焦平面上, 测得第二级与第三级暗条纹之间的距离为1.7mm , 求此透镜的焦距.四.问答题1. 在单缝衍射实验中, 当缝的宽度a远大于单色光的波长时, 通常观察不到衍射条纹, 试由单缝衍射暗条纹条件的公式说明这是为什么.练习二十六光栅X射线的衍射一.选择题1. 一束平行单色光垂直入射到光栅上,当光栅常数(a+b) 为下列哪种情况时(a代表每条缝为宽度) ,k =3、6、9等级次的主极大均不出现?(A) a+b=3a.(B) a+b=2a .(C) a+b=4a .(D) a+b=6a .2. 若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 1.0×10-1 mm .(B) 5.0×10-1 mm .(C) 1.0×10-2 mm .(D) 1.0×10-3 mm .3. 在双缝衍射实验中,若保持双缝s1和s2的中心之间的距离d不变,而把两条缝的宽度a 42略微加宽,则(A) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变少.(B) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目变多.(C) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变少.(D) 单缝衍射的中央主极大变宽,其中所包含的干涉条纹数目不变.(E) 单缝衍射的中央主极大变窄,其中所包含的干涉条纹数目变多.4. 某元素的特征光谱中含有波长分别为 1 = 450 n m 和 2 = 750 n m (1 n m = 10-9 m)的光谱线. 在光栅光谱中,这两种波长的谱线有重叠现象,重叠处 2的谱线的级次数将是(A) 2、3、4、5 …….(B) 2、5、8、11 …….(C) 2、4、6、8 …….(D) 3、6、9、12 …….5. 设光栅平面、透镜均与屏幕平行,则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级数k(A) 变小.(B) 变大.(C) 不变.(D) 的改变无法确定.二.填空题1. 用波长为5461 Å的平行单色光垂直照射到一透射光栅上,在分光计上测得第一级光谱线的衍射角 = 30 ,则该光栅每一毫米上有条刻痕.2. 可见光的波长范围是400 n m—760 n m,用平行的白光垂直入射到平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.3. 一束平行单色光垂直入射到一光栅上,若光栅的透明缝宽度a与不透明部分宽度b相等,则可能看到的衍射光谱的级次为.三.计算题1. 一块每毫米500条缝的光栅,用钠黄光正入射,观察衍射光谱, 钠黄光包含两条谱线,其波长分别为5896 Å和5890 Å, 求在第二级光谱中这两条谱线互相分离的角度.2. 一衍射光栅,每厘米有200条透光缝,每条透光缝宽为a =2×10-3 c m ,在光栅后放一焦距f =1m 的凸透镜,现以 = 6000 Å的平行单色光垂直照射光栅,求: (1) 透光镜a的单缝衍射中央明条纹宽度为多少?(2) 在该宽度内, 有几个光栅衍射主极大?练习二十七光的偏振一.选择题1. 一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45 角,若不考虑偏振片的反射和吸收,则穿过两个偏振片后的光强I为4344454647。

大学物理练习册-电磁感应

大学物理练习册-电磁感应

十、电磁感应法拉第电磁感应定律10-1如图10-1所示,一半径a =0.10m ,电阻R =1.0×10-3O 的圆形导体回路置于均匀磁场中,磁场方向与回路面积的法向之间的夹角为π/3,若磁场变化的规律为 T 10)583()(42−×++=t t t B求:(1)t =2s 时回路的感应电动势和感应电流;(2)最初2s 内通过回路截面的电量。

10-2如图10-2所示,两个具有相同轴线的导线回路,其平面相互平行。

大回路中有电流I ,小的回路在大的回路上面距离x 处,x >>R ,即I 在小线圈所围面积上产生的磁场可视为是均匀的。

若v dtdx=等速率变化,(1)试确定穿过小回路的磁通量Φ和x 之间的关系;(2)当x =NR (N 为一正数),求小回路内的感应电动势大小;(3)若v >0,确定小回路中感应电流方向。

图10-2动生电动势10-3 一半径为R 的半圆形导线置于磁感应强度为B v的均匀磁场中,该导线以速度v 沿水平方向向右平动,如图10-3所示,分别采用(1)法拉第电磁感应定律和(2)动生电动势公式求半圆导线中的电动势大小,哪一端电势高?10-4长为L 的铜棒NM ,以角速度 ω 绕支点O 在水平面上转动,支点距棒的一端点N 的距离为r ,设均匀磁场B v垂直向下,如图10-4所示。

求棒两端的电势差。

图10-410-5两平行长直导线载有等量反向电流I ,金属棒CD 与两导线共面且垂直,相对位置如图10-5所示。

CD 棒以速度v v平行于导线电流运动时,求CD 棒中的动生电动势,哪端的电势高?10-6如图10-6所示,质量为m ,长为l ,电阻为R 的金属棒AB 放置在一个倾斜的光滑U 形框架上,并由静止下滑,磁场B v垂直向上。

求:(1)U 形框架为绝缘时,AB 棒内的动生电动势与时间的函数关系;(2)U 形框架为导体时(不计电阻),AB 棒下滑速度随时间的变化关系,最大速度为多少?图10-6图10-5 D感生电动势10-7一长直导线中通有交变电流I =5.0sin100pt A ,在与其相距d =5.0cm 处放有一矩形线圈,共100匝,线圈长l =4.0cm ,宽a =2.0cm ,如图10-7所示。

大学物理习题集加答案

大学物理习题集加答案

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9 练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10 练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11 练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17 练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18 练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30 练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=6.67×1011N·m2·kg2重力加速度g=9.8m/s2阿伏伽德罗常量N A=6.02×1023mol1摩尔气体常量R=8.31J·mol1·K1玻耳兹曼常量k=1.38×1023J·K1斯特藩玻尔兹曼常量= 5.67×10-8 W·m2·K4标准大气压1atm=1.013×105Pa真空中光速c=3.00×108m/s基本电荷e=1.60×1019C电子静质量m e=9.11×1031kg质子静质量m n=1.67×1027kg中子静质量m p=1.67×1027kg真空介电常量0= 8.85×1012 F/m真空磁导率0=4×107H/m=1.26×106H/m普朗克常量h = 6.63×1034 J·s维恩常量b=2.897×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12 ,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图1.1所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q 的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷 (填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1 ;将其撤走,改放一个等量的点电荷q ,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图1.2所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图1.2所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X轴所成的夹角, 如图1.3所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图2.1,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+和,点P1和P2与两带电线共面,其位置如图2.2所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图2.3所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图3.1示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图3.2所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0) 及2 ,如图3.3所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图3.4所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图3.5所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和?答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图3.6所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d.练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图4.1),若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图4.2,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图4.3所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图4.4所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图4.5,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致,从A点经任意路径到B点的场强线积分= .3.如图4.5所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为– q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点, 则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3.如图5.1,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图5.2,原先不带电的金属球壳的球心处放一点电荷q1 , 球外放一点电荷q2 ,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0,F=0 .5.如图5.3,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图5.4所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度2之比值1/2.2.已知某静电场的电势函数U =-+ ln x (S I) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图6.1.C、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图6.2,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图6.3,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图6.4,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为 .以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图6.5,一平行板电容器, 极板面积为S,,相距为d ,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间,则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图6.6所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = 1.0 cm 和r2 =2.0 cm 的两个球形导体, 各带电量q = 1.0×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量; (2)各球的电势.2.如图6.7,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = (r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A=Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图7.1所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r = 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U ,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R1 =2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图7.2所示为其横截面),试求距离轴线R=3.5cm处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功?练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图9.1(1)所示,并联时如图9.1(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I 1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则<I2 J1<J2 I1 = I2 J1 = J2.(A) I(B) I1 =I2 J1 =J2 I1 = I2 J1 = J2.(C) I1=I2 J1 = J2 I1<I2 J1<J2.(D) I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n =8.5 × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)1.5 ×10-4米/秒.(B) 1.5 ×10-2米/秒.(C) 5.4 ×102米/秒.(D) 1.1 ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图9.3所示,则在柱与筒之间与轴线的距离为r的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图9.4所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R.(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率1.67×106 · cm , 铝电阻率2.66×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J =, J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图9.5所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图10.1所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图10.2所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图10.3所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=5.0×10-2m的螺旋运动,如图10.4所示,则磁场的方向,电子速度大小为.2. 磁场中某点处的磁感应强度B=0.40i-0.20j (T), 一电子以速度v=0.50×106i+1.0×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=8.0×105m/s作半径R=0.5cm的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图10.5所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。

