工程热力学-第五版-复习资料期末考试复习资料
《工程热力学》总复习
名称含义说明体积功(或膨胀功)W 系统体积发生变化所完成的功。
2①当过程可逆时,W = ∫ pdV 。
1②膨胀功往往对应闭口系所求的功。
轴功W系统通过轴与外界交换的功。
①开口系,系统与外界交换的功为轴功Ws。
②当工质的进出口间的动位能差被忽略时,Wt=Ws,所以此时开口系所求的轴功也是技术功。
《工程热力学》期末总结一、闭口系能量方程的表达式有以下几种形式:1kg 工质经过有限过程:q = ∆u + w(2-1)1kg 工质经过微元过程:δq = du+δw(2-2)mkg 工质经过有限过程:Q = ∆U +W(2-3)mkg 工质经过微元过程:δQ = dU +δW(2-4)以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。
在应用以上各式时,如果是可逆过程的话,体积功可以表达为:2δw =pdv(2-5)w= ∫1 pdv2(2-6)δW = pdV(2-7)W = ∫1 pdV(2-8)闭口系经历一个循环时,由于U 是状态参数,∫dU = 0 ,所以∫δQ = ∫δW(2-9)式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。
二、稳定流动能量方程q = ∆h + 1∆c 2 2= ∆h + wt + g∆z + ws(2-10)(适用于稳定流动系的任何工质、任何过程)2q = ∆h −∫vdp(2-11)1(适用于稳定流动系的任何工质、可逆过程)三、几种功及相互之间的关系(见表一)表一几种功及相互之间的关系s1名称 质量比热容c体积比热容 c '摩尔比热容 M c 三者之间的关系单位 J/(k g ·K )J/(m 3·K )J/ (kmol ·K )M cc ' = c ρ 0 =22.4ρ 0 − 气体在标准状况下的密度定压 c'c pM c p定容c V'c VM c V推 动功W push开口系因工质流动而传 递的功。
《工程热力学》期末复习题库及答案
《工程热力学》期末复习题库及答案第一章1.把热量转化为功的媒介物称为DA.功源 B.热源 C.质源 D.工质4.工质必须具有良好的膨胀性和流动性,常用工质有AA.燃气 B.润滑油 C.水 D.天然气5.工质必须具有良好的膨胀性和流动性,常用工质有 AA.氟里昂气 B.润滑油 C.水 D.天然气7.下列哪一项不是与系统发生作用的外界A.功源 B.热源 C.质源 D.工质8.封闭系统是指的系统A.与外界没有物质交换 B.与外界没有热量交换C.与外界既没有物质交换也没有热量交换 D.与外界没有功交换9.开口系统是指的系统·A.与外界有物质交换 B.与外界有热量交换C.与外界有物质交换没有热量交换 D.与外界有功交换10.孤立系统是指的系统A.与外界没有物质交换 B.与外界没有热量交换C.与外界没有功交换D.A+B+C 13.蒸气压缩制冷系统是A.绝热系统 B.孤立系统C.封闭系统 D.开口系统16.强度量与系统的质量,可加性A.有关/不具有 B.无关/不具有 C.有关/具有 D.无关/具有20.从绝对真空算起的压力为A.表压力B.绝对压力 C.真空度 D.标准压力24.工质的热力状态参数中,可直接测量的参数是A.压力 B.内能 C.焓 D.熵29.如某阀门后的表压力为0.5个大气压,则该处的绝对压力应为A.5 B.1.5 C.0.4 D.0.530.若真空度为0.2个大气压,则该处的绝对压力应为个大气压A.2 B.1.2 C.0.8 D.0.231.若真空度为0.2个大气压,则该处的表压力应为个大气压A.2 B.1.2 C.-0.8 D.-0.233.若大气压力为0.1 MPa,容器内的压力比大气压力低0.006MPa,则容器内的A.表压力为0.094MPa B.绝对压力为0.094MPaB.真空度为0.106MPa D.表压力为0.106MPa34.若大气压力为0.1 MPa,容器内的压力比大气压力高0.004MPa,则容器内的A.表压力为0.096 MPa B.绝对压力为0.096MPaC.真空度为0.104MPa D.绝对压力为0.104MPa37.当理想气体的密度不变而压力升高时,其比容A.增大 B.减小C.不变 D.不一定38.当理想气体的比体积不变而压力升高时,其密度A.增大 B.减小C.不变 D.不一定39.热力学平衡态是指系统同时处于平衡和平衡A.质量/压力 B.温度/质量 C.压力/质量D.温度/压力43.不考虑化学反应和电磁效应的热力学系统,过程的不可逆因素主要有A.耗散效应 B.有限温差下的热传递 C.自由膨胀 D.A+B+C44.在刚性容器中,一定质量的空气被3000C的热源从1000C加热到300 0C,此过程是A.可逆的 B.不可逆的 C.定容可逆的 D.等压不可逆的45.经过一个不可逆过程后,工质不能恢复原来状态,该说法A.正确 B.错误 C.有一定道理 D.不定46.系统进行了一个过程后,如不能使沿着与原过程相反的方向恢复初态,则这样的过程为不可逆过程 A.系统 B.外界C.系统和外界 D.系统或外界47.在压容图上,准静态过程用一条连续曲线表示,非准静态过程用一条连续曲线表示A.可以/可以 B.可以/不可以 C.不可以/可以 D.不可以/不可以54.功状态参数,温度状态参数A.是/不是 B.不是/是 C.是/是 D.不是/不是55.功系统的状态参数,它系统状态变化过程的函数A.是/不是 B.不是/不是 C.是/是D.不是/是56.热量系统的状态参数,它系统状态变化过程的函数A.是/不是 B.不是/不是 C.是/是 D.不是/是57.在p-v图上,某比容减小的可逆过程线下的面积表示该过程中系统所A.做的膨胀功的大小B.消耗的外界功的大小 C.做的技术功的大小 D.消耗的热量58.在T-s图上,某熵增加的可逆过程线下的面积表示该过程中系统所A.吸收的热量 B.对外做的功量 C.放出的热量 D.消耗的外界功量59.在p-v图上,一个比容减少的可逆过程线表示该过程是一个过程A.吸热 B.放热 C.对外做功D.消耗外界功60.在p-v图上,某可逆过程线下的面积表示该过程中系统与外界之间的A.功的交换量 B.热量的交换量C.内能的变化量 D.能量的交换61.在图上,某可逆过程线下的面积表示该过程中系统与外界之间的功的交换量A.T-s B.p-v C.h-s D .p-h62.在T-s图上,某熵减小的可逆过程线下的面积表示该过程中系统所A.吸收的热量 B.对外做的功量C.放出的热量 D.消耗的外界功量63.在T-s图上,一个熵增加的可逆过程线表示该过程是一个过程A.吸热 B.放热 C.对外做功 D.消耗外界功64.在p-v图上,一个比容增加的可逆过程线表示该过程是一个过程A.吸热 B.放热C.对外做功 D.消耗外界功65.在p-v图上的任意一个正循环,其压缩功膨胀功A.大于 B.等于 C.小于 D.无法确定66.在p-v图上的任意一个,其膨胀功小于压缩功A.正循环B.逆循环 C.循环 D.无法确定67.工质经过一个循环,又回到初态,其温度A.增加 B.减少C.不变 D.变化不定68.如循环的目的是向高温热源供热,则该循环是A.制冷循环 B.热机循环 C.正循环 D.热泵循环69.如循环的目的是从低温热源吸热,则该循环是A.制冷循环 B.热机循环 C.正循环 D.热泵循环70.如循环的目的是将热能持续地转化为机械能,则该循环是A.制冷循环 B.热机循环 C.逆循环 D.热泵循环第二章1.热力学第一定律的实质是A.质量守恒定律 B.机械能守恒定律C.能量转换和守恒定律 D.卡诺定理2.热力学第一定律阐述了能量转换的A.方向 B.速度 C.限度D.数量关系3.气体的热力学能包括分子具有的A.移动动能 B.转动动能 C.振动动能 D.A+ B+ C4.气体的内能包括分子具有的A.压力能B.转动动能 C.耗散动能 D.A+B18.工质经过一个循环,又回到初态,其焓值A.增加 B.减少 C.不变 D.变化不定19.工质经过一个循环,又回到初态,其值不变的是A.焓 B.功 C.热量 D.A+B+C20.dq=du+dw的适用范围是A.理想工质、可逆过程 B.任意工质、可逆过程C.