工程热力学第二章lm——工程热力学课件PPT
合集下载
工程热力学(第2章--热力学第一定律)
第一篇 工程热力学
第二章 热力学第一定律
本章主要内容
热力学第一定律的实质 系统储存能 闭口系能量方程 状态参数焓 开口系能量方程及其应用
2
2-1 热力学第一定律的实质
➢19世纪30-40年代,迈尔·焦耳(德国医生) 发现并确定了能量转换与守恒定律。恩格斯 将其列为19世纪三大发现之一(细胞学说、 达尔文进化论)。
5
永动机设想?
Q
电
锅 炉
加 热 器
汽轮机 发电机
凝
给水泵
汽
器
Wnet
Qout
6
2-2 系统储存能
➢ 能量是物质运动的度量,运动有各种不同的形 态,相应的就有各种不同的能量。
➢ 系统储存的能量称为储存能,它有内部储存能 与外部储存能之分。
系统储存能
内部储存能 (热力学能)
外部储存能 (宏观机械能)
➢能量转换与守恒定律指出:一切物质都具有 能量。能量既不可能被创造,也不可能被消 灭,它只能在一定的条件下从一种形式转变 为另一种形式。而在转换过程中,能的总量 保持不变。
3
实质:热力学第一定律是能量转换与守恒 定律在热力学中的具体应用。
热功转换可归结为两种运动形式之间的转化:
宏观物体的机械运动 微观分子的热运动
说明:由计算结果可知,将汽轮机的散热量忽略不计时,对汽轮机
功率的影响并不大。所以,将汽轮机内蒸汽的膨胀作功过程看成是绝热 过程来分析是合理的。
30
例2-3 某300MW机组,锅炉的出力为qm=1024×103kg/h,出口蒸
汽锅每焓炉小为的时h效的2=率燃33煤η92量炉.=3B9K?2J%/,kg标,准锅煤炉发进热口量给q水煤=焓29为27h01=K1J1/9k7g.,3K求J/锅kg炉,
第二章 热力学第一定律
本章主要内容
热力学第一定律的实质 系统储存能 闭口系能量方程 状态参数焓 开口系能量方程及其应用
2
2-1 热力学第一定律的实质
➢19世纪30-40年代,迈尔·焦耳(德国医生) 发现并确定了能量转换与守恒定律。恩格斯 将其列为19世纪三大发现之一(细胞学说、 达尔文进化论)。
5
永动机设想?
Q
电
锅 炉
加 热 器
汽轮机 发电机
凝
给水泵
汽
器
Wnet
Qout
6
2-2 系统储存能
➢ 能量是物质运动的度量,运动有各种不同的形 态,相应的就有各种不同的能量。
➢ 系统储存的能量称为储存能,它有内部储存能 与外部储存能之分。
系统储存能
内部储存能 (热力学能)
外部储存能 (宏观机械能)
➢能量转换与守恒定律指出:一切物质都具有 能量。能量既不可能被创造,也不可能被消 灭,它只能在一定的条件下从一种形式转变 为另一种形式。而在转换过程中,能的总量 保持不变。
3
实质:热力学第一定律是能量转换与守恒 定律在热力学中的具体应用。
热功转换可归结为两种运动形式之间的转化:
宏观物体的机械运动 微观分子的热运动
说明:由计算结果可知,将汽轮机的散热量忽略不计时,对汽轮机
功率的影响并不大。所以,将汽轮机内蒸汽的膨胀作功过程看成是绝热 过程来分析是合理的。
30
例2-3 某300MW机组,锅炉的出力为qm=1024×103kg/h,出口蒸
汽锅每焓炉小为的时h效的2=率燃33煤η92量炉.=3B9K?2J%/,kg标,准锅煤炉发进热口量给q水煤=焓29为27h01=K1J1/9k7g.,3K求J/锅kg炉,
第二章——工程热力学课件PPT
100 U1A2 60 Q2B1 U 2B1 40
Q2B1 80
第二章 讨论课
2、一个装有2kg工质的闭口系经历了如下 过程:过程中系统散热25kJ,外界对系统 做功100KJ,比热力学能减小15KJ/kg,并 且整个系统被举高1000m。试确定过程中系 统动能的变化。
Q E W
第二章 讨论课
空
Q
调
Q W
T
第二章 讨论课
➢ 计算题
1、对某种理想气体加热100KJ,使其由状 态1沿途径A可逆变化到状态2,同时对外做 功60KJ。若外界对该气体做功40KJ,迫使 它沿途径B可逆返回状态1。问返回过程中该 气体是吸热还是放热?热量是多少?