大学物理习题集(下)

大学物理习题集(下)

大学物理习题集下册物理教研室2003年8月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习二电场强度(续) 电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习五电势梯度静电能静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9练习六静电场中的导体(续) 静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄┄10练习七静电场中的电介质(续) 电容静电场的能量┄┄┄┄┄┄┄┄┄┄┄┄12练习八静电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习九恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15练习十磁感应强度毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17练习十一毕奥—萨伐尔定律(续) 磁场的高斯定理┄┄┄┄┄┄┄┄┄┄┄┄18练习十二安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十三洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22练习十四安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十五静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25练习十六静磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27练习十七电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八感生电动势自感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习十九自感(续) 互感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十位移电流麦克斯韦方程组电磁波┄┄┄┄┄┄┄┄┄┄┄┄┄┄34练习二十一电磁感应习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄35练习二十二狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄37练习二十三相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39练习二十四热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄40练习二十五光电效应康普顿效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41练习二十六德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43练习二十七薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄44练习二十八近代物理习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4612部 分 物 理 常 量引力常量 G=6.67×10-11N 2·m 2·kg -2重力加速度 g=9.8m/s -2阿伏伽德罗常量 N A =6.02×1023mol -1 摩尔气体常量 R =8.31J·mol -1·K -1 标准大气压 1atm=1.013×105Pa 玻耳兹曼常量 k=1.38×10-23J·K -1 真空中光速 c=3.00×108m/s 电子质量 m e =9.11×10-31kg中子质量 m n =1.67×10-27kg质子质量 m p =1.67×10-27kg 元电荷 e=1.60×10-19C 真空中电容率 ε0= 8.85×10-12 C 2⋅N -1m-2真空中磁导率 μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量 h = 6.63×10-34 J ⋅ s 维恩常量 b =2.897×10-3mK 斯特藩-玻尔兹常量 σ = 5.67×10-8W/m 2⋅K 4练习一 库仑定律 电场强度一、选择题1.一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 的一个电量为σd S 的电荷元在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零. (C) 处处不为零.(D) 无法判定.2.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的? (A) 场强E 的大小与试探电荷q 0的大小成反比;(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变; (C) 试探电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试探电荷q 0,则F = 0,从而E = 0.3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为:(A )i a02πελ. (B) 0.(C)i a04πελ. (D))(40j +i aπελ.4.下列说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.+λ-λ∙ (0, a ) xy O图1.13(B) 在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同.(C) 场强方向可由E = F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力.(D) 以上说法都不正确.5.如图1.2所示,在坐标(a , 0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q ,P 点是x 轴上的一点,坐标为(x , 0).当x >>a 时,该点场强的大小为:(A) x q 04πε. (B) 204x q πε. (C) 302x qa πε(D)30xqaπε.二、填空题1.如图1.3所示,两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为λ1和λ2,则场强等于零的点与直线1的距离a= . 2.如图1.4所示,带电量均为+q 的两个点电荷,分别位于x 轴上的+a 和-a 位置.则y 轴上各点场强表达式为E = ,场强最大值的位置在y = .3.一电偶极子放在场强为E 的匀强电场中,电矩的方向与电场强度方向成角θ.已知作用在电偶极子上的力矩大小为M ,则此电偶极子的电矩大小为 .三、计算题1.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ.求球心处的电场强度. 2.用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正点荷Q , 试求圆心O 处的电场强度.练习二 电场强度(续) 电通量一、选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;图1.2d 图1.3图1.44(B) 电荷电量小,受的电场力可能大;(C) 电场为零的点,任何点电荷在此受的电场力为零; (D) 电荷在某点受的电场力与该点电场方向一致.2. 边长为a 的正方形的四个顶点上放置如图2.1所示的点电荷,则中心O 处场强 (A) 大小为零.(B) 大小为q/(2πε0a 2), 方向沿x 轴正向.(C) 大小为()2022a q πε, 方向沿y 轴正向. (D) 大小为()2022a q πε, 方向沿y 轴负向.3. 试验电荷q 0在电场中受力为f ,得电场强度的大小为E=f/q 0,则以下说法正确的是(A) E 正比于f ;(B) E 反比于q 0;(C) E 正比于f 反比于q 0;(D) 电场强度E 是由产生电场的电荷所决定,与试验电荷q 0的大小及其受力f 无关.4. 在电场强度为E 的匀强电场中,有一如图2.2所示的三棱柱,取表面的法线向外,设过面AA 'CO ,面B 'BOC ,面ABB 'A '的电通量为Φ1,Φ2,Φ3,则(A) Φ1=0, Φ2=Ebc , Φ3=-Ebc . (B) Φ1=-Eac , Φ2=0, Φ3=Eac .(C) Φ1=-Eac , Φ2=-Ec 22b a +, Φ3=-Ebc .(D) Φ1=Eac , Φ2=Ec 22b a +, Φ3=Ebc .5. 