理想工质、任意过程 D.任意工质、任意过程21.dq=du+pdv的适用范围是A.理想工质、可逆过程 B.任意工质、可逆过程C.理想工质、任意过程 D.任意工质、任意过程=∆+⎰的适用范围是22.q u pdvA.理想工质、可逆过程B.任意工质、可逆过程C.理想工质、任意过程 D.任意工质、任意过程26.dq=dh-vdp的适用范围是A.理想工质、封闭系统 B.任意工质、封闭系统C.理想工质、开口系统D.任意工质、任意系统27.dq=du+pdv的适用范围是A.开口系统、可逆过程B.任意系统、可逆过程C.开口系统、任意过程 D.封闭系统、任意过程dT+pdv适用于工质,过程28.dq=cvA.任意/任意 B.任意/可逆 C.理想/任意 D.理想/可逆29.dq=du+dw适用于工质过程A.任意/任意 B.任意/可逆 C.理想/任意 D.理想/可逆30.dq=du+pdv适用于工质,过程A.任意/任意 B.任意/可逆 C.理想/任意 D.理想/可逆第三章3.下列哪一种气体可看作理想气体A.湿空气 B.水蒸气 C.R12蒸气D.R22蒸气4.可看作理想气体的是A.制冷装置中的R12蒸气 B.房间内空气中的水蒸气C.锅炉中的水蒸气 D.汽轮机中的水蒸气5.在理想气体的状态方程pv=RT中,只与气体的种类有关A.p B.v C.R D.T6.一定质量的理想气体在等压作用下,温度从127℃上升到227℃,其比容等于原来的A.4/5 B.5/4 C.127/227 D.227/1277.一定质量的理想气体在温度保持不变的条件下,若压力表的读数从0.5 MPa下降到0.4MPa,其比容等于原来的A.5/4 B.4/5 C.6/5 D.5/68.一定质量的理想气体在定容条件下,温度从27 0C上升到1270C,其压力等于原来的A.4/3 B.3/4 C.127/27 D.27/12714.空气或燃气的定压比热与定容比热之差等于——kJ/(kg·K)A.28.7 B.287 C.1.4 D.0.28715.空气或燃气的定压比热与定容比热之差等于空气或燃气的A.对外做功量 B.对外放热量C.气体常数 D.内能增加量16.理想气体比定压热容与定容比热之比为A.大于1 B.等于1 C.小于1 D.大于等于117.空气或燃气的比定压热容与定容比热之差等于空气或燃气的A.吸热量 B.放热量C.气体常数 D.体积增加量18.空气或燃气的定压比热是定容比热的倍A.1.4 B.1.5 C.1.6 D.1.726.工质经过一个循环,又回到初态,其熵A.增加 B.减少 C.不变 D.变化不定27.某封闭系统经历了一不可逆过程后,系统向外界放热45 kJ,同时对外界作功为10 kJ,则系统的熵的变化量为A.零 B.正 c.负D.无法确定28.国际单位制中,kJ/K是的单位A.压力B.熵 C.比容 D.比焓29.某封闭系统经历了一不可逆过程后,系统向外界放热20 kJ,同时对外界做功为10kJ,则系统熵的变化量为A.零 B.正 C.负D.无法确定30.理想气体可逆吸热过程中,下列哪个参数一定是增加的A.内能B.熵 C.压力 D.温度31.理想气体可逆放热过程中,工质的熵A.增加B.减小 C.不变 D.无法确定32.理想混合气体的压力等于各组成气体在具有与混合气体相同温度、相同容积时的分压力A.之差 B.之乘积C.之和 D.之中最大的一个33.理想混合气体的密度等于各组成气体在具有与混合气体相同温度、相同压力时的密度A.之差 B.之乘积 C.之和 D.之中最大的一个=0.8kJ/(kg·℃)]被压缩过程中,接受外界功90kJ/kg,温度上升80℃,此过程中,34.某理想气体[cvm该气体将对外界放热 kJ/kgA.26 B.64 C.154 D.都不对=0.8 kJ/(kg·℃)]在膨胀过程中,对外界放热32 kJ/kg,对外界做功40kJ/kg,此35.某理想气体[cvm过程中,该气体温度将下降℃A.80 B.90 C.82 D.都不对=0.8kJ/(kg·℃)]在膨胀过程中,对外界做功70kJ/kg,温度下降50℃,此过程中,该气36.某气体[cvm体将从外界吸热 kJ/kgA.30 B.40 C.110 D.都不对=0.8 kJ/(kg·℃)]在膨胀过程中,从外界吸热16 kJ/kg,对外界做功80kJ/kg,此过程中,37.某气体[cvm该气体温度将下降℃A.51.2 B.80 C.48 D.都不对43.理想气体放热过程,当消耗外界功时,其温度A.升高 B.降低 C.不变D.不一定44.理想气体吸热过程,当消耗外界功时,其温度A.升高 B.降低 C.不变 D.不一定46.在理想气体的可逆过程中,若温度、压力时,则该过程一定为加热过程A.升高/降低 B.升高/升高 C.降低/升高 D.降低/降低51.理想气体放热过程,当温度不变时,该过程是过程A.对外做功过程 B.定容过程 C.消耗外界功过程 D.不一定52.理想气体吸热过程,当温度不变时,该过程是A.对外做功过程 B.定容过程 C.消耗外界功过程 D.不一定53.理想气体加热过程中,若工质温度下降,则其膨胀功一定A.小于零 B.大于零 C.等于零 D.不一定54.理想气体放热过程,当温度不变时,其膨胀功WA.大于零 B.小于零 C.等于零 D.大于零或小于零55.在理想气体的放热过程中,若工质温度上升,则其膨胀功一定A.小于零 B.大于零 C.等于零 D.不一定第四章5.理想气体等温过程中吸入的热量对外做的功量A.大于 B.等于 C .小于 D.无法确定8.在定温过程中,技术功是膨胀功的倍A.0 B.1 C.k D.29.在定温过程中,空气吸收的热量有转化为内能增加量A.0 B.50%- C.86.3% D.100%10.在定温过程中,空气吸收的热量有转化为对外做功量A.28.6% B.50% C.71.4% D.100%17.理想气体工质的放热、膨胀过程,该多变过程的多变指数A.n<0 B.0<n<l C.1<n<k D.n>k18.理想气体工质的压缩、降温、降压过程,该多变过程的多变指数A.n<0 B.0<n<l C.1<n<k D.n>k20.在多变指数n=0.4的多变过程中,空气吸收的热量有转化为对外做功量 A.28.6% B.40% C.71.4% D.100%21.理想气体过程方程为pv n=常数,当n=0时,其热力过程是A.等容过程B.等压过程 C.等温过程 D.绝热过程22.理想气体过程方程为pv n=常数,当n= k(绝热指数)时,其热力过程是A.等容过程 B.等压过程 C.等温过程 D.绝热过程23.理想气体绝热过程的比热容为A.cv B.cpC.∞ D.零24.理想气体定温过程的比热容为A.cv B.cpC.∞ D.零31.对于一定质量的理想气体,不可能发生的过程是A.气体绝热压缩,温度降低 B.气体放热,温度升高C.气体绝热膨胀,温度降低 D.气体吸热,温度升高34.对理想气体,下列过程的比容是减少的A.绝热压缩 B.绝热膨胀 C.定压加热 D.定温加热37.在p-v图上,更陡一些,在T-s图上,更陡一些A.绝热线/定容线 B.绝热线/定压线 C.定温线/定容线 D.定温线/定压线38.下列哪种情况气体的内能减少A.绝热压缩B.绝热膨胀 C.定温膨胀 D.定温压缩39.下列哪种情况气体的内能增加A.绝热压缩 B.绝热膨胀 C.定温膨胀 D.定温压缩40.对于一定质量的理想气体,不可能发生的过程是A.气体绝热压缩,温度降低 B.气体放热,温度升高C.气体绝热膨胀,温度降低 D.气体吸热,温度升高41.对于一定质量的理想气体,不可能发生的过程是A.气体绝热膨胀,温度降低 B.气体放热,温度升高C.气体绝热膨胀,温度升高 D.气体吸热,温度升高42.对于一定质量的理想气体,不可能发生的过程是A.气体放热,压强增大 B.气体放热,温度不变C.定温放热,压强增大D.定温压缩,气体吸热第五章129.由等温放热过程、绝热压缩过程、等温加热过程和绝热膨胀过程所组成的循环是A.混合加热循环 B.定容加热循环 C.定压加热循环 D.卡诺循环130.由等温放热过程、绝热压缩过程、等温加热过程和绝热膨胀过程所组成的循环是A.柴油机工作循环 B.二次回热循环 C.逆卡诺循环 D.蒸汽动力循环133.热力学第二定律并没有阐明能量转换的A.