Q1A2 U1A2 W1A2 Q2B1 U 2B1 W2B1
V
1b 2
2c1
状态参数 ( Q W ) ( Q W )
1a 2
1b 2
热力学能及闭口系热一律表达式
定义 dU = Q - W 热力学能U 状态函数
Q = dU + W Q=U+W
闭口系热一律表达式
!!!两种特例 绝功系 Q = dU 绝热系 W = - dU
热力学能U 的物理意义
不可能制成的”
§2-2 热一律的推论热力学能
热力学能的导出 闭口系循环
Q W
( Q W ) 0
热力学能的导出
( Q W ) 0 对于循环1a2c1
p1
( Q W ) ( Q W ) 0
b
1a 2
2c1
a
c
对于循环1b2c1
2
( Q W ) ( Q W ) 0
• u : 比参数 [kJ/kg] • 热力学能总以变化量出现,热力学能零点人 为定
工程热力学 第二章 图文
思考
宏观动能和内动能的区别?
§2-3 热力学第一定律导出
热力学第一定律基本表达式
加入系统的能量总和—热力系统输出的能量总和 = 热力系总储存能的增量
加入系统的能量总和-热力系统输出的能量总和
= 热力系总储存能的增量
δW
δ mi ei
E
δm jej
E+dE
δQ
d
如果是闭口系,如何简化?
闭口系统的热一律基本表达式
来源:
19世纪30-40年代,迈耶,焦耳等发现并确 定了能量转换与守恒定律。恩格斯将这列为19世 纪三大发现之一(细胞学说、达尔文进化论)。
能量转换与守恒定律定律指出:一切物质都 具有能量。能量既不可能创造,也不能消灭,它 只能在一定的条件下从一种形式转变为另一种形 式。而在转换中,能量的总量恒定不变。
能量转换与守恒定律
认识个别、特殊能量 机械能、电能、磁能等有序能的守恒 热现象不是一个独立的现象,
其它形式的能量都最终转化为热能
热力学第一定律的本质
本质:能量转换及守恒定律在热过程中的应用
18世纪初,工业革命,热效率只有1% 1842年,J.R. Mayer阐述热一律,但没有
引起重视 1840-1849年,Joule用多种实验的一致性
系统的能量
能量是物质运动的度量,运动有各种不同 的形态,相应的就有各种不同的能量。
系统储存的能量称为储存能,它有内部储 存能与外部储存能之分。系统的内部储存 能即为热力学能
§2-2 热力学能(内能)
Internal energy
定义
系统内部各种形式能量的总和称为系 统的热力学能,简称为内能 U。单位质量 的热力学能称为比内能 u。
闭口系, δmi 0 δm j 0 忽略宏观动能Uk和位能Up, E U
工程热力学.ppt课件
.
1.1 工质及热力系
工 质:实现热能和机械能相互转化的媒介物质
热源(高温热源) :工质从中吸取热能的物系
冷源(低温热源) :接受工质放出热能的物系
为了研究问题方便,热力学中常把分析对象从周围 物体中分割出来,研究它与周围物体之间的能量和物 质的传递。
.
热力系统(热力系):人为分割出来作为热 力学分析对象的有限物质系统。 外 界:热力系统以外的部分。 边 界:系统与外界之间的分界面。
四. 平衡状态
如果在不受外界影响的条件下,系统的状 态能够始终保持不变,则系统的这种状态称为 平衡状态。
.
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡
势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
.
热力平衡状态满足:
热平衡:组成热力系统的各部分之间没有热量的 传递。
由于压力计的测压元件处于某种环境压力 的作用下,因此压力计所测得的压力是工质的真 实压力 p (或称绝对压力)与环境压力 p b 之差,叫做表压力 p e斯卡(简称帕) 符
号: p a ,
1pa 1N/m2
工程单位:
标准大气压(atm , 也称物理大气压) 巴 (bar) 工程大气压(at) 毫米汞柱(mmHg) 毫米水柱(mmH2O)
压
气 燃机
燃 气 轮
料
机
空
气
.
压缩制冷装置系统简图
.
地源热泵
.
本课程的主要内容
基本概念 热力学第一定律 理想气体的性质 理想气体的热力过程 热力学第二定律 水蒸汽 湿空气 制冷循环
.
第一章 热力学基本概念 1.1 工质及热力系 1.2 热力系的宏观描述 1.3 基本状态参数 1.4 热力过程及热力循环
1.1 工质及热力系
工 质:实现热能和机械能相互转化的媒介物质
热源(高温热源) :工质从中吸取热能的物系
冷源(低温热源) :接受工质放出热能的物系
为了研究问题方便,热力学中常把分析对象从周围 物体中分割出来,研究它与周围物体之间的能量和物 质的传递。
.
