经典工程热力学课件.ppt
合集下载
第二章——工程热力学课件PPT
100 U1A2 60 Q2B1 U 2B1 40
Q2B1 80
第二章 讨论课
2、一个装有2kg工质的闭口系经历了如下 过程:过程中系统散热25kJ,外界对系统 做功100KJ,比热力学能减小15KJ/kg,并 且整个系统被举高1000m。试确定过程中系 统动能的变化。
Q E W
第二章 讨论课
空
Q
调
Q W
T
第二章 讨论课
➢ 计算题
1、对某种理想气体加热100KJ,使其由状 态1沿途径A可逆变化到状态2,同时对外做 功60KJ。若外界对该气体做功40KJ,迫使 它沿途径B可逆返回状态1。问返回过程中该 气体是吸热还是放热?热量是多少?
Q1A2 U1A2 W1A2 Q2B1 U 2B1 W2B1
V
1b 2
2c1
状态参数 ( Q W ) ( Q W )
1a 2
1b 2
热力学能及闭口系热一律表达式
定义 dU = Q - W 热力学能U 状态函数
Q = dU + W Q=U+W
闭口系热一律表达式
!!!两种特例 绝功系 Q = dU 绝热系 W = - dU
热力学能U 的物理意义
不可能制成的”
§2-2 热一律的推论热力学能
热力学能的导出 闭口系循环
Q W
( Q W ) 0
热力学能的导出
( Q W ) 0 对于循环1a2c1
p1
( Q W ) ( Q W ) 0
b
1a 2
2c1
a
c
对于循环1b2c1
2
( Q W ) ( Q W ) 0
• u : 比参数 [kJ/kg] • 热力学能总以变化量出现,热力学能零点人 为定
《工程热力学》第一章ppt
21
强度参数与广延参数 速度 (强) Velocity 高度 (强) Height 温度 (强) Temperature 应力 (强) Stress (广) 动能 Kinetic Energy 位能 (广) Potential Energy (广) 内能 Internal Energy 摩尔数 Mol (广)
20
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
Ñx 0 d
1b 2
dx dx
1a 2
3.状态参数分类 广延量:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S 强度量:与物质的量无关的参数 如压力 p、温度T 又:广延量的比性质具有强度量特性,如比体积 V v m 工程热力学约定用小写字母表示单位质量参数。
t C TK 273.15
24
附:
华氏温标和朗肯温标
{T} °R={t} ℉ +459.67
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32]
{t} ℉ =9/5{t} ℃ +32
25
五、压力(pressure)
绝对压力 p(absolute pressure) 表压力 pe(pg)(gauge pressure; manometer pressure) 真空度 pv(vacuum; vacuum pressure) 当地大气压pb(local atmospheric pressure)
系统随时接近于平衡态
p0
p
1.
.
.
p,T
v 2
40
准静态过程的工程条件
破坏平衡所需时间 (外部作用时间)
>>
强度参数与广延参数 速度 (强) Velocity 高度 (强) Height 温度 (强) Temperature 应力 (强) Stress (广) 动能 Kinetic Energy 位能 (广) Potential Energy (广) 内能 Internal Energy 摩尔数 Mol (广)
20
2.状态的单值函数。 物理上—与过程无关; 数学上—其微量是全微分。
Ñx 0 d
1b 2
dx dx
1a 2
3.状态参数分类 广延量:与物质的量有关的参数可加性 如 质量m、容积 V、内能 U、焓 H、熵S 强度量:与物质的量无关的参数 如压力 p、温度T 又:广延量的比性质具有强度量特性,如比体积 V v m 工程热力学约定用小写字母表示单位质量参数。
t C TK 273.15
24
附:
华氏温标和朗肯温标
{T} °R={t} ℉ +459.67
华氏温标和摄氏温标
{t} ℃=5/9[{t} ℉-32]
{t} ℉ =9/5{t} ℃ +32
25
五、压力(pressure)
绝对压力 p(absolute pressure) 表压力 pe(pg)(gauge pressure; manometer pressure) 真空度 pv(vacuum; vacuum pressure) 当地大气压pb(local atmospheric pressure)
系统随时接近于平衡态
p0
p
1.
.