条件 B.限度 C.速度 D.方向134.工质经卡诺循环后又回到初始状态,其内能A.增加 B.减少C.不变 D.增加或减少135.卡诺循环的热效率仅与下面哪项有关A.高温热源的温度B.高温热源的温度和低温热源的温度C.低温热源的温度D.高温热源的温度和低温热源的温度及工质的性质122.用热泵给房间供暖,经济性比用电炉直接取暖A.好B.坏 C.相等 D.不一定136.提高制冷系数的最佳措施是A.提高冷凝温度,降低蒸发温度 B.提高冷凝温度,提高蒸发温度C.降低冷凝温度,提高蒸发温度 D.降低冷凝温度,降低蒸发温度137.从逆卡诺循环可以看出,同时提高蒸发温度和冷凝温度可以制冷系数 A.降低 B.提高 C.不改变 D.无法确定138.理想气体在高温热源温度TH 和低温热源温度TL之间的逆向卡诺循环的制冷系数为A.(TH +TL)/THB.TH/(TH- TL) C.TL/(TH- TL) D.(TL-TH)/TH139.理想气体在高温热源温度TH 和低温热源温度TL之间的卡诺循环的热效率为A.(TH -TL)/THB.TH/(TH- TL) C.TL/(TH- TL) D.(TL-TH)/TL142.热力学第二定律可以这样表述A.热能可以百分之百的转变为功B.热能可以从低温物体自动地传递到高温物体C.使热能全部而且连续地转变为机械功是不可能的D.物体的热能与机械功既不能创造也不能消灭143.下述哪一机械的工作原理是逆卡诺循环的应用A.蒸汽机 B.热机 C.锅炉 D.制冷装置145.卡诺循环是由哪两种过程组成的A.等温过程和定压过程 B.等温过程和定容过程C.等温过程和绝热过程 D.绝热过程和定容过程146.逆卡诺循环是在哪一个过程从外界吸热A.定温过程 B.绝热膨胀过程 C.B与D D.绝热压缩过程147.理想气体绝热过程中,工质的熵的变化量A.大于零 B.小于零 C.等于零D.大于等于零148.卡诺循环热效率的范围是A.大于1 B.大于零,小于1 C.大于零 D.小于零149.逆卡诺循环制冷系数的范围是A.大于1 B.大于零,小于1 C.大于零 D.小于零153.卡诺循环的热效率与工质性能的优劣有直接关系,该说法A.完全正确 B.有一定道理C.完全错误 D有可能对167.卡诺循环是在哪一个过程从外界吸热A.定温过程 B.绝热膨胀过程 C.B与D D.绝热压缩过程168.逆卡诺循环是在哪一个过程向外界放热A.定温过程 B.绝热膨胀过程 C.B与D D.绝热压缩过程169.卡诺循环包括哪四个热力过程A.定容加热,定容放热,绝热膨胀,绝热压缩B.定温加热,定温放热,绝热膨胀,绝热压缩C.可逆定温加热,可逆定温放热,可逆绝热膨胀,可逆绝热压缩D.可逆定压加热,可逆定压放热,可逆绝热膨胀,可逆绝热压缩170.提高循环热效率的不正确的途径是A.尽量提高高温热源温度B.尽量降低低温热源温度C.尽可能使实际的热力循环接近理想卡诺循环D.尽量增大各种传热温差171.提高循环热效率的不正确的途径是A.尽量提高高温热源温度 B.尽量降低低温热源温度C.尽量减少各种摩擦损失D.尽量减小高低温热源温差第七章1.沸腾是指A.从液态物质转变为气态物质的过程 B.从气态物质转变为液态物质的过程C.在液体表面发生的汽化现象 D.在液体表面和内部同时发生的剧烈的汽化现象2.蒸发是指A.从液态物质转变为气态物质的过程 B.从气态物质转变为液态物质的过程C.在液体表面发生的汽化现象 D.在液体表面和内部同时发生的剧烈的汽化现象3.在任何温度下,由液态物质转变为气态物质的过程,称为A.汽化 B.蒸发 C.沸腾, D.A+B4.由气态物质转变为液态物质的过程称为A.结露 B.液化 C.凝结D.B或C5.饱和水蒸气和饱和水的混合物称为A.未饱和水B.湿蒸汽 C.过热蒸汽 D.干饱和蒸汽6.湿蒸汽的状态由决定A.温度与压力B.压力与干度 C.过热度与压力 D.过冷度与温度7.液面上饱和蒸汽压力所对应的沸腾温度称为A.露点 B.饱和温度 C.沸点 D.B或C8.要确定过热蒸汽的参数,除了知道其温度外,还必须知道其A.压力 B.温升 C.干度 D.过冷度9.要确定未饱和水的参数,除了知道其压力外,还必须知道其A.温度 B.温升 C.干度 D.过热度10.要确定饱和水的参数,除了知道其温度外,还需要知道其A.压力 B.过热度 C.干度D.不再需要12.在水蒸气的T-s图中,饱和蒸汽线右上方的区域称为A.过冷水状态区 B.湿蒸汽状态区 C.过热蒸汽状态区 D.固体状态区13.在水蒸气的p-v图中,零度水线左侧的区域称为A.过冷水状态区 B.湿蒸汽状态区 C.过热蒸汽状态区D.固体状态区14.过热蒸汽的过热度等于A.过热蒸汽温度 B.饱和温度 C.A+B D.A-B16.干度x=0的工质是指,A.未饱和液B.饱和液 C.湿饱和液 D.过热蒸汽17.干度x=l的工质是指A.饱和液 B.饱和蒸汽 C.湿饱和液 D.过热蒸汽22.水在定压汽化过程中,若其温度等于该压力下的饱和温度,则其处于状态A.饱和水 B.湿蒸汽 C.饱和蒸汽 D.或A或B或C25.某温度和压力下的过冷水,其温度其压力下的饱和温度,其压力其温度下的饱和压力、A.大于/大于 B.大于/小于 C.小于/大于 D.小于/小于31.在水蒸气的p-v图中,饱和水线和饱和蒸汽线之间的区域称为A.过冷水状态区 B.湿蒸汽状态区 C.过热蒸汽状态区 D.固体状态区32.在水蒸气的p-v图中,零度水线和饱和水线之间的区域称为A.过冷水状态区 B.湿蒸汽状态区 C.过热蒸汽状态区 D.固体状态区37.水在汽化过程中,若其压力高于其温度的饱和压力,则其处于状态A.过冷水 B.饱和水 C.饱和蒸汽 D.过热蒸汽38.水在汽化过程中,若其压力小于其温度的饱和压力,则其处于状态A.过冷水 B.饱和水 C.饱和蒸汽D.过热蒸汽39.水在密闭容器中定压加热汽化时,当最后一滴水也变成蒸汽时,这时容器内的蒸汽称为A.饱和蒸汽 B.未饱和蒸汽 C.过热蒸汽 D.过饱和蒸汽40.某温度和压力下的过冷水,其压力其温度下的饱和压力,其温度其压力下的饱和温度A.大于/大于 B.大于/小于 C.小于/大于 D.小于/小于41.在水蒸气的T-s图中,零度水线和饱和水线之间的区域称为A.过冷水状态区 B.湿蒸汽状态区 C.过热蒸汽状态区 D.固体状态区45.水的定压汽化过程经历了除以外的三个阶段A.定压升温阶段 B.定压预热阶段 C.定压汽化阶段 D.定压过热阶段52.不存在200 ℃的水,只存在200℃的水蒸气,此说法A.正确 B.错误 C.有一定道理 D.无法确定63.在压力为0.5 MPa时,饱和水的比焓为640.1 kJ/kg,饱和水蒸气的比焓为2748.1kJ/kg。
(完整版)工程热力学期末复习题答案
江苏科技大学《工程热力学》练习题参照答案第一单元一、判断正误并说明原因:1.给理想气体加热,其热力学能老是增添的。
错。
理想气体的热力学能是温度的单值函数,假如理想气体是定温吸热,那么其热力学能不变。
1.丈量容器中气体压力的压力表读数发生变化必定是气体热力状态发生了变化。
错。
压力表读数等于容器中气体的压力加上大气压力。
所以压力表读数发生变化能够是气体的发生了变化,也能够是大气压力发生了变化。
2.在张口系统中,当进、出口截面状态参数不变时,而单位时间内流入与流出的质量相等,单位时间内互换的热量与功量不变,则该系统处在均衡状态。
错。
系统处在稳固状态,而均衡状态要求在没有外界影响的前提下,系统在长时间内不发生任何变化。
3.热力系统经过随意可逆过程后,终态 B的比容为 v B大于初态 A 的比容 v A,外界必定获取了技术功。
错。
外界获取的技术功能够是正,、零或负。
4.在朗肯循环基础上推行再热,能够提升循环热效率。
错。
在郎肯循环基础上推行再热的主要利处是能够提升乏汽的干度,假如中间压力选的过低,会使热效率降低。
6.水蒸汽的定温过程中,加入的热量等于膨胀功。
错。
因为水蒸汽的热力学能不是温度的单值函数,所以水蒸汽的定温过程中,加入的热量其实不是所有用与膨胀做功,还使水蒸汽的热力学能增添。
7.余隙容积是必要的但又是有害的,设计压气机的时候应尽可能降低余隙比。
对。
余隙容积的存在降低了容积效率,防止了活塞随和门缸头的碰撞,保证了设施正常运行,设计压气机的时候应尽可能降低余容比。