热力系统(热力系):人为分割出来作为热 力学分析对象的有限物质系统。 外 界:热力系统以外的部分。 边 界:系统与外界之间的分界面。
四. 平衡状态
如果在不受外界影响的条件下,系统的状 态能够始终保持不变,则系统的这种状态称为 平衡状态。
.
实现平衡的充要条件: 系统内部及系统与外界之间的一切不平衡
势差(力差、温差、化学势差)消失是系统实 现热力平衡状态的充要条件。
.
热力平衡状态满足:
热平衡:组成热力系统的各部分之间没有热量的 传递。
由于压力计的测压元件处于某种环境压力 的作用下,因此压力计所测得的压力是工质的真 实压力 p (或称绝对压力)与环境压力 p b 之差,叫做表压力 p e斯卡(简称帕) 符
号: p a ,
1pa 1N/m2
工程单位:
标准大气压(atm , 也称物理大气压) 巴 (bar) 工程大气压(at) 毫米汞柱(mmHg) 毫米水柱(mmH2O)
压
气 燃机
燃 气 轮
料
机
空
气
.
压缩制冷装置系统简图
.
地源热泵
.
本课程的主要内容
基本概念 热力学第一定律 理想气体的性质 理想气体的热力过程 热力学第二定律 水蒸汽 湿空气 制冷循环
.
第一章 热力学基本概念 1.1 工质及热力系 1.2 热力系的宏观描述 1.3 基本状态参数 1.4 热力过程及热力循环
工程热力学ppt课件
1906--1912年,
德国物理化学家
能斯特根据低温
下化学反应中大
量的实验事实,
归纳出热力学第
三定律即绝对零
度不能达到,
使热力学理论更
趋完善。
15
1942年,美国的凯
南在热力学的基础
上提出了有效能的
概念,使人们对能
源利用和节能认识
又上了一个台阶。
J. H. Keenan1900—1977
完整编辑ppt
2. 微观方法————统计热力学
从物质的微观结构出发,应用统计方法研究大量
分子乱运动的统计平均性质,导出热力学定理,
可从微观机理解释热现象的本质。 但模型假设
有近似性,且分析计算繁复。
完整编辑ppt
21
工程上要求简单、可靠,故以宏观方
法为主。
工程热力学常采用抽象、概括、理想
化的方法,这种略去次要因素,抓住
3.何雅玲《工程热力学精要分析及典型题精解》西安
交通大学出版社2000
完整编辑ppt
23
煤、 天然气等)的化学能 。
地下燃料资源日益减少,不能满足飞
速发展的生产力对动力的需求。 世界
各国对原子能、太阳能、地热能, 乃
至海洋能、生物能等各种新能源正大
力开展多方面的研究工作,以期找到
新的能源出路。
完整编辑ppt
6
热
能
的
动
力
利
用
举
例
:
内
燃
机
的
工
作
过
程
完整编辑ppt
7
B、蒸汽动力装置工作过程
工程热力学
Engineering Thermodynamics
工程热力学课件第2章
用热力学第一定律分析热力学问题的步骤:
1. 确定所研究的系统,建立坐标系;
2. 分析过程中系统本身的能量变化及与外界交换的能量;
3. 列出平衡方程;(包括能量的、质量的) 4. 求解。
8
一、闭口系统的热力学第一定律表达式
Q
ΔU
W
取封闭气缸中的工质为研究对象,忽略系统动能和位能的 变化,则:
Ek 0
不花费能量就可以产生功的第一类永动机是 不可能制造成功的。
3
2–2 热力学能和总能
一、热力学能(internal energy)
Uch-化学能
U
Unu-原子核能 平移动能 Uk 转动动能 振动动能 Uth Up— 内位能
f 1 T
f 2 T , v
U U (T , v)
在无化学反应及原子核反应的过程中,化学能和原子 核能都不变化,可以不考虑,热力学能的变化只是内位能 和内动能的变化。
33
流入:
1 2 1 2 qm1 h1 cf 1 gz1 qm2 h3 cf 3 gz3 2 2
流出:
1 1 qm1 h2 cf22 gz2 qm2 h4 cf24 gz4 2 2
根据能量平衡方程:
E p 0
则:E U
对于微元过程:
δQ dU δW
热力学第一定律解析式 9
注意:
1. 表达式中Q、W、ΔU都是代数值,规定:系统吸热Q为正值,系统 对外作功W为正,反之则为负。系统的热力学能增大时, ΔU为正,反 之为负。 2.对于单位质量工质:
δq du δw
17
在 时间段内系统的能量变化为: 根据热力学第一定律可得 :
1. 确定所研究的系统,建立坐标系;
2. 分析过程中系统本身的能量变化及与外界交换的能量;
3. 列出平衡方程;(包括能量的、质量的) 4. 求解。
8
一、闭口系统的热力学第一定律表达式
Q
ΔU
W
取封闭气缸中的工质为研究对象,忽略系统动能和位能的 变化,则:
Ek 0
不花费能量就可以产生功的第一类永动机是 不可能制造成功的。
3
2–2 热力学能和总能
一、热力学能(internal energy)
Uch-化学能
U
Unu-原子核能 平移动能 Uk 转动动能 振动动能 Uth Up— 内位能
f 1 T
f 2 T , v
U U (T , v)
在无化学反应及原子核反应的过程中,化学能和原子 核能都不变化,可以不考虑,热力学能的变化只是内位能 和内动能的变化。
33
流入:
1 2 1 2 qm1 h1 cf 1 gz1 qm2 h3 cf 3 gz3 2 2
流出:
1 1 qm1 h2 cf22 gz2 qm2 h4 cf24 gz4 2 2
根据能量平衡方程:
E p 0
则:E U
对于微元过程:
δQ dU δW
热力学第一定律解析式 9
注意:
1. 表达式中Q、W、ΔU都是代数值,规定:系统吸热Q为正值,系统 对外作功W为正,反之则为负。系统的热力学能增大时, ΔU为正,反 之为负。 2.对于单位质量工质:
δq du δw
17
在 时间段内系统的能量变化为: 根据热力学第一定律可得 :
《工程热力学》课件
理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
工程热力学PPT课件
另一种表述是,热量不可能自发地从低温物体传到高温物体而不引起其他变化。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
工程热力学课件
热力学第一定律的各种能量方程式在形式上随有不同, 热力学第一定律的各种能量方程式在形式上随有不同 但由热变功的实质都是一致的,只是不同场合不同应 但由热变功的实质都是一致的 只是不同场合不同应 用而已. 用而已
§ 2—7 能量方程式的应用
一、动力机 工质流经汽轮机、燃气轮机等动力机时,压力降低, 工质流经汽轮机、燃气轮机等动力机时,压力降低, 对机器作功;进出口速度相差不多,动能改变很小, 对机器作功;进出口速度相差不多,动能改变很小,可忽 对外界略有散热, 为负的 数量很小,可不计。 为负的, 略;对外界略有散热,q为负的,数量很小,可不计。
准静态和可逆闭口系能量方程
简单可压缩系准静态过程 简单可压缩系准静态过程 δw = pdv δq = du + pdv 热一律解析式之一 q = ∆ u + ∫ pdv 简单可压缩系可逆过程 简单可压缩系可逆过程 δ q = Tds Tds = du + pdv 热力学恒等式 ∫ Tds = ∆ u + ∫ pdv
2-16~2-17为不同形式的稳定能量方程式,对有无扰 为不同形式的稳定能量方程式, 为不同形式的稳定能量方程式 动和摩擦均能用。 动和摩擦均能用。
三、稳定流动能量方程式的分析
1 2 q − ∆u = ∆c f + g∆z + ∆( pv) + wi 2
工质对机 器作功
技术功w 技术功 t wt = wi + 1 (c 2 2 − c 2 1 ) + g ( z 2 − z1 ) f f 2 q − ∆u = w
1 2 q = ∆h + ∆c f + g∆z + wi 2
1kg工质对机器所作的功 工质对机器所作的功
§ 2—7 能量方程式的应用
一、动力机 工质流经汽轮机、燃气轮机等动力机时,压力降低, 工质流经汽轮机、燃气轮机等动力机时,压力降低, 对机器作功;进出口速度相差不多,动能改变很小, 对机器作功;进出口速度相差不多,动能改变很小,可忽 对外界略有散热, 为负的 数量很小,可不计。 为负的, 略;对外界略有散热,q为负的,数量很小,可不计。
准静态和可逆闭口系能量方程
简单可压缩系准静态过程 简单可压缩系准静态过程 δw = pdv δq = du + pdv 热一律解析式之一 q = ∆ u + ∫ pdv 简单可压缩系可逆过程 简单可压缩系可逆过程 δ q = Tds Tds = du + pdv 热力学恒等式 ∫ Tds = ∆ u + ∫ pdv
2-16~2-17为不同形式的稳定能量方程式,对有无扰 为不同形式的稳定能量方程式, 为不同形式的稳定能量方程式 动和摩擦均能用。 动和摩擦均能用。
三、稳定流动能量方程式的分析
1 2 q − ∆u = ∆c f + g∆z + ∆( pv) + wi 2
工质对机 器作功
技术功w 技术功 t wt = wi + 1 (c 2 2 − c 2 1 ) + g ( z 2 − z1 ) f f 2 q − ∆u = w
1 2 q = ∆h + ∆c f + g∆z + wi 2
1kg工质对机器所作的功 工质对机器所作的功