.
p,T
v 2
40
准静态过程的工程条件
破坏平衡所需时间 (外部作用时间)
>>
(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科
工
工程热力学
程
传热学 Heat Transfer
热
流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式
一
次 能
热能
源
电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能
燃
水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变
热
生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa
工程热力学课件教学PPT
qc wnet
h2
h1 h4
h3 h1
h4
T2
T1 T4
T3 T1 T4
1
1
1
1
T1 T2
T1
T2 T1
1
T3 T4
定比热—invariable specific heat capacity
12
空气压缩制冷循环特点
• 优点:工质无毒,无味,不怕泄漏。
• 缺点:
一.简介 3
冷却水 2
冷却器
膨胀机 4
冷藏室
压缩机 1
空气压缩制冷循环过程
四个主要部件;工质:空气
1 2 绝热压缩 p T 2 3 等压冷却 向环境放热,T
3 4 绝热膨胀 T <T1 (冷库)
4 1 等压吸热 T
T1
理想化处理:①理气; ②定化热; ③ 可逆;
p
3
4
P-v图和T-s图
T
2 3Βιβλιοθήκη 1 42T01 T2
1
v 2 绝热压缩
s
s
2 3 等压冷却 p
3 4 绝热膨胀 s
逆布雷登循环
4 1 等压吸热
p
二.制冷系数—the coefficient of performance(COP)
qc qc
wnet q1 qc
q1 h2 h3
qc h1 h4
wnet h2 h1 h3 h4 h2 h3 h1 h4
T
卡诺逆循环
q1T1
w
C
q1 w
q1 q1 q2
T1 T1 T0
T1不变, T0 εC
T0 qT2 2
T0不变, T1 εC
《工程热力学》课件
理想气体混合物
理想气体混合物的性质
理想气体混合物具有加和性、均匀性、 扩散性和完全互溶性等性质。
VS
理想气体混合物的计算
通过混合物的总压力、总温度和各组分的 摩尔数来计算混合物的各种物理量。
真实气体近似与修正
真实气体的近似
真实气体在一定条件下可以近似为理想气体。
真实气体的修正
由于真实气体分子间存在相互作用力,因此需要引入修正系数对理想气体状态方程进行 修正。
特点
工程热力学是一门理论性较强的学科 ,需要掌握热力学的基本概念、定律 和公式,同时还需要了解其在工程实 践中的应用。
工程热力学的应用领域
能源利用
工程热力学在能源利用领域中有 着广泛的应用,如火力发电、核 能发电、地热能利用等。
工业过程
工程热力学在工业过程中也发挥 着重要的作用,如化工、制冷、 空调、热泵等。
稳态导热问题
稳态导热是指物体内部温度分布不随时间变 化的导热过程,其特点是热量传递达到平衡 状态。
对流换热和辐射换热的基本规律
对流换热的基本规律
对流换热主要受牛顿冷却公式支配,即物体 表面通过对流方式传递的热量与物体表面温 度和周围流体温度之间的温差、物体表面积 以及流体性质有关。
辐射换热的基本规律
辐射换热主要遵循斯蒂芬-玻尔兹曼定律, 即物体发射的辐射能与物体温度的四次方成
正比,同时也与周围环境温度有关。
传热过程分析与计算方法简介
要点一
传热过程分析
要点二
计算方法简介
传热过程分析主要涉及热量传递的三种方式(导热、对流 和辐射)及其相互影响,需要综合考虑物性参数、几何形 状、操作条件等因素。
常用的传热计算方法包括分析法、实验法和数值模拟法。 分析法适用于简单几何形状和边界条件的传热问题;实验 法需要建立经验或半经验公式;数值模拟法则通过计算机 模拟传热过程,具有较高的灵活性和通用性。
工程热力学PPT课件
另一种表述是,热量不可能自发地从低温物体传到高温物体而不引起其他变化。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