8.内燃机定容加热理想循环热效率比混淆加热理想循环热效率高。
错。
在循环增压比同样吸热量同样的状况下,定容加热理想循环热效率比混淆加热理想循环热效率高;但是在循环最高压力和最高温度同样时,定容加热理想循环热效率比混淆加热理想循环热效率低。
9.不行逆过程工质的熵老是增添的,而可逆过程工质的熵老是不变的。
错。
熵是状态参数,工质熵的变化量仅与初始和终了状态有关,而与过程可逆不可逆没关。
工程热力学期末复习题1答案
一、判断题:1. 平衡状态一定稳定状态。
2. 热力学第一定律的实质是能量守恒定律;3.公式d u = c d t适用理想气体的任何过程。
v4.容器中气体的压力不变则压力表的读数也绝对不会改变。
5.在T—S图上,任意二条可逆绝热过程线不能相交。
6.膨胀功与流动功都是过程的函数。
7.当把一定量的从相同的初始状态压缩到相同的终状态时,以可逆定温压缩过程最为省功。
8.可逆过程是指工质有可能沿原过程逆向进行,并能恢复到初始状态的过程。
d q c c d为一过程量;9. 根据比热容的定义式,可知理想气体的pT10. 自发过程为不可逆过程,非自发过程必为可逆过程;11.在管道内作定熵流动时,各点的滞止参数都相同。
12.孤立系统的熵与能量都是守恒的。
13.闭口绝热系的熵不可能减少。
14.闭口系统进行了一个过程,如果熵增加了,则一定是从外界吸收了热量。
15.理想气体的比焓、比熵和比定压热容都仅仅取决与温度。
16.实际气体绝热节流后温度一定下降。
17.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。
18. 不可逆循环的热效率一定小于可逆循环的热效率;19.混合气体中质量成分较大的组分,其摩尔成分也一定大。
20.热力学恒等式du=Tds-pdv与过程可逆与否无关。
21.当热源和冷源温度一定,热机内工质能够做出的最大功就是在两热源间可逆热机对外输出的功。
22.从饱和液体状态汽化成饱和蒸汽状态,因为气化过程温度未变,所以焓的变ΔT=0。
Δh=c化量p=∫cdT仅适用于理想气体,不能用于实际气体。
23.定压过程的换热量q pp图上,通过同一状态点的定熵过程的斜率大于定温过程的斜率。
v-p.在24.25. 压缩过程耗功是体积膨胀功,压气机耗功是技术功;26.供热量一定,用电炉取暖与用热泵式空气取暖耗电量一样多。
27.渐缩喷管出口截面参数不变,背压提高,则喷管流量下降。
28.工质在变截面管道内流动,管道的最小截面即为临界截面。
《工程热力学》复习 学习材料 试题与参考答案
《工程热力学》参考资料复习学习材料试题与参考答案一、单选题1.下列参数中,哪一个参数的变化量只与初终状态有关,而与变化过程无关(B)A.功B.焓C.比热容D.热效率2.工质的热力状态参数中,可直接测量的参数是(A)A.压力B.内能C.焓D.熵3.在工质的热力状态参数中,不能直接测量的参数是(D)A.压力B.温度C.比容D.内能4.在工质的热力状态参数中,属于基本状态参数的是(A)A.压力B.内能C.焓D.熵5.在工程热力学计算中使用的压力是(D)A.大气压力B.表压力C.真空压力D.绝对压力6.对于一定质量的理想气体,不可能发生的过程是(D)。
A.气体绝热膨胀,温度降低B.气体放热,温度升高C.气体绝热膨胀,温度升高D.气体吸热,温度升高7.热力学第二定律可以这样表述(C)。
A.热能可以百分之百的转变为功B.热能可以从低温物体自动地传递到高温物体C.使热能全部而且连续地转变为机械功是不可能的D.物体的热能与机械功既不能创造也不能消灭8.理想气体温度不变,其参数值一定不变的是(A)。
A.内能B.熵C.比容D.压力9.卡诺循环热效率的范围是(B)。
A.大于1B.大于零,小于1C.大于零D.小于零10.当空气被视为理想气体时,其内能由决定(D)。
A.熵B.比容C.压力D.温度11.在定压过程中,空气吸收的热量有(A)转化为对外做功量。
A.0.29B.0.5C.0.71D.112.工质经卡诺循环后又回到初始状态,其内能(C)。
A.增加B.减少C.不变D.增加或减少13.可看作理想气体的是(B)。
A.制冷装置中的R12蒸气B.房间内空气中的水蒸气C.锅炉中的水蒸气D.汽轮机中的水蒸气14.热力学第二定律指出(C)。
A.能量只能转换而不能增加或消灭B.能量只能增加或转换而不能消灭C.能量在转换中是有方向性的D.能量在转换中是无方向性的15.某气体[cvm=0.8kJ/(kg•℃)]在膨胀过程中,对外界做功70kJ/kg,温度下降50℃,此过程中,该气体将从外界吸热(A)kJ/kg。
工程热力学复习重点及简答题
工程热力学复习重点2 0 1 2 . 3 绪论[1] 理解和掌握工程热力学的研究对象、主要研究内容和研究方法[2] 理解热能利用的两种主要方式及其特点[3] 了解常用的热能动力转换装置的工作过程1.什么是工程热力学从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。
2.能源的地位与作用及我国能源面临的主要问题3. 热能及其利用[1] 热能:能量的一种形式[2] 来源:一次能源:以自然形式存在,可利用的能源。
如风能,水力能,太阳能、地热能、化学能和核能等。
二次能源:由一次能源转换而来的能源,如机械能、机械能等。
[3] 利用形式:直接利用:将热能利用来直接加热物体。
如烘干、采暖、熔炼(能源消耗比例大)间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能,4..热能动力转换装置的工作过程5.热能利用的方向性及能量的两种属性[1] 过程的方向性:如:由高温传向低温[2] 能量属性:数量属性、,质量属性(即做功能力)[3] 数量守衡、质量不守衡[4] 提高热能利用率:能源消耗量与国民生产总值成正比。
第1 章基本概念及定义1. 1 热力系统一、热力系统系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。
外界:与系统相互作用的环境。
界面:假想的、实际的、固定的、运动的、变形的。
依据:系统与外界的关系系统与外界的作用:热交换、功交换、质交换。
二、闭口系统和开口系统闭口系统:系统内外无物质交换,称控制质量。
开口系统:系统内外有物质交换,称控制体积。
三、绝热系统与孤立系统绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热)孤立系统:系统与外界既无能量传递也无物质交换=系统+相关外界=各相互作用的子系统之和=一切热力系统连同相互作用的外界四、根据系统内部状况划分可压缩系统:由可压缩流体组成的系统。
简单可压缩系统:与外界只有热量及准静态容积变化均匀系统:内部各部分化学成分和物理”性质都均匀一致的系统,是由单相组成的。
工程热力学复习题及答案
工程热力学复习题及答案### 工程热力学复习题及答案#### 一、选择题1. 热力学第一定律的数学表达式是:- A. ΔU = Q - W- B. ΔH = Q + W- C. ΔS = Q/T- D. ΔG = Q - W答案:A2. 理想气体的内能仅与什么有关?- A. 体积- B. 温度- C. 压力- D. 质量答案:B3. 卡诺循环的效率与哪些因素有关?- A. 工作介质- B. 工作介质的量- C. 高温和低温热源- D. 循环次数答案:C4. 熵增加原理适用于:- A. 孤立系统- B. 封闭系统- C. 开放系统- D. 所有系统答案:A5. 理想气体的绝热过程遵循什么规律?- A. PV = 常数- B. PV^γ = 常数- C. P^γ = 常数- D. V/T = 常数答案:B#### 二、简答题1. 简述热力学第二定律的克劳修斯表述和开尔文-普朗克表述。
答案:- 克劳修斯表述:不可能实现一个循环过程,其唯一结果就是从一个热源吸收热量并完全转化为功。
- 开尔文-普朗克表述:不可能从单一热源吸热使之完全转化为功而不产生其他效果。
2. 什么是可逆过程?为什么实际过程中不可逆性普遍存在?答案:- 可逆过程:在过程中,系统和环境都能完全恢复到初始状态,没有熵的产生。