工程热力学课件 2
1、与宏观流动有关,流动停止,推动功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
Change in
= the total energy of the system
闭口系循环的热一律表达式
Q W
要想得到功,必须花费热能或其它能量 热一律又可表述为“第一类永动机是
不可能制成的” Perpetual –motion machine of the first kind
§2-2 热力学能和总能
化学能 chemical energy
核能 nuclear energy
热力学能/内能:
符号:U 法定计量单位:焦耳(J)
比热力学能:(1kg物质的热力学能)
符号:u 单位:J/kg
热力学能是状态参数,是热力状态的单值函数:
2
U 1 dU U2 U1 dU 0
二、外部储存能
➢ 需要用在系统外的参考坐标系测量的参数来 表示的能量,称为外部储存能,它包括系统 的宏观动能和重力位能:
宏观动能:Ek
1 2
mc
2 f
重力位能:Ep mgz
机械能
三、系统的总储存能(简称总能)
系统的总储存能为系统的内部储存能与外部
储存能之和,用 E 表示:
E
U
1 2
mc2f
mgz
1kg工质的总能为比总能:
e
u
1 2
c
2 f
gz
内能U 的物理意义
dU = Q - W
Q
W
dU 代表某微元过程中系统通过边界 交换的微热量与微功量两者之差值,也 即系统内部能量的变化。
➢ 分子热运动形成的内动能。它是温度的函数。
➢ 分子间相互作用形成的内位能。它是比体积和 温度的函数。
Change in
= the total energy of the system
闭口系循环的热一律表达式
Q W
要想得到功,必须花费热能或其它能量 热一律又可表述为“第一类永动机是
不可能制成的” Perpetual –motion machine of the first kind
§2-2 热力学能和总能
化学能 chemical energy
核能 nuclear energy
热力学能/内能:
符号:U 法定计量单位:焦耳(J)
比热力学能:(1kg物质的热力学能)
符号:u 单位:J/kg
热力学能是状态参数,是热力状态的单值函数:
2
U 1 dU U2 U1 dU 0
二、外部储存能
➢ 需要用在系统外的参考坐标系测量的参数来 表示的能量,称为外部储存能,它包括系统 的宏观动能和重力位能:
宏观动能:Ek
1 2
mc
2 f
重力位能:Ep mgz
机械能
三、系统的总储存能(简称总能)
系统的总储存能为系统的内部储存能与外部
储存能之和,用 E 表示:
E
U
1 2
mc2f
mgz
1kg工质的总能为比总能:
e
u
1 2
c
2 f
gz
内能U 的物理意义
dU = Q - W
Q
W
dU 代表某微元过程中系统通过边界 交换的微热量与微功量两者之差值,也 即系统内部能量的变化。
➢ 分子热运动形成的内动能。它是温度的函数。
➢ 分子间相互作用形成的内位能。它是比体积和 温度的函数。
工程热力学课件第1,2章
第一章 基本概念
Basic Concepts and Definition
1-1 热能和机械能相互转换过程
1-2 热力系统
1-3 工质的热力学状态及其基本状态参数 1-4 平衡状态 1-5 工质的状态变化过程
1-6 功和热量 1-7 热力循环
1
1-1 热能和机械能相互转换的过程
一、热能动力装置(Thermal power plant)
定义:从燃料燃烧中获得热能并利用热能得到动力 的整套设备。 燃气动力装置(combustion gas power plant) 内燃机(internal combustion gas engine) 燃气轮机装置(gas turbine power plant) 喷气发动机(jet power plant) …… 蒸气动力装置 (steam power plant)
定义:工质从中吸取或向之排出热能的物质系统。 • 高温热源—热源 ( heat source ) 低温热源—冷源(heat sink) • 恒温热源(constant heat reservoir) 变温热源
热动力装置工作可以概括为:
工质从高温热源吸取热能,将其中一部分转化为机械能, 把另一部分热能传给低温热源。
分 类
2
热机工作过程示意图
过热蒸汽 发电机
高温热源 吸热Q1 作功W 热机 机械能 放热Q2 低温热源
3
锅 炉
汽轮机
循环水
乏汽
冷凝器
水泵 冷却水