两个带电体Q 1,Q 2,其几何中心相距R , Q 1受Q 2的电场力F 应如下计算(A) 把Q 1分成无数个微小电荷元d q ,先用积分法得出Q 2在d q 处产生的电场强度E 的表达式,求出d q 受的电场力d F =E d q ,再把这无数个d q 受的电场力d F 进行矢量叠加从而得出Q 1受Q 2的电场力F =⎰1d Q q E(B) F =Q 1Q 2R /(4πε0R 3).(C) 先采用积分法算出Q 2在Q 1的几何中心处产生的电场强度E 0,则F =Q 1E 0.(D) 把Q 1分成无数微小电荷元d q ,电荷元d q 对Q 2几何中心引的矢径为r , 则Q 1受Q 2的电场力为F =()[]⎰1324d Q rqQπεr二、填空题1. 电矩为P e 的电偶极子沿x 轴放置, 中心为坐标原点,如图2.3.则点A (x ,0), 点B (0,y )电场强度的矢量表达式为:E A = , E B =.图2.1图2.2图2.3图2.452. 如图2.4所示真空中有两根无限长带电直线, 每根无限长带电直线左半线密度为λ,右半线密度为-λ,λ为常数.在正负电荷交界处距两直线均为a 的O 点.的电场强度为E x = ;E y = .3. 设想将1克单原子氢中的所有电子放在地球的南极,所有质子放在地球的北极,则它们之间的库仑吸引力为 N .三、计算题1. 宽为a 的无限长带电薄平板,电荷线密度为λ,取中心线为z 轴, x 轴与带电薄平板在同一平面内, y 轴垂直带电薄平板. 如图2.5. 求y 轴上距带电薄平板为b 的一点P 的电场强度的大小和方向.2. 一无限长带电直线,电荷线密度为λ,傍边有长为a , 宽为b 的一矩形平面, 矩形平面中心线与带电直线组成的平面垂直于矩形平面,带电直线与矩形平面的距离为c ,如图2.6. 求通过矩形平面电通量的大小.练习三 高斯定理一、选择题1. 如图3.1所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E .(D) 0 .2. 关于高斯定理,以下说法正确的是:(A) 高斯定理是普遍适用的,但用它计算电场强度时要求电荷分布具有某种对称性; (B) 高斯定理对非对称性的电场是不正确的;(C) 高斯定理一定可以用于计算电荷分布具有对称性的电场的电场强度; (D) 高斯定理一定不可以用于计算非对称性电荷分布的电场的电场强度. 3.有两个点电荷电量都是+q ,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面. 在球面上取两块相等的小面积S 1和S 2,其位置如图3.2所示. 设通过S 1和S 2的电场强度通量分别为Φ1和Φ2,通过整个球面的电场强度通量为Φ,则(A) Φ1 >Φ2 , Φ = q /ε0.λ图2.6图2.5图3.1图 3.26(B) Φ1 <Φ2 , Φ = 2q /ε0 . (C) Φ1 = Φ2 , Φ = q /ε0 .(D) Φ1 <Φ2 , Φ = q /ε0 .4.图3.3所示为一球对称性静电场的E ~ r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小,r 表示离对称中心的距离) .(A) 点电荷.(B) 半径为R 的均匀带电球体. (C) 半径为R 的均匀带电球面.(D) 内外半径分别为r 和R 的同心均匀带球壳.5. 如图3.4所示,一个带电量为q 的点电荷位于一边长为l 的正方形abcd 的中心线上,q 距正方形l/2,则通过该正方形的电场强度通量大小等于:(A) 02εq . (B) 06εq . (C) 012εq . (D)24εq .二、填空题1.如图3.5, 两块“无限大”的带电平行平板,其电荷面密度分别为-σ (σ > 0 )及2σ.试写出各区域的电场强度.Ⅰ区E 的大小 ,方向 . Ⅱ区E 的大小 ,方向 . Ⅲ区E 的大小 ,方向 . 2.如图3.6所示, 真空中有两个点电荷, 带电量分别为Q 和-Q , 相距2R ..若以负电荷所在处O 点为中心, 以R 为半径作高斯球面S , 则通过该球面的电场强度通量Φ = ;若以r 0表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为 .3.电荷q 1、q 2、q 3和q 4在真空中的分布如图3.7所示, 其中q 2 是半径为R 的均匀带电球体, S 为闭合曲面,则通过闭 合曲面S 的电通量⎰⋅SS E d = ,式中电场强度E 是哪些电荷产生的?答:是 产生的.是它们ⅠⅡ Ⅲ-σ 2σ 图3.5图3.3图3.4图3.6∙ q 1∙ q 3∙ q 4S图3.7q 27产生电场强度的矢量和还是标量和?答:是 .三、计算题1.真空中有一厚为2a 的无限大带电平板,取垂直平板为x 轴,x 轴与中心平面的交点为坐标原点,带电平板的体电荷分布为ρ=ρ0cos[πx /(2a )],求带电平板内外电场强度的大小和方向.2.半径为R 的无限长圆柱体内有一个半径为a(a<R)的球形空腔,球心到圆柱轴的距离为d (d >a ),该球形空腔无限长圆柱体内均匀分布着电荷体密度为ρ的正电荷,如图3.8所示. 求:(1) 在球形空腔内,球心O 处的电场强度E O .(2) 在柱体内与O 点对称的P 点处的电场强度E P .练习四 静电场的环路定理 电势一、选择题1. 如图4.1所示,半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E = 0 , U = Q /4πε0R . (B) E = 0 , U = Q /4πε0r .(C) E = Q /4πε0r 2 , U = Q /4πε0r .(D) E = Q /4πε0r 2 , U = Q /4πε0R .2. 如图4.2所示,两个同心的均匀带电球面,内球面半径为R 1,带电量Q 1,外球面半径为R 2,带电量为Q 2.设无穷远处为电势零点,则在两个球面之间,距中心为r 处的P 点的电势为:(A) rQ Q 0214πε+. (B) 20210144R Q R Q πεπε+.(C) 2020144R Q r Q πεπε+. (D)rQ R Q 0210144πεπε+.3. 如图4.3所示,在点电荷+q 的电场中,若取图中M 点为电势零点,则P 点的电势为(A) q / 4πε0a . (B) q / 8πε0a .(C) -q / 4πε0a .图4.1图4.2M图4.3图3.88 (D) -q /8πε0a .4. 一电量为q 的点电荷位于圆心O 处 ,A 是圆内一点,B 、C 、D 为同一圆周上的三点,如图4.4所示. 现将一试验电荷从A 点分别移动到B 、C 、D 各点,则(A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大. (C) 从A 到D ,电场力作功最大. (D) 从A 到各点,电场力作功相等.5. 如图4.5所示,CDEF 为一矩形,边长分别为l 和2l ,在DC 延长线上CA =l 处的A 点有点电荷+q ,在CF 的中点B 点有点电荷-q ,若使单位正电荷从C 点沿CDEF 路径运动到F 点,则电场力所作的功等于:(A)515420-⋅lq πε.(B) 55140-⋅l q πε. (C) 31340-⋅l q πε. (D)51540-⋅lq πε.二、填空题1.电量分别为q 1, q 2, q 3的三个点电荷位于一圆的直径上, 两个在圆周上,一个在圆心.如图4.6所示. 设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = .2.如图4.7所示,在场强为E 的均匀电场中,A 、B 两点间距离为d ,AB 连线方向与E 的夹角为α. 从A 点经任意路径 到B 点的场强线积分l E d ⎰⋅AB= .3.如图4.8所示, BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为-q 的点电荷,O 点有一电量为+q 的点 电荷. 线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道 BCD 移到D 点,则电场力所作的功为 .三、计算题1.如图4.9所示,一个均匀带电的球层,其电量为Q ,球层内表面半径为R 1,外表面半径为R 2.设无穷远处为电势零点,求空腔内任一点(r <R 1)的电势.2.已知电荷线密度为λ的无限长均匀带电直线附近的电场强度为E=λ/(2πε0r ).(1)求在r 1、r 2两点间的电势差21r r U U -;-q ll ll +qA BC D E F∙ ∙ 图4.5∙ ∙∙ q 1 q 2q 3ROb图4.6R -q +q ABC DO∙ ∙ 图4.8图4.9B 图4.4B图4.79(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电直线附近的电势能否这样取?试说明之.练习五 电势梯度 静电场中的导体一、选择题1.在均匀电场中各点,下列诸物理量中:(1)电场强度;(2)电势;(3)电势梯度.