- 实际过程中不可逆性普遍存在,因为实际过程如摩擦、湍流、热传导等都会产生熵,导致系统和环境无法完全恢复到初始状态。
3. 解释什么是湿蒸汽图表,并简述其用途。
答案:- 湿蒸汽图表:一种图表,用于表示水蒸汽的热力学状态,包括压力、温度、比容、焓和熵等。
- 用途:用于分析和设计涉及水蒸汽的热力学过程,如蒸汽动力循环、制冷系统等。
#### 三、计算题1. 已知理想气体在等压过程中,压力为 \( P = 1 \) atm,温度从\( T_1 = 300 \) K 变化到 \( T_2 = 600 \) K,求气体体积的变化量 \( \Delta V \)。
工程热力学第五版期末复习秘籍5
第五章自发过程都是不可逆过程(√)非自发过程必为可逆过程(×未必)机械能可以全部变为热能,而热能不可能全部变为机械能(×热能可以全部变为机械能,但会引起其他变化。
如:可逆定温过程。
所吸收的热量全部用来作功)一切非准静态过程都是不可逆过程(√)η=1−q2q1适用于所有循环过程(√)η=1−T2T1适用于所有循环过程(×卡诺循环)可逆循环的热效率都相等(×同温热源和同温冷源之间)冷却单一热源可以进行循环(×η=1−T2T1)从任何具有一定温度的热源取热,都能进行热变功的循环。
(×单一热源,同温热源)卡诺循环的热效率与工质性质无关(√)所有工作于同温热源和同温冷源之间的一切可逆循环,其热效率都相等。
(√为ηt,c)在同温热源和同温冷源之间的一切不可逆循环,其热效率都小于可逆循环。
(√)熵是强度性参数(×广延量)过程中熵的变化只和初终状态有关,而和过程的路径以及过程是否可逆无关(√)熵是过程量(×状态量焓热力学能)不可逆循环过程,克劳修斯积分∮(δq T)<系统熵变∮(δq T)re=∮ds=0(√)可逆过程,克劳修斯积分等于系统熵变。
(√)�ds21≥��δq T�21若Δq=0 则Δs≥0根据熵增原理,绝热闭口系统或者孤立系统的熵只能增加(×不可逆过程熵增;可逆过程,熵保持不变)当孤立系统熵达到最大值,系统处于平衡状态(√熵增为0)过程的不可逆程度越大,熵增也越大。
(√)熵为状态量,所以熵流和熵产也是状态量(×与过程特性有关)孤立系统的熵变等于孤立系统的熵产,也就是说孤立系统的熵产可以通过各组成部分的熵变进行计算(√)系统熵减小的过程必定是放热过程。
(√熵流为负值,才能保证熵减小。
)在相同的初、终状态之间,进行可逆过程和不可逆过程,则两个过程中,工质与外界传递的热量不相等。
(√熵流、熵产)不可逆循环的热效率一定小于可逆循环的热效率;(×同温热源和同温冷源之间)开口系统控制体内熵增为0概念解释:自发过程:不需要任何附加条件就可以自发进行的过程;非自发过程热力学第二定律的表述:1不可能把热量从低温物体传到高温物体而不引起其他变化。
工程热力学考试总复习总结知识点
第六章
• 压缩因子 • 范德瓦尔方程 • 对应态原理
第七章教学大纲要求
熟练掌握
• 有关蒸汽的各种术语及其意义。介绍蒸汽 表和图(以h-s图为主)及其运用。
正确理解
工质为蒸汽时定温过程的多变指数不等于1, 定熵过程多变指数不等Cp/Cv,而是一个由实 验确定的数值。
第七章
• 饱和温度和饱和压力;定压加热、汽化过 程;水和水蒸汽状态参数;水蒸汽表和图; 水蒸汽热力过程
– 两个基本定律是热力学第一定律和第二定律,包括了 定律的定性和定量表达及有关应用等;
– 三个守恒方程是指质量守恒方程、能量守恒方程和 熵守恒方程等,这是热工分析计算的基础;
– 四个热力过程指的是定温、定压、定容和绝热等四 个基本热力过程。包括过程的特点、过程中状态参 数的变化、热量和功量(机械功)的转化情况等;
解题思路
• 1)取好热力系 • 2)计算初、终态 • 3)两种解题思路
从已知条件逐步推向目标 从目标反过来缺什么补什么
4)不可逆过程的功可尝试从外部参数着手
第二章
稳定流动的能量方程
q
u
1 2
c
2 f
gz
( pv)
wi
q
h
1 2
c
2 f
gz
wi
一真空容器,因密封不严外界空气逐渐渗漏入容器 内,最终使容器内的温度、压力和外界环境相同, 并分别为27 ℃及101 325 Pa。设容器的容积为0.1 m3,且容器中温度始终保持不变,试求过程中容器
0 绪论
熟练掌握: • 能量有效利用的基本途径和方法。 • 热功转换装置的工作原理及其共性。 • 各物理量的单位及国际单位制与公制间换算
工程热力学第五版期末复习秘籍(第一章到第四章)
第一章系统质量变化为零的系统为闭口系统(×。
可能为开口系统,进入量和输出量相等)一切热力系统连同与之相互作用的外界可抽象为孤立系统。
(√)闭口绝热系统就是孤立系统(×绝热、功、质量)对于简单可压缩系统,确定系统平衡状态的独立参数为2。
(√)平衡状态一定是均匀状态。
(×。
均匀必然平衡,平衡未必均匀。
单相物质均匀必然平衡,平衡也必然均匀。
)当某一过程完成后,如系统能沿原路线反向进行回复到初态,则上述过程称为可逆过程。
(×系统和外界都完全恢复)工程上的测压仪表测得的是相对压力(√)如果两个物体分别与第三个物体处于热平衡则它们彼此之间也必然处于热平衡。
(√)强度性参数没有可加性,广延性参数有可加性,比参数没有可加性(√)欲使系统达到热力平衡,系统内部及相联系的外界,强度性参数必须相等。
(√)开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系统不可能是绝热系。
(×工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
)准静态过程没有内部非平衡损失。
(√)可逆过程必然是准静态过程,但准静态过程未必是可逆过程。
(√)非平衡损失和耗散损失不是指能量的数量损失,而是指作功能力(能质)的降低或者退化。
(√)技术功和膨胀功是过程量不是状态量,w≠w2-w1 (√) 流动功是过程量。
(×w f=p2v2−p1v1)热量是状态量。
(×。
热量同功一样也是过程量)21,熵流增加√)系统吸热,q>0,ds>0 (可逆过程热量q=∫Tds只有可逆过程才能在p-v图上描述过程进行轨迹(×至少准静态可以)经历一个不可逆过程后,系统能否恢复原来状态?(能)包括系统和外界的整个系统能否恢复原来状态?(不能)系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
《工程热力学》复习题
工程热力学期末复习题一、判断题(正确的画+, 错误的画-)(1) 实际蒸汽动力装置与燃气轮装置,采用回热后平均加热温度与热效率均提高。
( )(2) 封闭系统中发生吸热过程系统熵必增加。
( )(3) 通用气体常数与气体种类无关。
( )(4) 热力系统没有通过外界交换能量,系统的热力状态也可能发生变化。
( )(5) 当已知封闭系统发生某个过程前后熵差的数值,就可以求出在过程中系统与外界交换热量。
( )(6) 热力学第二定律可以表述为:机械能可以完全转化为热能,热能不能全部转化为机械能.( )(7) 在 p —v 图上定温线的斜率比定温线的斜率大。
( )(8) 热力学恒等式 du=Tds —pdv 与过程可逆与否无关。
( )(9) 理想气体的定摩尔比热与压力无关。
( )(10) 气体从相同的初态压缩到相同的终压力,等温压缩过程功大于绝热压缩过程功,因此,压力机应注意保温,减少冷却,以减少压气机消耗的功.( )(11) 对于确定的理想气体,在任意指定温度下,其(C p —C v )总等于同一定值。
( )(12) 循环净功愈大,则循环的热效率愈高。
( )(13) 汽轮机对外输出的功在过程为可逆时等于流过汽轮机的气体的膨胀功。
( )(14) 绝热节流后,流体的温度不是升高,就是降低。
( )(15) 在热泵循环中,室外低温环境中的热能被送至室内高温环境中, 因此,可用能增加了。
( )(16) 实际气体绝热自由膨胀后,其热力学内能不变。
( )(17) 公式dh=p c dT 的任何可逆过程。
( )(18) 稳定流动能量方程不适用于有摩擦的情况。
( )(19) 当多变过程的指数 n 满足 1< n < k 比热容为负值。
( )(20) 热源和冷源的温差愈大,热效率愈高,制冷系数也愈大。