还有一种表述是,自然发生的热传递总是向着熵增加的方向进行,即系统总是向着熵增加的方向演化。
热力学第二定律的应用
01
在能源利用领域,热力学第二定律指导我们如何更有效地利用能源,避免能源 浪费。例如,在发电厂中,利用热力学第二定律可以优化蒸汽轮机的设计和运 行,提高发电效率。
热力学第二定律的实质
热力学第二定律的实质是揭示了自然界的不可逆性,即自然界的自发过程总是向着熵增加的方向进行 。这意味着自然界的能量转化和物质转化总是向着无序和混乱的方向发展,而不是向着有序和规则的 方向发展。
热力学第二定律的实质还表明了人类对自然界的干预和改造是有限制的,我们不能违背自然规律来无 限地利用能源和资源。因此,我们需要更加珍惜和合理利用自然界的能源和资源,以实现可持续发展 和环境保护的目标。
热力学第一定律的表述
01
热力学第一定律的表述是:能量既不能凭空产生,也不能凭空 消失,它只能从一种形式转化为另一种形式,或者从一个物体
传递给另一个物体。
02
热力学第一定律也可以表述为:在封闭系统中,能量守恒。
03
热力学第一定律也可以表述为:系统总能量的变化等于系 统与环境之间传递的热量和系统对外界所做的功之和。
制冷与空调技术
制冷与空调技术
制冷和空调技术是利用热力学原理实现热量转移和控制的工程技术。
制冷剂的选择
制冷剂是制冷和空调技术中的重要物质,需要具备适当的热力学性质 和环保性能。
制冷循环的类型
制冷循环有多种类型,如压缩式、吸收式和吸附式等,每种类型都有 其特定的应用场景。
空调系统的优化
为了提高空调系统的效率和降低能耗,需要对空调系统进行优化设计, 如采用变频技术、智能控制等措施。
工程热力学ppt课件
{
但 T < T0 ,Q不能传回 T 0 。
结论:温差使过程不可逆。
进一步分析,为使Q能传回 T 0 ,需加热泵,但要消耗一 定的功 W泵 ,也不可逆(比较水泵)。
压力差的影响:压力差使过程不可逆。
F α P f
pA > F cos α + f pA = F cos α + f
非准静态过程—nonequilibrium process 非准静态过程 准静态过程, 准静态过程,不可逆 准静态过程, 准静态过程,可逆
定义:工质从中吸取或向之排放热能的物质系统。
热源
{
温度高低
温度变化
{ {
高温热源(热源 — heat source) 低温热源(冷源—heat sink) 恒温热源(constant heat reservoir)
变温热源(variational heat reservoir)
3.1 热力系统(热力系、系统、体系)和 外界及边界 系统(thermodynamic system or system)
3.6 热力系示例图
刚性绝热喷管
取红线为系统—闭口系 取喷管为系统—开口系绝热系?
§1-3 工质的热力状态及基本状态数
• 热力学状态— state of thermodynamic system
— 某一瞬间系统所呈现的宏观物理状况
• 状态参数— state of properties
— 描述系统所处状态的宏观物理量 a) .状态参数是宏观量,反映了大量粒子运动的宏观平均效果, 只有平衡态才有统一的状态参数。 常用的状参有:p, T,V,U,H,S等, 其中p,T,V称为基本状态参数。 b)状态参数的特性:状态的单值函数 物理上:与过程无关 dx ∫ dx = 0, ∫abc dx = ∫adc 数学上:其微分是全微分
《工程热力学》课件
空调技术
空调系统的运行与热力学密切相关。制冷和 制热循环的原理、空调系统的能效分析以及 室内空气品质的保障等方面均需要热力学的
支持。
热力发电与动力工程
热力发电
热力学在热力发电领域的应用主要体现在锅炉、汽轮机和燃气轮机等设备的能效分析和 优化上。通过热力学原理,提高发电效率并降低污染物排放。
动力工程
热力学与材料科学的关系
材料科学主要研究材料的组成、结构、性质以及应用,而热力学为材料科学提供了材料制备、性能优 化和失效分析的理论基础。
在材料制备过程中,热力学可以帮助人们了解和控制材料的相变、结晶和熔融等过程,优化材料的性能 。
在材料性能优化方面,热力学为材料科学家提供了理论指导,帮助人们理解材料的热稳定性、抗氧化性 等性能,从而改进材料的制备工艺和应用范围。