相等的物理量是?(A) (1) (3); (B) (1) (2); (C) (2) (3); (D) (1) (2) (3).2. 一“无限大”带负电荷的平面,若设平面所在处为电势零点, 取x 轴垂直带电平面,原点在带电平面处,则其周围空间各点电势U 随坐标x 的关系曲线为3.在如图5.2所示的圆周上,有N 个电量均为q 的点电荷,以两种方式分布,一种是无规则地分布,另一种是均匀分布,比较这两种情况下过圆心O 并垂直于圆平面的z 轴上一点的场强与电势,则有:(A) 场强相等,电势相等; (B) 场强不等,电势不等;(C) 场强分量E z 相等,电势相等;(D) 场强分量E z 相等,电势不等.4.一个带正电荷的质点,在电场力作用下从A 点出发,经C 点运动到B 点,其运动轨迹如图5.3所示,已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是:图5.2B(A)(B)(C)(D)图5.3(A)(B)(C)(D)图5.15.一个带有负电荷的均匀带电球体外,放置一电偶极子,其电矩的方向如图5.4所示.当电偶极子被释放后,该电偶极子将(A) 沿逆时针方向旋转至电矩p指向球面而停止.(B) 沿逆时针方向旋转至p指向球面,同时沿电力线方向向着球面移动.(C) 沿逆时针方向旋转至p指向球面,同时逆电力线方向远离球面移动.(D) 沿顺时针方向旋转至p沿径向朝外,同时沿电力线方向向着球面移动.二、填空题1. 一平行板电容器,极板面积为S,相距为d. 若B板接地,且保持A板的电势U A = U0不变,如图5.5所示. 把一块面积相同的带电量为Q的导体薄板C平行地插入两板之间,则导体薄板C的电势U C= .2. 任意带电体在导体体内(不是空腔导体的腔内)(填会或不会)产生电场,处于静电平衡下的导体,空间所有电荷(含感应电荷)在导体体内产生电场的(填矢量和标量)叠加为零.3. 处于静电平衡下的导体(填是或不是)等势体,导体表面(填是或不是)等势面, 导体表面附近的电场线与导体表面相互,导体体内的电势(填大于,等于或小于) 导体表面的电势.三、计算题1. 已知某静电场在xy平面内的电势函数为U=Cx/(x2+y2)3/2,其中C为常数.求(1)x轴上任意一点,(2)y轴上任意一点电场强度的大小和方向.2.如图5.6,一导体球壳A(内外半径分别为R2,R3),同心地罩在一接地导体球B(半径为R1)上,今给A球带负电-Q, 求B球所带电荷Q B及的A球的电势U A.练习六静电场中的导体(续)静电场中的电介质一、选择题1. A、B是两块不带电的导体,放在一带正电导体的电场中,如图6.1所示.设无限远处为电势零点,A的电势为U A,B的电势为U B,则:(A) U B > U A≠ 0 .(B) U B < U A= 0 .p图5.4UU ABC-Q图5.310(C) U B= U A .(D) U B < U A .2. 半径分别为R和r的两个金属球,相距很远.用一根长导线将两球连接,并使它们带电.在忽略导线影响的情况下,两球表面的电荷面密度之比σR /σr为:(A) R/r .(B) R2/r2.(C) r2/R2.(D) r/R .3. 一“无限大”均匀带电平面A,其附近放一与它平行的有一定厚度的“无限大”平面导体板B,如图6.2所示.已知A上的电荷面密度为σ,则在导体板B的两个表面1和2上的感应电荷面密度为:(A) σ1 =-σ , σ2 =+σ.(B) σ1 =-σ/2 , σ2 =+σ/2.(C) σ1 =-σ , σ2 = 0.(D) σ1 =-σ/2 , σ2 =-σ /2.4. 欲测带正电荷大导体附近P点处的电场强度,将一带电量为q0 (q0 >0)的点电荷放在P点,如图6.3所示. 测得它所受的电场力为F .若电量不是足够小.则(A) F/q0比P点处场强的数值小.(B) F/q0比P点处场强的数值大.(C) F/q0与P点处场强的数值相等.(D) F/q0与P点处场强的数值关系无法确定.5. 三块互相平行的导体板,相互之间的距离d1和d2比板面积线度小得多,外面两板用导线连接.中间板上带电,设左右两面上电荷面密度分别为σ1和σ2,如图6.4所示.则比值σ1/σ2为(A) d1/d2 .(B) 1.(C) d2/d1.(D) d22/d12.二、填空题1. 分子中正负电荷的中心重合的分子称分子,正负电荷的中心不重合的分子称分子.2. 在静电场中极性分子的极化是分子固有电矩受外电场力矩作用而沿外场方向而产生的,称极化.非极性分子的极化是分子中电荷受外电场力使正负电荷中心发生从而产生附加磁矩(感应磁矩),称极化.A+σ 2图6.2∙Pq0图6.4B(1) (2)图6.51112 3. 如图6.5,面积均为S 的两金属平板A ,B 平行对称放置,间距远小于金属平板的长和宽,今给A 板带电Q , (1)B 板不接地时,B 板内侧的感应电荷的面密度为 ; (2)B 板接地时,B 板内侧的感应电荷的面密度为 .三、计算题1. 如图6.6所示,面积均为S =0.1m 2的两金属平板A ,B 平行对称放置,间距为d =1mm,今给A ,B 两板分别带电 Q 1=3.54×10-9C, Q 2=1.77×10-9C.忽略边缘效应,求 (1)两板共四个表面的面电荷密度 σ1, σ2, σ3, σ4;(2)两板间的电势差V =U A -U B .四、证明题 1. 如图6.7所示,置于静电场中的一个导体,在静电平衡后,导体表面出现正、负感应电荷.试用静电场的环路定理证明,图中从导体上的正感应电荷出发,终止于同一导体上的负感应电荷的电场线不能存在.练习七 静电场中的电介质(续) 电容 静电场的能量一、选择题1. 一孤立金属球,带有电量1.2⨯10-8C ,当电场强度的大小为3⨯106V/m 时,空气将被击穿. 若要空气不被击穿,则金属球的半径至少大于(A) 3.6⨯10-2m . (B) 6.0⨯10-6m . (C) 3.6⨯10-5m .(D) 6.0⨯10-3m .2. 关于静电场中的电位移线,下列说法中,哪一种是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断; (B) 任何两条电位移线互相平行;(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交; (D) 电位移线只出现在有电介质的空间.3. 一导体球外充满相对电容率为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为:(A) ε0E . (B) ε0εr E . (C) εr E . (D) (ε0εr -ε0)E.B Q 图6.62 σ 2 σ 44. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则:(A) 空心球电容值大.(B) 实心球电容值大.(C) 两球电容值相等.(D) 大小关系无法确定.5. C1和C2两个电容器,其上分别标明200pF(电容量)、500V(耐压值)和300pF、900V . 把它们串联起来在两端加上1000V电压,则(A) 两者都被击穿.(B) 两者都不被击穿.(C) C2被击穿,C1不被击穿.(D) C1被击穿,C2不被击穿.二、填空题1. 一平行板电容器,充电后切断电源,然后使两极板间充满相对电容率为εr的各向同性均匀电介质,此时两极板间的电场强度是原来的倍;电场能量是原来的倍.2. 在相对电容率为εr= 4的各向同性均匀电介质中,与电能密度w e = 2⨯10-6J/cm3相应的电场强度的大小E = .3.一平行板电容器两极板间电压为U,其间充满相对电容率为εr的各向同性均匀电介质,电介质厚度为d . 则电介质中的电场能量密度w = .三、计算题1. 半径为R1的导体球带电Q,球外一层半径为R2相对电容率为εr的同心均匀介质球壳,其余全部空间为空气.如图7.1所示.求:(1)离球心距离为r1(r1<R1), r2(R1<r1<R2), r3(r1>R2)处的D和E;(2)离球心r1, r2, r3,处的U;(3)介质球壳内外表面的极化电荷.2. 两个相距很远可看作孤立的导体球,半径均为10cm,分别充电至200V和400V,然后用一根细导线连接两球,使之达到等电势. 计算变为等势体的过程中,静电力所作的功.练习八静电场习题课一、选择题1. 如图8.1, 两个完全相同的电容器C1和C2,串联后与电源连接. 现将一各向同性均匀电介质板插入C1中,则:(A) 电容器组总电容减小.(B) C1上的电量大于C2上的电量.(C) C1上的电压高于C2上的电压.图8.1图7.11314 (D) 电容器组贮存的总能量增大.2.一空气平行板电容器,接电源充电后电容器中储存的能量为W 0,在保持电源接通的条件下,在两极间充满相对电容率为εr 的各向同性均匀电介质,则该电容器中储存的能量W 为(A) W = W 0/εr . (B) W = εr W 0.(C) W = (1+εr )W 0. (D) W = W 0.3. 如图8.2所示,两个“无限长”的半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的带电量分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212πελλ+.