( )(21) 绝热过程一定是定熵过程。
( )(22) 水在大气中喷淋冷却时温度能降低到低于空气的温度。
( )(23) 提高初温和降低终态压力均可提高朗肯循环的热效率。
工程热力学期末复习题1答案
.一、判断题:1. 平衡状态一定稳定状态。
2. 热力学第一定律的实质是能量守恒定律;3.公式d u = c d t适用理想气体的任何过程。
v4.容器中气体的压力不变则压力表的读数也绝对不会改变。
5.在T—S图上,任意二条可逆绝热过程线不能相交。
6.膨胀功与流动功都是过程的函数。
7.当把一定量的从相同的初始状态压缩到相同的终状态时,以可逆定温压缩过程最为省功。
8.可逆过程是指工质有可能沿原过程逆向进行,并能恢复到初始状态的过程。
d q c c d为一过程量;9. 根据比热容的定义式,可知理想气体的pT10. 自发过程为不可逆过程,非自发过程必为可逆过程;11.在管道内作定熵流动时,各点的滞止参数都相同。
12.孤立系统的熵与能量都是守恒的。
13.闭口绝热系的熵不可能减少。
14.闭口系统进行了一个过程,如果熵增加了,则一定是从外界吸收了热量。
15.理想气体的比焓、比熵和比定压热容都仅仅取决与温度。
16.实际气体绝热节流后温度一定下降。
17.任何不可逆过程工质的熵总是增加的,而任何可逆过程工质的熵总是不变的。
18. 不可逆循环的热效率一定小于可逆循环的热效率;19.混合气体中质量成分较大的组分,其摩尔成分也一定大。
20.热力学恒等式du=Tds-pdv与过程可逆与否无关。
21.当热源和冷源温度一定,热机内工质能够做出的最大功就是在两热源间可逆热机对外输出的功。
22.从饱和液体状态汽化成饱和蒸汽状态,因为气化过程温度未变,所以焓的变ΔT=0。
Δh=c化量p=∫cdT仅适用于理想气体,不能用于实际气体。
q23.定压过程的换热量pp24.在p-v图上,通过同一状态点的定熵过程的斜率大于定温过程的斜率。
范文word.25. 压缩过程耗功是体积膨胀功,压气机耗功是技术功;26.供热量一定,用电炉取暖与用热泵式空气取暖耗电量一样多。
27.渐缩喷管出口截面参数不变,背压提高,则喷管流量下降。
28.工质在变截面管道内流动,管道的最小截面即为临界截面。
工程热力学-第五版-复习资料期末考试复习资料
工程热力学习题集(含答案)第五版的很全的1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学期末复习考点归纳
一、填空选择1、做功和传热的异同:相同点:①通过边界传递的能量;②过程量;不同点:①功传递由压力差推动,比体积变化是作功标志;热量传递由温差推动,比熵变化是传热的标志;②功是物系间通过宏观运动发生相互作用传递的能量;热是物系间通过杂乱的微粒运动发生相互作用而传递的能量。
③传热仅是热能的传递过程,而做功过程一般伴随能量形态的转化。
④功转化为热是无条件的,而热转化为功是有条件、有限度的。
2、某过程可在p-v图中用实线表示,则必为准静态过程3、某过程可在p-v图中用实线表示,则不一定为可逆过程。
4、系统处于平衡状态时,绝对压力不变。
5、不计恒力场作用,平衡态单相系统内各点的状态参数,如密度必定是均匀一致的。
6、经过一个不可逆循环,工质不能恢复原来状态,这种说法是错的。
7、无任何耗散效应的准平衡过程是可逆过程。
8、平衡状态:平衡必稳定,稳定未必平衡,平衡未必均匀。
9、热力学第一定律用于任意系统、任意工质、任意过程。
10、功不是状态参数,热力学能与推动功之和是状态参数。
11、①当n = 0→定压过程②当n = 1→定温过程③当n = k→定熵(绝热)过程④当n = ∞→定容过程12、实际气体的压缩因子,可大于、小于或等于113、气体的临界压缩因子小于114、物质的比定压热容大于或等于比定容热容15、某个管道是喷管还是扩压管,不取决于管道形状,而取于管道内流体流速和压力16、对一定大小气缸的活塞式压气机,因余隙容积的存在,生产1kg气体的理论消耗功不变,实际耗功增大,压气机生产量下降17、循环增压比越大,则实际循环的热效率越高18、工程上尚无进行卡诺循环的蒸汽动力装置的原因是湿饱和区温限太小且压缩两相介质困难19、实现再热循环是为了提高蒸汽膨胀终了的干度20、抽汽回热循环中,抽汽级数越多,循环效率越高,因为抽汽级数越多,平均放热温度不变,平均吸热温度越高21、在压缩气体制冷循环中,随循环增压比提高,制冷系数下降,循环制冷量下降22、与采用可逆膨胀机相比,压缩蒸汽制冷循环中采用节流阀简化了设备降低了制冷量,降低了制冷系数23、工程上,压缩蒸汽制冷装置中常采用使制冷工质在冷凝器中冷凝后继续降温,即所谓的过冷工艺,以达到增加制冷量,提高制冷系数24、①吸收热量温度升高,焓值上升,相对湿度减小,吸湿能力增大②放出热量温度降低,焓值降低,相对湿度增大,吸湿能力减弱25、秋天白天秋高气爽气温较高,此时的空气为未饱和空气26、能够直接确定湿空气是否饱和的物理量是相对湿度27、湿空气的相对湿度增大,含湿量的变化不确定二、计算参考题型课后题1-12、1-16例2-1、课后题2-3例3-2、课后题3-5例4-7、课后题4-10,4-13例5-3、课后题5-1,5-7。
第五版工程热力学复习
第一章:基本概念系统:将所要研究的对象与周围环境分隔开来,这种人为分隔出来的研究对象成为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界,其作用是确定研究对象,将系统与外界分隔开来。
外界:边界意外与系统相互作用的物体,称为外界或环境。
系统与外界之间的作用通常有三种形式:功交换、热交换和物质交换。
闭口系统:没有物质穿过边界的系统,有时又称为控制质量系统。
闭口系统的质量保持恒定,取系统时应把所研究的物质都包括在边界内。
开口系统:有物质流穿过边界的系统。
取系统时只需把说要研究的空间范围用边界与外界分隔开来,故又称开口系统为控制体积,简称控制体,其界面称为控制界面。
需要强调的是,即使热空气流出量与冷空气流入量相等,系统质量变化为零,仍为开口系统。
绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统。
状态与状态参数:系统与外界之间能够进行能量交换(传热或做功)的根本原因,在于两者之间的热力状态存在差异。
热力状态:系统中某瞬间表现的工质热力性质的总状况,简称状态。
热力状态反映着工质打两份制热运动的平均特性。
状态参数一旦确定,工质的状态也就确定,状态参数发生变化,工质所处的状态也发生变化,因此状态参数是热力系统状态的单值性函数,工质状态变化时,初、终状态参数的变化值,仅于初、终状态有关,而与状态变化的途径无关。
第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
温度:是描述热力平衡系统冷热状况的物理量。
是标志物质内部大量分子热运动的强烈程度的物理量。
绝对压力不能直接测得,而只能测出气体的绝对压力与当地大气压力的差值,这种压力成为相对压力。
只有绝对压力才是状态参数。
如组成热力系统各部分之间没有热量传递,系统就处于热平衡;各部分之间没有相对位移,系统就处于力平衡,同时具备热和力平衡的系统就处于热力平衡状态。
对热力系统而言,准静态过程和可逆过程都是由一系列平衡状态所组成,在P-V图上都能用连续曲线来表示;但两者又有一定的区别,可逆过程要求系统与外界随时保持力平衡和热平衡,并且不存在任何耗散效应,在过程中没有任何能量的不可逆损失,而准静态过程的条件仅限于系统内部的力平衡和热平衡。
工程热力学期末考试复习
工程热力学习题集(含答案)第五版的很全的1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
工程热力学复习资料