热力学与其他学科的联系
热力学与物理学的关系
热力学与物理学在研究能量转换和传递方面有 密切联系。物理学中的热学部分为热力学提供 了基本概念和原理,如温度、热量、熵等。
热力学的基本定律,如热力学第一定律和第二 定律,是物理学中能量守恒和转换定律的具体 应用。
物理学中的气体动理论和分子运动论为热力学 提供了微观层面的解释,帮助人们理解热现象 的本质。
高效热能转换与利用技术
高效热能转换技术
随着能源需求的不断增加,高效热能转换与利用技术 成为研究的重点。例如,高效燃气轮机、超临界蒸汽 轮机等高效热能转换设备的研发和应用,能够提高能 源利用效率和减少污染物排放。
热能利用技术
除了高效热能转换技术外,热能利用技术的进步也是工 程热力学领域的重要发展方向。例如,热电转换技术、 热光转换技术等新型热能利用技术,为能源的可持续利 用提供了新的解决方案。
《工程热力学》PPT课件
n从到0,放热→0 →吸热;等温线右内能增加,左内能减少。 例如压缩机压缩过程:K>n>1
第五节 热力学第二定律
重点掌握:
1、热力学第二定律的表述; 2、热力循环的热效率; 3、卡诺循环的热效率。
一、热力学第二定律的表述
1、热量不可能自发的、不付任何代价的由一个低温物 体传至高温物体。—热量不可能自发地从冷物体转移到
K= cp/cν:绝热指数
3、参数间的关系: 由 Pvk=常数 →P1v1k=P2v2k →P1/P2=(v2/v1)k 又 Pv=RT →P=RT/v →Tvk-1=常数 →T1/T2=(v2/v1)k-1 →T2=T1(v1/v2)k-1 =T1εk-1 4、过程量的计算: 推出: w=-u q=w+ u q=0
一、定容过程
1、定义:过程进行中系统的容积(比容)保持不变
的过程。
2、过程方程式:ν =常数 3、参数间的关系: 由 PV=RT 知,P/T=常数, 所以: P1/P2=T1/T2, P1/T1=P2/T2 4、过程量的计算: 又 q=Δ u+w, 由 W=∫PdV, 且 dV=0
→ w=0
→ q=Δ u
热力系统从一个平衡状 态到另一个平衡状态的变 化历程。
力过程。
二、膨胀功W(J)
气体在热力过程中由于体 积发生变化所做的功(又 称为容积功)
规定:热力系统对外界做功为正,外界对热
力系统做功为负。 由δ W=PdV得: dV>0,膨胀,δ W>0, 系统对外界做功; dV<0,压缩,δ W<0, 外界对系统做功; dV=0,δ W=0, 系统与外界之间无功量 传递。
四、课程的特点、要求、学时分配、考核
特点:本课程理论性较强,无多少实物供参照,课堂上的 讲授以理论分析和推导为主。
工程热力学全部课件pptx
与外界没有物质和能量交 换的系统。
孤立系统
封闭系统
开放系统
热力学基本定律
热力学第零定律
如果两个系统分别与第三个系统处于热平衡状态,那么这两个系统也必定处于热平衡状态。
热力学第一定律
热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持 不变。
热力学第二定律
热力学循环
由一系列热力学过程组成的闭合路径,如卡诺循环、布雷顿循环 等。
02 热力学第一定律
能量守恒原理
1
能量不能自发地产生或消失,只能从一种形式转 换为另一种形式。
2
在一个孤立系统中,总能量始终保持不变。
3
能量转换过程中,各种形式的能量在数量上保持 平衡。
热力学第一定律表达式
Q = ΔU + W
其中,Δ(mv^2)/2表示系 统动能的变化量;
开口系统能量方程可表示 为:Q = ΔU + Δ(mv^2)/2 + Δ(mgh) + Δ(mΦ)。
Δ(mgh)表示系统势能的 变化量;
03 热力学第二定律
热力学第二定律表述
不可能从单一热源取热,使之完全转 换为有用的功而不产生其他影响。
热力学系统内的不可逆过程总是朝着 熵增加的方向进行。
具有加和性
理想气体基本过程
01
等温过程
温度保持不变的过程,如等温膨胀 和等温压缩
等容过程
体积保持不变的过程,如等容加热 和等容冷却
03
02
等压过程
压力保持不变的过程,如等压加热 和等压冷却
绝热过程
系统与外界没有热量交换的过程, 如绝热膨胀和绝热压缩
04
相关主题