(B) )(2)(2202101R r R r -+-πελπελ.(C) )(22021R r -+πελλ.(D)20210122R R πελπελ+.4. 如图8.3,有一带电量为+q ,质量为m 的粒子,自极远处以初速度v 0射入点电荷+Q 的电场中, 点电荷+Q 固定在O 点不动.当带电粒子运动到与O 点相距R 的P 点时,则粒子速度和加速度的大小分别是(A) [v 02+Qq /(2πε0Rm )]1/2, Qq /(4πε0Rm ).(B) [v 02+Qq /(4πε0Rm )]1/2, Qq /(4πε0Rm ).(C) [v 02-Qq /(2πε0Rm )]1/2, Qq /(4πε0R 2m ). (D) [v 02-Qq /(4πε0Rm )]1/2, Qq /(4πε0R 2m ).5 空间有一非均匀电场,其电场线如图8.4所示.若在电场中取一半径为R 的球面,已知通过球面上∆S 面的电通量为∆Φe ,则通过其余部分球面的电通量为(A) -∆Φe(B) 4πR 2∆Φe /∆S , (C) (4πR 2-∆S ) ∆Φe /∆S , (D) 0二、填空题1. 一个平行板电容器的电容值C = 100pF, 面积S = 100cm 2, 两板间充以相对电容率为εr = 6的云母片. 当把它接到50V 的电源上时,云母片中电场强度的大小E = ,金属板上的自由电荷电量q = .2. 半径为R 的细圆环带电线(圆心是O ),其轴线上有两点A 和B ,且OA=AB=R ,如图8.5.若取无限远处为电势零点,设A 、B 两点的电势分别为P图8.2图8.3图8.5图8.415U 1和U 2,则U 1/U 2为 .3. 真空中半径为R 1和R 2的两个导体球相距很远,则两球的电容之比C 1/C 2 = . 当用细长导线将两球相连后,电容C = . 今给其带电,平衡后球表面附近场强之比E 1 / E 2 = .三、计算题1. 一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极间距拉开到2d ,求:(1)电容器能量的改变;(2)在此过程中外力所作的功,并讨论此过程中的功能转换关系.2. 在带电量为+Q 半径为R 的均匀带电球体中沿半径开一细洞并嵌一绝缘细管,一质量为m 带电量为-q 的点电荷在管中运动(设带电球体固定不动,且忽略点电荷所受重力)如图8.6所示.t =0时,点电荷距球心O 为a (a <R ),运动速度v 0=0,试写出该点电荷的运动方程(即点电荷到球心的距离r 随时间的变化关系式).练习九 恒定电流一、选择题1.室温下,铜导线内自由电子数密度n = 8.85⨯1028m -3,导线中电流密度j = 2⨯106A/m 2,则电子定向漂移速率为:(A) 1.4⨯10-4m/s. (B) 1.4⨯10-2m/s. (C) 5.4⨯102m/s.(D) 1.1⨯105m/s.2.在一个半径为R 1的导体球外面套一个与它共心的内半径为R 2的导体球壳,两导体的电导可以认为是无限大.在导体球与导体球壳之间充满电导率为γ的均匀导电物质,如图9.1所示.当在两导体间加一定电压时,测得两导体间电流为I , 则在两导体间距球心的距离为r 的P 点处的电场强度大小E 为:(A) I γ/(4πr 2) . (B) I /(4πγr 2) . (C) I /(4πγR 12) .(D) IR 22/(4πγR 12r 2) .3. 一平行板电容器极板间介质的介电常数为ε,电导率为γ,当极板上充电Q 时,则极板间的漏电流为(A) Q/(γε). (B) γε/Q .(C) εQ/γ. (D) γQ/ε .图8.6图9.116 4.有一根电阻率为ρ、截面直径为d 、长度为L 的导线,若将电压U 加在该导线的两端,则单位时间内流过导线横截面的自由电子数为N ;若导线中自由电子数密度为n ,则电子平均漂移速度为v d . 下列哪个结论正确:(A) Lne U v Le Ud N d ρρπ==,42. (B) L ne U v ed LUN d ρπρ==,42.(C) LUnev Le Ud N d ρρπ==,82. (D) LUnev ed LUN d ρπρ==,42.5. 在氢放电管中充有气体,当放电管两极间加上足够高的电压时,气体电离. 如果氢放电管中每秒有4⨯1018个电子和1.5⨯1018个质子穿过放电管的某一截面向相反方向运动,则此氢放电管中的电流为(A) 0.40A .(B) 0.64A . (C) 0.88A . (D) 0.24A .二、 填空题1. 如图9.2所示为某复杂电路中的某节点,所设电流方向如图.则利用电流连续性列方程为 .2. 如图9.3所示为某复杂电路中的某回路,所设电流方向及回路中的电阻,电源如图.则利用基尔霍夫定律列方程为 .3. 有两个相同的电源和两个相同的电阻,按图9.4和图9.5所示两种方式连接. 在图9.3中I = ,U AB = ; 在图9.3中I = ,U AB = .三、计算题1. 把大地看作电阻率为ρ的均匀电介质,如图9.6.所示. 用一个半径为a 的球形电极与大地表面相接,半个球体埋在地面下,电极本身的电阻可忽略.求(1)电极的接地电阻;(2)当有电流流入大地时,距电极中心分别为r 1和r 2的两点A 、B 的电流密度j 1与j 2的比值.图9.2图9.3图9.4图9.5图9.6172. 一同轴电缆,长L = 1500m ,内导体外半径a = 1.0 mm ,外导体内半径b = 5.0 mm ,中间填充绝缘介质,由于电缆受潮,测得绝缘介质的电阻率降低到6.4⨯105Ω·m. 若信号源是电动势ε= 24V ,内阻r = 3.0 Ω的直流电源. 求在电缆末端负载电阻R 0=1.0 k Ω上的信号电压为多大.练习十 磁感应强度 毕奥—萨伐尔定律一、选择题1. 如图10.1所示,边长为l 的正方形线圈中通有电流I ,则此线圈在A 点(如图)产生的磁感强度为:(A) l I πμ420. (B) l I πμ220.(C)lIπμ02.(D) 以上均不对.2. 电流I 由长直导线1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图10.2所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O 点磁感强度的大小为:(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ≠ 0, B 2 ≠ 0, B 1+B 2 = 0, B 3=0(C) B ≠ 0. 因为虽然B 3 = 0, 但 B 1+B 2 ≠ 0(D) B ≠ 0. 因为虽然B 1+B 2 = 0, 但 B 3 ≠ 0 3. 如图10.3所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I ,这三条导线在正三角形中心O 点产生的磁感强度为:(A) B = 0 .(B) B =3μ0I /(πa ) . (C) B =3μ0I /(2πa ) .(D) B =3μ0I /(3πa ) . . 4. 如图10.4所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:(A) RIπμ20. (B)RI40μ.图10.1图10.2图10.3图10.418 (C) )11(20πμ-R I. (D))11(40πμ+RI .5. 一匝数为N 的正三角形线圈边长为a ,通有电流为I , 则中心处的磁感应强度为 (A) B = 33μ0N I /(πa ) . (B) B =3μ0NI /(πa ) . (C) B = 0 .(D) B = 9μ0NI /(πa ) .二、填空题1. 平面线圈的磁矩为p m =IS n ,其中S 是电流为I 的平面线圈 , n 是平面线圈的法向单位矢量,按右手螺旋法则,当四指的方向代表 方向时,大拇指的 方向代表 方向.2 两个半径分别为R 1、R 2的同心半圆形导线,与沿直径的直导线连接同一回路,回路中电流为I .(1) 如果两个半圆共面,如图10.5.a 所示,圆心O 点的磁感强度B 0的大小为 ,方向为 .(2) 如果两个半圆面正交,如图10.5b 所示,则圆心O 点的磁感强度B 0的大小为 ,B 0的方向与y 轴的夹角为 .3. 如图10.6所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,∠aob =180︒.则圆心O 点处的磁感强度的大小B = .三、计算题1. 如图10.7所示, 一宽为2a 的无限长导体薄片, 沿长度方向的电流I 在导体薄片上均匀分布. 求中心轴线OO '上方距导体薄片为a 的磁感强度.2. 如图10.7所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面. 设线圈的总匝数为N ,通过线圈的电流为I . 求球心O 的磁感强度.图10.5图10.6b图10.8图10.7。