为使热能源源不断地转化为机械能必须:
1. 凭借工质作为媒介物质;
2. 工质源源不断地从高温热源吸收热量;
3. 工质热力学状态发生循环往复的连续变化;
4. 向温度较低的热源排出一部分热量。
Basic Concepts and Definition
1-1 热能和机械能相互转换过程
1-2 热力系统
1-3 工质的热力学状态及其基本状态参数 1-4 平衡状态 1-5 工质的状态变化过程
1-6 功和热量 1-7 热力循环
1
1-1 热能和机械能相互转换的过程
一、热能动力装置(Thermal power plant)
定义:从燃料燃烧中获得热能并利用热能得到动力 的整套设备。 燃气动力装置(combustion gas power plant) 内燃机(internal combustion gas engine) 燃气轮机装置(gas turbine power plant) 喷气发动机(jet power plant) …… 蒸气动力装置 (steam power plant)
定义:工质从中吸取或向之排出热能的物质系统。 • 高温热源—热源 ( heat source ) 低温热源—冷源(heat sink) • 恒温热源(constant heat reservoir) 变温热源
热动力装置工作可以概括为:
工质从高温热源吸取热能,将其中一部分转化为机械能, 把另一部分热能传给低温热源。
分 类
2
热机工作过程示意图
过热蒸汽 发电机
高温热源 吸热Q1 作功W 热机 机械能 放热Q2 低温热源
3
锅 炉
汽轮机
循环水
乏汽
冷凝器
水泵 冷却水
为使热能源源不断地转化为机械能必须:
1. 凭借工质作为媒介物质;
2. 工质源源不断地从高温热源吸收热量;
3. 工质热力学状态发生循环往复的连续变化;
4. 向温度较低的热源排出一部分热量。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q du pdv dh vdp
h是状态量,设 h f (T , p)
dh
( h T
)p
dT
h (p )T
dp
q
( h T
)p
dT
h [(p )T
v]dp
定压 dp=0
cp
( q
dT
)p
( h T
)p
定压比热与定容比热的关系
定容过程: qv cvdT 定压过程: qp cpdT
qp qv [ pdv]p d ( pv) p
V=1m3的容器有N2,温度为20 ℃ ,压力表读数 1000mmHg,pb=1atm,求N2质量。
m
pVM
(1000 1) 1.013105 1.0 28
760
2.658kg
RmT
8.31431000 293.15
状态方程的应用
求平衡状态下的参数
n kmol : pV nRmT
m kg : pV mRT
cpdT cvdT RdT cp cv R
cp cv 0R
cp,m cv,m MR Rm
比热比k:定压比热与定 容比热的比值。
k cp cp cp,m cv cv cv,m
cv
R k 1
kR cp k 1
定值比热,真实比热和平均比热
定值比热:根据分子运动论得出各理想气体的摩尔比 热均相等,称为定值比热。
阿伏伽德罗定律:相同 p 和 T 下各理想气体的摩尔 容积Vm相同
在标准状况下
p0 1.01325 105 Pa T0 273.15K
Vm0 22.414 m3 kmol
代入理想气体状态 方程,可求得:
Rm 8.3143 [ kJ kmol K]
通用气体常数Rm与气体常数R
Rm——通用气体常数(Universal Gas constant)
当实际气体 p 很小, V 很大, T不太低时, 即处于远离液 态的稀薄状态时, 可视为理想气体。
T>常温,p<7MPa
的双原子分子
理想气体 O2, N2, Air, CO, H2
三原子分子(H2O, CO2)一般不能当作理想气体 特殊可以,如空调的湿空气,高温烟气的CO2
理想气体状态方程
Ideal-gas equation of state
Rm
1.29
真实比热
真实比热: 理想气体的比热实际上并非定值,而是温度的函数
u f (T )
h f '(T )
du cv dT f (T )
dh cp dT f '(T )
Cv,m a0 a1T a2T 2 a3T 3 ...... 一般整理为 Cp,m b0 b1T b2T 2 b3T 3 ...... 多项式形式
kJ kmol K
kJ Nm3 K
kJ kg o C
kJ kmol o C
kJ Nm3 o C
Cm=M·c=22.414C’
比热容是过程量还是状态量?