1、在 p —v 图上,经过同一状态点的理想气体等温过程线斜率的绝对值比绝热过程线斜率的绝对值 ( B )A.大B.小C.相等D.可能大,也可能小 2、不可逆热机与可逆热机相比,其热效率 ( C )A.一定高B.相等C.一定低D.可能高,可能低,也可能相等3、Mc - Mc v的数值是( D ) A .与状态有关 B .与气体性质有关 C .与过程有关 D.常数4、某制冷机在热源T =300K 及冷源T =250K 之间工作, 其制冷量为 1000kJ ,消耗功为 250kJ,此制冷机1 2是( C )A.可逆的B.不可逆的C.不可能的 D .可逆或者不可逆的 5、水蒸汽的汽化潜热随压力升高而( C )A.增加B.不变C.减小D.先增后减 6、理想气体绝热流经节流阀,节流后稳定截面处的温度 ( B ) A.升高 B. 降低 C.不变 D.无法确定 7、渐缩喷管中,气流的马赫数( A )A.只能小于 1B.只能小于 1 或者等于 1C.只能大于 1D.只能大于或者等于 18、已知燃气轮机理想定压加热循环中,压气机进、出口空气的温度为 T 1 、T 2 ;燃气轮机进、出口燃气 的温度为 T 3 、T 4 ,则其循环热效率为( D )T T A. 1 - 4 B. 1 - 2T T 3 1C. 1 -T - T32T -T D. 1 -T - T41T -T4 1 3 29、绝对压力 p ,表压力 p g 、环境压力 p a 间的关系为( C )A. p + p g – p b = 0B. p + p b -p g = 0C. p - p g -p b = 0D. p b + p g + p = 010、活塞式压气机的余隙比是指余隙容积与( C )之比。
A.滞胀容积B.有效容积C.活塞排量D.气缸总容积 11. dq = dh + 6w 只合用于 (B)A.理想气体可逆过程B.任何工质任何过程C.理想气体任何过程D.任何工质可逆过程 12. 水的液体热随压力升高而 (A)A.增加;B.不变;C.减小D.先增后减2K 「 p K -1 ]A.任何气体的定熵流动B.理想气体一切流动13. 喷管出口流速公式c =K - 1 p 0v 0 |L 1- ( p ) K 」| 合用于 (A) ptC.理想气体绝热流动D.理想气体可逆绝热流动15. 热泵的供热系数等于 5,则该热泵作为制冷机用时,其制冷系数等于 (C)A.6B.5C.4D.315. 理想气体某一过程的技术功w t等于吸热量q,该过程是(C)A.定压过程B.定容过程C.定温过程D.绝热过程16. 绝热节流过程是(A)A.定焓过程B.不可逆过程C.准平衡过程D.定熵过程17. 采用定压加热循环方式的燃气轮机装置压气机中的实际过程可简化为(B)A.定温压缩过程B.绝热压缩过程C.多变压缩过程D.加热压缩过程18. 一定质量的工质稳定流过一开口系统,其进系统的推动功比出系统的推动功小50kJ,所完成的技术功为100kJ,则其体积功为(C)A.-150kJB.-50kJC.50kJD.150kJ19.某容器中气体的表压力为0.04MPa, 当地大气压为0.1 MPa, 则该气体的绝对压力为(C)A 0.06 MPaB 0.04MPaC 0.14 MPaD 0. 16MPa20 .气体在某一过程中吸入300kJ 的热量,同时热力学能增加了150kJ,该过程是(A)A 膨胀过程,B 压缩过程C 定容过程D 定压过程21 .一绝热刚体容器用隔板分成两部份,左边盛有高压理想气体,右边为真空,抽去隔板后,容器内的气体温度将( C )A 升高B 降低C 不变D 不确定22.某理想气体经历了一个热力学能不变的热力过程,则该过程中工质的焓变( B )A 大于零,B 等于零C 小于零D 不确定23.某一封闭热力系,经历了一个可逆过程,热力系对外做功20kJ, 外界对热力系加热5kJ,热力系的熵变为 (A)A 大于零B 等于零C 小于零D 不确定24.有一卡诺热机,当它被作为制冷机使用时,两热源的温差越大则制冷系数(B)A 越大B 越小C 不变D 不定25 .某容器中气体的表压力为0.5bar, 当地大气压为1.0bar,则该气体的绝对压力为(B)A 0.5barB 1.5barC 1.0barD 2.0bar26.卡诺循环的热效率,只与( A )有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程热力学习题集(含答案)第五版的很全的1.基本概念热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。
边界:分隔系统与外界的分界面,称为边界。
外界:边界以外与系统相互作用的物体,称为外界或环境。
闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。
开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。
绝热系统:系统与外界之间没有热量传递,称为绝热系统。
孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。
单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。
复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。
单元系:由一种化学成分组成的系统称为单元系。
多元系:由两种以上不同化学成分组成的系统称为多元系。
均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。
非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。
热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。
状态参数:描述工质状态特性的各种物理量称为工质的状态参数。
如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。
基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。
温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。
热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。
压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。
相对压力:相对于大气环境所测得的压力。
如工程上常用测压仪表测定系统中工质的压力即为相对压力。
比容:单位质量工质所具有的容积,称为工质的比容。
密度:单位容积的工质所具有的质量,称为工质的密度。
强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。
在热力过程中,强度性参数起着推动力作用,称为广义力或势。
广延性参数:整个系统的某广延性参数值等于系统中各单元体该广延性参数值之和,如系统的容积、内能、焓、熵等。
在热力过程中,广延性参数的变化起着类似力学中位移的作用,称为广义位移。
准静态过程:过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,整个过程可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,这样的过程称为可逆过程。
膨胀功:由于系统容积发生变化(增大或缩小)而通过界面向外界传递的机械功称为膨胀功,也称容积功。
热量:通过热力系边界所传递的除功之外的能量。
热力循环:工质从某一初态开始,经历一系列状态变化,最后又回复到初始状态的全部过程称为热力循环,简称循环。
2.常用公式 状态参数:1212x x dx -=⎰⎰=0dx状态参数是状态的函数,对应一定的状态,状态参数都有唯一确定的数值,工质在热力过程中发生状态变化时,由初状态经过不同路径,最后到达终点,其参数的变化值,仅与初、终状态有关,而与状态变化的途径无关。
温度 :1.BT w m =22式中 22w m —分子平移运动的动能,其中m 是一个分子的质量,w 是分子平移运动的均方根速度;B —比例常数;T —气体的热力学温度。
2.t T +=273压力 :1.nBT w m np 322322== 式中 P —单位面积上的绝对压力;n —分子浓度,即单位容积内含有气体的分子数VNn =,其中N 为容积V 包含的气体分子总数。