大学物理活页答案(马文蔚 版)高等教育出版社

大学物理活页答案(马文蔚 版)高等教育出版社

10.机械波单元练习(一)答案 1. B 2. C 3. B 4. 1.67m 5.0cos[()]x ly A t uωϕ-=-+ 6. 6,307. 解:(1)由波动方程可知振幅0.05m A =,角频率20πω=,/3πu ω=,则波速16.67m s u-=⋅,频率/2π10Hz νω==,波长2π2/3m uλω==。

(2)maxπ 3.14m/s A ω==≈v8. 解:(1)由图可知振幅0.1m A =,波长4m λ=,波速1100m s u -=⋅ 则2π2π/50πuT ωλ===。

又O 点初始时刻位于平衡位置且向y 轴正向运动,则由旋转矢量法可得π/2ϕ=-,因此波动方程为0.1cos[50π(/100)π/2](m)y t x =--(2)P 处质点的振动方程为0.1cos(50π3π/2)(m)y t =-9. 解:由图可知振幅0.1m A =,波长100m λ=,则角频率2π2ππuT ωλ===。

由P 点的运动方向可知波向x 轴负方向传播。

又由图可知原点O 初始时刻位于A /2处,且向y 轴负方向运动,则由旋转矢量法可得0π/3ϕ=。

则波动方程为0.1cos[π(/50)π/3](m)y t x =++10.解:(1)以A 点为坐标原点的波动方程为2310cos[3π(/30)](m) y t x -=⨯-(2)π2π2BA ABABuωϕϕλ=-=-=-则以B 点为坐标原点的波动方程为2310cos[3π(/30)π/2](m)y t x -=⨯--11.机械波单元练习(二)答案1. C 2. B 3. C 4./2λ,π5. 550Hz ,458.3Hz 6. 0.08W/m 2 7. 解:两列波传到1S 2S 连线和延长线上任一点P 的相位差212120102ππ2πr r r r ϕϕϕλλ--∆=--=--1S 左侧各点:2110π2ππ2π6π4r r ϕλ-∆=--=--=-,振动都加强; 2S 右侧各点:2110π2ππ2π4π4r r ϕλ--∆=--=--=,振动都加强;1S 、2S 之间:2111110π2ππ2π6ππ(21)π4r r r r r k ϕλ---∆=--=--=-+=+则距1S 点为:11m,3m,5m,7m,9m r =处各点静止不动。

大学物理活页习题集答案

大学物理活页习题集答案

大学物理活页习题集答案
大学物理活页习题集答案:探索物理世界的奥秘
物理作为一门自然科学,探索着自然界的规律和物质世界的奥秘。

而大学物理
活页习题集则是帮助学生理解和掌握物理知识的重要工具。

通过解答这些习题,学生们能够加深对物理理论的理解,提高解决物理问题的能力,同时也能够培
养他们的逻辑思维和分析问题的能力。

在大学物理活页习题集中,涵盖了各种各样的物理问题,涉及到力学、热学、
光学、电磁学等多个领域。

通过解答这些问题,学生们能够将课堂上学到的理
论知识应用到实际问题中,从而加深对物理学的理解。

同时,这些习题也能够
帮助学生们发现物理学中的一些规律和定律,培养他们的科学研究精神。

除了对学生们的理论知识进行巩固和提高外,大学物理活页习题集还能够培养
学生们的解决问题的能力。

在解答这些问题的过程中,学生们需要进行逻辑推理、分析问题、找出问题的关键点,这些能力对于他们将来的科研和工作都是
非常重要的。

总的来说,大学物理活页习题集答案不仅是学生们学习物理知识的重要工具,
更是帮助他们培养解决问题的能力和科学研究精神的重要途径。

通过不断地解
答这些习题,学生们能够更好地理解和掌握物理知识,同时也能够培养自己的
科学素养和综合能力。

希望学生们能够认真对待大学物理活页习题集,不断地
提高自己的物理水平,为将来的科研和工作打下坚实的基础。

大学物理习题集

大学物理习题集

大学物理习题集(农科类)大学物理课部2009年9月1目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄372部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量3练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。