T 1K
(1) (2)
C q
dt
比热容与热力过程有关
c1
c2
s
所以是过程量
用的最多的某些特定过程的比热容
定容比热容 定压比热容
定容比热
平均比热
c q
dt
c (cp ,cv)
q
t2 cdt
t1
=
c
t2 t1
(t2
t1 )
Rm 8.3143 [ kJ kmol K]
与气体种类无关
R——气体常数(Gas constant)
R Rm M
[kJ / kg.K]
与气体种类有关 M-----Molar mass
例如
R空气
Rm M 空气
8.3143 28.97
0.287 kJ kg K
计算时注意事项
压力为绝对压力 采用热力学温标,温度单位为K 统一单位,最好采用国际单位
分子运动论
Um
i 2
RmT
运动自由 度
C v,m
dU m dT
i 2 Rm
Cp,m
dH m dT
d (U m RmT ) dT
i2 2
Rm
单原子
3 Cv,m[kJ/kmol.K] 2 Rm
5
Cp,m [kJ/kmol.K] 2 Rm
k
1.67
双原子
5 2
Rm
7 2 Rm
1.4
多原子
7 2
Rm
9 2
理想气体(ideal gas):经过科学抽象的假想气体模型 气体分子是弹性的、不占体积的质点
假设条件 分子之间没有引力和斥力
理想气体可以用简单的状态方程描述,遵循克拉贝龙方程。 完全意义的理想气体是不存在的
哪些气体可当作理想气体
理想气体实质上是实际气体压力p→0,或比容v→∞时 的极限状态的气体。
定容比热:在定容情况下,单位物量的气体温度变化
1K所吸收或放出的热量
cv
qv
dT
u f (T , v)
q du pdv 定容
dv=
0
q
( u T
)v
dT
[
p
(
u v
)T
]dv
cv
q
( dT )v
( u T
)v
定压比热
定压比热:在定压情况下,单位物量的气体温度变化 1K所吸收或放出的热量。
工程热力学
Engineering Thermodynamics
北京航空航天大学
作业
习题 2-6,2-9,2-11,2-17,2-19
简单可压缩系统的能量转换与传递
可逆过程的膨胀功
2
w pdv
1
可逆过程的热量
2
q Tds
1
如何求出 膨胀功 和热量?
第二章 理想气体的性质
工质的热物理性质
两平衡状态间参数的计算 标准状态与任意状态间的换算
p1v1 p2v2
T1
T2
p0v0 p2v2
T0
T2
理想气体比热
比热:单位物量的物体,温度升高或降低1K所吸收或放
出的热量 C q
dt
根据热量和物量单位的不同,比热又可分为:
c : 质量比热容 Cm: 摩尔比热容 C’: 体积比热容
kJ kg K
热
力
能源转换的量的规律
学
的 研
能量转换的方向与程度
究
内能量品质评价容源自实际的动力、制冷循环工质的热力性质是工程热力学研究的主要内容之一
第二章 气体的热力性质
理想气体与实际气体 理想气体比热容 混合气体的性质 实际气体状态方程 对比态定律与压缩因子图
理想气体与实际气体
实际气体(real gas):真实工质,热力状态不能用简单 的方程描述。 为便于分析计算
宏观试验与微观分析均可导出理想气体状态方程
pv RT
克拉贝龙方程
四种形式的理想气体状态方程
1 kmol : pVm RmT
状 态
n kmol : pV nRmT
方 1 kg : pv RT
程 m kg : pV mRT
注意:
摩尔容积Vm Rm与R 统一单位
摩尔容积(Molar specific volume)
h是状态量,设 h f (T , p)
dh
( h T
)p
dT
h (p )T
dp
q
( h T
)p
dT
h [(p )T
v]dp
定压 dp=0
cp
( q
dT
)p
( h T
)p
定压比热与定容比热的关系
定容过程: qv cvdT 定压过程: qp cpdT
qp qv [ pdv]p d ( pv) p
V=1m3的容器有N2,温度为20 ℃ ,压力表读数 1000mmHg,pb=1atm,求N2质量。
m
pVM
(1000 1) 1.013105 1.0 28
760
2.658kg
RmT
8.31431000 293.15
状态方程的应用
求平衡状态下的参数
n kmol : pV nRmT
m kg : pV mRT
cpdT cvdT RdT cp cv R
cp cv 0R
cp,m cv,m MR Rm
比热比k:定压比热与定 容比热的比值。
k cp cp cp,m cv cv cv,m
cv
R k 1
kR cp k 1
定值比热,真实比热和平均比热
定值比热:根据分子运动论得出各理想气体的摩尔比 热均相等,称为定值比热。
阿伏伽德罗定律:相同 p 和 T 下各理想气体的摩尔 容积Vm相同
在标准状况下
p0 1.01325 105 Pa T0 273.15K
Vm0 22.414 m3 kmol
代入理想气体状态 方程,可求得:
Rm 8.3143 [ kJ kmol K]
通用气体常数Rm与气体常数R
Rm——通用气体常数(Universal Gas constant)
当实际气体 p 很小, V 很大, T不太低时, 即处于远离液 态的稀薄状态时, 可视为理想气体。
T>常温,p<7MPa
的双原子分子
理想气体 O2, N2, Air, CO, H2
三原子分子(H2O, CO2)一般不能当作理想气体 特殊可以,如空调的湿空气,高温烟气的CO2
理想气体状态方程
Ideal-gas equation of state
Rm
1.29
真实比热
真实比热: 理想气体的比热实际上并非定值,而是温度的函数
u f (T )
h f '(T )
du cv dT f (T )
dh cp dT f '(T )
Cv,m a0 a1T a2T 2 a3T 3 ...... 一般整理为 Cp,m b0 b1T b2T 2 b3T 3 ...... 多项式形式
kJ kmol K
kJ Nm3 K
kJ kg o C
kJ kmol o C
kJ Nm3 o C
Cm=M·c=22.414C’
比热容是过程量还是状态量?