2.fF p =F —整个容器壁受到的力,单位为牛(N );f —容器壁的总面积(m 2)。
3.g p B p +=(P >B )H B p -=(P <B )式中 B —当地大气压力P g —高于当地大气压力时的相对压力,称表压力;H —低于当地大气压力时的相对压力,称为真空值。
比容: 1.mV v = m 3/kg 式中 V —工质的容积m —工质的质量2.1=v ρ 式中 ρ—工质的密度kg/m3v —工质的比容m 3/kg热力循环:⎰⎰=w q δδ或∑=∆0u ,⎰=0du循环热效率:12121101q q q q q q w t -=-==η 式中 q 1—工质从热源吸热;q 2—工质向冷源放热;w 0—循环所作的净功。
制冷系数:212021q q q w q -==ε 式中 q 1—工质向热源放出热量;q 2—工质从冷源吸取热量;w 0—循环所作的净功。
供热系数:211012q q q w q -==ε 式中 q 1—工质向热源放出热量q 2—工质从冷源吸取热量w 0—循环所作的净功第二章 气体的热力性质 1.基本概念理想气体:气体分子是由一些弹性的、忽略分子之间相互作用力(引力和斥力)、不占有体积的质点所构成。
比热:单位物量的物体,温度升高或降低1K (1℃)所吸收或放出的热量,称为该物体的比热。
定容比热:在定容情况下,单位物量的物体,温度变化1K (1℃)所吸收或放出的热量,称为该物体的定容比热。
定压比热:在定压情况下,单位物量的物体,温度变化1K (1℃)所吸收或放出的热量,称为该物体的定压比热。
定压质量比热:在定压过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压质量比热。
定压容积比热:在定压过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压容积比热。
定压摩尔比热:在定压过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定压摩尔比热。
定容质量比热:在定容过程中,单位质量的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容质量比热。
定容容积比热:在定容过程中,单位容积的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容容积比热。
定容摩尔比热:在定容过程中,单位摩尔的物体,当其温度变化1K (1℃)时,物体和外界交换的热量,称为该物体的定容摩尔比热。
混合气体的分压力:维持混合气体的温度和容积不变时,各组成气体所具有的压力。
道尔顿分压定律:混合气体的总压力P 等于各组成气体分压力P i 之和。
混合气体的分容积:维持混合气体的温度和压力不变时,各组成气体所具有的容积。
阿密盖特分容积定律:混合气体的总容积V 等于各组成气体分容积V i 之和。
混合气体的质量成分:混合气体中某组元气体的质量与混合气体总质量的比值称为混合气体的质量成分。
混合气体的容积成分:混合气体中某组元气体的容积与混合气体总容积的比值称为混合气体的容积成分。
混合气体的摩尔成分:混合气体中某组元气体的摩尔数与混合气体总摩尔数的比值称为混合气体的摩尔成分。
对比参数:各状态参数与临界状态的同名参数的比值。
对比态定律:对于满足同一对比态方程式的各种气体,对比参数r p 、r T 和r v 中若有两个相等,则第三个对比参数就一定相等,物质也就处于对应状态中。
2.常用公式理想气体状态方程: 1.RT pv =式中 p —绝对压力Pa v —比容m 3/kgT —热力学温度 K适用于1千克理想气体。
2.mRT pV =式中V —质量为m kg 气体所占的容积适用于m 千克理想气体。
3.T R pV M 0=式中 V M =M v —气体的摩尔容积,m 3/kmol ;R 0=MR —通用气体常数, J/kmol ·K 适用于1千摩尔理想气体。
4.T nR pV 0=式中 V —nKmol 气体所占有的容积,m 3;n —气体的摩尔数,Mmn =,kmol适用于n 千摩尔理想气体。
5.通用气体常数:R 083140=RJ/Kmol ·KR 0与气体性质、状态均无关。
6.气体常数:RMM R R 83140==J/kg ·KR 与状态无关,仅决定于气体性质。
7.112212p v p v T T =比热:1.比热定义式:dTqc δ=表明单位物量的物体升高或降低1K 所吸收或放出的热量。
其值不仅取决于物质性质,还与气体热力的过程和所处状态有关。
2.质量比热、容积比热和摩尔比热的换算关系:04.22'ρc Mcc == 式中 c —质量比热,kJ/Kg ·k 'c —容积比热,kJ/m 3·kM c —摩尔比热,kJ/Kmol ·k3.定容比热:vv vvT u dT du dTq c ⎪⎭⎫⎝⎛∂∂===δ 表明单位物量的气体在定容情况下升高或降低1K 所吸收或放出的热量。
4.定压比热:dTdh dTq c pp==δ 表明单位物量的气体在定压情况下升高或降低1K 所吸收或放出的热量。
5.梅耶公式:R c c v p =- R c c v p 0''ρ=- 0R MR Mc Mc v p ==-6.比热比: vp vp vp Mc Mc c c c c ===''κ1-=κκRc v 1-=κnRc p道尔顿分压定律:VT ni i n p p p p p p ,1321⎥⎦⎤⎢⎣⎡=++++=∑=阿密盖特分容积定律: PT ni i n V V V V V V,1321⎥⎦⎤⎢⎣⎡=++++=∑=质量成分:iim g m=1211nn i i g g g g =+++==∑容积成分: i iV r V=1211nn i i r r r r r ==++==∑摩尔成分: i in x n=1211nn i i xx x x x ==+++==∑容积成分与摩尔成分关系: iii n r x n== 质量成分与容积成分:i i i i i i i i m n M M M g x r m nM M M====i i iii i i M Rg r r r M R ρρ===折合分子量: 111ni in ni i i i i i i n MmM x M r M nn =======∑∑∑1211211nn i i niMg g g g M M M M ===+++∑折合气体常数:01001nni i ni i ii ii R m n R R nR MR g R M mmm========∑∑∑0012112211211nn in ni niR R R r r r r M r M r M r M R R R R=====++++++∑分压力的确定ii i V p p r p V== i i ii i i i R Mp g p g p g p M Rρρ=== 混合气体的比热容:121nn n i ii cg g c g c ==+=∑12c +g c +混合气体的容积比热容:121'''nn n i i i c r r c rc ==+=∑12c'+r c'+混合气体的摩尔比热容:11n ni i i i i i i McM g c x M c ====∑∑混合气体的热力学能、焓和熵 1n i i UU ==∑ 或 1ni i i U m u ==∑1n i i H H ==∑ 或 1ni i i H m h ==∑1n i i S S ==∑ 或 1ni i i S m s ==∑范德瓦尔(Van der Waals)方程 ()2a p v b RTv ⎛⎫+-=⎪⎝⎭对于1kmol 实际气体 ()02MM a p V b R T V ⎛⎫+-=⎪⎝⎭压缩因子:id v pvz v RT==对比参数: r cT T T =,r cp p p =, rcv v v =第三章 热力学第一定律 1.基本概念热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定,这一自然界普遍规律称为能量守恒与转换定律。