大学物理A活页作业答案

大学物理A活页作业答案

练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.练习2 质点动力学(一)参考答案1.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。

(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。

解:(1)mM m )(m 00+=+===μμ联立方程得:g m M N NT T g (2)(1)(2)BA NBA f A PCA NA PBgMm m m M T gMm m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到利用)()(0''0'0)1(μ6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d v v =- ∴ ⎰⎰=-=-vv v vvvd d ,d d 0tt m K t m K ∴ mKt /0e -=v v(2) 求最大深度 解法一: txd d =vt x mKt d ed /0-=vt x m Kt tx d e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:xm t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =练习3 刚体力学(一)参考答案1. B2. C挂重物时, mg -T = ma =mR β, TR =J β,P =mg由此解出 JmR mgR+=2β而用拉力时, mg R = J β' JmgR=/β 故有 β'>β3. ma 2 ,21 ma 2 , 21ma 2 . 4. 4.0rad/s5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。

大学物理试题集和答案

大学物理试题集和答案

大学物理习题集上册大学物理教学部二00九年九月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习一质点运动的描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习二圆周运动相对运动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习三牛顿运动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习四功和能┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习五冲量和动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习六力矩转动惯量转动定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习七转动定律(续)角动量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习八力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习九理想气体状态方程热力学第一定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十等值过程绝热过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十一循环过程热力学第二定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十二卡诺循环卡诺定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20 练习十三物质的微观模型压强公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习十四理想气体的内能分布律自由程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习十五热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习十六谐振动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习十七谐振动能量谐振动合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习十八波动方程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习十九波的能量波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习二十驻波多普勒效应┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习二十一振动和波习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习二十二光的相干性双缝干涉光程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习二十三薄膜干涉劈尖牛顿环┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄38 练习二十四单缝衍射光栅衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄39 练习二十五光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄41 练习二十六光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄43部分物理常量万有引力常量G=6。

大学物理习题集

大学物理习题集

大学物理习题集(农科类)大学物理课部2009年9月1目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄372部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量3练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。

大学物理课后习题答案(全册)

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。

解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。

解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

大学物理9~13课后作业.答案

大学物理9~13课后作业.答案

E
S
dSE
2rl
π
对(1)
rq0,E0
R
1
(2)
Rql
1rR
2
E
2r
π
0
∴沿径向向外
(3)
rq0
R
2
E0∴
题8-12图
8-12两个无限大的平行平面都均匀带电,电荷的面密度分别为和,试求空间各处场
12
强.
解:如题8-12图示,两带电平面均匀带电,电荷面密度分别为与,
12
两面间,
1
E()n
12
2
0
1
面外,
1
qq
U()0
O
4
π
RR0
1
qq
U)
(
O
4
π
3RR
0
q
6
π
0
R

A
q(UU
0OC
)
qq
o
6
π
R
0
8-17如题8-17图所示的绝缘细线上均匀分布着线密度为的正电荷,两直导线的长度和
RO半圆环的半径都等于.试求环中心点处的场强和电势.
ABCDO
解:(1)由于电荷均匀分布与对称性,和段电荷在点产生的场强互相抵消,取
1
计算:
(1)外球壳上的电荷分布及电势大小;
(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;
qqq
解:(1)内球带电;球壳内表面带电则为,外表面带电为,且均匀分布,其电势
题8-23图
qdrq
UEdr
2
RRπR
40r4π
22
0

大学物理活页作业答案及解析((全套))

大学物理活页作业答案及解析((全套))

1、质点运动学单元练习(一)答案1.B2.D3.D4.B5.3、0m;5、0m(提示:首先分析质点得运动规律,在t <2、0s 时质点沿x 轴正方向运动;在t =2、0s 时质点得速率为零;,在t >2、0s 时质点沿x 轴反方向运动;由位移与路程得定义可以求得答案。