T 1K
(1) (2)
C q
dt
比热容与热力过程有关
c1
c2
s
所以是过程量
用的最多的某些特定过程的比热容
定容比热容 定压比热容
定容比热
平均比热
c q
dt
c (cp ,cv)
q
t2 cdt
t1
=
c
t2 t1
(t2
t1 )
Rm 8.3143 [ kJ kmol K]
与气体种类无关
R——气体常数(Gas constant)
R Rm M
[kJ / kg.K]
与气体种类有关 M-----Molar mass
例如
R空气
Rm M 空气
8.3143 28.97
0.287 kJ kg K
计算时注意事项
压力为绝对压力 采用热力学温标,温度单位为K 统一单位,最好采用国际单位
分子运动论
Um
i 2
RmT
运动自由 度
C v,m
dU m dT
i 2 Rm
Cp,m
dH m dT
d (U m RmT ) dT
i2 2
Rm
单原子
3 Cv,m[kJ/kmol.K] 2 Rm
5
Cp,m [kJ/kmol.K] 2 Rm
k
1.67
双原子
5 2
Rm
7 2 Rm
1.4
多原子
7 2
Rm
9 2
理想气体(ideal gas):经过科学抽象的假想气体模型 气体分子是弹性的、不占体积的质点
假设条件 分子之间没有引力和斥力
理想气体可以用简单的状态方程描述,遵循克拉贝龙方程。 完全意义的理想气体是不存在的
哪些气体可当作理想气体
理想气体实质上是实际气体压力p→0,或比容v→∞时 的极限状态的气体。
定容比热:在定容情况下,单位物量的气体温度变化
1K所吸收或放出的热量
cv
qv
dT
u f (T , v)
q du pdv 定容
dv=
0
q
( u T
)v
dT
[
p
(
u v
)T
]dv
cv
q
( dT )v
( u T
)v
定压比热
定压比热:在定压情况下,单位物量的气体温度变化 1K所吸收或放出的热量。
工程热力学
Engineering Thermodynamics
北京航空航天大学
作业
习题 2-6,2-9,2-11,2-17,2-19
简单可压缩系统的能量转换与传递
可逆过程的膨胀功
2
w pdv
1
可逆过程的热量
2
q Tds
1
如何求出 膨胀功 和热量?
第二章 理想气体的性质
工质的热物理性质
两平衡状态间参数的计算 标准状态与任意状态间的换算
p1v1 p2v2
T1
T2
p0v0 p2v2
T0
T2
理想气体比热
比热:单位物量的物体,温度升高或降低1K所吸收或放
出的热量 C q
dt
根据热量和物量单位的不同,比热又可分为:
c : 质量比热容 Cm: 摩尔比热容 C’: 体积比热容
kJ kg K
热
力
能源转换的量的规律
学
的 研
能量转换的方向与程度
究
内能量品质评价容源自实际的动力、制冷循环工质的热力性质是工程热力学研究的主要内容之一
第二章 气体的热力性质
理想气体与实际气体 理想气体比热容 混合气体的性质 实际气体状态方程 对比态定律与压缩因子图
理想气体与实际气体
实际气体(real gas):真实工质,热力状态不能用简单 的方程描述。 为便于分析计算
宏观试验与微观分析均可导出理想气体状态方程
pv RT
克拉贝龙方程
四种形式的理想气体状态方程
1 kmol : pVm RmT
状 态
n kmol : pV nRmT
方 1 kg : pv RT
程 m kg : pV mRT
注意:
摩尔容积Vm Rm与R 统一单位
摩尔容积(Molar specific volume)