)6.135m(提示:质点作变加速运动,可由加速度对时间t 得两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r)(21m ji r)(242m ji r)(3212m ji r r r)/(32s m ji t r v(2))(22SI j t i dtrd v )(2SI jdt vd a)/(422s m j i v)/(222 s m ja8.解:t A tdt A adt v totosin cos 2t A tdt A A vdt A x totocos sin9.解:(1)设太阳光线对地转动得角速度为ωs rad /1027.73600*62/5s m th dt ds v /1094.1cos 32(2)当旗杆与投影等长时,4/ th s t 0.31008.14410.解: ky yv v t y y v t dv ad d d d d d d -k y v d v / d yC v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C )(2222y y k v v o o2、质点运动学单元练习(二)答案1.D2.A3.B4.C5.14 s m t dt ds v ;24s m dtdva t ;2228 s m t Rv a n ;2284 s m e t e a nt6.s rad o /0.2 ;s rad /0.4 ;2/8.0s rad r a t ;22/20s m r a n7.解:(1)由速度与加速度得定义)(22SI ji t dt rd v ;)(2SI idtv d a(2)由切向加速度与法向加速度得定义)(124422SI t t t dt d a t)(12222SI t a a a t n(3))(122/322SI t a v n8.解:火箭竖直向上得速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin9.解:s m uv /6.3430tan10.解:l h v u ;u hl v 3、牛顿定律单元练习答案1.C2.C3.A4.kg Mg T5.36721;2/98.02.0s m MT a5.x k v x 22 ;x x xv k dt dxk dt dv v 222 221mk dt dv mf x x 6.解:(1)ma F F N T sin cosmg F F N T cos sinsin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o 2Rg o8.解:由牛顿运动定律可得dtdv t 1040120 分离变量积分t o vdt t dv 4120.6 )/(6462s m t tvtoxdt t tdx 64620.5 )(562223m t t t x9.解:由牛顿运动定律可得dtdv mmg kv 分离变量积分t o vv o dt m k mg kv kdv ot m kmg kv mg olnmg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程a v m f mg 2cos ,t vm mg d d sin ,以及 ta v d d, d d v a t ,积分并代入初条件得 )cos 1(22 ag v ,)2cos 3(cos 2mg av m mg f .4、动量守恒与能量守恒定律单元练习(一)答案1.A;2.A;3.B;4.C;5.相同6.2111m m t F v;2212m t F v v 7.解:(1)t dt dxv x 10;10 dtdv a x x N ma F 20 ;m x x x 4013J x F W 800(2)s N Fdt I40318.解: 1'v m m mv221221'2121o kx v m m mv''m m k mm vx9.解: 物体m 落下h 后得速度为 gh v 2当绳子完全拉直时,有 '2v M m gh mgh mM m v 2'gh mM mMMv I I T 22'2210.解:设船移动距离x ,人、船系统总动量不变为零0 mv Mu等式乘以d t 后积分,得totomvdt Mudt0)( l x m Mx m mM mlx 47.05、动量守恒与能量守恒定律单元练习(二)答案1.C2.D3.D4.C5.18J;6m/s6.5/37.解:摩擦力mg f由功能原理 2121210)(kx x x f解得 )(22121x x mg kx 、8.解:根据牛顿运动定律 Rv m F mg N 2cos由能量守恒定律mgh mv 221质点脱离球面时 RhR F Ncos ;0 解得:3R h9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m ①212211m m v m v m v(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p② 联立①、②得 )/()(212122121m m m m E pv v 10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)( MV V u m ① mgR MV V u m 2221)(21 ② 解得: )(2m M M gRmV ;MgRm M u )(2(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可瞧成惯性系,以M 为参考系 R mu mg N /2M mg m M mg R mu mg N /)(2/2mg MmM M mg m M Mmg N 23)(26、刚体转动单元练习(一)答案1.B2.C3.C4.C5.v = 1、23 m/s;a n = 9、6 m/s 2;α = –0、545 rad/ s 2;N = 9、73转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.3C/2;D.2C。
9.一空气平行板电容器,充电后把电源断开,这时电容器中储存的能量为we。然后在两极板之间充满相对介电常数为εr的各向性均匀电介质,则该电容器中储存的能量W为()
A.W=εrW0;B.W=S ;
C.W=(1+εr)W0;D.W=W0。
10.如图10-5所示,将两个完全相同的空气电容器串联起来,在电源保持连接时,再将一块各向同性均匀电介质板插入其中一个电容器C2的两极板间,则插入介质前后的电场强度E、电容C、电压U、电场能量W4个量的变化情况是(增大用↑表示,减小用↓表示):()
8.行板电容器,充电后切断电源,然后使两极间充满相对介电常数为εr的各向同性均匀电介质。此时两极板间的电场强度是原来的________倍;电场能量是原来的________倍。
9.如图10-9所示,两个完全相同的平板电容器,其极板面积为S,两极板间距为a,分别插入厚度均为b的金属板和相对电容率为εr介质板,且这两个电容器极板上自由电荷面密度均为σ。则
7.一导体外充满相对电容率为εr的均匀介质,若测得导体表面附近的电场强度为E,则导体表面上的自由电荷密度为σ为:()
A.ε0E;B.ε0εrE;
C.εrE;D.(ε0εr-ε0)E。
8.一空气平行板电容器,极板间距为d,电容为C。若在两板中间平行地插入一块厚度为d/3的金属板,则其电容值变为()
A.C;B.2C/3;
10
一、选择题
(在下列各题中,均给出了4个~5个答案,其中有的只有1个正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)
1.在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是()
A.内表面均匀,外表面也均匀;B.内表面不均匀,外表面均匀;
A.小球左端有感应电荷-Q′,右端有+Q′。因此,右端的电势高于左端;
B.小球为等势体,且电势大于零;
C.大球的电荷均匀分布在其表面,大球外任一点的电场强度E= ;
D.若将小球接地,则小球必带负电荷。
4.关于静电场中的电位移线,下列说法中,哪一种是正确的?()
A.起自正电荷,止于负电荷,不形成闭合线,不中断。
(2)若球壳B为相对电容率为εr的介质时,各点电场强度E的大小分别为:
E1=______________;E2=______________;
E3=______________;E4=______________。
7.一带电量为q、半径为R的薄金属球壳,内部充满相对电容率为εr的各向同性均匀电介质,壳外是真空,则此球壳的电势为U=________,其电容为C=________。
6.如图10-8所示,半径为R的导体球A,带电Q,球外套一内半径为R1、外半径为R2的同ห้องสมุดไป่ตู้球壳B,设r1、r2、r3、r4分别代表图中Ⅰ、Ⅱ、Ⅲ、Ⅳ区域内任一点至球心O的距离则
(1)若球壳B为导体时,各点电位移D的大小分别为:
D1=______________;D2=______________;
D3=______________;D4=______________。
2.一金属球壳的内外半径分别为R1和R2,带电量为Q。在球壳内距球心O为r处有一带电量为q的点电荷,则球心处的电势为_____________。
3.如图10-6所示,一无限大均匀带电平面A附近放置一与之平行的无限大导体平板B。已知带电平面A的电荷面密度为σ,则导体板B两表面1和2的感应电荷面密度分别为σ1=_____________和σ2=_____________。
B.任何两条电位移线互相平行。
C.起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交。
D.电位移线只出现在有电介质的空间。
5.如图10-3所示,一个不带电的空腔导体球壳,内半径为R,在腔内离球心的距离为d处(d<R),固定一电量为+q的点电荷,用导线把球壳接地后,再把地线撤去。选无穷远处为电势零点,则球心O处的电势为:()
A.0;B. ;
C. ;D. .
6.关于有介质时的高斯定理,下列说法中正确的是:()
A.若高斯面内不包围自由电荷,则穿过高斯面的D通量与E通量均为零;
B.若高斯面上的D处处为零,则面内自由电荷的代数和必为零;
C.高斯面上各点D仅由面内自由电荷决定;
D.穿过高斯面的D通量令与面内自由电荷有关,而穿过高斯面的E通是与高斯面内的自由电荷和束缚电荷均有关。
4.如图10-7所示,把一块原来不带电的金属板B,移近一块已带有正电荷Q的金属板A,平行放置。设两板面积都是S,板间距离是d,忽略边缘效应。当B板不接地时,两板间电势差UAB=_________;B板接地时U′AB=_________。
5.若把各向同性的均匀电介质引入电场强度为E0的电场中,将发生_________现象,从而导致原电场发生变化,在电介质内的合电场强度E_________E0(填<、>或=)。
A.E↑、C↑、U↑、W↑;
B.E↑、C↑、U↓、W↓;
C.E↓、C↑、U↓、W↓;
D.E↓、C↑、U↑、W↑。
二、填空题
1.一实心金属导体,无论原先是否带电,当它处在其它带电体所产生的电场中而达到静电平衡时,其上的电荷必定分布在_____________;导体表面的电场强度E的方向必定沿_____________方向;导体内任一点的电势梯度为gradU=_____________。
(1)两极板间的电势差分别为:
AB电容器:UAB=_______________;
CD电容器:UCD=_______________。
(2)分别将金属板和介质板从电容器中抽出,则:
在抽出金属板的过程中,外力作功A=_______________;
在抽出介质板的过程中,电容器能量的增量△W=_______________。
C.内表面均匀,外表面不均匀;D.内表面不均匀,外表也不均匀。
2.A、B为两导体大平板,面积为S,平行放置,如图10-1所示。A板带电荷+Q1,B板带电荷+Q2,如果使B板接地,则AB间电场强度的大小E为:()
A. ;B. ;C. ;D. 。
3.如图10-2所示的两个金属球,大球带电+Q,半径为R,小球不带电。在下列说法中,正确的是:()
相关文档
最新文档